工程材料及其成形技术基础第二版
- 格式:ppt
- 大小:3.35 MB
- 文档页数:29
工程材料及成形技术基础课程引言工程材料及成形技术基础课程是工程相关专业的一门基础课程,旨在介绍工程材料的基本概念、特性及其在工程中的应用,以及常见的成形技术。
本文将从以下几个方面进行介绍:工程材料的分类、材料力学性能、材料的常见加工工艺等。
一、工程材料的分类1. 金属材料金属材料是工程中最常用的材料之一。
金属材料具有良好的导电、导热性能,较高的强度和硬度以及良好的可塑性和可加工性等特点。
金属材料可分为铁基材料、非铁金属和合金等。
•铁基材料:包括钢、铸铁等,广泛应用于工程结构、机械制造、汽车制造等领域。
•非铁金属:如铝、铜、镁等,常用于电子器件、航空航天等领域。
•合金:由两种或更多种金属元素混合而成,常用于制造具有特定性能要求的零部件。
2. 非金属材料非金属材料广泛应用于建筑、电子、光电等领域,常见的非金属材料包括聚合物、复合材料和陶瓷等。
•聚合物:如塑料、橡胶等,具有良好的绝缘性、耐腐蚀性和可塑性等特点,广泛应用于包装、家电、汽车等领域。
•复合材料:由两种或多种不同材料的组合而成,具有优异的综合性能,如碳纤维复合材料在航空航天领域的应用。
•陶瓷:具有高温稳定性、强度和硬度较高的特点,常用于耐火材料、电子陶瓷等领域。
3. 半导体材料半导体材料具有介于导体与绝缘体之间的电导特性,是电子器件制造中的重要材料。
常见的半导体材料有硅、锗等,广泛应用于集成电路、光电器件等领域。
二、材料力学性能1. 强度和硬度强度是材料抵抗外力作用下变形和破坏的能力,通常用抗拉强度、屈服强度等指标来衡量。
硬度是材料抵抗外部压力而发生塑性变形的难易程度,通常用洛氏硬度、维氏硬度等进行表征。
2. 韧性和脆性韧性是材料抵抗外力作用下断裂的能力,通常用断裂韧性来衡量。
脆性是材料在受到外力作用下迅速发生断裂的性质。
3. 延展性和可塑性延展性是材料在拉伸过程中发生塑性变形的能力,即材料的伸长率。
可塑性是材料经过加工而改变形状的能力,通常用冷、热加工性能来衡量。
工程材料与成形技术基础工程材料与成形技术基础是现代工程领域中非常重要的一门学科,它涉及到了材料的选择、性能分析、成形工艺等方面的知识。
在工程实践中,材料的选择和成形技术的应用直接影响着产品的质量和性能,因此,对工程材料与成形技术基础的深入理解和掌握至关重要。
首先,工程材料的选择对产品的性能有着重要的影响。
不同的工程材料具有不同的物理和化学性质,因此在实际应用中需要根据产品的使用环境和要求来选择合适的材料。
比如,在高温环境下工作的零部件需要具有耐高温的特性,而在海水中使用的零部件则需要具有抗腐蚀的特性。
因此,工程材料的选择需要综合考虑各种因素,以确保产品能够在特定环境下具有良好的性能。
其次,对工程材料性能的分析是工程材料与成形技术基础中的重要内容之一。
通过对材料的力学性能、热学性能、耐磨性、耐腐蚀性等方面的分析,可以帮助工程师们更好地了解材料的特性,从而为产品设计和工艺选择提供依据。
例如,在设计机械零部件时,需要对材料的强度、韧性等性能进行分析,以确保产品在工作时不会发生断裂或变形。
此外,成形技术是工程材料与成形技术基础中的另一个重要内容。
成形技术包括了各种加工工艺,如锻造、铸造、焊接、切削等,这些工艺对产品的形状、尺寸和表面质量有着直接的影响。
因此,工程师需要根据产品的要求选择合适的成形技术,并对成形工艺进行合理的设计和控制,以确保产品能够满足设计要求。
总之,工程材料与成形技术基础是工程领域中不可或缺的一门学科,它对产品的质量和性能有着直接的影响。
通过对工程材料的选择、性能分析和成形技术的应用,工程师们可以更好地设计和制造出符合要求的产品,从而推动工程技术的发展和进步。
希望本文能够对工程材料与成形技术基础有所帮助,谢谢阅读!。
工程材料与成形技术基础工程材料是指用于工程结构和设备制造的材料,包括金属材料、非金属材料和复合材料等。
而成形技术则是指将原材料加工成所需形状和尺寸的工艺技术。
工程材料与成形技术是工程制造的基础,对于提高产品质量、降低成本、提高生产效率具有重要意义。
首先,工程材料的选择对产品的性能和质量有着至关重要的影响。
不同的工程材料具有不同的物理、化学和力学性能,因此在工程设计中需要根据产品的使用环境和要求来选择合适的材料。
例如,在高温环境下需要使用耐热材料,而在腐蚀性环境中需要使用耐腐蚀材料。
因此,工程材料的选择需要综合考虑材料的性能、成本和加工工艺等因素。
其次,成形技术对产品的成型质量和生产效率有着直接影响。
成形技术包括铸造、锻造、冲压、焊接等多种工艺,每种工艺都有其适用的材料和产品类型。
在实际生产中,需要根据产品的形状、尺寸和要求来选择合适的成形技术,并结合材料的性能和加工工艺来进行生产。
例如,在金属材料的成形过程中,需要考虑材料的塑性变形性能、热处理工艺和成形设备的选型等因素。
此外,工程材料与成形技术的发展也在不断推动着工程制造技术的进步。
随着材料科学和加工技术的不断发展,新型工程材料和先进成形技术不断涌现,为工程制造提供了更多的选择和可能。
例如,复合材料的应用和先进成形技术的发展,使得产品的轻量化、高强度化和精密化成为可能,推动了航空航天、汽车制造、船舶制造等领域的发展。
综上所述,工程材料与成形技术是工程制造的基础,对产品的质量、成本和生产效率有着重要的影响。
在工程设计和生产中,需要充分考虑材料的选择和成形技术的应用,以实现产品的性能优化和工艺优化。
同时,工程材料与成形技术的不断发展也为工程制造技术的进步提供了新的动力和可能,推动着工程制造向着更高质量、更高效率和更环保的方向发展。
工程材料与成形技术基础
工程材料与成形技术基础
工程材料是指用于各种工程应用的材料,包括金属、塑料、陶瓷、复合材料等。
工程材料的特性决定着其适合的应用范围以及需要采取
何种成形技术来加工。
在选择和应用材料时,需考虑各项性能指标,
包括强度、硬度、韧性、耐腐蚀性、耐热性、导热性、导电性等。
工程材料的成形技术可分为两大类:热成形与冷成形。
热成形包
括锻造、轧制、挤压等,该类成形技术以高温、高压作用为主,可改
变材料的晶粒状态、结构和形状,从而提高材料的机械性能。
冷成形
包括拉伸、冲压、剪切、折弯等,该类成形技术以低温、低压作用为主,主要用于薄板、薄壁、小件等细密零部件的制造。
在应用材料时,需要根据其特性选择合适的成形技术进行加工,
以达到理想的效果。
例如,在生产中需要使用成本低廉、加工强度高
的材料,可以选择钢铁、铜、铝等金属材料,并采用锻造、挤压等热
成形技术进行加工。
而在制造精密零部件时,需要使用耐磨耗、耐腐
蚀性能好的材料,可以选择高强度塑料或钛合金等,并采用拉伸、冲
压等冷成形技术进行加工。
总之,工程材料与成形技术基础是工程领域中极为重要的一个方面。
只有深入了解各种材料的特性和成形技术的特点,才能在实践中
选择和应用合适的材料和成形技术,从而提高产品质量、降低生产成本。
1、原子结合键的类型。
答:金属键共价键离子键分子键(范德瓦尔键)。
2、材料的性能的分类包括。
答:使用性能:力学性能物理性能化学性能工艺性能:铸造性可锻造性焊接性切削加工性力学性能的指标:弹性强度塑性硬度冲击韧度疲劳特性耐磨性3、纯金属常见的晶体结构体心立方晶胞(b.c.c)N=2面心立方晶胞(f.c.c)N=4密排六方晶胞(c.p.h)N=64、晶胞中的缺陷答1.点缺陷是指在三维空间各方向的尺寸都很小、不超过几个原子直径的缺陷。
(1)空位(2)间隙原子(3)置换原子无论是哪一种点缺陷,都会使晶体中的原子平衡状态受到破坏,造成晶格的歪扭(称晶格的畸变),从而使金属的性能发生变化。
如随着点缺陷的增加,电子在传导时的散射增加,导致金属的电阻率增大;当点缺陷与位错发生交互作用时,会使强度提高,塑性下降。
2.线缺陷又称一维缺陷,这种缺陷在三维空间一个方向上的尺寸很大,另外两个方向上的尺寸很小,其具体形式就是晶格中的位错。
位错:晶体中某处一列或若干列原子有规律的错排。
金属晶体中不含位错或含有大量位错都会使强度提高,3.面缺陷面缺陷又称二维缺陷,这种缺陷在三维空间两个方向上的尺寸较大。
另一个方向上的尺寸较小。
面缺陷的具体形式是晶界、亚晶界及相界。
缺陷使得金属塑性、硬度以及抗拉压力显著降低等等5、什么是过冷度?答:液体材料的理论结晶温度T0与其实际温度Tn之差。
因为只有过冷,才具备G固<G液的能量条件才能有液态金属自发结晶成为固态金属的驱动力。
6、结晶的过程形核——长大7、影响晶粒大小的因素:1.形核率2.长大速度8、如何控制晶粒的大小?答:控制过冷度,难熔杂质的影响,金属流动与振动。
生产中常利用非自发形核的原理来获得细小的晶粒,提高金属纯度。
加入某种物质(变质剂)增大形核率N减小晶体的生长速率G即变质处理。
9、为什么铸件常选用靠近共晶成分的合金生产,压力加工件则选用单相固溶体合金生产?答:靠近共晶成分的合金因其固相线与液相线的温度间隔小,故流动性好,又不易产生分散的缩孔,所以易做铸件;而在生产压力加工时,合金的组织为两相组成时,其压力加工性不如单相固溶体好,这主要是因为不同的两相其塑性变形性能不同,引起两相变形不均匀,将会产生比单相固溶体大得多的应力,导致合金开裂或破断。
工程材料与机械制造基础第二版答案第一章:工程材料的概述1.定义:工程材料是指用于制造各种工程产品和构件的原料,包括金属材料、非金属材料和合成材料。
2.金属材料分类:金属材料按照基本组织可分为晶体、多晶体和非晶体。
按照化学成分可分为金属元素和合金。
按照制备方式可分为熔炼和粉末冶金方法。
3.非金属材料分类:非金属材料包括陶瓷材料、高分子材料和复合材料。
陶瓷材料可分为无机非金属材料和有机非金属材料。
高分子材料是由高分子化合物制成的材料。
复合材料由两种或以上的基础材料组成。
4.合成材料分类:合成材料指人工合成的新材料,包括金属基复合材料、陶瓷基复合材料和高分子基复合材料。
第二章:金属材料的组织和性能1.金属的晶体结构:金属的晶体结构可分为体心立方结构、面心立方结构和六方最密堆积结构。
2.晶体缺陷:晶体缺陷包括点缺陷、线缺陷和面缺陷。
点缺陷包括金属原子的不可替代缺陷和可替代缺陷。
线缺陷包括位错和抱线。
3.金属的力学性能:金属的力学性能包括强度、硬度、韧性、可塑性和延展性等。
4.金属的热学性能:金属的热学性能包括热膨胀系数、热导率和比热容等。
第三章:金属材料的制备与加工1.金属的提炼和精炼:金属的提炼过程包括冶炼和精炼。
冶炼是将矿石中的金属氧化物还原为金属的过程。
精炼是去除金属中的杂质,提高金属纯度的过程。
2.金属的凝固:金属的凝固过程包括液相凝固、凝固过程中的晶体生长和固相变形。
3.金属的成形加工:金属的成形加工包括锻造、压力加工、热处理和冷加工等。
4.金属的热处理:金属的热处理包括退火、淬火、回火和时效等。
第四章:非金属材料的组织和性能1.陶瓷材料的组织和性能:陶瓷材料的组织包括晶体和非晶体结构,性能包括强度、硬度和热稳定性等。
2.高分子材料的组织和性能:高分子材料的组织包括聚合物链和结晶结构,性能包括高分子材料的强度、弹性和耐热性等。
3.复合材料的组织和性能:复合材料的组织包括增强相和基体相,性能包括强度、刚度和耐热性等。
工程材料与成形工艺基础(王宏著)课后题答案下载《工程材料与成形工艺基础》是普通高等教育“十一五”国家级规划教材,以下是为大家的工程材料与成形工艺基础(王宏著),仅供大家参考!点击此处下载???工程材料与成形工艺基础(王宏著)课后答案???《工程材料与成形工艺基础(修订版)》是普通高等教育“十一五”国家级规划教材,是在王纪安主编的《工程材料与材料成形工艺》(第二版)的基础上修订而成的。
《工程材料与成形工艺基础(修订版)》结合高等职业教育教学改革的实践经验,适应21世纪培养高等技术应用性、技能型人才的要求,以机械制造生产第一线需要的知识、技能培养为目标,将原金工理论教学、金工实验实训进行整合,三位一体,精简提炼,注重实用,形成强化应用和技能培养的具有新时期高等职业教育特点的教材体系。
《工程材料与成形工艺基础(修订版)》面向新世纪制造业的发展需要,重视综合性、应用性与实践性,重视新材、新工艺、新技术的引入并安排了成形工艺基础实训(金工实习)和基本实验等内容。
《工程材料与成形工艺基础(修订版)》全面贯彻最新国家标准。
《工程材料与成形工艺基础(修订版)》可作为高等职业学校、高等专科学校、成人院校、民办高校及本科院校举办的二级职业技术学院机械类专业的教材,并可同时应用于课堂教学、实训与实验等教学环节,也可供有关工程技术人员、企业管理人员参考或作为培训教材。
第1章工程材料与机械制造过程1.1材料及其成形工艺的简要发展过程1.2工程材料的分类及发展趋势1.3机械制造过程及材料成形技术发展趋势 1.3.1机械制造工艺流程1.3.2材料成形工艺的技术进展1.4课程总体目标和任务思考题与习题第2章工程材料的性能2.1材料的力学性能2.1.1强度和塑性2.1.2硬度2.1.3冲击韧度2.1.4疲劳极限2.2材料的物理性能2.3材料的化学性能2.3.1金属腐蚀的基本过程2.3.2防止金属腐蚀的途径2.4材料的工艺性能2.5材料的经济性能思考题与习题第3章材料的结构与凝固3.1.1结合键3.1.2晶体与非晶体3.2金属材料的结构特点3.2.1晶体结构的基本概念3.2.2三种典型的金属晶体结构3.2.3实际金属的晶体结构3.2.4合金的晶体结构3.3非金属材料的结构特点3.3.1陶瓷材料的结构特点3.3.2高分子材料的结构特点3.4材料的凝固与结晶3.4.1金属的结晶特点3.4.2非晶态凝固的特点3.5铁碳合金相图3.5.1铁碳合金的基本组元与基本相3.5.2Fe-Fe3C相图分析3.5.3典型合金的结晶过程及组织3.5.4含碳量与铁碳合金组织及性能的关系 3.5.5铁碳合金相图的应用思考题与习题第4章材料的强化与处理4.1.1钢在加热时的转变4.1.2钢在冷却时的转变4.1.3钢的普通热处理4.1.4钢的表面热处理4.1.5热处理新技术简介4.1.6热处理工艺的应用4.2聚合物材料的改性强化 4.3工程材料的表面处理方法 4.3.1气相沉积4.3.2化学转化膜技术4.3.3电镀和化学镀4.3.4涂料和涂装工艺思考题与习题第5章金属材料5.1概述5.1.1金属材料的分类5.1.2合金元素在钢中的作用 5.2非合金钢5.2.1碳素结构钢5.2.2优质碳素结构钢5.2.3碳素工具钢5.2.4易切削结构钢5.2.5碳素铸钢5.3合金钢5.3.1低合金钢5.3.2机械结构用合金钢5.3.3合金工具钢和高速工具钢5.3.4特殊性能钢5.4铸铁5.4.1铸铁的石墨化5.4.2常用铸铁5.4.3特殊性能铸铁5.5非铁金属材料5.5.1铝及其合金5.5.2铜及其合金5.5.3滑动轴承合金5.5.4粉末冶金材料思考题与习题……1.阳光大学生网课后答案下载合集2.阳光大学生网课后答案下载求助合集3.工程材料及应用第二版周凤云课后答案华中科技大学出版社。
《工程材料》复习思考题参考答案第一章金属的晶体结构与结晶1.解释下列名词点缺陷,线缺陷,面缺陷,亚晶粒,亚晶界,刃型位错,单晶体,多晶体,过冷度,自发形核,非自发形核,变质处理,变质剂.答:点缺陷:原子排列不规则的区域在空间三个方向尺寸都很小,主要指空位间隙原子、置换原子等。
线缺陷:原子排列的不规则区域在空间一个方向上的尺寸很大,而在其余两个方向上的尺寸很小.如位错。
面缺陷:原子排列不规则的区域在空间两个方向上的尺寸很大,而另一方向上的尺寸很小.如晶界和亚晶界.亚晶粒:在多晶体的每一个晶粒内,晶格位向也并非完全一致,而是存在着许多尺寸很小、位向差很小的小晶块,它们相互镶嵌而成晶粒,称亚晶粒。
亚晶界:两相邻亚晶粒间的边界称为亚晶界。
刃型位错:位错可认为是晶格中一部分晶体相对于另一部分晶体的局部滑移而造成。
滑移部分与未滑移部分的交界线即为位错线。
如果相对滑移的结果上半部分多出一半原子面,多余半原子面的边缘好像插入晶体中的一把刀的刃口,故称“刃型位错”。
单晶体:如果一块晶体,其内部的晶格位向完全一致,则称这块晶体为单晶体。
多晶体:由多种晶粒组成的晶体结构称为“多晶体”。
过冷度:实际结晶温度与理论结晶温度之差称为过冷度。
自发形核:在一定条件下,从液态金属中直接产生,原子呈规则排列的结晶核心.非自发形核:是液态金属依附在一些未溶颗粒表面所形成的晶核。
变质处理:在液态金属结晶前,特意加入某些难熔固态颗粒,造成大量可以成为非自发晶核的固态质点,使结晶时的晶核数目大大增加,从而提高了形核率,细化晶粒,这种处理方法即为变质处理。
变质剂:在浇注前所加入的难熔杂质称为变质剂.2.常见的金属晶体结构有哪几种?α—Fe 、γ- Fe 、Al 、Cu 、Ni 、Pb 、Cr 、V 、Mg、Zn 各属何种晶体结构?答:常见金属晶体结构:体心立方晶格、面心立方晶格、密排六方晶格;α-Fe、Cr、V属于体心立方晶格;γ-Fe 、Al、Cu、Ni、Pb属于面心立方晶格;Mg、Zn属于密排六方晶格;3.配位数和致密度可以用来说明哪些问题?答:用来说明晶体中原子排列的紧密程度。
工程材料与成形技术基础一、工程材料的定义和分类1.1 工程材料的定义工程材料是指在各种工程项目中使用的各种物质,包括金属、非金属、有机材料等。
1.2 工程材料的分类工程材料可以根据其组成、用途、特性等不同方面进行分类。
常见的工程材料分类包括: 1. 金属材料 2. 粘土材料 3. 混凝土材料 4. 高分子材料 5. 玻璃材料 6. 陶瓷材料 7. 复合材料二、工程材料的性能与选用2.1 力学性能工程材料的力学性能包括强度、刚度、韧性、硬度等指标,这些指标对于工程结构的安全性和可靠性至关重要。
2.2 耐久性工程材料的耐久性是指其在不同环境下长期使用的能力,包括耐热性、耐寒性、耐腐蚀性等。
2.3 加工性能工程材料的加工性能包括可塑性、可焊性、可锻性等指标,这些指标影响着工程材料的成形过程和成形性能。
三、工程材料的成形技术3.1 塑性成形技术塑性成形技术是指通过对工程材料的塑性变形来实现其形状的改变,常见的塑性成形技术包括挤压、拉伸、冲压、滚压等。
3.2 焊接技术焊接技术是将两个或多个工程材料通过加热或加压的方式连接在一起,常见的焊接技术包括电弧焊、气体焊、激光焊等。
3.3 铸造技术铸造技术是将熔化的工程材料倒入铸型中,通过凝固形成所需的形状,常见的铸造技术包括砂型铸造、压力铸造、熔模铸造等。
3.4 热处理技术热处理技术是通过对工程材料的加热或冷却处理来改变其组织和性能,常见的热处理技术包括淬火、回火、退火等。
四、工程材料与成形技术的应用4.1 汽车制造工程材料与成形技术在汽车制造中起着重要作用,如汽车车身的制造和焊接、发动机零件的铸造等。
4.2 建筑工程工程材料与成形技术在建筑工程中广泛应用,如混凝土构件的浇筑、钢结构的焊接、玻璃幕墙的制作等。
4.3 电子产品制造工程材料与成形技术在电子产品制造中也有重要应用,如电路板的制造和焊接、塑料外壳的注塑成形等。
4.4 航空航天工程材料与成形技术在航空航天领域扮演着重要角色,如航空发动机的制造、航天器的结构成形等。
一、填空题(共20空,每空1分,共计20分)1. 共析碳钢奥氏体化过程包括奥氏体核的形成、奥氏体核的长大、残余渗碳体的溶解和奥氏体成分的均匀化。
2. 晶体中的缺陷,按照其几何形状特征可分为_点缺陷_、___线缺陷___和_面缺陷_三种。
3. 液态金属结晶时,冷却速度越小,则过冷度越小,结晶后晶粒越粗大。
4. 金属塑性变形主要通过滑移和孪生是两种方式进行。
5. 塑性变形后的金属经加热将发生回复、再结晶、晶粒长大的变化。
6. 白口铸铁中碳主要是以Fe3C 的形式存在,灰口铸铁中碳主要以石墨形式存在。
7. 固溶体出现枝晶偏析后,可用扩散退火加以消除。
8. 影响碳钢焊接性能的主要因素是碳含量,所以常用碳当量来估算碳钢焊接性的好坏。
9. 普通灰铸铁、可锻铸铁、球墨铸铁及蠕墨铸铁中石墨的形态分别为片状、棉絮状、球状和蠕虫状。
二、选择题(共10小题,每小题1分,共计10分)1. 钢经调质处理后获得的组织是( C )。
A. 回火马氏体B. 回火屈氏体C. 回火索氏体D. 贝氏体2. 在铸造模型的厚薄过渡处或锐角处做成圆角是为了( B )。
A. 增加模具强度B. 减小铸件内应力C. 方便模具制造D. 便于和型芯组装3. 下列合金中,铸造性能最差的是(A )。
A. 铸钢B. 铸铁C. 铸铜D. 铸铝4. 奥氏体向珠光体转变是( A )。
A. 扩散型转变B. 非扩散型转变C. 半扩散型转变D. 切变转变5. 金属冷塑性变形后,强度和塑性( C )。
A. 都增加B. 都降低C. 强度增加,塑性降低D. 强度降低,塑性增加6. 在多工序冷拔钢丝过程中,插有中间退火工序,这是为了消除(C )。
A. 纤维组织B. 回弹现象C. 加工硬化D. 化学成分偏析7. 固溶体的晶体结构与( A )。
A. 溶剂相同B. 溶质相同C. 既与溶剂相同也与溶质相同D. 与二者都不同8. 下列材料中,锻造性能最好的材料是(A )。
A. 低碳钢B. 中碳钢C. 灰口铸铁D. 可锻铸铁9. 对于可热处理强化的铝合金,其热处理的方法是(D )。