33吸附作用
- 格式:ppt
- 大小:535.50 KB
- 文档页数:30
n33磁铁参数一、什么是n33磁铁?n33磁铁是一种常见的磁铁,它的名称中的“n33”代表了其磁性能力。
n33磁铁属于永磁材料,具有较高的磁性能力和稳定性。
二、n33磁铁的特性1. 磁力强度高:n33磁铁具有较高的磁力强度,能够吸引和吸附铁质物体。
2. 稳定性好:n33磁铁具有良好的稳定性,不易退磁,可以长时间保持其磁性能。
3. 抗腐蚀性强:n33磁铁通常采用镀锌或涂覆保护层的方式,使其具有较强的抗腐蚀性,能够在潮湿环境中长时间使用。
4. 加工性能好:n33磁铁可以通过切割、钻孔、铣削等方式进行加工,便于制作成各种形状和尺寸的磁铁产品。
三、n33磁铁的应用1. 电机与发电机:n33磁铁常用于电机与发电机中,用于产生磁场,实现电能转换。
2. 传感器与探测器:n33磁铁可用于制作传感器与探测器,用于检测磁场、测量位置和速度等。
3. 磁力吸附:n33磁铁的强磁性能使其成为磁力吸附产品的理想选择,如磁力吸附钩、磁力吸附座等。
4. 医疗器械:n33磁铁在医疗器械中有广泛应用,如磁共振成像(MRI)设备、磁疗仪等。
5. 电子产品:n33磁铁也被广泛应用于电子产品中,如扬声器、电磁继电器等。
四、n33磁铁在科学研究中的重要性n33磁铁在科学研究中具有重要的作用。
它不仅可以用于实验室中的物理实验、化学实验等,还可以应用于地球物理学、生物医学等领域的研究。
例如,在地球物理学中,磁铁可以用于磁力测量、地磁学研究等;在生物医学中,磁铁可以用于磁性药物输送、磁共振成像等。
n33磁铁的稳定性和磁力强度使其成为科学研究中不可或缺的实验工具。
五、总结n33磁铁是一种常见的磁铁,具有较高的磁力强度和稳定性。
它在电机、传感器、磁力吸附、医疗器械和电子产品等领域有广泛的应用。
同时,n33磁铁在科学研究中也扮演着重要的角色。
通过对n33磁铁的了解,我们能够更好地理解磁铁的特性和应用,为科学研究和实际应用提供支持和指导。
50条水处理必备基础知识1、什么是水体自净?水体自净:受污染的河流经过物理、化学、生物等方面的作用,使污染物浓度降低或转化,水体恢复到原有的状态,或者从最初的超过水质标准降低到等于水质标准。
2、污水处理的基本方法有哪些?污水处理的基本方法:就是采用各种手段和技术,将污水中的污染物质分离去除,回收利用,或将其转化为无害物质,使污水得到净化。
一般分为给水处理和污水处理。
3、现在污水处理技术有哪些?现代污水处理技术,按作用原理可分为物理处理法,化学处理法,生物处理法。
4、五个水的测量指标生化需氧量(BOD):是指在有氧的条件下,由于微生物的作用,降解有机物所需的氧量。
是表示污水被有机物污染的综合指标。
理论需氧量(thOD):水中某一种有机物的理论需氧量。
通常是指将有机物中的碳元素和氢元素完全氧化为二氧化碳和水所需氧量的理论值(即按完全氧化反应式计算出的需氧量)。
总需氧量(TOD):是指水中能被氧化的物质,主要是有机物质在燃烧中变成稳定的氧化物时所需要的氧量,结果以02的mg/L表示。
化学需氧量(COD):是以化学方法测量水样中需要被氧化的还原性物质的量。
废水、废水处理厂出水和受污染的水中,能被强氧化剂氧化的物质(一般为有机物)的氧当量。
总有机碳(TOC):是指水体中溶解性和悬浮性有机物含碳的总量。
5、什么情况采用生化法处理?一般认为BOD/COD值大于0.3的污水才适于采用生化法处理。
6、生活饮用水的卫生标准是什么?生活饮用水卫生标准的物理指标:色,浑浊度,臭和味。
7、什么是水体富营养化?水体富营养化是发生在淡水中,由水体中氮、磷、钾含量过高导致藻类突然性过度增殖的一种自然现象。
水体富营养化形成原因主要是氮、磷、钾等元素排入到流速缓慢、更新周期长的地表水体,使藻类等水生生物大量地生长繁殖,使有机物产生的速度远远超过消耗速度,水体中有机物积蓄,破坏水生生态平衡的过程。
8、什么叫溶解氧?溶解在水体中的氧被称溶解氧。
2019初三一模汇编-身边的化学物质【填空题】(青浦)26.生产、生活中处处有化学,现有:氦气、氮气、氢气、二氧化硫、二氧化碳、一氧化碳,请按要求用上述物质的化学式回答:①常用作灭火剂的物质是(1);(填化学式)②能作有色光源的物质是(2);(填化学式)③会引起酸雨的物质是(3);(填化学式)④能作为清洁能源的物质是(4);(填化学式)⑤能跟血液里的血红蛋白结合而使人中毒的物质是(5)。
(填化学式)26.(本题5分)(1)CO2(2)He(3)SO2(4)H2(5)CO(杨浦)25.(8分)化学与生产生活息息相关。
(1)可供人呼吸的气体是___________。
(2)75%的医用酒精的溶剂是___________。
(3)石墨能做干电池的电极,是因为石墨具有_______________性。
(4)化石燃料主要有煤、石油和_______,绿色能源有___________(写一种),倡导“低碳出行”是为了减少___________的排放。
(5)取一瓶“雪碧”的上、下两层溶液,密度分别为ρ1、ρ2 ,则ρ1____ρ2(填“>”、“<”或“=”),打开瓶盖时,汽水会自动喷出来原因是_____________________。
25.(8分)(1)O2(2)水(3)导电(4)天然气;风能(合理即可);二氧化碳(5)=;瓶内气压减小,气体的溶解度减小(金山)31.化学与我们的生活密切相关,请用学过的化学知识回答:① 大雾天气导致呼吸道病人增多,因为雾霾可使空气中增加大量的(1) 。
A.二氧化氮B.二氧化硫C.一氧化碳D.可吸入颗粒物① PM2.5口罩中使用了活性炭,这是利用了活性炭的(2) 作用。
① 请从“A.二氧化碳B.稀盐酸C.大理石D.氖气”中,选择适当的物质填空(填字母):用做建筑材料的(3) ;促进植物光合作用的(4) ;通电时发出有色光的(5) 。
① 请用化学式填写下列生活中涉及到的物质:空气中含量最多的气体(6) ;作燃料的天然气的主要成分(7) ;用于配制波尔多液的胆矾(8) ;用于制温度计的水银(9) 。
亚纳米尺寸的金团簇对CO的催化氧化由于金团簇的有良好地催化活性,从发现以来,大量的工作都在探究影响金团簇催化活性的具体因素。
这些因素包括金团簇的尺度、电子状态、活性位点和基底的类型和结构等。
由于实验上暂时无法测量金团簇的具体结构,所以这些因素的具体作用未完全清晰。
3个金原子到20个金团子的金团簇在过去的几十年内被研究的较多。
这些团簇的准确结构的发现促进了对他们催化活性的研究。
虽然小尺寸的金团簇(气相或者在基底上)都已经被详细的研究过,但是由于中等或者大尺寸的金团簇的精确结构没有准确的数据。
对于这种原子数目大于20的金团簇,关于他们的理论研究比较少。
由于缺少准确的结构数据,所以与结构有关的催化金团簇的的反应的定量的表征一直欠缺。
最近,通过实验和量子化学计算的方法,直径在1纳米左右的金团簇,它们包含的原子个数在27-35和55-64(不包括29和31)的结构已经清晰。
这篇文章中,我们将介绍一些金团簇对CO催化氧化的吸附能、反应途径和能垒,这些金团簇包括中性和,的Au16-Au18、Au20、Au27、Au28、Au30、Au32-Au35。
通过光电子能谱和密度泛函理论可以确定这些团簇阴离子的状态。
这篇文章中,我们第一次全面的对金团簇的点对点和原子对原子的吸附进行量化研究。
这篇文章中我们还会揭示在原子层面上金团簇的活性位点—尺寸—活性的关系。
金团簇在气相和氧化基底上的活性会有很大的不同,在这篇文章中,由于计算的缘故,只对气相的金团簇进行研究,基底效应将在以后的工作中进行。
CO和O2的吸附能我们计算中性的和阴离子的金团簇对CO和O2的点对点吸附能,得到了一个金团簇对CO和O2的吸附能数据库。
这些金团簇包括Au16-Au20,Au27、Au28、Au30、Au32-Au35.Au16-Au20(金字塔形的空笼结构)。
,和中性的Au16-Au19和Au20对CO 和O2的吸附能在图一中表示。
金团簇上不同的颜色代表了不同的吸附能。
●汞土壤中汞的背景值为0.01~0.15 μg/g。
除来源于母岩以外,汞主要来自污染源,如含汞农药的施用、污水灌溉等,故各地土壤中汞含量差异较大。
来自污染源的汞首先进入土壤表层。
土壤胶体及有机质对汞的吸附作用相当强,汞在土壤中移动性较弱,往往积累于表层,而在剖面中呈不均匀分布。
土壤中的汞不易随水流失,但易挥发至大气中,许多因素可以影响汞的挥发。
土壤中的汞按其化学形态可分为金属汞、无机汞和有机汞,在正常的pE和pH范围内,土壤中汞以零价汞形式存在。
在一定条件下,各种形态的汞可以相互转化。
进入土壤的一些无机汞可分解而生成金属汞,当土壤在还原条件下,有机汞可降解为金属汞。
一般情况下,土壤中都能发生Hg2+===Hg2++HgO反应,新生成的汞可能挥发。
在通气良好的土壤中,汞可以任何形态稳定存在。
在厌氧条件下,部分汞可转化为可溶性甲基汞或气态二甲基汞。
阳离子态汞易被土壤吸附,许多汞盐如磷酸汞、碳酸汞和硫化汞的溶解度亦很低。
在还原条件下,Hg2+与H2S生成极难溶的HgS;金属汞也可被硫酸还原细菌变成硫化汞;所有这些都可阻止汞在土壤中的移动。
当氧气充足时,硫化汞又可慢慢氧化成亚硫酸盐和硫酸盐。
以阴离子形式存在的汞,如HgCl3-、HgCl42-也可被带正电荷的氧化铁、氢氧化铁或黏土矿物的边缘所吸附。
分子态的汞,如HgCl2,也可以被吸附在Fe,Mn的氢氧化物上。
Hg(OH)2溶解度小,可以被土壤强烈的保留。
由于汞化合物和土壤组分间强烈的相互作用,除了还原成金属汞以蒸气挥发外,其他形态的汞在土壤中的迁移很缓慢。
在土壤中汞主要以气相在孔隙中扩散。
总体而言,汞比其他有毒金属容易迁移。
当汞被土壤有机质螯合时,亦会发生一定的水平和垂直移动。
汞是危害植物生长的元素。
土壤中含汞量过高,它不但能在植物体内积累,还会对植物产生毒害。
通常有机汞和无机汞化合物以及蒸气汞都会引起植物中毒。
例如,汞对水稻的生长发育产生危害。
中国科学院植物研究所水稻的水培实验表明,采用含汞为0.074 μg/mL的培养液处理水稻,产量开始下降,秕谷率增加;以0.74 μg/mL浓度处理时,水稻根部已开始受害,并随着试验浓度的增加,根部更加扭曲,呈褐色,有锈斑;当介质含汞为7.4 μg/mL时,水稻叶子发黄,分蘖受抑制,植株高度变矮,根系发育不良。
150008040106251.123041.91616E-051.002500kg吸附质/kg吸附剂(厂家提供)0.35kg吸附质/kg吸附剂(实验获得)0.1取值0.57000.2≤400≤0.8100x100x1000.93(Q/3600)/A1.041666667L*B40.90.5m~0.9m A*Z(或L*B*Z)3.6取值2取值2( Vs*ρs*XT1)/(C/1000000*Q*η)161.2903226C 0*Q/1000000*η*t180(u* C0/1000000)/( ρs*XT1) 1.66667E-06Z/Uc/3600150t'接近t 0.8经验公式:945.1*u 1.055×Z789.3536096u/ε 2.083333333附床计算1、 废气成分:乙酸乙酯、异丙醇、醋酸酯、丙醇等1.一般空塔流速0.8~1.2m/s时,动活性XT1=(0.75~0.8)XT,流速越快,动活性越小,公司取8%~10%标准上规定:固定床吸附剂 颗粒性炭0.2-0.6 纤维状吸附剂(活性炭纤维毡)0.1-0.15 蜂窝状吸附剂0.7-1.2层高中间需要留一定空间,使热量分散,局部碳层过热烧炭被吸附物沸点升高,吸附量增加(规公式算值备注(4*ε)/[a*(1-ε)]0.0057142866/a0.008571429(1-ε)2/ε32μ*u/d p20.271677211(1-ε)/ε22ρ0*u2/d p142.1672454d p*ρ0*u/μ523.29470341046.589407≤2500△P=(150*A*B+1.75*C*D)*Z521.1796698、醋酸正丙活性速越快,动活性越小,颗粒型活维状吸附剂(活性炭 蜂窝状吸附剂0.7-.2使热量均匀热烧炭加(规律)。
分子筛吸附原理分子筛吸附是一种重要的物理吸附过程,它利用固体吸附剂对气体或液体中的分子进行选择性吸附和分离。
分子筛是一种具有特定孔径和空间结构的多孔性材料,通常用于分离空气中的氧氮混合气、液体中的异构体等。
分子筛吸附原理主要包括分子筛的结构特点、吸附过程和分子筛的应用。
首先,分子筛的结构特点是其孔径大小和结构的均匀性。
分子筛通常由硅铝骨架构成,孔径大小在3-10埃之间,这种特定的孔径大小使得分子筛对分子的吸附具有选择性。
另外,分子筛的孔道结构也非常有序,这种有序的孔道结构为分子在吸附过程中提供了良好的扩散通道,有利于分子在分子筛内部的扩散和吸附。
其次,分子筛吸附过程是一个动态平衡的过程。
在吸附过程中,分子筛表面的活性位点会与待吸附分子发生相互作用,形成吸附层。
当吸附层达到一定厚度时,分子筛表面的活性位点会逐渐饱和,此时吸附速率和解吸速率达到动态平衡。
在动态平衡状态下,吸附剂表面的吸附量和解吸量达到平衡,这时的吸附量称为平衡吸附量。
平衡吸附量与温度、压力等因素有关,可以通过等温吸附实验来确定。
最后,分子筛在工业上有着广泛的应用。
分子筛广泛应用于石油化工、化学工业、环保等领域。
例如,在石油化工中,分子筛可以用于乙烯和丙烯的分离和纯化,提高产品的纯度和质量;在化学工业中,分子筛可以用于有机分子的分离和浓缩,提高产品的收率和纯度;在环保领域,分子筛可以用于废气处理和废水处理,减少有害气体和有机物的排放。
总之,分子筛吸附原理是一种重要的分离技术,具有选择性强、分离效果好、操作简便等优点,因此在工业生产中得到了广泛的应用。
通过对分子筛的结构特点、吸附过程和应用进行深入了解,可以更好地掌握分子筛吸附原理,为工业生产提供更好的技术支持。
42气固吸附理论气固吸附是界面吸附的一个主要组成部分,它涉及到催化、气体的净化和分离、环境保护等工业过程,具有重要的应用背景。
二十世纪前半期,人们已相继提出了许多吸附等温方程,并从模型入手建立了若干气固吸附理论,使吸附现象得到了定量乃至本质的描述。
本专题旨在介绍几个有影响的气固吸附理论和吸附等温式。
1. Langmuir 单分子层吸附理论1916年,美国物理化学家Langmuir Irving (朗缪尔)根据固体表面原子的力的不饱和性和分子间作用力随距离增大迅速衰减的事实,首先提出了一个单分子层吸附理论,这个理论建立在如下模型的基础上:① 固体表面存在一定数量的活性位site) (active ,它们能够吸附气体分子,但每个活性位只能吸附一个分子,因此,吸附是单分子层的。
② 这些活性位均匀地分布在固体表面上,且每一个活性位具有相同的吸附活性,或者说,无论气体分子吸附在哪个活性位上,释放的热量是一样的。
③ 已吸附的气体分子间不相互作用,换句话说,气体分子的吸附和脱附均与已吸附的周围分子无关。
于是,Langmuir 根据吸附达动态平衡时,吸附速率应等于脱附速率,用动力学方法作了如下推导:设吸附达平衡时,已被吸附的活性位占总活性位的分数为θ,气体的平衡压力为p ,则吸附速率不仅与压力p 成正比,而且也应与裸露的活性位分数θ−1成正比,即)1(θα−=p r a (42-1)式中α为比例系数。
脱附速率则除了与活性位的覆盖分数θ成正比外,还应与已吸附的气体分子中具有逃离活性位所需能量的分子分数成正比。
这个分子分数按Boltzmann 分布定律可表示为RTq kTf qN N //a *a aae e −−==ε (42-2)式中a N 是已吸附的气体分子总数;*a N 是具有逃离活性位所需最低能量a ε的分子数;q 是已吸附分子的配分函数,对于指定的温度和系统,这个定域子的配分函数是一个常数。
它的倒数即f ;k 是Boltzmann 常数;m ads a a H L q Δ−==ε即吸附能或吸附热的绝对值。
《环境化学》习题与思考题一、填空题1. 环境科学主要是运用(1)和(2)的有关学科的理论、技术和方法来研究(3)。
2. 污染物在环境中所发生的空间位移称为(4)过程。
3. 污染物在环境中通过物理、化学或生物作用改变存在形态的过程称为(5)的过程。
4. 醛类光解是大气中(6)自由基的重要来源。
5. 自由基在其电子壳层的外层有一个不成对电子,所以具有很高的(7)和(8)作用,其中以(9)和(10)自由基最为重要。
6. 大气污染化学中所说的氮氧化物主要是指(11)和(12)。
7. 大气中主要温室气体有(13)、(14)等。
7. 污染物在大气中扩散取决于(15)、(16)和(17)等因素。
9. 大气按垂直结构分为(18)层、(19)层、(20)层、(21)层及(22)层。
10. 大气颗粒物按表面积与粒径分布关系分为三种粒度膜,分别是(23)、(24)和(25)。
11. 当大气中(26)浓度比较高时,可以使烯烃生成二元自由基。
12. HNO2的光解是污染大气中(27)自由基的重要来源之一。
13. 清洁大气中HO的重要来源是(28)。
14. 烷基和空气中O2结合形成(29)。
15. 大气中CH3自由基的主要来源是(30)和(31)的光解。
16. (32)作用是有机物从溶解态转入气相的一种重要迁移过程。
17. 水环境中胶体颗粒的吸附作用大体可分为(33)、(34)和(35)。
18. 水中的有机污染物一般通过(36)、(37)、(38)、(39)、(40)和(41)等过程进行迁移转化。
19. 在一般天然环境水中,(42)是决定电位物质,而在有机物累积的厌氧环境中,(43)是决定电位物质。
20. 吸附等温线表达了在一定条件下颗粒物表面上的(44)与溶液中溶质(45)之间的关系。
21. 胶体颗粒的聚集亦可称为(46)或(47)。
22. 有机污染物的光解过程分为三类,分别是(48)、(49)和(50)。
23. 典型土壤随深度呈现不同层次,分别为(51)层、(52)层、(53)层和(54)层。
纳米碳酸钙的吸附
纳米碳酸钙具有较大的比表面积和高度结晶性,因此具有很强的吸附能力。
它可以吸附溶液中的多种物质,如重金属离子、有机污染物、染料等。
纳米碳酸钙的吸附机制可以通过物理吸附和化学吸附来解释。
物理吸附是指吸附物与被吸附物之间的非化学相互作用,如范德华力、静电力等。
化学吸附是指吸附物与被吸附物之间的化学键形成,其过程类似于化学反应。
研究表明,纳米碳酸钙的吸附性能与其晶型、粒径、孔隙结构等因素密切相关。
较大的比表面积使纳米碳酸钙能够提供更多的吸附位点,而高度结晶性则有利于形成稳定的吸附位点。
此外,纳米碳酸钙的表面性质也会影响吸附性能,例如表面带电性、表面功能团等。
纳米碳酸钙吸附的应用领域非常广泛。
在环境保护领域,它可以用于处理废水中的重金属离子和有机污染物。
在食品工业中,它可以用于食品添加剂的吸附和分离。
在制药领域,它可以用于药物提取和纯化。
此外,纳米碳酸钙还可以用于催化、电化学和生物医学等领域。
总的来说,纳米碳酸钙具有较强的吸附能力,可以在多个领域中发挥重要作用。
在实际应用中,需要根据具体的需求和条件选择合适的纳米碳酸钙材料,并探索优化吸附条件和方法。
吸附等温线的分类以及吸附机理简析吸附等温线是有关吸附剂孔结构、吸附热以及其它物理化学特征的信息源。
在恒定的温度和宽范围的相对压力条件下可得到被吸附物的吸附等温线。
为了更好地了解吸附等温线中所包含的信息,以下对有关吸附等温线的分类以及吸附机理作一简单介绍[1,8,10,19,20,33,53~55]:众多的吸附等温线可以被分为六种(IUPAC分类),如图1-11所示为吸附等温线的类型。
对于具有很小外表面积的微孔吸附剂其吸附表现为I型吸附等温线,I型吸附等温线与分压P/Po线呈凹型且以形成一平台为特征,平台呈水平或接近水平状,随着饱和压力的到达吸附等温线或者直接与P/Po = 1相交或表现为一条“拖尾”。
吸附等温线的初始部分代表吸附剂中狭窄微孔的充填过程,其极限吸附容量依赖于可接近的微孔容积而不是表面积,在较高相对压力下平台的斜率是非微孔表面(如中孔或大孔以及外表面)上的多层吸附所致。
II型吸附等温线正常是由无孔或大孔吸附剂所引起的不严格的单层到多层吸附。
拐点的存在表明单层吸附到多层吸附的转变,亦即单层吸附的完成和多层吸附的开始。
III型吸附等温线通常与较弱的吸附剂-吸附质(Adsorbent-Adsorbate)相互作用以及较强的吸附质-吸附质(Adsorbate-Adsorbate)相互作用有关,在此情形,协同效应导致在均匀的单一吸附层尚未完成之前形成了多层吸附,故引起吸附容量随着吸附的进行而迅速提高,吸附质-吸附质之间的相互作用对吸附过程起很重要的影响。
在非孔表面上的水蒸气吸附就是III型吸附等温线最好的实例。
Ⅳ型吸附等温线的明显特征是其存在滞后回线,这与毛细凝聚的发生有很大关系,而且在较高和较宽的分压范围保持一恒定吸附容量,其起始部分类似于II型吸附等温线,由此对应中孔壁上的单层到多层吸附。
在很少吸附剂中的一些中孔或微孔炭表现出V型水吸附等温线,像III型吸附等温线一样,吸附剂-吸附质之间的相互作用与吸附质-吸附质之间的相互作用相比非常弱,这当然包括水分子形成氢键的情形。
吸附剂吸附的原理
吸附剂是一种可以吸附其他物质的材料。
它的吸附原理可以通过表面化学反应和物质间的相互作用来解释。
表面化学反应是指吸附剂的表面与被吸附物质之间发生的化学反应。
这种吸附通常是通过吸附剂的活性位点与被吸附物质之间的键合来实现的。
吸附剂的活性位点可以是孔道、表面官能团等。
物质间相互作用是指吸附剂与被吸附物质之间的非化学力的相互作用。
这些相互作用包括吸附剂表面的静电作用、范德华力、氢键等。
这些相互作用力可以使吸附剂和被吸附物质之间形成物理上的吸附。
除了表面化学反应和物质间相互作用外,吸附剂的选择和吸附性能还受吸附剂的孔径、孔容、比表面积等因素的影响。
这些因素会影响吸附剂的吸附能力和选择性。
总的来说,吸附剂的吸附原理是通过表面化学反应和物质间相互作用来实现的。
吸附剂的吸附能力和选择性受到吸附剂的活性位点、孔径、孔容、比表面积等因素的影响。
30000500401031251.1272651.91616E-051.002500kg吸附质/kg吸附剂(厂家提供)0.35kg吸附质/kg吸附剂(实验获得)0.1取值0.5700≤400≤0.8100x100x1000.93(Q/3600)/A1.780626781L*B4.680.50.5m~0.9m A*Z(或L*B*Z)2.34取值2.6取值1.8( Vs*ρs*XT1)/(C/1000000*Q*η)8.387096774C 0*Q/1000000*η*t117(u* C0/1000000)/( ρs*XT1) 1.78063E-05Z/Uc/36007.8t'接近t 0.5经验公式:945.1*u 1.055×Z868.5647061u/ε 3.561253561附床计算1、 废气成分:乙酸乙酯、异丙醇、醋酸酯、丙醇等1.一般空塔流速0.8~1.2m/s时,动活性XT1=(0.75~0.8)XT,流速越快,动活性越小,公司取8%~10%标准上规定:固定床吸附剂 颗粒性炭0.2-0.6 纤维状吸附剂(活性炭纤维毡)0.1-0.15 蜂窝状吸附剂0.7-1.2层高中间需要留一定空间,使热量分散,局部碳层过热烧炭公式算值备注被吸附物沸点升高,吸附量增加(规(4*ε)/[a*(1-ε)]0.0057142866/a0.008571429(1-ε)2/ε32μ*u/d p20.464405488(1-ε)/ε22ρ0*u2/d p416.9832542d p*ρ0*u/μ897.88614641795.772293≤2500△P=(150*A*B+1.75*C*D)*Z799.3815182、醋酸正丙活性速越快,动活性越小,颗粒型活维状吸附剂(活性炭 蜂窝状吸附剂0.7-.2使热量均匀热烧炭加(规律)。