离散数学课程.
- 格式:ppt
- 大小:1.93 MB
- 文档页数:31
学习《离散数学》心得体会模板学习《离散数学》的过程中,我深深感受到了它的重要性和广泛应用的意义。
离散数学作为一门重要的数学基础课程,不仅能够培养我们的逻辑思维能力,还可以为我们理解和解决实际问题提供很多方法和工具。
在学习过程中,我积累了不少心得体会,今天我将分享给大家。
首先,我认为《离散数学》这门课程非常重要的一点就是培养了我的逻辑思维能力。
在学习过程中,我们需要学习和掌握数理逻辑、集合论、函数与关系、图论等一系列的基本概念和方法。
这些内容都是以形式化的推理和证明为基础的,要求我们对问题进行严密的思考和分析。
通过解题和习题训练,我逐渐掌握了一些基本的证明技巧和思考方法,提高了我的逻辑思维和分析能力。
其次,学习《离散数学》让我深刻理解了数学与现实世界的联系。
离散数学的理论和方法广泛应用于计算机科学、信息科学、通信工程、物理学等领域。
学习离散数学的过程,不仅让我学到了一些基本的数学知识,还让我了解到这些知识在实际应用中的重要性和作用。
比如在计算机网络中,我们需要用到图论的知识来解决网络路由问题;在密码学中,我们需要用到数论的知识来解决加密算法的设计;在数据库中,我们需要用到集合论和关系代数的知识来进行数据查询和操作。
通过学习《离散数学》,我对数学与实际问题的联系有了更深的认识。
另外,学习《离散数学》还让我锻炼了一种系统性的学习方法。
离散数学的内容非常广泛而且抽象,需要我们建立起一个完整的知识体系。
在学习过程中,我发现只有把每个概念、定理等都串起来,形成一个完整的知识链条,才能更好地理解和掌握。
因此,我养成了先学习基本概念和定理,再进行习题训练和实战演练的学习方法。
这种方法让我更加系统地掌握了离散数学的核心内容,提高了我的学习效率。
除此之外,学习《离散数学》还对我培养了一种严谨的学术态度和方法。
离散数学是一门严谨而抽象的学科,要求我们在处理问题时要严肃认真,不能有丝毫马虎。
在解题和习题训练中,我不断反思自己的解题思路和方法,发现解题中的错误和不足之处,不断调整和改进,直至找到正确的答案。
课程简介什么是离散?首先想一下连续是什么,连续的对应(就是反义词)就是离散。
离散就是不连续。
例如1:在生活中我们听到的声音是连续的,如人的说话声,鸟叫声等;而计算机里储存声音的是离散的二进制比特流,是经过抽样,然后量化得到的离散数据。
例如2,我们在生活中,人眼见到的景色是连续的,经过数码相机的拍照(抽样和量化的过程),即成为数字照片。
数字照片就是离散的二进制比特流,图像(灰度图像)像素的灰度值在计算机里是从0到255(实际上是用二进制表示的),即0,1,2,3,...,255,0代表黑色,255代表白色,只有0到255的整数,没有其他整数,也没有两个整数之间的小数,即不连续的,这就叫离散。
离散数学(Discrete mathematics)是研究离散量的结构及其相互关系的数学学科,是现代数学的一个重要分支。
它在各学科领域,特别在计算机科学与技术领域有着广泛的应用,同时离散数学也是计算机专业的专业课程,如程序设计语言、数据结构、操作系统、编译理论、算法设计与分析、系统结构等必不可少的先行课程。
通过离散数学的学习,不但可以掌握处理离散结构的描述工具和方法,为后续课程的学习创造条件,而且可以提高抽象思维和逻辑推理能力,为将来参与创新性的研究和开发工作打下坚实的基础。
随着信息时代的到来,工业革命时代以微积分为代表的连续数学占主流的地位已经发生了变化,离散数学的重要性逐渐被人们认识。
离散数学课程所传授的思想和方法,广泛地体现在计算机科学技术及相关专业的诸领域,从科学计算到信息处理,从理论计算机科学到计算机应用技术,从计算机软件到计算机硬件,从人工智能到认知系统,无不与离散数学密切相关。
由于数字电子计算机是一个离散结构,它只能处理离散的或离散化了的数量关系,因此,无论计算机科学本身,还是与计算机科学及其应用密切相关的现代科学研究领域,都面临着如何对离散结构建立相应的数学模型;又如何将已用连续数量关系建立起来的数学模型离散化,从而可由计算机加以处理。
清华用的离散数学教材
清华大学使用的离散数学教材可能会有多种选择,这取决于具体的课程安排和教师的个人喜好。
以下列出几本可能被采用的离散数学教材:
1. 《离散数学及其应用(原书第7版)》(Discrete Mathematics and its Applications, 7th Edition),作者:肯尼斯·罗森(Kenneth H. Rosen)。
这是一个广受欢迎的离散数学教材,在全球范围内被广泛使用。
2. 《离散数学及其应用(原书第5版)》(Discrete Mathematics and its Applications, 5th Edition),作者:肯尼斯·罗森(Kenneth H. Rosen)。
这是前述书籍的较早版本,也被广泛采用。
3. 《离散数学导论(原书第3版)》(Introduction to Discrete Mathematics, 3rd Edition),作者:Richard Johnsonbaugh。
这是一本介绍离散数学基本概念和应用的教材,也是一门非常经典的教材。
4. 《离散数学导论(修订版)》(Discrete Mathematics: An Introduction),作者:Susanna S. Epp。
这本教材也是一本常用的离散数学教材,适合初学者。
这些教材通常涵盖离散数学的基本原理、逻辑、集合论、代数结构、图论、计算理论等内容。
请注意,具体使用哪本教材可
能因课程和教师的不同而有所变化,学生们可以根据教学大纲和教师的要求来确定使用哪本教材。
《离散数学》课程教学大纲一、课程简介课程名称:离散数学英文名称:Discrete Mathematics课程代码:课程类别:专业基础课学分:3 总学时:48课程概要:《离散数学》是现代数学的一个重要分支,是计算机类各专业的一门重要基础课,是计算机科学理论的基础。
它是以研究离散量的结构和相互间的关系为主要目标,其研究对象一般是有限个或可列个元素,因此它充分描述了计算机科学的离散性特点。
其主要内容包括数理逻辑、集合论、关系与函数、图论等内容。
该课程与计算机类专业中的数据结构、操作系统、编译原理、数据库原理与应用、人工智能等后继专业课程紧密相关,因此是一门重要的学科基础必修课程。
该课程以高等数学、线性代数为先修课程,但关系不很紧密。
二、教学目的及要求通过该课程的学习,使学生掌握命题逻辑与谓词逻辑、集合与关系、图与树的基本概念和基本理论与方法,为学生学习计算机领域的后续课程奠定理论基础,并培养学生抽象思维、缜密概括和严密的逻辑推理能力,为学生今后处理离散信息打好数学基础。
三、教学内容及学时分配第一章命题逻辑(12学时)1.命题及其表示;2.逻辑联结词;3.命题公式与翻译;4.真值表与等价公式;5.命题公式的分类与蕴含式;6.命题公式的范式;7.命题逻辑的推理理论。
教学要求:熟悉命题、命题的真值、简单命题、复合命题、命题公式、真值表、等价公式、重言式、矛盾式、蕴涵式、(主)析取范式、(主)合取范式等概念;熟悉五个基本联结词(⌝、∧、∨、→、↔)的定义;掌握命题公式的翻译、命题公式的类型的判别、命题定律、证明两个命题公式等价的真值表法和等值演算法及命题公式的(主)析取范式、(主)合取范式的求法;掌握推理证明的直接证法和间接证法。
重点:五个逻辑联结词;翻译、命题公式的等值演算、主析取范式、主合取范式;推理证明的直接证法和间接证法。
难点:命题公式的主析取范式、主合取范式的求法;推理证明的间接证法。
第二章谓词逻辑(10学时)1.谓词与量词;2.谓词公式与翻译;3.变元的约束;4.谓词演算的等价式与蕴含式;5.谓词演算的推理理论。
《离散数学》课程标准英文名称:Discrete Mathematics 适用专业:数学与应用数学学分数:4一、课程性质《离散数学》是研究离散量的结构及其相互关系的应用数学学科,是随着计算机科学的发展而逐步建立的,它形成于七十年代初期,是一门新兴的工具性学科。
《离散数学》是应用数学专业以及计算机专业的一门重要专业必修课。
二、课程理念1、课程所属学科分析离散与连续是现实世界中物质运动的对立统一的两个方面,离散数学与连续数学是描述、刻画和表达现实世界物质运动的两个重要工具。
计算机的高速发展与广泛应用,促进了信息数字化、符号化和离散化。
从目前的发展趋势来看,离散数学在现代应用科学中的作用已经超过了连续数学。
离散数学已成为计算机科学与技术的重要理论基础之一,在计算机科学与技术等领域有着广泛的应用。
2、课程授课对象分析离散数学课程是应计算机科学和技术发展的需要,综合了高等数学的多个分支而形成的。
其特点是以离散量为研究对象,内容丰富,涉及面较宽。
因此概念多、定理多、推理多,但它研究的内容均比较基础,难度不大。
本课程面对的是计算机科学与技术专业一年级的学生,。
通过本课程的学习,培养学生的抽象思维和严密的逻辑推理能力,为进一步学习专业课打好基础,并为学生今后处理离散信息,提高专业理论水平,从事计算机的实际工作提供必备的数学工具。
3、课程内容选择分析本课程研究离散型的量的结构及其相互间的关系,因而特别体现了计算机科学的离散性这一重要特征。
其内容极为广泛,不同的教材或专著在选材上通常会有较大的差异。
但都至少包含了以下四个方面内容:数理逻辑、集合论、代数系统、图论。
作为一门数学课,《离散数学》特别能体现数学的三大特性——严密的逻辑性、高度的抽象性以及广泛的应用性。
4、课程学习要求的分析在本课程的教学过程中,要坚持学生为主体、教师为主导、以人为本的教学理念,将研究性学习运用于教学中,课堂讲授、课堂讨论、课外扩展学习相结合,鼓励创新,充分体现素质教育、个性化教育等现代教育思想和观念,构建以学习者为中心,以学生实践性的自主活动为基础的动态、开放的教学过程。
西电离散数学?
答:西安电子科技大学开设了离散数学课程,该课程主要包括集合论、图论、逻辑和组合数学等部分,是计算机科学、电子工程、数学等专业的重要基础课程之一。
离散数学课程主要强调数学概念和方法的离散化、抽象化和模型化,帮助学生理解计算机科学中使用的各种数学概念和方法,并掌握离散对象的数学描述和分析方法。
该课程还注重培养学生的逻辑推理和抽象思维能力,提高学生在计算机科学和工程领域中解决实际问题的能力。
离散数学清华大学教学设计离散数学作为计算机科学中的重要基础,是计算机科学相关专业的必修课程之一。
本文将介绍清华大学针对离散数学课程的教学设计,包括课程设置、教学内容、教学方法和考核方式等方面。
课程设置离散数学是清华大学计算机科学系本科生必修课程之一,也是计算机应用专业的入门课程。
该课程的主要目的是通过实际问题引出数学概念,培养学生的数学思维能力和问题解决能力。
该课程一般设置在计算机科学系大二下学期或者大三上学期。
教学内容数理逻辑与命题演算该部分主要涉及数理逻辑中的命题、逻辑运算、原子命题、命题公式等内容。
同时也介绍了重言式、可满足、不可满足、推理法则等概念,并引用实际问题加深学生对数学概念的理解。
集合论与离散结构集合论是离散数学的核心组成部分,该部分主要介绍了基本的集合概念、运算、集合运算、数学归纳法和良好排列原理等概念。
图论图论是离散数学中的重点,该部分主要涉及基本的图论概念、图的类型、图的遍历、最短路径、网络流等内容。
同时还会讲解常见的图论算法,如Dijkstra算法和最小生成树算法等。
代数结构是对离散数学的进一步深入理解,该部分主要介绍了基本的代数概念、代数运算和群的概念。
同时也会讲述置换、同构等概念,拓展学生对代数的认识。
教学方法离散数学的教学在清华大学采用了多种教学方法,包括课堂讲解、课堂练习、课外作业和组间竞赛等多种方式。
课堂讲解教师通过充分准备,讲解清晰,采用轻松的语言,引入适当的幽默和实际问题,使学生更好地理解并掌握知识。
课堂练习教师在课堂上安排一定的练习时间,让学生在老师的指导下完成相关的数学问题,并及时纠正其错误。
课外作业教师会布置一定的课外作业,通过学生独立完成作业,巩固其知识,提高学生的专业水平。
同时也为了让学生更好地理解课堂上讲解的内容。
组间竞赛为了增加趣味性,课程中设置组间竞赛,让学生通过竞争提高自己的技能和能力。
竞赛的内容一般采用离散数学中的问题,如图着色和图的遍历等,凸显出离散数学的实际应用价值。