- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图像傅立叶变换的物理意义
傅立叶变换以前,图像(未压缩的位图)是由对在连续空间(现实空 间)上的采样得到一系列点的集合,我们习惯用一个二维矩阵表示 空间上各点,则图像可由z=f(x,y)来表示。由于空间是三维的,图 像是二维的,因此空间中物体在另一个维度上的关系就由梯度来表 示,这样我们可以通过观察图像得知物体在三维空间中的对应关系。 为什么要提梯度?因为实际上对图像进行二维傅立叶变换得到频谱 图,就是图像梯度的分布图,当然频谱图上的各点与图像上各点并 不存在一一对应的关系,即使在不移频的情况下也是没有。傅立叶 频谱图上我们看到的明暗不一的亮点,实际上图像上某一点与邻域 点差异的强弱,即梯度的大小,也即该点的频率的大小(可以这么 理解,图像中的低频部分指低梯度的点,高频部分相反)。一般来 讲,梯度大则该点的亮度强,否则该点亮度弱。这样通过观察傅立 叶变换后的频谱图,也叫功率图
域表述困难的增强任务,在频率域中变得非常普通
✓ 滤波在频率域更为直观,它可以解释空间域滤波的某些性质 ✓ 给出一个问题,寻找某个滤波器解决该问题,频率域处理对 于试验、迅速而全面地控制滤波器参数是一个理想工具
✓ 一旦找到一个特殊应用的滤波器,通常在空间域用硬件实现
➢图像的频率指什么?
✓ 图像的频率是表征图像中灰度变化剧烈程度的指标,是灰度在平面
Mx0
u=0,1,2,…,M-1
✓ 给定F(u),通过傅里叶反变换可以得到f(x)
f(x)
1
M1
j2ux
F(u)e M
Mu0
x=0,1,2,…,M-1
傅里叶变换
一维离散傅里叶变换及反变换
✓ 从欧拉公式 e j cos j sin
F (u)
1
M 1
f
x e j ( 2ux ) / M
频率域图像增强
频率域滤波 频率域平滑(低通)滤波器 频率域锐化(高通)滤波器
4.1 背景知识
• 图像变换的目的
✓ 使图像处理问题简化; ✓ 有利于图像特征提取; ✓ 有助于从概念上增强对图像信息的理解;
• 图像变换的定义
✓ 将空域中的信号变换到另外一个域,即使用该域中的一组基 函数的线性组合来合成任意函数
M x 0
1 M
M 1 x 0
f
x cos(2ux)
/
M
j
sin(2ux) /
M
1 M
M 1 x 0
f
x
cos
2ux
/
M
j
sin
2ux
/
M
傅里叶变换
傅里叶变换的极坐标表示 F u F u e j u
✓ 幅度或频率谱为 F(u) R2(u)I2(u) R(u)和I(u)分别是F(u)的实部和虚部
✓ 单位正交基函数(相同基函数内积为1,不同基函数的内积 为0)
✓ 使用这组基函数的线性组合得到任意函数f,每个基函数的系 数就是f与该基函数的内积
图像变换通常是一种二维正交变换。一般要求: 1. 正交变换必须是可逆的;
2. 正变换和反变换的算法不能太复杂; 3. 正交变换的特点是在变换域中图 像能量将集中分布在低频率成分上,边缘、线状信息反映在高频率成分上, 有利于图像处理
傅里叶变换
二维傅里叶变换的极坐标表示 F (u ,v)F (u ,v)ej(u ,v)
✓ 幅度或频率谱为 F (u ,v)R 2(u ,v)I2(u ,v) R(u)和I(u)分别是F(u)的实部和虚部
✓ 相角或相位谱为(u,v)arctaI(nu,v)
R(u,v)
✓ 功率谱为 P ( u ,v ) F ( u ,v )2 R 2 ( u ,v ) I 2 ( u ,v )
空间上的梯度。如:大面积的沙漠在图像中是一片灰度变化缓慢的 区域,对应的频率值很低;而对于地表属性变换剧烈的边缘区域在 图像中是一片灰度变化剧烈的区域,对应的频率值较高。
傅里叶变换及其反变换 傅里叶变换的性质
快速傅里叶变换(FFT)
傅里叶变换
一维连续傅里叶变换及反变换
✓ 单变量连续函数f(x)的傅里叶变换F(u)定义 为
F(u,v)的原点变换 f(x ,y) (1 )xyF (u M ,vN ) 22
用(-1)x+y乘以f(x,y),将F(u,v)原点变换到频 率坐标下的(M/2,N/2),它是M×N区域的中心
u=0,1,2,…,M-1, v=0,1,2,…,N-1
傅里叶变换
x0 y0
u=0,1,2,…,M-1, v=0,1,2,…,N-1
✓ 给出F(u,v),可通过反DFT得到f(x,y),
M1N1
f ( x , y )
j 2 ux / M vy / N
F u,v e
u0 v0
x=0,1,2,…,M-1, y=0,1,2,…,N-1
注:u和v是频率变量,x和y是空间或图像变量
F(u) f (x)e j dx 2ux
其中,j 1
✓ 给定F(u),通过傅里叶反变换可以得到f(x)
f ( x) F(u)e du j 2ux
傅里叶变换
二维连续傅里叶变换及反变换
✓ 二维连续函数f(x,y)的傅里叶变换F(u,v)定
义为
F(u, v)
f (x, y)e j 2 uxvydxdy
✓ 相角或相位谱为 (u)arctaIn(u)
R(u)
✓ 功率谱为 P (u )F (u )里叶变换及反变换
✓ 图像尺寸为M×N的函数f(x,y)的DFT为
F ( u , v ) 1 MN
M1N1
f x , y e j 2 ux / M vy / N
✓ 给定F(u,v),通过傅里叶反变换可以得到 f(x,y)
f ( x, y)
F(u, v)e j 2 uxvydudv
傅里叶变换
一维离散傅里叶变换(DFT)及反变换
✓ 单变量离散函数f(x)(x=0,1,2,..,M-1)的傅
里叶变换F(u)定义为
F(u)
1
M1
j2ux
f(x)e M
因此正交变换广泛应用在图像增强、图像恢复、特征提取、图像压缩编码 和形状分析等方面
4.2 傅里叶变换(一种正交变换)
➢从纯粹的数学意义上看,傅立叶变换是将一个函数转换为一系列周 期函数来处理的。从物理效果看,傅立叶变换是将图像从空间域转换 到频率域 ➢为什么要在频率域研究图像?
✓ 可以利用频率成分和图像外表之间的对应关系。一些在空间