2011年浙江省中考数学试题
- 格式:doc
- 大小:237.00 KB
- 文档页数:7
2011年浙江省初中生学业考试数学Ⅰ试卷1. 本试卷分试题卷和答题卷两部分,满分150分.考试时间120分钟.2. 答题时,应该在答题卷指定位置内填写学校、班级、姓名和准考证号,3. 所有答案都必须做在答题卷标定的位置上.请务必注意试题序号和答题序号相对应,4. 考试结束后,上交试题卷和答题卷.参考公式:二次函数2y ax bx c =++图象的顶点坐标是(2424b ac b a a --,). 试题卷Ⅰ一、选择题(本大题有l0小题.每小题4分,共40分,请选出各题中一个符合题意的正确选项.将答题卡上相应的位置涂果.不选.多选、错选均不给分)1. 如图,在数轴上点A 表示的数可能是( )A .1.5B . 1.5-C . 2.6-D .2.62 下列图形中.既是轴对称图形又是中心对称图形的是( )3.中国是缺永严重的国家之一.人均淡水资源为世界人均量的四分之一,所以我们为中国节水.为世界节水。
若每人每天浪费水0.32L ,那么100万人每天浪费的水.用科学记数法表示为 ( )A .73.210L ⨯B .63.210L ⨯C .53.210L ⨯D .43.210L ⨯4.某校七年级有l3名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛.小梅已经知道了自已的成绩.她想知遘自己能否进入决赛,还需要知道这l3名同学成绩的( )A .中位数B .众数C .平均救D .极差5.如图,小华同学设计丁一个圆直径的测量渊量器.标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位.OF=6个单位,则圆的直径为( )A .12个单位B .10个单位C . 4个单位D .15个单位6. 如图,直角三角形纸片的两直角边长分别为6,8,按如图那样折叠,使点A 与点B 重舍,折痕为DE .则:BCE BDE S S ∆∆等于( )A .2:5B .14:25C .16:25D .4:217.已知1212m n =+=-,,则代数式223m n mn +-的值为( )A .9B .±3C .3D .58.如图,在五边形ABCDE 中.∠BAE=120°,∠B=∠E=90°,AB=BC ,A E=DE .在BC ,DE 上分别找一点M .N .使得△AMN 周长最小时.则∠AMN+∠ANM的度数为( )A .100°B .110°C .120°D .130°9. 如图,在平面直角坐标系中.线段AB 的端点坐标为A (2-.4),B(4.2),直线2y kx =-与线段AB 有交点,则k 的值不可能是t )A .5-B .2-C .2D .510. 如图,下面是按照一定规律画出的—行 “树形图”.经观察可以发现:图2A 比图1A 多出2个“树枝”. 图3A 比图2A 多出4个“树枝”, 图4A 比图3A 多出8个“树枝”,照此规律,图6A 比图2A 多出 “树枝” ( )A .28个B .56个C .60个D .124个试题卷Ⅱ二、填空题(本大题有6小题,每小题5分,共30分)11.已知∠A=40°.则∠A 的补角等于________。
2011年浙江省初中毕业生学业考试(嘉兴)数学试题班级 学号 姓名 得分 参考公式:二次函数c bx ax y ++=2)0(≠a 图象的顶点坐标是)44,2(2ab ac a b --.卷Ⅰ(选择题)一、选择题(本大题有10小题,每小题4分,共40分.请选出各小题中唯一的正确选项,不选、多选、错选,均不得分)1.(2011浙江省嘉兴,1,4分) -6的绝对值是( ) (A )-6 (B )6 (C )61(D )61-【答案】B2.(2011浙江省嘉兴,2,4分)一元二次方程0)1(=-x x 的解是( ) (A )0=x (B )1=x (C )0=x 或1=x (D )0=x 或1-=x【答案】C3.(2011浙江省嘉兴,3,4分)如图,点A 、B 、C 、D 、O 都在方格纸的格点上,若△COD 是由△AOB 绕点O 按逆时针方向旋转而得,则旋转的角度为( ) (A )30°(B )45° (C )90° (D )135°【答案】C4.(2011浙江省嘉兴,4,4分)下列计算正确的是( ) (A )32x x x =⋅ (B )2x x x =+(C )532)(x x =(D )236x x x =÷【答案】A5.(2011浙江省嘉兴,5,4分)两个大小不同的球在水平面上靠在一起,组成如图所示的几何体,则该几何体的左视图是( ) (A )两个外离的圆 (B )两个外切的圆 (C )两个相交的圆(D )两个内切的圆【答案】D6.(2011浙江省嘉兴,6,4分)如图,半径为10的⊙O 中,弦AB 的长为16,则这条弦的ABOCD(第3题)主视方向(第5题)弦心距为( ) (A )6(B )8(C )10(D )12【答案】A7.(2011浙江省嘉兴,7,4分)如图,边长为4的等边△ABC 中,DE 为中位线,则四边形BCED 的面积为( ) (A )32(B )33(C )34(D )36【答案】B8.(2011浙江省嘉兴,8,4分)多多班长统计去年1~8月“书香校园”活动中全班同学的课外阅读数量(单位:本),绘制了如图折线统计图,下列说法正确的是( ) (A )极差是47(B )众数是42(C )中位数是58(D )每月阅读数量超过40的有4个月【答案】C9.(2011浙江省嘉兴,9,4分)一个纸环链,纸环按红黄绿蓝紫的顺序重复排列,截去其中的一部分,剩下部分如图所示,则被截去部分纸环的个数可能是( ) (A )2010(B )2011(C )2012(D )2013(第6题)(第7题)ABCD E(第9题)… …红 黄 绿 蓝 紫 红 黄 绿 黄 绿 蓝 紫【答案】D10.(2011浙江省嘉兴,10,4分)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm 2,四边形ABCD 面积是11cm 2,则①②③④四个平行四边形周长的总和为( ) (A )48cm (B )36cm (C )24cm(D )18cm【答案】A卷Ⅱ(非选择题)二、填空题(本大题有6小题,每小题5分,共30分) 11.(2011浙江省嘉兴,11,5分)当x 时,分式x-31有意义. 【答案】3x ≠12.(2011浙江省嘉兴,12,5分)从标有1到9序号的9张卡片中任意抽取一张,抽到序号是3的倍数的概率是 . 【答案】1313.(2011浙江省嘉兴,13,5分)分解因式:822-x = . 【答案】2(x +2)(x -2)14.(2011浙江省嘉兴,14,5分)如图,在△ABC 中,AB =AC ,︒=∠40A ,则△ABC 的外角∠BCD = °.【答案】11015.(2011浙江省嘉兴,15,5分)如图,已知二次函数c bx x y ++=2的图象经过点(-1,0),(1,-2),该图象与x 轴的另一个交点为C ,则AC 长为 .(第10题)FABCDH EG①②③④⑤(第14题)ABCD【答案】316.(2011浙江省嘉兴,16,5分)如图,AB 是半圆直径,半径OC ⊥AB 于点O ,AD 平分∠CAB 分别交OC 于点E ,交弧BC 于点D ,连结CD 、OD ,给出以下四个结论:①S △AEC =2S △DEO ;②AC=2CD ;③线段OD 是DE 与DA 的比例中项;④AB CE CD ⋅=22.其中正确结论的序号是 .【答案】①④三、解答题(本大题有8小题,第17~19题每题6分,第20、21题每题8分,第22、23题每题10分,第24题12分,共66分)17.(2011浙江省嘉兴,17,8分)(1)计算:202(3)+- 【答案】原式=4+1-3=2(2)化简:(a+b )2+a(a-2b) . 【答案】原式=a 2+2ab+b 2+a 2-2ab=2a 2+b 218.(2011浙江省嘉兴,18,8分)解不等式组:⎩⎨⎧≤-+>+1)1(2,13x x x 并把它的解在数轴上表示出来.【答案】由①得:x >-2;由②得:x ≤1,∴不等式组的解集是21x -<≤.不等式组的解集在数轴上表示为:(第15题)c+(第16题)ABDCOE19.(2011浙江省嘉兴,19,8分)如图,已知直线12y x =-经过点P (2-,a ),点P 关于y 轴的对称点P ′在反比例函数2ky x=(0≠k )的图象上. (1)求点P ′的坐标;(2)求反比例函数的解析式,并直接写出当y 2<2时自变量x 的取值范围.【答案】(1)将P (-2,a )代入x y 2-=得a =-2×(-2)=4,∴P ′(2,4). (2) 将P ′(2,4)代入x ky =得4=2k ,解得k =8,∴反比例函数的解析式为8y x=. 自变量x 的取值范围x <0或x >4.20.(2011浙江省嘉兴,20,8分)根据第五次、第六次全国人口普查结果显示:某市常住人口总数由第五次的400万人增加到第六次的450万人,常住人口的学历状况统计图如下(部分信息未给出):10%解答下列问题:(1)求第六次人口普查小学学历的人数,并把条形统计图补充完整; (2)求第五次人口普查中,该市常住人口每万人中具有初中学历的人数; (3)第六次人口普查结果与第五次相比,每万人中初中学历人数增加了多少人? 【答案】(1)450-36-55-180-49=130(万人), 条形统计图补充如下图所示:(第19题)1k x(2) (1-3%-10%-38%-17%)×10000=3200(人),所以第五次人口普查中,每万人中具有初中学历程度的有3200人. (3)180÷450×10000=4000(人),4000-3200=800(人).所以第六次人口普查结果与第五次相比,每万人中初中学历人数增加了800人.21.(2011浙江省嘉兴,21,10分)目前“自驾游”已成为人们出游的重要方式.“五一”节,林老师驾轿车从舟山出发,上高速公路途经舟山跨海大桥和杭州湾跨海大桥到嘉兴下高速,其间用了4.5小时;返回时平均速度提高了10千米/小时,比去时少用了半小时回到舟山.(1)求舟山与嘉兴两地间的高速公路路程; (2)两座跨海大桥的长度及过桥费见下表:我省交通部门规定:轿车的高速公路通行费y (元)的计算方法为:5++=b ax y ,其中a (元/千米)为高速公路里程费,x (千米)为高速公路里程(不包括跨海大桥长),b (元)为跨海大桥过桥费.若林老师从舟山到嘉兴所花的高速公路通行费为295.4元,求轿车的高速公路里程费a .【答案】(1)设舟山与嘉兴两地间的高速公路路程为s 千米,由题意得104 4.5s s-=.解得s =360.答:舟山与嘉兴两地间的高速公路路程为360千米.(2)将x =360-48-36=276,b =100+80=180,y =295.4,代入y =ax +b +5,得295.4=276a +180+5, 解得a=0.4,答:轿车的高速公路里程费是0.4元/千米.22.(2011浙江省嘉兴,22,12分)如图,△ABC 中,以BC 为直径的圆交AB 于点D ,∠ACD =∠ABC .(1)求证:CA 是圆的切线;(2)若点E 是BC 上一点,已知BE =6,tan ∠ABC =32,tan ∠AEC =35,求圆的直径.第六次人口普查中某市常住人口学历状况条形统计图嘉兴舟山东海【答案】(1)∵BC 是直径,∴∠BDC =90°,∴∠ABC +∠DCB=90°,∵∠ACD =∠ABC , ∴∠ACD +∠DCB=90°,∴BC ⊥CA ,∴CA 是圆的切线. (2)在Rt △AEC 中,tan ∠AEC=53,∴53AC EC =,35EC AC =; 在Rt △ABC 中,tan ∠ABC=23,∴23AC BC =,32BC AC =; ∵BC -EC=BE ,BE =6,∴33625AC AC -=,解得AC =203, ∴BC=3201023⨯=.即圆的直径为10.23.(2011浙江省嘉兴,23,12分)以四边形ABCD 的边AB 、BC 、CD 、DA 为斜边分别向外侧作等腰直角三角形,直角顶点分别为E 、F 、G 、H ,顺次连结这四个点,得四边形EFGH . (1)如图1,当四边形ABCD 为正方形时,我们发现四边形EFGH 是正方形;如图2,当四边形ABCD 为矩形时,请判断:四边形EFGH 的形状(不要求证明); (2)如图3,当四边形ABCD 为一般平行四边形时,设∠ADC =α(0°<α<90°),① 试用含α的代数式表示∠HAE ; ② 求证:HE =HG ;③ 四边形EFGH 是什么四边形?并说明理由.【答案】(1)四边形EFGH 是正方形. (2) ①∠HAE=90°+a .在□ABCD 中,AB ∥CD ,∴∠BAD=180°-∠ADC=180°-a ; ∵△HAD 和△EAB 都是等腰直角三角形,∴∠HAD=∠EAB=45°,A BCDHEFG(第23题图2)E BFGDHAC(第23题图3)(第23题图1)A BCDH EFG(第22题)∴∠HAE=360°-∠HAD -∠EAB -∠BAD =360°-45°-45°-(180°-a )=90°+a .②∵△AEB 和△DGC 都是等腰直角三角形,∴AE=2AB ,DG=2CD , 在□ABCD 中,AB=CD ,∴AE=DG ,∵△HAD 和△GDC 都是等腰直角三角形, ∴∠DHA=∠CDG= 45°,∴∠HDG=∠HAD +∠ADC +∠CDG =90°+a =∠HAE . ∵△HAD 是等腰直角三角形,∴HA=HD ,∴△HAE ≌△HDG ,∴HE=HG . ③四边形EFGH 是正方形.由②同理可得:GH=GF ,FG=FE ,∵HE=HG (已证),∴GH=GF =FG=FE ,∴四边形EFGH 是菱形;∵△HAE ≌△HDG (已证),∴∠DHG=∠AHE ,又∵∠AHD=∠AHG +∠DHG=90°,∴∠EHG=∠AHG +∠AHE =90°,∴四边形EFGH 是正方形.24.(2011浙江省嘉兴,24,14分)已知直线3+=kx y (k <0)分别交x 轴、y 轴于A 、B两点,线段OA 上有一动点P 由原点O 向点A 运动,速度为每秒1个单位长度,过点P 作x 轴的垂线交直线AB 于点C ,设运动时间为t 秒.(1)当1-=k 时,线段OA 上另有一动点Q 由点A 向点O 运动,它与点P 以相同速度同时出发,当点P 到达点A 时两点同时停止运动(如图1). ① 直接写出t =1秒时C 、Q 两点的坐标;② 若以Q 、C 、A 为顶点的三角形与△AOB 相似,求t 的值. (2)当43-=k 时,设以C 为顶点的抛物线n m x y ++=2)(与直线AB 的另一交点为D (如图2), ① 求CD 的长;② 设△COD 的OC 边上的高为h ,当t 为何值时,h 的值最大?【答案】(1)①C (1,2),Q (2,0).②由题意得:P (t ,0),C (t ,-t+3),Q (3-t ,0), 分两种情形讨论:情形一:当△AQC ∽△AOB 时,∠AQC=∠AOB =90°,∴CQ ⊥OA , ∵CP ⊥OA ,∴点P 与点Q 重合,OQ =OP ,即3-t =t ,∴t=1.5.情形二:当△ACQ ∽△AOB 时,∠ACQ=∠AOB =90°,∵O A=O B=3,∴△AOB 是等腰直角三角形,∴△ACQ 是等腰直角三角形,∵CQ ⊥OA ,∴AQ=2CP ,即t =2(-t +3),∴t=2.∴(第24题图2)(第24题图1)满足条件的t 的值是1.5秒或2秒.(2) ①由题意得:C (t ,-34t +3),∴以C 为顶点的抛物线解析式是23()34y x t t =--+,由233()3344x t t x --+=-+,解得x 1=t ,x 2=t 34-;过点D 作DE ⊥CP 于点E ,则∠DEC=∠AOB =90°,DE ∥OA ,∴∠EDC=∠OAB ,∴△DEC ∽△AOB ,∴DE CDAO BA=, ∵AO =4,AB =5,DE =t -(t-34)=34.∴CD =35154416DE BA AO ⨯⨯==.②∵CD =1516,CD 边上的高=341255⨯=.∴S △COD =11512921658⨯⨯=.∴S △COD 为定值;要使OC 边上的高h 的值最大,只要OC 最短. 因为当OC ⊥AB 时OC 最短,此时OC 的长为125,∠BCO =90°,∵∠AOB =90°,∴∠COP =90°-∠BOC =∠OBA ,又∵CP ⊥OA ,∴Rt △PCO ∽Rt △OAB ,∴OP OC BO BA =,OP =123365525OC BO BA ⨯⨯==,即t =3625,∴当t 为3625秒时,h 的值最大.。
2011年浙江省金华市初中毕业生学业水平考试数学卷一、选择题(本题有10小题,每小题3分,共30分)1.(2011浙江金华,1,3分)下列各组数中,互为相反数的是( ) A .2和-2 B .-2和12 C .-2和-12 D .12和2【答案】A2. (2011浙江金华,2,3分)如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是( )A .6B .5C .4D .3 【答案】B3. (2011浙江金华,3,3分)下列各式能用完全平方式进行分解因式的是( ) A .x 2 +1 B .x 2+2x -1 C .x 2+x +1 D .x 2+4x +4 【答案】D4. (2011浙江金华,4,3分)有四包真空小包装火腿,每包以标准克数(450克)为基数,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是( )A .+2B .-3C .+3D .+4 【答案】A5. (2011浙江金华,5,3分)如图,有一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15° 【答案】B6. (2011浙江金华,6,3分)学校为了解七年级学生参加课外兴趣小组活动情况,随机调查了40名学生,将结果绘制成了如图所示的频数分布直方图,则参加绘画兴趣小组的频率是( )A .0.1B .0.15C .0.25D .0.3【答案】D7. (2011浙江金华,7,3分)计算1a -1 – aa -1的结果为( )A .1+a a -1B . -aa -1 C . -1 D .1-a【答案】C8. (2011浙江金华,8,3分)不等式组⎩⎨⎧2x -1>14-2x ≤0 的解在数轴上表示为( )【答案】C9. (2011浙江金华,9,3分)如图,西安路与南京路平行,并且与八一街垂直,曙光路与环城路垂直.如果小明站在南京路与八一街的交叉口,准备去书店,按图中的街道行走,最近的路程约为( )A .600mB .500mC .400mD .300m【答案】B10. (2011浙江金华,10,3分)如图,在平面直角坐标系中,过格点A ,B ,C 作一圆弧,点B 与下列格点的连线中,能够与该圆弧相切的是( )ABCD组别A .点(0,3)B .点(2,3)C .点(5,1)D .点(6,1) 【答案】C二、填空题(本题有6小题,每小题4分,共24分) 11. (2011浙江金华,11,4分)“x 与y 的差”用代数式可以表示为 . 【答案】x –y 12. (2011浙江金华,12,4分)已知三角形的两边长为4,8,则第三边的长度可以是 (写出一个即可).【答案】答案不唯一,如5、6等13. (2011浙江金华,13,4分)在中国旅游日(5月19日),我市旅游部门对2011年第若将统计情况制成扇形统计图,则表示旅游时间为“2~3天”的扇形圆心角的度数为 . 【答案】144°14. (2011浙江金华,14,4分)从-2,-1,2这三个数中任取两个不同的数作为点的坐标,该点在第四象限的概率是 . 【答案】1315. (2011浙江金华,15,4分)如图,在□ABCD 中,AB =3,AD =4,∠ABC =60°,过BC 的中点E 作EF ⊥AB ,垂足为点F ,与DC 的延长线相交于点H ,则△DEF 的面积是 .【答案】2 316. (2011浙江金华,16,4分)如图,将一块直角三角板OAB 放在平面直角坐标系中,B (2,0),∠AOC =60°,点A 在第一象限,过点A 的双曲线为y = kx ,在x 轴上取一点P ,过点P 作直线OA 的垂线l ,以直线l 为对称轴,线段OB 经轴对称变换后的像是O ′B ′. (1)当点O ′与点A 重合时,点P 的坐标是 .(2)设P (t ,0)当O ′B ′与双曲线有交点时,t 的取值范围是 .B【答案】(1)(4,0);(2)4≤t ≤25或-25≤t ≤-4三、解答题(本题有8小题,共66分,各小题都必须写出解答过程) 17.(本题6分)(2011浙江金华,17,6分)计算:|-1|-128-(5-π)0+4cos45°. 【解】原式=1-12×22-1+4×22=1-2-1+22=2.18. (2011浙江金华,18,6分)(本题6分)已知2x -1=3,求代数式(x -3)2+2x (3+x ) -7的值.【解】由2x -1=3得,x =2,所以代数式(x -3)2+2x (3+x ) -7=(2-3)2+2×2 (3+2) -7=14.19.(本题6分)(2011浙江金华,19,6分)生活经验表明,靠墙摆放的梯子,当50°≤α≤70°(α为梯子与地面所成的角),能够使人安全攀爬,现在有一长为6米的梯子AB ,试求能够使人安全攀爬时,梯子的顶端能达到的最大高度AC .(结果保留两个有效数字,sin70°≈0.94,sin50°≈0.77,cos70°≈0.34,cos50°≈0.64)【解】由题意知,当α越大,梯子的顶端达到的最大高度越大.因为当50°≤α≤70°时,能够使人安全攀爬,所以当α=70°时AC 最大. 在Rt △ABC 中,AB =6米,α=70°, sin70°=AC AB ,即0.94≈AC6,解得AC ≈5.6.答:梯子的顶端能达到的最大高度AC ≈5.6米.20. (2011浙江金华,20,8分)(本题8分)王大伯几年前承办了甲、乙两片荒山,各栽100棵杨梅树,成活98%,现已挂果,经济效益初步显现,为了分析收成情况,他分别从两山上随意各采摘了4棵树上的杨梅,每棵的产量如拆线统计图所示.(1)分别计算甲、乙两山样本的平均数,并估算出甲乙两山杨梅的产量总和;(2)试通过计算说明,哪个山上的杨梅产量较稳定?【解】(1)甲山上4棵树的产量分别为:50千克、36千克、40千克、34千克,所以甲山产量的样本平均数为:50364034404x +++==千克;乙山上4棵树的产量分别为:36千克、40千克、48千克、36千克,所以乙山产量的样本平均数为:36404836404x +++==千克;甲乙两山杨梅的产量总和为:2×100×98%×40=7840千克.21. (本题8分)(2011浙江金华,21,8分)如图,射线PG 平分∠EPF ,O 为射线PG 上一点,以O 为圆心,10为半径作⊙O ,分别与∠EPF 两边相交于A 、B 和C 、D ,连结OA ,此时有OA ∥PE . (1)求证:AP =AO ;(2)若弦AB =12,求tan ∠OPB 的值;(3)若以图中已标明的点(即P 、A 、B 、C 、D 、O )构造四边形,则能构成菱形的四个点为 ,能构成等腰梯形的四个点为 或 或 .证明:(1)∵PG 平分∠EPF , ∴∠DPO =∠BPO , ∵OA//PE ,∴∠DPO =∠POA , ∴∠BPO =∠POA ,∴P A =OA ; ……2分杨梅树编号解:(2)过点O 作OH ⊥AB 于点H ,则AH =HB =12AB ,……1分 ∵ tan ∠OPB =12OH PH =,∴PH =2OH , ……1分 设OH =x ,则PH =2x ,由(1)可知P A =OA = 10 ,∴AH =PH -P A =2x -10,∵222AH OH OA +=, ∴222(210)10x x -+=, ……1分 解得10x =(不合题意,舍去),28x =,∴AH =6, ∴AB=2AH=12; ……1分(3)P 、A 、O 、C ;A 、B 、D 、C 或 P 、A 、O 、D 或P 、C 、O 、B .……2分(写对1个、2个、3个得1分,写对4个得2分)22. (2011浙江金华,22,10分)(本题10分)某班师生组织植树活动,上午8时从学校出发,到植树地点后原路返校,如图为师生离校路程s 与时间t 之间的图象.请回答下列问题: (1)求师生何时回到学校?(2)如果运送树苗的三轮车比师生迟半小时出发,与师生同路匀速前进,早半个小时到达植树地点,请在图中,画出该三轮车运送树苗时,离校路程s 与时间t 之间的图象,并结合图象直接写出三轮车追上师生时,离学校的路程;(3)如果师生骑自行车上午8时出发,到植树地点后,植树需2小时,要求14时前返回学校,往返平均速度分别为每小时10km 、8km .现有A 、B 、C 、D 四个植树点与学校的路程分别是13km ,15km 、17km 、19km ,试通过计算说明哪几个植树点符合要求.)解:(1)设师生返校时的函数解析式为b kt s +=, 把(12,8)、(13,3)代入得,⎩⎨⎧+=+=b k b k 133,128 解得:⎩⎨⎧=-=68,5b k P∴685+-=t s , 当0=s 时,t =13.6 ,∴师生在13.6时回到学校;……3分 (2)图象正确2分.由图象得,当三轮车追上师生时,离学校4km ; ……2分 (3)设符合学校要求的植树点与学校的路程为x (km ),由题意得:88210+++x x <14, 解得:x <9717,答:A 、B 、C 植树点符合学校的要求.……3分23. (2011浙江金华,23,10分)(本题10分)在平面直角坐标系中,如图1,将n 个边长为1的正方形并排组成矩形OABC ,相邻两边OA 和OC 分别落在x 轴和y 轴的正半轴上,设抛物线y =ax 2+bx +c (a <0)过矩形顶点B 、C . (1)当n =1时,如果a =-1,试求b 的值;(2)当n =2时,如图2,在矩形OABC 上方作一边长为1的正方形EFMN ,使EF 在线段CB 上,如果M ,N 两点也在抛物线上,求出此时抛物线的解析式;(3)将矩形OABC 绕点O 顺时针旋转,使得点B 落到x 轴的正半轴上,如果该抛物线同时经过原点O ,①试求出当n =3时a 的值; ②直接写出a 关于n 的关系式.8.5 9.5)由对称性可知抛物线经过点B (2,1)和点M (12,2) ∴1421112 1.42a b a b =++⎧⎪⎨=++⎪⎩, 解得4,38.3a b ⎧=-⎪⎪⎨⎪=⎪⎩∴所求抛物线解析式为248133y x x =-++;……4分(3)①当n =3时,OC=1,BC =3,设所求抛物线解析式为2y ax bx =+,过C 作CD ⊥OB 于点D ,则Rt △OCD ∽Rt △CBD , ∴13OD OC CD BC ==, 设OD =t ,则CD =3t , ∵222OD CD OC +=,∴222(3)1t t +=,∴t ==, ∴C(10), 又 B0),∴把B 、C 坐标代入抛物线解析式,得0101.10a a ⎧=+⎪=,解得:a =3-; ……2分 ②a n=- ……2分24.(本题12分)(2011浙江金华,24,12分)如图,在平面直角坐标系中,点A (10,0),以OA 为直径在第一象限内作半圆C ,点B 是该半圆周上的一动点,连结OB 、AB ,并延长AB 至点D ,使DB =AB ,过点D 作x 轴垂线,分别交x 轴、直线OB 于点E 、F ,点E 为垂足,连结CF . (1)当∠AOB =30°时,求弧AB 的长; (2)当DE =8时,求线段EF 的长;(3)在点B 运动过程中,是否存在以点E 、C 、F 为顶点的三角形与△AOB 相似,若存在,请求出此时点E 的坐标;若不存在,请说明理由.解:(1)连结BC ,∵A (10,0), ∴OA =10 ,CA =5, ∵∠AOB =30°,∴∠ACB =2∠AOB =60°,∴弧AB 的长=35180560ππ=⨯⨯; ……4分(2)连结OD,∵OA 是⊙C 直径, ∴∠OBA =90°, 又∵AB =BD,∴OB 是AD 的垂直平分线, ∴OD =OA =10, 在Rt △ODE 中,OE ==-22DE OD 681022=-,∴AE =AO -OE=10-6=4,由 ∠AOB =∠ADE =90°-∠OAB ,∠OEF =∠DEA , 得△OEF ∽△DEA, ∴OE EF DE AE =,即684EF=,∴EF =3;……4分 (3)设OE =x ,①当交点E 在O ,C 之间时,由以点E 、C 、F 为顶点的三角形与△AOB 相似,有∠ECF =∠BOA 或∠ECF =∠OAB ,当∠ECF =∠BOA 时,此时△OCF 为等腰三角形,点E 为OC 中点,即OE =25,∴E 1(25,0); 当∠ECF =∠OAB 时,有CE =5-x , AE =10-x ,∴CF ∥AB ,有CF =12AB , ∵△ECF ∽△EAD,∴AD CF AE CE =,即51104x x -=-,解得:310=x ,∴E 2(310,0);②当交点E 在点C 的右侧时,∵∠ECF >∠BOA ,∴要使△ECF 与△BAO 相似,只能使∠ECF =∠BAO , 连结BE ,∵BE 为Rt △ADE 斜边上的中线, ∴BE =AB =BD, ∴∠BEA =∠BAO, ∴∠BEA =∠ECF ,∴CF ∥BE, ∴OEOCBE CF =, ∵∠ECF =∠BAO , ∠FEC =∠DEA =Rt ∠,∴△CEF ∽△AED, ∴CF CEAD AE =, 而AD =2BE , ∴2OC CEOE AE=, 即55210x x x-=-, 解得417551+=x , 417552-=x <0(舍去),∴E 3(41755+,0);③当交点E 在点O 的左侧时,∵∠BOA =∠EOF >∠ECF .∴要使△ECF 与△BAO 相似,只能使∠ECF =∠BAO连结BE ,得BE =AD 21=AB ,∠BEA =∠BAO ∴∠ECF =∠BEA,∴CF ∥BE, ∴OEOC BE CF =, 又∵∠ECF =∠BAO , ∠FEC =∠DEA =Rt ∠,∴△CEF ∽△AED, ∴ADCF AE CE =, 而AD =2BE , ∴2OC CE OE AE =, ∴5+5210+x x x=, 解得417551+-=x , 417552--=x <0(舍去), ∵点E 在x 轴负半轴上, ∴E 4(41755-,0), 综上所述:存在以点E 、C 、F 为顶点的三角形与△AOB 相似,此时点E 坐标为: 1E (25,0)、2E (310,0)、3E (41755+,0)、4E (41755-,0).……4分。
A BDCEA.B.21D.C.一、选择题(每小题3分,共36分)1.下列各数中是正整数的是()A.- 1B.2C.0.5D22.下列计算正确的是()A.(a2)3=a6B.a2+a2=a4C.(3a)·(2a)2=6aD.3a-a=33.不等式x>1在数轴上表示为4.据宁波市统计局公布的第六次人口普查数据,本市常住人口760.57万人,其中760.57万人用科学记数法表示为()A.7.6057×105人B.7.6057×106人C.7.6057×107人D.0.76057×107人5.平面直角坐标系中,与点(2,-3)关于原点中心对称的点是()A.(-3,2)B.(3,-2)C.(-2,3)D.(2,3)6.如图所示的物体的俯视图是()7.一个多边形的内角和是720º,这个多边形的边数是()A.4B.5C.6D.78.如图所示,AB∥CD,∠E=37º,∠C=20º,则∠EAB的度数为()A.57°B.60°C.63°D.123°9.如图,某游乐场一山顶滑梯的高为h,滑梯的坡角为α,那么滑梯长l为()2011年浙江宁波中考数学试题(满分120分,考试时间120分钟)(第12题图)A .h sin αB . h tan αC . h cos αD . •h sin α 10. 如图,Rt △ABC 中,∠ACB =90º,AC =BC =22,若把Rt △ABC 绕边AB 所在直线旋转一周,则所得 几何体的表面积为( )A .4πB .42πC .8πD .82π11. 如图,⊙O 1的半径为1,正方形ABCD 的边长为6,点O 2为正方形ABCD 的中心,O 1O 2垂直AB 于P 点,O 1O 2=8.若将⊙O 1绕点P 按顺时针方向旋转360°,在旋转过程中,⊙O 1与正方形ABCD 的边只有一个公共点的情况一共出现A .3次B .5次C .6次D .7次12. 把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m cm ,宽为n cm )的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示,则图②中两块阴影部分的周长和是A .4m cmB .4n cmC .2(m +n ) cmD .4(m -n ) cm二、填空题(每小题3分,共18分)13. 实数27的立方根是______________;如果点P (4,-5)和点Q (a ,b )关于原点对称,则a 的值为____________________.14. 因式分解:xy -y =______________.(第17题图)(第18题图) 15. 甲、乙、丙三位选手各10次射击成绩的平均 数和方差,统计如下表:则射击成绩最稳定的选手是____________.(填“甲”、“乙”、“丙”中的一个)16. 抛物线y =x 的图象向上平移1个单位,则平 移后的抛物线的解析式为______________.17. 如图,在△ABC 中,AB =AC ,D 、E 是△ABC 内两点,AD 平分∠BAC ,∠EBC =∠E =60º,若BE =6cm ,DE =2cm ,则BC =______________.18.正方形的A 1B 1P 1P 2顶点P 1、P 2在反比例函数y =2x(x >0)的图象上,顶点A 1、B 1分别在x 轴、y 轴的正半轴上,再在其右侧作正方形P 2P 3 A 2B 2,顶点P 3在反比例函数y =2x (x >0)的图象上,顶点A 2在x 轴的正半轴上,则点P 3的坐标为______________.三、解答题(本大题共8小题,共66分)19. (本题6分)先化简,再求值:(a +2)(a -2)+a (1-a ),其中a =5.20. (本题6分)在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中白球1个,黄球1个,红球1个,摸出一个球记下颜色后放回,再摸出一个球,请用列表法或画树状图法求两次都摸到红球的概率.21. (本题6分)请在下列三个2×2的方格中,各画出一个三角形,要求所画三角形是图中三角形经过轴对称变换后得到的图形,且所画的三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影.(注:所画的三个图形不能重复)选手 甲 乙 丙 平均数 9.3 9.3 9.3方差 0.026 0.015 0.032图① 图② 图③22. (本题8分)图①表示的是某综合商场今年15月的商品各月销售总额的情况,图②表示的是商场服装部...各月销售额占商场当月销售总额的百分比情况,观察图①、图②,解答下列问题:(1)来自商场财务部的数据报告表明,商场15月的商品销售总额一共是410万元,请你根据这一信息将图①中的统计图补充完整; (2)商场服装部...5月份的销售额是多少万元?(3)小刚观察图②后认为,5月份商场服装部...的销售额比4月份减少了.你同意他的看法吗?请说明理由.图② 图①23.(本题8分)如图,在□ABCD中,E、F分别为边AB、CD的中点,BD是对角线,过点A作AG∥DB交CB的延长线于点G.(1)求证:DE∥BF;(2)若∠G=90°,求证:四边形DEBF是菱形.24.(本题10分)我市某林场计划购买甲、乙两种树苗共800株,甲种树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗的成活率分别为85%、90%.(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株?(2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株?(3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低?并求出最低费用.A OBC25.(本题10分)阅读下面的情景对话,然后解答问题:老师:我们新定义一种三角形,两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.小华:等边三角形一定是奇异三角形!小明:那直角三角形是否存在奇异三角形呢?(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是真命题还是假命题?(2)在Rt△ABC中,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a:b:c;(3)如图,AB是⊙O的直径,C是⊙O上一点(不与点A、B重合),D是半圆ADB⌒的中点,C、D在直径AB的两侧,若在⊙O内存在点E,使AE=AD,CB=CE.①求证:△ACE是奇异三角形;②当△ACE是直角三角形时,求∠AOC的度数.E26.(本题12分)如图,平面直角坐标系xOy中,点A的坐标为(-2, 2),点B的坐标为(6, 6),抛物线经过A、O、B三点,连结OA、OB、AB,线段AB交y轴于点E.(1)求点E的坐标;(2)求抛物线的函数解析式;(3)点F为线段OB上的一个动点(不与点O、B重合),直线EF与抛物线交于M、N两点(点N在y轴右侧),连结ON、BN,当点F在线段OB上运动时,求△BON 面积的最大值,并求出此时点N的坐标;(4)连结AN,当△BON面积最大时,在坐标平面内求使得△BOP与△OAN相似(点B、O、P分别与点O、A、N对应)的点P的坐标.参考答案浙江宁波一、选择题二、填空题13. 6 14. y (x -1) 15. 乙16.=+y x 21 17. 818.)11三、解答题19.原式=a -4;当a =5时,原式=1.20.两次摸到红球的概率为1921. 略22.(1)75万元;(2)12.8万元;(3)4月份的销售额是12.75万元,因为12.75<12.8,故不同意他的看法.23.(1)利用□ABCD 的性质可证得四边形DEBF 亦为平行四边形,故DE ∥BF .(2)由斜边上的中线是斜边的一半可证得BF =DF ,进而可证得结论.24.(1)购买甲500株;乙300株.(2)列出不等式,可得甲种树苗至多购买320株.(3)设甲种树苗购买m 株,购买树苗的费用为W 元,则W =-6m +24000故当m =320时,W 最小值=22080元.25.(1)真命题;(2)由a 、b 、c 的不等式关系可知,若Rt △ABC 为奇异三角形,定有2222b a c =+.再由勾股定理,可得a :b :c =1(3)①∵AB 是圆O 的直径∴90ACB ADB ∠=∠=∴222AC BC AB +=,222AD BD AB +=∵点D 是半圆ADB 的中点,∴AD =BD∴22222AB AD BD AD =+=∴2222AC BC AD +=又∵CB =CE ,AE =AD∴2222AC CE AE +=∴△ACE 是奇异三角形.②由①和(2)可得AC :AE :CE =1或AC :AE :CE :1I )当AC :AE :CE =1时,60AOC ∠=II ) 当AC :AE :CE 1时,120AOC ∠=∴AOC ∠的度数为60°或120°.26.(1)E (0,3)(2)抛物线的解析式为21142y x x =- (3)当x =3时,△BON 的面积最大,最大值为274.此时点N 的坐标为33,4⎛⎫ ⎪⎝⎭. (4)当点P 的坐标为1515,4⎛⎫ ⎪⎝⎭或15,154⎛⎫ ⎪⎝⎭时,△BOP 与△OAN 相似.。
(第8题)浙江省宁波市2011年初中毕业生学业考试数学试题一、选择题(每小题3分,共36分) 1.下列各数中是正整数的是(A)1- (B) 2 (C)0.52.下列计算正确的是 (A)632)(a a =(B) 422a a a =+ (C)a a a 6)2()3(=⋅ (D)33=-a a3.不等式1x >在数轴上表示正确的是 (A) (B)(C)(D)4.据宁波市统计局公布的第六次人口普查数据,本市常住人口760.57万人,其中760.57万人用科学记数法表示为(A)5106057.7⨯人(B)6106057.7⨯人 (C) 7106057.7⨯人(D) 71076057.0⨯人 5.平面直角坐标系中,与点)3,2(-关于原点中心对称的点是(A))2,3(- (B))2,3(- (C))3,2(- (D))3,2( 6.如图所示的物体的俯视图是7.一个多边形的内角和是720°,这个多边形的边数是(A)4 (B) 5 (C) 6 (D) 7 8.如图所示,AB ∥CD ,∠E =37°,∠C =20°,则∠EAB 的度数为 (C) 63°9.如图,某游乐场一山顶滑梯的高为h ,滑梯的坡角为α (A)sin h α (B)tan h α (C)cos h α (D)αsin ⋅h 10.如图,Rt △ABC 中,∠ACB =90°,22==BC AC ,若把Rt △ABC 绕边AB 所在直线旋转一周,则所得几何体的表面积为(A)4π (B) (C)8π (D)11.如图,⊙O 1 的半径为1,正方形ABCD 的边长为6,点O 2为正方形ABCD 的中心,O 1O 2垂直AB 于P 点,O 1O 2 =8.若将⊙O 1绕点P 按顺时针方向旋转360°,在旋转过程中,⊙O 1与正方形ABCD 的边只有一个公共点的情况一共出现(第(第9题) αhl(第6题)(A)(B)(C)(D)(A)3次 (B)5次 (C)6次 (D)7次12.把四张形状大小完全相同的小长方形卡片(如图①)不重叠地放在一个底面为长方形(长为m cm ,宽为n cm)的盒子底部(如图②),盒子底面未被卡片覆盖的部分用阴影表示.则图②中两块阴影部分周长和是(A)4m cm (B)4n cm (C) 2(m +n ) cm (D)4(m -n ) cm 二、填空题(每小题3分,共18分) 13.实数27的立方根是 ▲ . 14.因式分解:y xy -= ▲ .15.甲、乙、丙三位选手各10次射击成绩的平均数和方差,统计如下表:则射击成绩最稳定的选手是 ▲ . (填“甲”、“乙”、“丙”中的一个)16.将抛物线2x y =的图象向上平移1个单位,则平移后的抛物线的解析式为 ▲ .17.如图,在△ABC 中,AB =AC ,D 、E 是△ABC 内两点,AD 平分∠BAC ,∠EBC =∠E =60°,若BE =6cm ,DE =2cm ,则BC = ▲ cm .18.如图,正方形1112A B PP 的顶点1P 、2P 在反比例函数2(0)y x x=>的图象上,顶点1A 、1B 分别在x 轴、y 轴的正半轴上,再在其右侧作正方形2232B A P P ,顶点3P 在反比例函数2(0)y x x=>的图象上,顶点2A 在x 轴的正半轴上,则点3P 的坐标为 ▲ .三、解答题(本大题有8小题,共66分) 19.(本题6分)先化简,再求值:)1()2)(2(a a a a -+-+,其中5=a .20.(本题6分)在一个不透明的袋子中装有3个除颜色外完全相同的小球,其中白球1个,黄球1个,红球1个,摸出一个球记下颜色后放回..,再摸出一个球,请用列表法或画树状图法求两次都摸到红球(第18题)(第17题)A DBE Cn(第11题)(第21题) 图① 图② 图③的概率.21.(本题6分)请在下列三个2×2的方格中,各画出一个三角形,要求所画三角形是图中三角形经过轴对称变换后得到的图形,且所画三角形顶点与方格中的小正方形顶点重合,并将所画三角形涂上阴影.22.(本题8分)图①表示的是某综合商场今年1~5月的商品各月销售总额的情况,图②表示的是商场服.装.部.各月销售额占商场当月销售总额的百分比情况,观察图①、图②,解答下列问题:(1)来自商场财务部的数据报告表明,商场1~5月的商品销售总额一共是410万元,请你根据这一信息将图①中的统计图补充完整. (2)商场服装..部.5月份的销售额是多少万元? (3)小刚观察图②后认为,5月份商场服装..部.的销售额比4月份减少了.你同意他的看法吗?请说明理由.23.(本题8分)如图,在□ABCD 中,E 、F 分别为边AB 、CD 的中点, BD 是对角线,过A 点作AG ∥BD 交CB 的延长线于点G . (1)求证:DE ∥BF ;(2)若∠G =90°,求证:四边形DEBF 是菱形.24.(本题10分)我市某林场计划购买甲、乙两种树苗共800株,甲种 树苗每株24元,乙种树苗每株30元.相关资料表明:甲、乙两种树苗 的成活率分别为85%,90%.(1)若购买这两种树苗共用去21000元,则甲、乙两种树苗各购买多少株? (2)若要使这批树苗的总成活率不低于88%,则甲种树苗至多购买多少株? (3)在(2)的条件下,应如何选购树苗,使购买树苗的费用最低,并求出最低费用. 25.(本题10分)阅读下面的情景对话,然后解答问题:(1)根据“奇异三角形”的定义,请你判断小华提出的命题:“等边三角形一定是奇异三角形”是真命题还月份商场服装部...各月销售额占商场当月销售 0 商场各月销售总额统计图 12(第22题)图②图①ABCDGEF(第23题)是假命题?(2)在Rt △ABC 中,∠ACB =90°,AB =c ,AC =b ,BC =a ,且b a >,若Rt △ABC 是奇异三角形,求(3)如图,AB 是⊙O 的直径,C 是⊙O 上一点(不与点A 、B 重合), D 是半圆ADB 的中点, C 、D 在直径AB 两侧,若在⊙O 内存在点E , 使得AE =AD ,CB =CE .① 求证:△ACE 是奇异三角形;② 当△ACE 是直角三角形时,求∠AOC 的度数.26.(本题12分)如图,平面直角坐标系xOy 中,点A 的坐标为(2,2)-,点B 的坐标为(6,6),抛物线经过A 、O 、B 三点,连结OA 、OB 、AB ,线段AB 交y 轴于点E . (1) 求点E 的坐标; (2) 求抛物线的函数解析式;(3) 点F 为线段OB 上的一个动点(不与点O 、B 重合),直线EF 与抛物线交于M 、N 两点(点N在y 轴右侧),连结ON 、BN ,当点F 在线段OB 上运动时,求△BON 面积的最大值,并求出此时点N 的坐标;(4) 连结AN ,当△BON 面积最大时,在坐标平面内求使得△BOP 与△OAN 相似(点B 、O 、P 分别与点O 、A 、N 对应)的点P 的坐标.(第25题)AB数学试题参考答案及评分标准三、解答题(共66分)19.解: 原式=224a a a -+- 2分 4-=a 4分 当5=a 时,原式=45-=1 6分 20.解: 树状图如下: 列表如下:3分则P (两次都摸到红球)=91. 6分 21 每种情况2分,共6分(只需3种)22.解:(1)75806590100410=----(万元) 2分4分白 黄 红红 黄 白 红黄 白红 黄 白第一次 第二次 020 40 60 80商场各月销售总额统计图(2) 5月份的销售额是8.12%1680=⨯(万元) 6分 (3) 4月份的销售额是75.12%1775=⨯(万元),∵8.1275.12< ∴不同意他的看法 8分23.解:(1)在□ABCD 中,AB ∥CD ,AB =CD∵E 、F 分别为边AB 、CD 的中点∴DF =21DC ,BE =21AB ∴DF ∥BE ,DF =BE 2分∴四边形DEBF 为平行四边形 3分 ∴DE ∥BF 4分 (2) 证明: ∵AG ∥BD∴∠G=∠DBC=90° ∴△DBC 为直角三角形 5分 又∵F 为边CD 的中点 ∴BF =21CD =DF 7分 又∵四边形DEBF 为平行四边形∴四边形DEBF 是菱形 8分24.解:(1) 设购买甲种树苗x 株,乙种树苗y 株,则列方程组⎩⎨⎧=+=+210003024800y x y x 2分解得⎩⎨⎧==300500y x答:购买甲种树苗500株,乙种树苗300株. 4分 (2) 设购买甲种树苗z 株,乙种树苗)800(z -株,则列不等式 800%88)800%(90%85⨯≥-+z z 6分解得320≤z 7分答:甲种树苗至多购买320株.(3)设甲种树苗购买m 株,购买树苗的费用为W 元,则240006)800(3024+-=-+=m m m W 8分 ∵06<- ∴W 随m 的增大而减小 ∵3200≤<m∴当320=m 时,W 有最小值. 9分 22080320624000=⨯-=W 元答:当选购甲种树苗320株,乙种树苗480株时,总费用最低为22080元. 10分 25.解:(1) 真命题 2分(2) 在Rt △ABC 中,222c b a =+ ∵ 0>>>a b c∴2222b a c +>,2222c b a +<∴若Rt △ABC 为奇异三角形,一定有2222c a b += 3分 ∴)(22222b a a b ++= ∴222a b = 得a b 2=∵22223a a b c =+= ∴a c 3=∴3:2:1::=c b a 5分 (3) ①∵AB 是⊙O 的直径∴∠ACB =∠ADB =90°在Rt △ACB 中,222AB BC AC =+ 在Rt △ADB 中,222AB BD AD =+ ∵点D 是半圆ADB 的中点 ∴AD= BD∴AD=BD 6分 ∴ 22222AD BD AD AB =+=∴2222AD CB AC =+ 7分 又∵AD AE CE CB ==,∴2222AE CE AC =+∴△ACE 是奇异三角形 8分 ②由①可得△ACE 是奇异三角形 ∴2222AE CE AC =+ 当△ACE 是直角三角形时由(2)可得3:2:1::=CE AE AC 或1:2:3::=CE AE AC (Ⅰ)当3:2:1::=CE AE AC 时,3:1:=CE AC 即3:1:=CB AC∵︒=∠90ACB ∴︒=∠30ABC∴︒=∠=∠602ABC AOC 9分 (Ⅱ)当1:2:3::=CE AE AC 时,1:3:=CE AC 即1:3:=CB AC∵︒=∠90ACB ∴︒=∠60ABC∴︒=∠=∠1202ABC AOC∴AOC ∠的度数为︒︒12060或. 10分26.解:(1) 设n mx y += 将点)6,6(),2,2(B A -代入得⎩⎨⎧=+=+-6622n m n m 得3,21==n m∴321+=x y 当0=x 时,3=y . ∴)3,0(E 3分 (2)设抛物线的函数解析式为bx ax y +=2,将)6,6(),2,2(B A -代入得⎩⎨⎧=+=-6636224b a b a 解得21,41-==b a∴抛物线的解析式为x x y 21412-=. 6分(3)过点N 作x 轴的垂线NG ,垂足为G ,交OB 于点Q ,过B 作BH ⊥x 轴于H ,设)2141,(2x x x N -,则),(x x Q则BQN QON BON S S S ∆∆∆+=GH QN OG QN ⨯⨯+⨯⨯=2121)(21GH OG QN +⨯⨯=OH QN ⨯⨯=2162141212⨯⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--=x x xx x 29432+-=427)3(432+--=x )60(<<x 7分∴当3=x 时,△BON 面积最大,最大值为427, 8分 此时点N 的坐标为)43,3(. 9分 (4)解:过点A 作AS ⊥GQ 于S∵)6,6(),2,2(B A -,N )43,3( ∴∠AOE =∠OAS=∠BOH = 45°, OG =3,NG =43,NS =45,AS =5 在Rt △SAN 和Rt △NOG 中 ∴tan ∠SAN =tan ∠NOG =41∴∠SAN =∠ NOG ∴∠OAS -∠SAN =∠BOG -∠NOG ∴∠OAN =∠BON 10分 ∴ON 的延长线上存在一点P ,使△BOP ∽△OAN ∵),2,2(-A N )43,3( 在Rt △ASN 中, AN =417522=+SN AS 当△BOP ∽△OAN 时AN OP OA OB = 41752226OP=得OP =41715 过点P 作PT ⊥x 轴于点T ∴△OPT ∽△ONG ∴41==OG NG OT PT 设),4(t t P ∴=+22)4(t t 2)41715( 415,41521-==t t (舍) ∴点P 的坐标为)415,15( 11分将△OPT 沿直线OB 翻折,可得出另一个满足条件的点)15,415('P由以上推理可知,当点P 的坐标为)415,15(或)15,415(时,△BOP 与△OAN 相似. 12分。
2011年中考数学试题精选汇编《矩形、菱形、正方形》一、选择题1. (2011浙江省舟山,10,3分)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm 2,四边形ABCD 面积是11cm 2,则①②③④四个平行四边形周长的总和为( )(A )48cm(B )36cm (C )24cm (D )18cm【答案】A 2. (2011山东德州8,3分)图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3),……,则第n 个图形的周长是(A )2n (B )4n (C )12n + (D )22n +【答案】C3. (2011山东泰安,17 ,3分)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S 1,S 2,则S 1+S 2的值为A.17B.17C.18D.19图1图2 图3……(第10题) FA B C D H E① ②③ ④ ⑤4. (2011山东泰安,19 ,3分)如图,点O是矩形ABCD的中心,E是AB上的点,沿CE 折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为A.23B. 332C. 3D.6【答案】A5. (2011浙江杭州,10,3)在矩形ABCD中,有一个菱形B F D E(点E,F分别在线段AB,CD上),记它们的面积分别为ABCD BFDES S和.现给出下列命题:()①若ABCDBFDESStan EDF∠=.②若2,DE BD EF=∙则2DF AD=.则:A.①是真命题,②是真命题 B.①是真命题,②是假命题C.①是假命题,②是真命题 D,①是假命题,②是假命题【答案】A6. (2011浙江衢州,1,3分)衢州市新农村建设推动了农村住宅旧貌变新颜,如图为一农村民居侧面截图,屋坡AF AG、分别架在墙体的点B、点C处,且AB AC=,侧面四边形BDEC为矩形,若测得100FAG∠=︒,则FBD∠=( )A. 35°B. 40°C. 55°D. 70°【答案】C7. (2011浙江温州,6,4分)如图,在矩形ABCD中,对角线AC,BD交于点O.已知∠AOB= 60°,AC=16,则图中长度为8的线段有( )A.2条B.4条C.5条D.6条8. 2011四川重庆,10,4分)如图,正方形ABCD 中,AB =6,点E 在边CD 上,且CD =3DE .将△ADE 沿AE 对折至△AFE ,延长EF 交边BC 于点G ,连结AG 、CF .下列结论:①△ABG ≌△AFG ;②BG =GC ;③AG ∥CF ;④S △FGC =3.其中正确结论的个数是( )A .1B .2C .3D .4【答案】C9. (2011浙江省嘉兴,10,4分)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH (不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm 2,四边形ABCD 面积是11cm 2,则①②③④四个平行四边形周长的总和为( )(A )48cm(B )36cm (C )24cm (D )18cm【答案】A 10.(2011台湾台北,29)如图(十二),长方形ABCD 中,E 为BC 中点,作AEC 的角平分线交AD 于F 点。
浙江省丽水市2011年中考数学试卷-解析版一、选择题(本题有10小题,每小题3分,共30分)1、(2011•金华)下列各组数中,互为相反数的是()A、2和﹣2B、﹣2和C、﹣2和D、和2考点:相反数。
专题:计算题。
分析:根据相反数的定义,只有符号不同的两个数是互为相反数.解答:解:A、2和﹣2只有符号不同,它们是互为相反数,选项正确;B、﹣2和除了符号不同以外,它们的绝对值也不相同,所以它们不是互为相反数,选项错误;C、﹣2和﹣符号相同,它们不是互为相反数,选项错误;D、和2符号相同,它们不是互为相反数,选项错误.故选A.点评:本题考查了相反数的定义:只有符号不同的两个数是互为相反数,0的相反数是0.注意,一个正数的相反数是一个负数,一个负数的相反数是一个正数.本题属于基础题型,比较简单.2、(2011•金华)如图是六个棱长为1的立方块组成的一个几何体,其俯视图的面积是()A、6B、5C、4D、3考点:简单组合体的三视图。
专题:计算题。
分析:找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.解答:解:从上面看易得第一层有2个正方形,第二层有3个正方形,共5个正方形,面积为5.故选B.点评:本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3、(2011•金华)下列各式能用完全平方公式进行分解因式的是()A、x2+1B、x2+2x﹣1C、x2+x+1D、x2+4x+4考点:因式分解-运用公式法。
专题:因式分解。
分析:完全平方公式是:a2±2ab+b2=(a±b)2由此可见选项A、B、C都不能用完全平方公式进行分解因式,只有D选项可以.解答:解:根据完全平方公式:a2±2ab+b2=(a±b)2可得,选项A、B、C都不能用完全平方公式进行分解因式,D、x2+4x+4=(x+2)2.故选D点评:本题主要考查完全平方公式的判断和应用:应用完全平方公式分解因式.4、(2011•金华)有四包真空小包装火腿,每包以标准克数(450克)为基准,超过的克数记作正数,不足的克数记作负数,以下数据是记录结果,其中表示实际克数最接近标准克数的是()A、+2B、﹣3C、+3D、+4考点:正数和负数。
2011年浙江省重点高中招生统一文化考试试题数 学命题:葛军(南京师范大学)冯志刚(上海一中)金克勤(浙江省黄岩中学)审核:黄金鑫(浙江师范大学)刘治平(北京四中)提示:本次考试满分150分,考试时间为120分钟,请把握好时间;请将本卷所有答案填写在答题卷上,否则无效。
参考公式:二次函数)44,2()0(22ab ac a b a c bx ax y --≠++=的顶点坐标为。
一、选择题:(本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1.的值为:则满足已知实数22)1(,11a a a a a +-=--(A )1 (B )a 21- (C )12-a (D )a2.已知一个立体图形,其正视图和侧视图均为等腰三角形,俯视图为半径为cm 1的圆(含圆心),若它的侧面展开图的面积为22cm p ,则此几何体的高为:(A )3cm (B )cm 2 (C )23cm (D )4cm 3.那么函数在双曲线点的解集为如果不等式,2),1(,40xy n x n mx =><+x n y )1(-=+m 2的图象不经过:(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限 4.设c b a P c N N b a M c b a >>。
若的平均数为,的平均数为,的平均数为,,,,,则M 与P 的大小关系为:(A )M P = (B )P M > (C )M P < (D )无法确定 5.如图, A B AN 点是半圆上的一个三等分点,点是的中点P MN 点是直径上一动点,O 的半径为1AP BP +,则的最小值为:(A )1 (B )22(C )2 (D )31- 6.若假设“中恰有一个偶数整数c b a ,,”不成立,则有:(A )都是奇数c b a ,, (B )都是偶数c b a ,,(C ),,a b c 中至少有两个偶数 (D )偶数都是奇数或至少有两个c b a ,,7.如图,已知在平行四边形中,ABCD 6053DAE ,AB ,BC ∠=︒==,点P 从起点D 出发,沿CB DC 、向终点B 匀速运动,设点P 所走过的路程为x ,点P 所经过的线段与线段AP AD 、所围成的面积为y ,y 随x 的变化而变化,在下图中能反映y 与x 的函数图像为:(A ) (B ) (C ) (D ) 8.已知在矩形ABCD 中,AB=3,AD=6,经过点A 把矩形分成两部分,一是直角梯形,一是直角三角形,若梯形的面积与直角三角形的面积之比为3:1,则梯形的周长与直角三角形的周长之比为: (A )917324--或(B )9173224-+或(C )917324--或(D )9173224++或9如图,已知等腰直角三角形ABC ,D 为斜边BC 的中点,经过点D A 、的⊙O 与边AB 、AC 、BC 分别相交于点E 、F 、M ,对于如下五个结论:①45FMC ∠=︒;②A E A F A B +=;③ED BA EF BC=;④22B M B E B A =∙;⑤四边形AEMF 为矩形,其中正确的结论的个数为: (A )2个 (B )3个 (C )4个 (D )5个(第5题图) (第7题图) (第9题图)10.对于每个自然数两点,以、轴交于与抛物线n n B A x x n x n n y n 1)12()(,22+--+= 的值为:则表示该两点间的距离,201120112211......B A B A B A B A n n +++ (A )20102011 (B )20112012 (C )20112010 (D )20112012二、填空题:(本大题共7小题,每小题4分,共28分。
2011年杭州市各类高中招生文化考试数 学考生须知:1. 本试卷满分120分,考试时间100分钟。
2. 答题前,在答题纸上写姓名和准考证号。
3. 必须在答题纸的对应答题位置上答题,写在其它地方无效。
答题方式详见答题纸上的说明。
4. 考试结束后,试题卷和答题纸一并上交。
试题卷一. 仔细选一选(本题有10个小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的。
注意可以用多种不同的方法来选取正确答案。
1. 下列各式中,正确的是 A. 3)3(2-=- B. 332-=- C. 3)3(2±=± D. 332±=2. 正方形纸片折一次,沿折痕剪开,能剪得的图形是A. 锐角三角形B. 钝角三角形C. 梯形D.菱形3. =⨯36)102(A. 9106⨯B. 9108⨯C. 18102⨯D.18108⨯4. 正多边形的一个内角为135°,则该多边形的边数为A. 9B. 8C. 7D. 45. 在平面直角坐标系xOy 中,以点(-3,4)为圆心,4为半径的圆A. 与x 轴相交,与y 轴相切B. 与x 轴相离,与y 轴相交C. 与x 轴相切,与y 轴相交D. 与x 轴相切,与y 轴相离6. 如图,函数11-=x y 和函数x y 22=的图像相交于点M (2,m ),N(-1,n ),若21y y >,则x 的取值范围是A. 1-<x 或20<<xB. 1-<x 或2>x C. 01<<-x 或20<<x D. 01<<-x 或2>x7. 一个矩形被直线分成面积为x ,y 的两部分,则y 与x 之间的函数关系只可能是8. 如图是一个正六棱柱的主视图和左视图,则图中的=aA. 32B. 3C. 2D. 19. 若2-=+b a ,且a ≥2b ,则A. a b 有最小值21B. ab有最大值1C. b a 有最大值2D. b a 有最小值98- 10. 在矩形ABCD 中,有一个菱形BFDE (点E ,F 分别在线段AB ,CD上),记它们的面积分别为ABCD S 和BFDE S ,现给出下列命题: ①若232+=BFDE ABCD S S ,则33tan =∠EDF ; ②若EF BD DE ⋅=2,则DF=2AD则A. ①是真命题,②是真命题B. ①是真命题,②是假命题C. ①是假命题,②是真命题D. ①是假命题,②是假命题二. 认真填一填(本题有6个小题,每小题4分,共24分)要注意认真看清楚题目的条件和要填写的内容,尽量完整地填写答案11. 写出一个比-4大的负.无理数_________ 12. 当7=x 时,代数式)1)(3()1)(52(+--++x x x x 的值为__________13. 数据,,,,,的众数是___________;中位数是_______________14. 如图,点A ,B ,C ,D 都在⊙O 上,的度数等于84°,CA 是∠OCD 的平分线,则∠ABD+∠CAO=________°15. 已知分式ax x x +--532,当2=x 时,分式无意义,则=a _______;当6<x 时,使分式无意义的x 的值共有_______个16. 在等腰Rt △ABC 中,∠C=90°,AC=1,过点C 作直线l ∥AB ,F是l 上的一点,且AB=AF ,则点F 到直线BC 的距离为__________三. 全面答一答(本题有8个小题,共66分)解答应写出文字说明、证明过程或推演步骤。
2011年中考数学试卷一、选择题(本大题有10小题,毎小题4分,共40分)1、(2011•绍兴)﹣3的相反数是()A、B、C、3 D、﹣3考点:相反数。
分析:根据相反数的概念解答即可.解答:解:∵互为相反数相加等于0,∴﹣3的相反数,3.故选C.点评:此题主要考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号;一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.2、(2011•绍兴)明天数学课要学“勾股定理”.小敏在“百度”搜索引擎中输入“勾股定理”,能搜索到与之相关的结果个数约为12 500 000,这个数用科学记数法表示为()A、1.25×105B、1.25×106C、1.25×107D、1.25×108考点:科学记数法—表示较大的数。
专题:存在型。
分析:根据用科学记数法表示数的方法进行解答即可.解答:解:∵12 500 000共有8位数,∴n=8﹣1=7,∴12 500 000用科学记数法表示为:1.25×107.故选C.点评:本题考查的是科学记数法的概念,即把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,n是正整数,这种记数法叫做科学记数法.3、(2011•绍兴)如图,已知AB∥CD,BC平分∠ABE,∠C=34°,则∠BED的度数是()A、17°B、34°C、56°D、68°考点:平行线的性质。
分析:首先由AB∥CD,求得∠ABC的度数,又由BC平分∠ABE,求得∠CBE的度数,然后根据三角形外角的性质求得∠BED的度数.解答:解:∵AB∥CD,∴∠ABC=∠C=34°,∵BC平分∠ABE,∴∠CBE=∠ABC=34°,∴∠BED=∠C+∠CBE=68°.故选D.点评:此题考查了平行线的性质,角平分线的定义以及三角形外角的性质.此题难度不大,解题时要注意数形结合思想的应用.4、(2011•绍兴)由5个相同的正方体搭成的几何体如图所示,则它的左视图是()A、B、 C、D、考点:简单组合体的三视图。
2011年浙江省初中生学业考试
数学Ⅰ试卷
1. 本试卷分试题卷和答题卷两部分,满分150分.考试时间120分钟.
2. 答题时,应该在答题卷指定位置内填写学校、班级、姓名和准考证号,
3. 所有答案都必须做在答题卷标定的位置上.请务必注意试题序号和答题序号相对应,
4. 考试结束后,上交试题卷和答题卷.
参考公式:二次函数2
y ax bx c =++图象的顶点坐标是(2
424b ac b a a
--,). 试题卷Ⅰ
一、选择题(本大题有l0小题.每小题4分,共40分,请选出各题中一个符合题意的正确选项.将答题卡
上相应的位置涂果.不选.多选、错选均不给分) 1. 如图,在数轴上点A 表示的数可能是( ) A .1.5 B . 1.5- C . 2.6- D .2.6
2 下列图形中.既是轴对称图形又是中心对称图形的是( )
3.中国是缺永严重的国家之一.人均淡水资源为世界人均量的四分之一,所以我们为中国节水.为世界节水。
若每人每天浪费水0.32L ,那么100万人每天浪费的水.用科学记数法表示为 ( ) A .7
3.210L ⨯ B .6
3.210L ⨯ C .5
3.210L ⨯ D .4
3.210L ⨯
4.某校七年级有l3名同学参加百米竞赛,预赛成绩各不相同,要取前6名参加决赛.小梅已经知道了自已的成绩.她想知遘自己能否进入决赛,还需要知道这l3名同学成绩的( ) A .中位数 B .众数 C .平均救 D .极差
5.如图,小华同学设计丁一个圆直径的测量渊量器.标有刻度的尺子OA 、OB 在O 点钉在一起,并使它们保持垂直,在测直径时,把O 点靠在圆周上,读得刻度OE=8个单位.OF=6个单位,则圆的直径为( )
A .12个单位
B .10个单位
C . 4个单位
D .15个单位
6. 如图,直角三角形纸片的两直角边长分别为6,8,按如图那样折叠,使点A 与点B 重舍,折痕为DE .则
:BCE BDE S S ∆∆等于( )
A .2:5
B .14:25
C .16:25
D .4:21
7.已知11m n ==( ) A .9 B .±3 C .3 D .5
8.如图,在五边形ABCDE 中.∠BAE=120°,∠B=∠E=90°,AB=BC , A E=DE .在BC ,DE 上分别找一点M .N .使得△AMN 周长最小时.则 ∠AMN+∠ANM 的度数为( )
A .100°
B .110°
C .120°
D .130° 9. 如图,在平面直角坐标系中.线段AB 的端点坐标为A (2-.4),B(4.2), 直线2y kx =-与线段AB 有交点,则k 的值不可能是t )
A .5-
B .2-
C .2
D .5
10. 如图,下面是按照一定规律画出的—行 “树形图”.经观察可以发现:
图2A 比图1A 多出2个“树枝”. 图3A 比图2A 多出4个“树枝”, 图4A 比图3A 多出8个“树枝”,照此规律,图6A 比图2A 多出 “树枝” ( ) A .28个 B .56个 C .60个 D .124个
试题卷Ⅱ
二、填空题(本大题有6小题,每小题5分,共30分) 11.已知∠A=40°.则∠A 的补角等于________。
12.如图,一个圆形转盘被等分成八个扇形区域,上面分别标有数字l 、2、3、 4.转盘指针的位置固定,转动转盘后任其自由停止.转动转盘一次,当转盘停止转动时.记指针指向标有“3”所在区域的概率为P (3),指针指向标有“4”所在区域的概率为P(4),P(3) ________P 4)(填“>”、“=”或“<”). 13.如图,母亲节那天,很多同学给妈妈准备了鲜花和礼盒.从图中信息可知,则买5束鲜花和5个礼盒的总价为________元. t4.某计算程序编辑如图所汞,当输入x =_________时.输出的3y =.
15.定义新运算“⊕”如下:当a b ≥时.a b a b b ⊕=+ ,当a b <时.a b a b b ⊕=-;若
(21)(2)0x x -⊕+=,则x =_________。
16.如图,图①中的圆与正方形各边都相切,设这个圆的周长为1C ;图②中的四个圆的半径相等. 并依次外切,且与正方形各边相切,设这四个圆的周长之和为2C ;图③中的九个圆半径相等, 并依次外切,且与正方形的各边相切,设这九个圆的周长之和为3C ,…,依此规律,当正方形 边长为2时。
则12399100...C C C C C +++++=_________。
三、解答题 (本大题有8小题,第l7~20小题每小题8分.第21小题10分。
第22,23小题每小题 12分,第24小题l4分.共80分.解答需写出必要的文字说明、演算步骤或证明过程)
17.(1)计算:100
1()3tan 30(12
---+
(2) 解不等式组:40
320x x ->⎧⎨+>⎩
,并把它的解集在数轴上表示出来.
18, 若反比例函数
k
y
x
=与一次函数24
y x
=-的图象都经过点A ( 2
a,)
(1)求反比倒函数
k
y
x
=的解析式;
(2)当反比例函数
k
y
x
=的值大于一次函散24
y x
=-的值时,求自变量x的取值范围.
19. 如图,点D,E分别在AC,AB上
(1) 已知,BD=CE,CD=BE.求证:AB=AC;
(2) 分别将“BD=CE”记为①,"BE=CD“记为②.“A B=AC”记为③.
添加条件①、③,以②为结论构成命题1,添加条件②、③,以①为结论构成命题2.命题1是______命题.命题2是_______命题(选择“真”或“假”填入空格).
20.据媒体报道:某市四月份空气质量优良,高居全国榜首.青春中学九年级课外兴趣小组据此提出了“今
年究竟能有多少天空气质量达到优良”的问题,他们根据国家环保总局所公布的空气质量级别表(见表l)以及市环保监测站提供的贷科.从中随机抽查了令年1~4月份中30天空气综合污染指数.绕计计据如下:
空气综合污染指数
30,32,40.42,45.45,77.83,85,87,90.113.127,153,167
38,45.48.53,57.64.66,77,92,98,130.184.201,235,243
请根据空气质量级别表和抽查的空气综合污染指数.解答以下问题:
(1) 填写频率分布表中未完成的空格:
(2) 写出统计数据中的中位数、众数;
(3)请根据抽样数据,估计该市今年(按360天计算)空气质量是优良(包括Ⅰ、Ⅱ级)的天数.
21.图l 为已建设封顶的l6层楼房和其塔吊图,图2为其示意图,吊臂AB 与地面EH 平行,测得A 点到楼顶D 点的距离为5m ,每层楼高3.5m .A E 、BF 、CH 都垂直于地面。
(1)求16层楼房DE 的高度;
(2)若EF=16m ,求塔吊的高CH 的长(精确到0.1m)。
22.如图,已知⊙O 的弦AB 垂直于直径CD ,垂足为F ,点E 在AB 上,且EA=EC ,延长EC 到点P ,连结PB .使PB=PE .
(1) 在以下5个结论中:一定成立的是_________________(只需将结论的代号填人题中的横线上) ①弧AC=弧BC ;②OF=CF ;③BF=AF ;④2
AC AE AB =⋅;⑤PB 是⊙O 的切线. (2) 若⊙O 的半径为8cm .AE :EF=2:1.求弓形ACB 的面积.
23.设直线1111:l y k x b =+与2222:l y k x b =+.若12l l ⊥,垂足为H ,则称直线1l 与2l 是点H 的直角线. (1)已知直线①1
22
y x =-
+;②2y x =+;③22y x =+;④24y x =+和点C (0,3).则直线_____和_____是点C 的直角线(填序号即可)o
(2)如图.在平面直角坐标系中,直角梯形OABC 的顶点A(3.O)、B(2,7)、C(0,7),P 为线段OC 上一点,设过B 、P 两点的直线为1l ,过A .P 两点的直线为2l .若1l 与2l 是点P 的直角线,求直线1l 与2l 的解析式.
24.如图.在直角坐标系中.抛物线2(0)y ax bx c a =++≠与x 轴交于A (1-,0)、B (3,0)两点:抛物线交y 轴干点C(0.3).点D 为抛物线的顶点.直线1y x =-交抛物线于点M 、N 两点,过线段MN 上一点P 作y 轴的平行线交抛物线于点Q 。
(1)求此抛物线的解析式及顶点D 的坐标;
(2)问点P 在何处时.线段PQ 最长,最长为多少?
(3)设E 为线段OC 上的三等分点.连接EP 、EQ .若EP=EQ 时.求点P 的坐标.。