导数的应用-函数极值与最值
- 格式:ppt
- 大小:2.37 MB
- 文档页数:27
利用导数求函数的极值、最值一、知识梳理1.函数的极值与导数形如山峰形如山谷2.函数的最值与导数(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值二、例题精讲 + 随堂练习考点一利用导数解决函数的极值问题角度1根据函数图象判断函数极值【例1-1】已知函数f(x)在R上可导,其导函数为f′(x),且函数y=(1-x)f′(x)的图象如图所示,则下列结论中一定成立的是()A.函数f(x)有极大值f(2)和极小值f(1)B.函数f(x)有极大值f(-2)和极小值f(1)C.函数f (x )有极大值f (2)和极小值f (-2)D.函数f (x )有极大值f (-2)和极小值f (2)解析 由题图可知,当x <-2时,f ′(x )>0;当-2<x <1时,f ′(x )<0;当1<x <2时,f ′(x )<0;当x >2时,f ′(x )>0.由此可以得到函数f (x )在x =-2处取得极大值,在x =2处取得极小值. 答案 D规律方法 由图象判断函数y =f (x )的极值,要抓住两点:(1)由y =f ′(x )的图象与x 轴的交点,可得函数y =f (x )的可能极值点;(2)由导函数y =f ′(x )的图象可以看出y =f ′(x )的值的正负,从而可得函数y =f (x )的单调性.两者结合可得极值点.角度2 已知函数求极值【例1-2】 (2019·天津和平区模拟)已知函数f (x )=ln x -ax (a ∈R ). (1)当a =12时,求f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.解 (1)当a =12时,f (x )=ln x -12x ,函数的定义域为(0,+∞)且f ′(x )=1x -12=2-x2x , 令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如下表.故f (x )在定义域上的极大值为f (x )极大值=f (2)=ln 2-1,无极小值. (2)由(1)知,函数的定义域为(0,+∞), f ′(x )=1x -a =1-ax x (x >0).当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数在(0,+∞)上单调递增,此时函数在定义域上无极值点; 当a >0时,当x ∈⎝ ⎛⎭⎪⎫0,1a 时,f ′(x )>0,当x ∈⎝ ⎛⎭⎪⎫1a ,+∞时,f ′(x )<0,故函数在x =1a 处有极大值.综上可知,当a ≤0时,函数f (x )无极值点, 当a >0时,函数y =f (x )有一个极大值点,且为x =1a .规律方法 运用导数求可导函数y =f (x )的极值的一般步骤:(1)先求函数y =f (x )的定义域,再求其导数f ′(x );(2)求方程f ′(x )=0的根;(3)检查导数f ′(x )在方程根的左右的值的符号,如果左正右负,那么f (x )在这个根处取得极大值;如果左负右正,那么f (x )在这个根处取得极小值.特别注意:导数为零的点不一定是极值点.角度3 已知函数的极(最)值求参数的取值 【例1-3】 (2019·泰安检测)已知函数f (x )=ln x . (1)求f (x )图象的过点P (0,-1)的切线方程;(2)若函数g (x )=f (x )-mx +mx 存在两个极值点x 1,x 2,求m 的取值范围.解 (1)f (x )的定义域为(0,+∞),且f ′(x )=1x .设切点坐标为(x 0,ln x 0),则切线方程为y =1x 0x +ln x 0-1.把点P (0,-1)代入切线方程,得ln x 0=0,∴x 0=1. ∴过点P (0,-1)的切线方程为y =x -1. (2)因为g (x )=f (x )-mx +m x =ln x -mx +mx (x >0), 所以g ′(x )=1x -m -m x 2=x -mx 2-mx 2=-mx 2-x +m x 2,令h (x )=mx 2-x +m ,要使g (x )存在两个极值点x 1,x 2,则方程mx 2-x +m =0有两个不相等的正数根x 1,x 2.故只需满足⎩⎪⎨⎪⎧h (0)>0,12m >0,h ⎝ ⎛⎭⎪⎫12m <0即可,解得0<m <12.规律方法 已知函数极值,确定函数解析式中的参数时,要注意:(1)根据极值点的导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)因为导数值等于0不是此点为极值点的充要条件,所以用待定系数法求解后必须检验.【训练1】 (1)(2017·全国Ⅱ卷)若x =-2是函数f (x )=(x 2+ax -1)·e x -1的极值点,则f (x )的极小值为( ) A.-1B.-2e -3C.5e -3D.1解析 f ′(x )=[x 2+(a +2)x +a -1]·e x -1,则f ′(-2)=[4-2(a +2)+a -1]·e -3=0⇒a =-1, 则f (x )=(x 2-x -1)·e x -1,f ′(x )=(x 2+x -2)·e x -1, 令f ′(x )=0,得x =-2或x =1, 当x <-2或x >1时,f ′(x )>0, 当-2<x <1时,f ′(x )<0,所以x =1是函数f (x )的极小值点, 则f (x )极小值为f (1)=-1. 答案 A(2)(2018·北京卷)设函数f (x )=[ax 2-(4a +1)x +4a +3]e x . ①若曲线y =f (x )在点(1,f (1))处的切线与x 轴平行,求a ; ②若f (x )在x =2处取得极小值,求a 的取值范围. 解 ①因为f (x )=[ax 2-(4a +1)x +4a +3]e x , 所以f ′(x )=[ax 2-(2a +1)x +2]e x .f ′(1)=(1-a )e. 由题设知f ′(1)=0,即(1-a )e =0,解得a =1. 此时f (1)=3e ≠0. 所以a 的值为1.②f ′(x )=[ax 2-(2a +1)x +2]e x =(ax -1)(x -2)e x .若a >12,则当x ∈⎝ ⎛⎭⎪⎫1a ,2时,f ′(x )<0; 当x ∈(2,+∞)时,f ′(x )>0.所以f (x )在x =2处取得极小值.若a ≤12,则当x ∈(0,2)时,x -2<0,ax -1≤12x -1<0, 所以f ′(x )>0.所以2不是f (x )的极小值点. 综上可知,a 的取值范围是⎝ ⎛⎭⎪⎫12,+∞.考点二 利用导数求函数的最值【例2】 (2019·广东五校联考)已知函数f (x )=ax +ln x ,其中a 为常数. (1)当a =-1时,求f (x )的最大值;(2)若f (x )在区间(0,e]上的最大值为-3,求a 的值. 解 (1)易知f (x )的定义域为(0,+∞),当a =-1时,f (x )=-x +ln x ,f ′(x )=-1+1x =1-xx , 令f ′(x )=0,得x =1.当0<x <1时,f ′(x )>0;当x >1时,f ′(x )<0.∴f (x )在(0,1)上是增函数,在(1,+∞)上是减函数. ∴f (x )max =f (1)=-1.∴当a =-1时,函数f (x )在(0,+∞)上的最大值为-1. (2)f ′(x )=a +1x ,x ∈(0,e],1x ∈⎣⎢⎡⎭⎪⎫1e ,+∞.①若a ≥-1e ,则f ′(x )≥0,从而f (x )在(0,e]上是增函数, ∴f (x )max =f (e)=a e +1≥0,不合题意.②若a <-1e ,令f ′(x )>0得a +1x >0,结合x ∈(0,e],解得0<x <-1a;令f ′(x )<0得a +1x <0,结合x ∈(0,e],解得-1a <x ≤e.从而f (x )在⎝ ⎛⎭⎪⎫0,-1a 上为增函数,在⎝ ⎛⎦⎥⎤-1a ,e 上为减函数,∴f (x )max =f ⎝ ⎛⎭⎪⎫-1a =-1+ln ⎝ ⎛⎭⎪⎫-1a .令-1+ln ⎝ ⎛⎭⎪⎫-1a =-3,得ln ⎝ ⎛⎭⎪⎫-1a =-2,即a =-e 2.∵-e 2<-1e ,∴a =-e 2为所求.故实数a 的值为-e 2.规律方法 1.利用导数求函数f (x )在[a ,b ]上的最值的一般步骤:(1)求函数在(a ,b )内的极值;(2)求函数在区间端点处的函数值f (a ),f (b );(3)将函数f (x )的各极值与f (a ),f (b )比较,其中最大的一个为最大值,最小的一个为最小值.2.求函数在无穷区间(或开区间)上的最值,不仅要研究其极值情况,还要研究其单调性,并通过单调性和极值情况,画出函数的大致图象,然后借助图象观察得到函数的最值.【训练2】 (2019·合肥质检)已知函数f (x )=e x cos x -x . (1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值.解 (1)∵f (x )=e x ·cos x -x ,∴f (0)=1, f ′(x )=e x (cos x -sin x )-1,∴f ′(0)=0,∴y =f (x )在(0,f (0))处的切线方程为y -1=0·(x -0), 即y =1.(2)f ′(x )=e x (cos x -sin x )-1,令g (x )=f ′(x ), 则g ′(x )=-2e xsin x ≤0在⎣⎢⎡⎦⎥⎤0,π2上恒成立, 且仅在x =0处等号成立, ∴g (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递减,∴g (x )≤g (0)=0,∴f ′(x )≤0且仅在x =0处等号成立, ∴f (x )在⎣⎢⎡⎦⎥⎤0,π2上单调递减, ∴f (x )max =f (0)=1,f (x )min =f ⎝ ⎛⎭⎪⎫π2=-π2.考点三 利用导数求解最优化问题【例3】 (2018·衡水中学质检)在某次水下科研考察活动中,需要潜水员潜入水深为60米的水底进行作业,根据以往经验,潜水员下潜的平均速度为v (米/单位时间),每单位时间的用氧量为⎝ ⎛⎭⎪⎫v 103+1(升),在水底作业10个单位时间,每单位时间用氧量为0.9(升),返回水面的平均速度为v2(米/单位时间),每单位时间用氧量为1.5(升),记该潜水员在此次考察活动中的总用氧量为y (升). (1)求y 关于v 的函数关系式;(2)若c ≤v ≤15(c >0),求当下潜速度v 取什么值时,总用氧量最少.解 (1)由题意,下潜用时60v (单位时间),用氧量为⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫v 103+1×60v =3v 250+60v (升),水底作业时的用氧量为10×0.9=9(升),返回水面用时60v 2=120v (单位时间),用氧量为120v ×1.5=180v (升),因此总用氧量y =3v 250+240v +9(v >0).(2)y ′=6v 50-240v 2=3(v 3-2 000)25v 2,令y ′=0得v =1032,当0<v <1032时,y ′<0,函数单调递减; 当v >1032时,y ′>0,函数单调递增.若c <1032 ,函数在(c ,1032)上单调递减,在(1032,15)上单调递增,∴当v =1032时,总用氧量最少. 若c ≥1032,则y 在[c ,15]上单调递增, ∴当v =c 时,这时总用氧量最少.规律方法 1.利用导数解决生活中优化问题的一般步骤:(1)设自变量、因变量,建立函数关系式y =f (x ),并确定其定义域; (2)求函数的导数f ′(x ),解方程f ′(x )=0;(3)比较函数在区间端点和f ′(x )=0的点的函数值的大小,最大(小)者为最大(小)值;(4)回归实际问题作答.2.如果目标函数在定义域内只有一个极值点,那么根据实际意义该极值点就是最值点.三、课后练习1.(2019·郑州质检)若函数y =f (x )存在n -1(n ∈N *)个极值点,则称y =f (x )为n 折函数,例如f (x )=x 2为2折函数.已知函数f (x )=(x +1)e x -x (x +2)2,则f (x )为( ) A.2折函数 B.3折函数 C.4折函数D.5折函数解析 f ′(x )=(x +2)e x -(x +2)(3x +2)=(x +2)(e x -3x -2),令f ′(x )=0,得x =-2或e x =3x +2. 易知x =-2是f (x )的一个极值点,又e x =3x +2,结合函数图象,y =e x 与y =3x +2有两个交点.又e -2≠3(-2)+2=-4.∴函数y =f (x )有3个极值点,则f (x )为4折函数. 答案 C2.若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内存在最小值,则实数k 的取值范围是________.解析 因为f (x )的定义域为(0,+∞),又因为f ′(x )=4x -1x ,所以由f ′(x )=0解得x =12,由题意得⎩⎪⎨⎪⎧k -1<12<k +1,k -1≥0,解得1≤k <32.答案 ⎣⎢⎡⎭⎪⎫1,323.(2019·杭州质检)传说中孙悟空的“如意金箍棒”是由“定海神针”变形得来的.这定海神针在变形时永远保持为圆柱体,其底面半径原为12 cm 且以每秒1 cm 等速率缩短,而长度以每秒20 cm 等速率增长.已知神针的底面半径只能从12 cm 缩到4 cm ,且知在这段变形过程中,当底面半径为10 cm 时其体积最大.假设孙悟空将神针体积最小时定形成金箍棒,则此时金箍棒的底面半径为________ cm. 解析 设神针原来的长度为a cm ,t 秒时神针的体积为V (t ) cm 3, 则V (t )=π(12-t )2·(a +20t ),其中0≤t ≤8, 所以V ′(t )=[-2(12-t )(a +20t )+(12-t )2·20]π.因为当底面半径为10 cm 时其体积最大,所以10=12-t ,解得t =2,此时V ′(2)=0,解得a =60,所以V (t )=π(12-t )2·(60+20t ),其中0≤t ≤8.V ′(t )=60π(12-t )(2-t ),当t ∈(0,2)时,V ′(t )>0,当t ∈(2,8)时,V ′(t )<0,从而V (t )在(0,2)上单调递增,在(2,8)上单调递减,V (0)=8 640π,V (8)=3 520π,所以当t =8时,V (t )有最小值3 520π,此时金箍棒的底面半径为4 cm.答案 44.设f (x )=x ln x -ax 2+(2a -1)x (常数a >0). (1)令g (x )=f ′(x ),求g (x )的单调区间;(2)已知f (x )在x =1处取得极大值,求实数a 的取值范围. 解 (1)由f ′(x )=ln x -2ax +2a , 可得g (x )=ln x -2ax +2a ,x ∈(0,+∞). 所以g ′(x )=1x -2a =1-2ax x . 又a >0,当x ∈⎝ ⎛⎭⎪⎫0,12a 时,g ′(x )>0,函数g (x )单调递增,当x ∈⎝ ⎛⎭⎪⎫12a ,+∞时,g ′(x )<0,函数g (x )单调递减.∴函数y =g (x )的单调递增区间为⎝ ⎛⎭⎪⎫0,12a ,单调递减区间为⎝ ⎛⎭⎪⎫12a ,+∞.(2)由(1)知,f ′(1)=0.①当0<a <12时,12a >1,由(1)知f ′(x )在⎝ ⎛⎭⎪⎫0,12a 内单调递增,可得当x ∈(0,1)时,f ′(x )<0,当x ∈⎝ ⎛⎭⎪⎫1,12a 时,f ′(x )>0.所以f (x )在(0,1)内单调递减,在⎝ ⎛⎭⎪⎫1,12a 内单调递增. 所以f (x )在x =1处取得极小值,不合题意.②当a =12时,12a =1,f ′(x )在(0,1)内单调递增,在(1,+∞)内单调递减,所以当x ∈(0,+∞)时,f ′(x )≤0,f (x )单调递减,不合题意.③当a >12时,0<12a <1,当x ∈⎝ ⎛⎭⎪⎫12a ,1时,f ′(x )>0,f (x )单调递增,当x ∈(1,+∞)时,f ′(x )<0,f (x )单调递减.所以f (x )在x =1处取极大值,符合题意. 综上可知,实数a 的取值范围为⎝ ⎛⎭⎪⎫12,+∞.。
导数与函数的极值、最值一、基础知识1.函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.①函数f(x)在x0处有极值的必要不充分条件是f′(x0)=0,极值点是f′(x)=0的根,但f′(x)=0的根不都是极值点(例如f(x)=x3,f′(0)=0,但x=0不是极值点).②极值反映了函数在某一点附近的大小情况,刻画的是函数的局部性质.极值点是函数在区间内部的点,不会是端点.2.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.二、常用结论(1)若函数f(x)的图象连续不断,则f(x)在[a,b]上一定有最值.(2)若函数f(x)在[a,b]上是单调函数,则f(x)一定在区间端点处取得最值.(3)若函数f(x)在区间(a,b)内只有一个极值点,则相应的极值点一定是函数的最值点.考点一利用导数解决函数的极值问题考法(一)利用导数求函数的极值或极值点[典例](优质试题·天津高考改编)设函数f(x)=(x-t1)·(x-t2)(x-t3),其中t1,t2,t3∈R,且t1,t2,t3是公差为d的等差数列.(1)若t2=0,d=1,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若d=3,求f(x)的极小值点及极大值.[解](1)由已知,可得f(x)=x(x-1)(x+1)=x3-x,故f′(x)=3x2-1.因此f(0)=0,f′(0)=-1.因此曲线y=f(x)在点(0,f(0))处的切线方程为y-f(0)=f′(0)(x-0),故所求切线方程为x+y=0.(2)由已知可得f(x)=(x-t2+3)(x-t2)(x-t2-3)=(x-t2)3-9(x-t2)=x3-3t2x2+(3t22-9)x-t32+9t2.故f′(x)=3x2-6t2x+3t22-9.令f′(x)=0,解得x=t2-3或x=t2+ 3.当x变化时,f′(x),f(x)的变化情况如下表:所以函数f (x )的极小值点为x =t 2+3,极大值为f (t 2-3)=(-3)3-9×(-3)=6 3.[解题技法] 求函数的极值或极值点的步骤 (1)求导数f ′(x ),不要忘记函数f (x )的定义域; (2)求方程f ′(x )=0的根;(3)检查在方程的根的左右两侧f ′(x )的符号,确定极值点或函数的极值. 考法(二) 已知函数极值点或极值求参数的值或范围[典例] (优质试题·北京高考节选)设函数f (x )=[ax 2-(3a +1)x +3a +2]e x ,若f (x )在x =1处取得极小值,求a 的取值范围.[解] 由f (x )=[ax 2-(3a +1)x +3a +2]e x , 得f ′(x )=[ax 2-(a +1)x +1]e x =(ax -1)(x -1)e x . 若a >1,则当x ∈⎝ ⎛⎭⎪⎫1a ,1时,f ′(x )<0;当x ∈(1,+∞)时,f ′(x )>0. 所以f (x )在x =1处取得极小值.若a ≤1,则当x ∈(0,1)时,ax -1≤x -1<0, 所以f ′(x )>0.所以1不是f (x )的极小值点.综上可知,a 的取值范围是(1,+∞). [解题技法]已知函数极值点或极值求参数的2个要领[专题训练]1.设函数f (x )=2x +ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点 C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点解析:选D ∵f (x )=2x +ln x (x >0), ∴f ′(x )=-2x 2+1x ,令f ′(x )=0,则x =2. 当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0. 所以x =2为f (x )的极小值点.2.(优质试题·广州高中综合测试)已知函数f (x )=x 3+ax 2+bx +a 2在x =1处的极值为10,则数对(a ,b )为( )A .(-3,3)B .(-11,4)C .(4,-11)D .(-3,3)或(4,-11)解析:选C f ′(x )=3x 2+2ax +b ,依题意可得⎩⎪⎨⎪⎧f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧3+2a +b =0,1+a +b +a 2=10,消去b 可得a 2-a -12=0,解得a =-3或a =4,故⎩⎪⎨⎪⎧ a =-3,b =3或⎩⎪⎨⎪⎧ a =4,b =-11.当⎩⎪⎨⎪⎧a =-3,b =3时,f ′(x )=3x 2-6x +3=3(x -1)2≥0,这时f (x )无极值,不合题意,舍去,故选C.3.设函数f (x )=ax 3-2x 2+x +c (a >0).(1)当a =1,且函数f (x )的图象过点(0,1)时,求函数f (x )的极小值; (2)若f (x )在(-∞,+∞)上无极值点,求a 的取值范围. 解:f ′(x )=3ax 2-4x +1.(1)函数f (x )的图象过点(0,1)时,有f (0)=c =1.当a =1时,f (x )=x 3-2x 2+x +1,f ′(x )=3x 2-4x +1, 由f ′(x )>0,解得x <13或x >1; 由f ′(x )<0,解得13<x <1.所以函数f (x )在⎝ ⎛⎭⎪⎫-∞,13和(1,+∞)上单调递增,在⎝ ⎛⎭⎪⎫13,1上单调递减,所以函数f (x )的极小值是f (1)=13-2×12+1+1=1. (2)若f (x )在(-∞,+∞)上无极值点, 则f (x )在(-∞,+∞)上是单调函数,即f ′(x )=3ax 2-4x +1≥0或f ′(x )=3ax 2-4x +1≤0恒成立. 因为a >0,所以f ′(x )=3ax 2-4x +1≥0在(-∞,+∞)上恒成立, 则有Δ=(-4)2-4×3a ×1≤0,即16-12a ≤0,解得a ≥43. 故a 的取值范围为⎣⎢⎡⎭⎪⎫43,+∞.考点二 利用导数解决函数的最值问题[典例] (优质试题·北京高考)已知函数f (x )=e x cos x -x . (1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值和最小值. [解] (1)因为f (x )=e x cos x -x ,所以f ′(x )=e x (cos x -sin x )-1,f ′(0)=0. 又因为f (0)=1,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =1. (2)设h (x )=e x (cos x -sin x )-1,则h ′(x )=e x (cos x -sin x -sin x -cos x )=-2e x sin x .当x ∈⎝ ⎛⎭⎪⎫0,π2时,h ′(x )<0,所以h (x )在区间⎣⎢⎡⎦⎥⎤0,π2上单调递减.所以对任意x ∈⎝ ⎛⎦⎥⎤0,π2,有h (x )<h (0)=0,即f ′(x )<0.所以函数f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上单调递减.因此f (x )在区间⎣⎢⎡⎦⎥⎤0,π2上的最大值为f (0)=1,最小值为f ⎝ ⎛⎭⎪⎫π2=-π2.[解题技法]导数法求给定区间上函数的最值问题的一般步骤(1)求函数f (x )的导数f ′(x );(2)求f (x )在给定区间上的单调性和极值; (3)求f (x )在给定区间上的端点值;(4)将f (x )的各极值与f (x )的端点值进行比较,确定f (x )的最大值与最小值; (5)反思回顾,查看关键点,易错点和解题规范. [专题训练]1.(优质试题·珠海摸底)如图,将一张16 cm ×10 cm 的长方形纸片剪下四个全等的小正方形,使得剩余部分经过折叠能糊成一个无盖的长方体纸盒,则这个纸盒的最大容积是________ cm 3.解析:设剪下的四个小正方形的边长为x cm ,则经过折叠以后,糊成的长方体纸盒是一个底面是长为(16-2x ) cm ,宽为(10-2x ) cm 的长方形,其面积为(16-2x )(10-2x )cm 2,长方体纸盒的高为x cm ,则体积V =(16-2x )(10-2x )×x =4x 3-52x 2+160x (0<x <5)cm 3,所以V ′=12(x -2)·⎝ ⎛⎭⎪⎫x -203,由V ′>0,得0<x <2,则函数V =4x 3-52x 2+160x (0<x <5)在(0,2)上单调递增;由V ′<0,得2<x <5,则函数V =4x 3-52x 2+160x (0<x <5)在(2,5)上单调递减,所以当x =2时,V max =144(cm 3).答案:1442.已知函数f (x )=ln x -ax .(1)若a >0,试判断f (x )在定义域内的单调性; (2)若f (x )在[1,e]上的最小值为32,求实数a 的值.解:(1)由题意得f (x )的定义域是(0,+∞),且f ′(x )=x +ax 2, 因为a >0,所以f ′(x )>0, 故f (x )在(0,+∞)上单调递增. (2)由(1)可得f ′(x )=x +ax 2, 因为x ∈[1,e],①若a ≥-1,则x +a ≥0,即f ′(x )≥0在[1,e]上恒成立, 此时f (x )在[1,e]上单调递增, 所以f (x )min =f (1)=-a =32, 所以a =-32(舍去).②若a ≤-e ,则x +a ≤0,即f ′(x )≤0在[1,e]上恒成立, 此时f (x )在[1,e]上单调递减, 所以f (x )min =f (e)=1-a e =32, 所以a =-e2(舍去).③若-e<a <-1,令f ′(x )=0,得x =-a ,当1<x<-a时,f′(x)<0,所以f(x)在(1,-a)上单调递减;当-a<x<e时,f′(x)>0,所以f(x)在(-a,e)上单调递增,所以f(x)min=f(-a)=ln(-a)+1=32,所以a=- e.综上,a=- e.[课时跟踪检测]A级1.(优质试题·辽宁鞍山一中模拟)已知函数f(x)=x3-3x-1,在区间[-3,2]上的最大值为M,最小值为N,则M-N=()A.20B.18C.3 D.0解析:选A∵f′(x)=3x2-3=3(x-1)(x+1),∴f(x)在(-∞,-1)和(1,+∞)上单调递增,在(-1,1)上单调递减,又∵f(-3)=-19,f(-1)=1,f(1)=-3,f(2)=1,∴M=1,N=-19,M-N=1-(-19)=20.2.(优质试题·梅州期末)函数y=f(x)的导函数的图象如图所示,则下列说法错误的是()A.(-1,3)为函数y=f(x)的单调递增区间B.(3,5)为函数y=f(x)的单调递减区间C.函数y=f(x)在x=0处取得极大值D.函数y=f(x)在x=5处取得极小值解析:选C由函数y=f(x)的导函数的图象可知,当x<-1或3<x<5时,f′(x)<0,y=f(x)单调递减;当x>5或-1<x<3时,f′(x)>0,y=f(x)单调递增.所以函数y=f(x)的单调递减区间为(-∞,-1),(3,5),单调递增区间为(-1,3),(5,+∞).函数y=f(x)在x=-1,5处取得极小值,在x=3处取得极大值,故选项C 错误.3.(优质试题·湖北襄阳四校联考)函数f(x)=12x2+x ln x-3x的极值点一定在区间()A.(0,1)内B.(1,2)内C.(2,3)内D.(3,4)内解析:选B函数的极值点即导函数的零点,f′(x)=x+ln x+1-3=x+ln x -2,则f′(1)=-1<0,f′(2)=ln 2>0,由零点存在性定理得f′(x)的零点在(1,2)内,故选B.4.已知函数f(x)=x3+3x2-9x+1,若f(x)在区间[k,2]上的最大值为28,则实数k的取值范围为()A.[-3,+∞) B.(-3,+∞)C.(-∞,-3) D.(-∞,-3]解析:选D由题意知f′(x)=3x2+6x-9,令f′(x)=0,解得x=1或x=-3,所以f′(x),f(x)随x的变化情况如下表:又f(-3)=28,f(1)=-4,f(2)=3,f(x)在区间[k,2]上的最大值为28,所以k≤-3.5.(优质试题·皖南八校联考)已知函数f (x )=-13x 3+bx 2+cx +bc 在x =1处有极值-43,则b =( )A .-1B .1C .1或-1D .-1或3解析:选A f ′(x )=-x 2+2bx +c ,因为f (x )在x =1处有极值-43,所以⎩⎪⎨⎪⎧f ′(1)=-1+2b +c =0,f (1)=-13+b +c +bc =-43,Δ=4b 2+4c >0,解得⎩⎪⎨⎪⎧b =-1,c =3,故选A.6.设直线x =t 与函数h (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |最小时t 的值为( )A .1 B.12 C.52D.22解析:选D 由已知条件可得|MN |=t 2-ln t , 设f (t )=t 2-ln t (t >0),则f ′(t )=2t -1t , 令f ′(t )=0,得t =22,当0<t <22时,f ′(t )<0;当t >22时,f ′(t )>0.∴当t =22时,f (t )取得最小值,即|MN |取得最小值时t =22.7.(优质试题·江西阶段性检测)已知函数y =ax -1x 2在x =-1处取得极值,则a =________.解析:因为y ′=a +2x 3,所以当x =-1时,a -2=0,所以a =2,经验证,。
导数在研究函数中的使用----单调性、极值、最值一、 基本概念1、单调性:(1)、已知函数y=f(x),x ∈(a,b) 如对任意的x ∈(a,b),恒有)('x f >0,则f(x)为增函数,切线的倾斜角为锐角. 如对任意的x ∈(a,b),恒有)('x f<0,则f(x)为减函数,切线的倾斜角为钝角.(2))('x f≥0⇔ f(x)是增函数,)('x f≤0⇔ f(x)是减函数y= f(x)在a 出有极值⇒)('a f=0,)('a f=0⇒ f(x)在a 处有极值.(1) 如果在x 0附近的左侧)('x f>0,右侧)('x f<0,,那么f(x 0)是极大值(2) 如果在x 0附近的左侧)('x f<0, 右侧)('x f>0,那么f(x 0)是极小值(3) 如果在x附近的左侧及右侧)('x f不变号,那么f(x 0)不是极值3、 最值问题恒成立问题若不等式f(x) >A 在区间D 上恒成立⇔fx min)(>A 若不等式f(x)<B 在区间D 上恒成立⇔fx max)(<B(2) 能成立问题若在区间D 上存有实数x,使不等式f(x) >A 成立⇔f x max)(>A若在区间D 上存有实数x,使不等式f(x) <B 成立⇔fx min)(<B(3)、恰成立若不等式f(x) >A 在区间D 上恰成立⇔f(x) >A 的解集为D 若不等式f(x) <B 在区间D 上恰成立⇔f(x) <B 的解集为D 函数的单调性典型例题:题型一:研究函数单调区间与原函数图像间的关系例1:求下列函数的单调区间并画出原函数与导函数的图像 (1)f(x)=27623+-x x(2)f(x)=x 21+sinx,(x ∈[0,2π]例2:以下四图,都是同一坐标系中三次函数及其导函数的图像,其中一定不准确的序号是A .①、②B .①、③C .③、④D .①、④题型二:单调性与单调区间例3(1)若函数f(x)= 326x ax x --+在(0,1)内单调递减,则实数a 的取值范围(2)已知函数y=3261ax bx x +++的递增区间为(-2,3),求a 、b 的值。
导数与函数的极值、最值【考试提醒】1.借助函数图象,了解函数在某点取得极值的必要和充分条件.2.会用导数求函数的极大值、极小值.3.掌握利用导数研究函数最值的方法.4.会用导数研究生活中的最优化问题.【知识点】1.函数的极值(1)函数的极小值函数y=f(x)在点x=a处的函数值f(a)比它在点x=a附近其他点处的函数值都小,f′(a)=0;而且在点x =a附近的左侧f′(x)<0,右侧f′(x)>0,则a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值函数y=f(x)在点x=b处的函数值f(b)比它在点x=b附近其他点处的函数值都大,f′(b)=0;而且在点x= b附近的左侧f′(x)>0,右侧f′(x)<0,则b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.(3)极小值点、极大值点统称为极值点,极小值和极大值统称为极值.2.函数的最大(小)值(1)函数f(x)在区间[a,b]上有最值的条件:如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求函数y=f(x)在区间[a,b]上的最大(小)值的步骤:①求函数y=f(x)在区间(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.常用结论对于可导函数f(x),“f′(x0)=0”是“函数f(x)在x=x0处有极值”的必要不充分条件【核心题型】题型一 利用导数求解函数的极值问题根据函数的极值(点)求参数的两个要领(1)列式:根据极值点处导数为0和极值这两个条件列方程组,利用待定系数法求解;(2)验证:求解后验证根的合理性.命题点1 根据函数图象判断极值1(2024·四川广安·二模)已知函数f x =ax+1e x,给出下列4个图象:其中,可以作为函数f x 的大致图象的个数为()A.1B.2C.3D.4【答案】D【分析】对a的情况进行分类讨论,借助于导数对函数的单调性进行分析即可判断函数的大致图象.【详解】由题意知,f x 定义域为R,当a=0时,f x =e x,由指数函数的单调性可知函数f x 单调递增,可对应①;当a>0时,f x =ax+a+1e x,令f x =0可得:x=-a+1a<0,所以当x∈-∞,-a+1a时,f x<0,当x∈-a+1a ,+∞时,f x >0,所以,函数f x 先减后增,且当x<-1a时,f x <0,此时可对应②;当a<0时,f x =ax+a+1e x,当f x =0时x=-a+1a,当x∈-∞,-a+1a时,f x >0,当x∈-a+1a ,+∞时,f x <0,所以,函数f x 先增后减,当a<-1时,x=-a+1a<0,且此时0<-1a<1,所以可对应③,当-1<a<0时,x=-a+1a>0,此时-1a>1,所以可对应④.故选:D2(23-24高三上·黑龙江·阶段练习)如图是函数y=f x 的导函数y=f x 的图象,下列结论正确的是()A.y=f x 在x=-1处取得极大值B.x=1是函数y=f x 的极值点C.x=-2是函数y=f x 的极小值点D.函数y=f x 在区间-1,1上单调递减【答案】C【分析】根据导函数的正负即可求解y=f x 的单调性,即可结合选项逐一求解.【详解】由图象可知:当x<-2时,f x <0,f x 单调递减,当x≥-2时,f x ≥0,f x 单调递增,故x=-2是函数y=f x 的极小值点,y=f x 无极大值.故选:C3(2023·河北·模拟预测)函数f(x)=1x4-1x2的大致图象是()A. B.C. D.【答案】D【分析】先判断函数的奇偶性,再利用导数法判断.【详解】解:因为函数f (x )=1x4-1x 2的定义域为:x |x ∈R ,x ≠0 ,且f -x =f x ,所以函数f x 是偶函数,当x >0时,f x =-4x -51-12x 2 ,令fx =0,得x =2,当0<x <2时,f x <0,当x >2时,f x >0,所以当x =2时,f x 取得极小值,故选:D4(2024高三·全国·专题练习)已知函数f (x )的导函数f ′(x )的图象如图所示,则下列结论正确的是()A.曲线y =f (x )在点(1,f (1))处的切线斜率小于零B.函数f (x )在区间(-1,1)上单调递增C.函数f (x )在x =1处取得极大值D.函数f (x )在区间(-3,3)内至多有两个零点【答案】D【详解】解析:由题意,得f ′(1)=0,所以曲线y =f (x )在点(1,f (1))处的切线斜率等于零,故A 错误;当x ∈(-1,1)时,f ′(x )<0,所以f (x )在(-1,1)上单调递减,故B 错误;当-2<x <1时,f ′(x )<0,f (x )单调递减,当x >1,f ′(x )<0,f (x )单调递减,所以x =1不是f (x )的极值点,故C 错误;当x ∈(-3,-2)时,f ′(x )>0,f (x )单调递增,当x ∈(-2,3)时,f ′(x )≤0,f (x )单调递减,所以当f (-2)<0时,f (x )在(-3,3)上没有零点;当f (-2)=0时,f (x )在(-3,3)上只有一个零点;当f (-2)>0时,f (x )在(-3,3)上有两个零点.综上,函数f (x )在区间(-3,3)内至多有两个零点,故选D .命题点2 求已知函数的极值5(2024·宁夏银川·一模)若函数f (x )=x 2-ax -2 e x 在x =-2处取得极大值,则f (x )的极小值为()A.-6e 2B.-4eC.-2e 2D.-e【答案】C【分析】由题意求出a 的值,进而求出f x ,再解出极小值即可.【详解】因为函数f (x )=x 2-ax -2 e x 在x =-2处取得极大值,则f x =x 2+2-a x -2-a ⋅e x ,x ∈R 且f -2 =0,即4-22-a -2-a =0,所以a =2;所以f x =x 2-2x -2 ⋅e x ,f x =x 2-4 ⋅e x =x +2 x -2 e x ,令f x =0,则x =2或x =-2,由x ∈-∞,-2 ,f x >0,x ∈-2,2 ,f x <0,x ∈2,+∞ ,f x >0,所以f x 在-∞,-2 ,2,+∞ 上单调递增,在-2,2 上单调递减.所以函数f x 在x =-2处取得极大值,f 极小=f 2 =-2e 2.故选:C .6(2023·全国·模拟预测)函数f x =2x -tan x -π在区间-π2,π2的极大值、极小值分别为()A.π2+1,-π2+1B.-π2+1,-3π2+1C.3π2-1,-π2+1D.-π2-1,-3π2+1【答案】D【分析】求出f x ,由f (x )<0、f (x )>0可得答案.【详解】由题意,得f(x )=2-sin x cos x =2-1cos 2x =2cos 2x -1cos 2x,当x ∈-π2,-π4 ∪π4,π2 时,2cos 2x -1<0,f (x )<0;当x ∈-π4,π4时,2cos 2x -1>0,f (x )>0.所以f (x )在-π2,-π4 上单调递减,在-π4,π4 上单调递增,在π4,π2上单调递减.当x =-π4时,f (x )取得极小值,为f -π4 =-3π2+1;当x =π4时,f (x )取得极大值,为f π4 =-π2-1.故选:D .7(多选)(2024·全国·模拟预测)已知f (x )=e xx,x >0,-x 2-4x -1,x ≤0, 则方程f 2(x )-(k +3)f (x )+3k =0可能有( )个解.A.3 B.4C.5D.6【答案】BCD【分析】方程f 2(x )-(k +3)f (x )+3k =0得f (x )=3或f (x )=k ,作出函数图象,数形结合判断解的个数.【详解】f (x )=e x x x >0 ,有f(x )=e x x -1 x 2,当0<x <1时f (x )<0,f (x )单调递减;当x >1时f (x )>0,f (x )单调递增,当x =1时,f (x )有极小值f 1 =e.f (x )=-x 2-4x -1x ≤0 ,由二次函数的性质可知,f (x )在-∞,-2 上单调递增,在-2,0 上单调递减,当x =-2时,f (x )有极大值f (-2)=3.由f (x )=e xx,x >0,-x 2-4x -1,x ≤0 的图象如图所示,由f 2(x )-(k +3)f (x )+3k =0得f (x )=3或f (x )=k ,由图象可知f (x )=3有3个解,f (x )=k 可能有1,2,3,4个解,故方程f 2(x )-(k +3)f (x )+3k =0可能有4,5,6,7个解.故选:BCD .【点睛】方法点睛:函数零点的求解与判断方法:(1)直接求零点:令f x =0,如果能求出解,则有几个解就有几个零点.(2)零点存在性定理:利用定理不仅要函数在区间a ,b 上是连续不断的曲线,且f a ⋅f b <0,还必须结合函数的图象与性质(如单调性、奇偶性)才能确定函数有多少个零点.(3)利用图象交点的个数:将函数变形为两个函数的差,画两个函数的图象,看其交点的横坐标有几个不同的值,就有几个不同的零点8(2024·辽宁鞍山·二模)f x =x 2e -x 的极大值为.【答案】4e2【分析】借助导数研究函数的单调性即可得其极大值.【详解】f x =2xe -x +x 2-e -x =2x -x 2 e -x =-x x -2 e -x ,当x ∈-∞,0 ∪2,+∞ 时,f x <0,当x ∈0,2 时,f x >0,故f x 在-∞,0 、2,+∞ 上单调递减,在0,2 上单调递增,故f x 有极大值f 2 =22e -2=4e2.故答案为:4e2命题点3 已知极值(点)求参数9(2024·全国·模拟预测)设x 1,x 2为函数f x =x x -2 x -a (其中a >0)的两个不同的极值点,若不等式f x 1 +f x 2 ≥0成立,则实数a 的取值范围为()A.1,4B.0,4C.0,1D.4,+∞【答案】A【分析】导函数为二次函数,x 1,x 2为对应的一元二次方程的两根,由f x 1 +f x 2 ≥0,代入函数解析式,结合韦达定理化简,可解出实数a 的取值范围.【详解】因为f x =x x -2 x -a ,所以f x =3x 2-22+a x +2a .又函数f x 有两个不同的极值点x 1,x 2,所以Δ=4a 2-2a +4 >0,x 1+x 2=22+a3,x 1x 2=2a 3.解法一:由f x 1 +f x 2 ≥0,得x 31+x 32-a +2 x 21+ x 22 +2a x 1+x 2 ≥0,即x 1+x 2 x 1+x 2 2- 3x 1x 2 -a +2 x 1+x 2 2-2x 1x 2 +2a x 1+ x 2 ≥0∗ .将x 1+x 2,x 1x 2的值代入(*)式,得a 2-5a +4≤0,解得1≤a ≤4,故选:A .解法二:函数y =ax 3+kx a ≠0 为奇函数,图象的对称中心为0,0 ,则函数y =a x -m 3+k x -m +n 图象的对称中心为m ,n 设g x =ax 3+bx 2+cx +d =a x -m 3+k x -m +n ,a x -m 3+k x -m +n =ax 3-3amx 2+3am 2+k x +n -am 3-km ,比较系数,有-3am =b 3am 2+k =c n -am 3-km =d,解得m =-b 3a ,k =c -b 23a ,n =2b 327a2-bc 3a +d =g -b3a 所以函数g x =ax 3+bx 2+cx +d a ≠0 图象的对称中心为-b 3a ,g -b3a,即若f x 存在两个相异的极值点x 1,x 2,则其对称中心为点x 1,f x 1 和点x 2,f x 2 的中点,即f x 1 +f x 2 2=f x 1+x22.由题设得f x 1 +f x 2 ≥0,即f x 1+x 22 ≥0,即f 2+a3≥0,所以a >0,a +23a +23-2 a +23-a ≥0,解得1≤a ≤4.故选:A .10(2024·四川绵阳·三模)若函数f x =12ax 2-x +b ln x a ≠0 有唯一极值点,则下列关系式一定成立的是()A.a >0,b <0B.a <0,b >0C.ab <14D.ab >0【答案】C【分析】求导,构造函数g x =ax 2-x +b a ≠0 ,利用二次函数零点的分布,结合分类讨论以及极值点的定义即可求解.【详解】fx =ax -1+b x =ax 2-x +b x,令g x =ax 2-x +b a ≠0 ,Δ=1-4ab ,若Δ=1-4ab ≤0,则g x =ax 2-x +b ≥0或g x =ax 2-x +b ≤0,此时f x 单调,不存在极值点,故不符合题意,若Δ=1-4ab >0,则方程g x =ax 2-x +b =0有两个实数根,由于f x =12ax 2-x +b ln x a ≠0 有唯一极值点,故g x =ax 2-x +b =0只能有一个正实数根,若另一个实数根为0,此时b =0,显然满足条件,若令一个实数根为负根,则ba <0,故ab <0,结合选项可知,ab <14一定成立,故选:C11(2024·辽宁·一模)已知函数f x =x 3+ax 2+bx +a 2在x =-1处有极值8,则f 1 等于.【答案】-4【分析】求导,即可由f -1 =8且f -1 =0求解a ,b ,进而代入验证是否满足极值点即可.【详解】f x =3x 2+2ax +b ,若函数f x 在x =-1处有极值8,则f -1 =8,f-1 =0,即-1+a -b +a 2=83-2a +b =0,解得:a =3,b =3或a =-2,b =-7,当a =3,b =3时,f x =3x 2+6x +3=3(x +1)2≥0,此时x =-1不是极值点,故舍去;当a =-2,b =-7时,f x =3x 2-4x -7=3x -7 x +1 ,当x >73或x <-1时,f x >0,当-1<x <73,f x <0,故x =-1是极值点,故a =-2,b =-7符合题意,故f x =x 3-2x 2-7x +4,故f 1 =-4.故答案为:-412(2024·全国·模拟预测)已知函数f x =ln x -x 2+ax -2a ∈R .(1)若f x 的极值为-2,求a 的值;(2)若m ,n 是f x 的两个不同的零点,求证:f m +n +m +n <0.【答案】(1)1(2)证明见解析【分析】(1)对函数f x 求导,再根据函数与导数的关系研究函数f x 的性质,即可得解;(2)由题意f m +n +m +n =1m -n m -n m +n -ln m n ,再设m >n >0,t =mn,进而构造函数g t =t -1t +1-ln t t >1 ,利用函数的单调性进行证明即可.【详解】(1)由题知f x 的定义域为0,+∞ ,fx =1x -2x +a =-2x 2+ax +1x.由f x =0可得2x 2-ax -1=0,解得x 1=a -a 2+84(舍去),x 2=a +a 2+84,且ax 2=2x 22-1,∴f x 在0,x 2 上单调递增,在x 2,+∞ 上单调递减,∴f x 有极大值f x 2 =ln x 2-x 22+ax 2-2=ln x 2-x 22+2x 22-1 -2=ln x 2+x 22-3.设h x =ln x +x 2-3,则h x 在0,+∞ 上单调递增,且h 1 =-2,故x 2=1,即a +a 2+84=1,解得a =1.(2)由条件可得f m =ln m -m 2+am -2=0,f n =ln n -n 2+an -2=0,两式相减,可得ln mn -m 2-n 2 +a m -n =0,故a =m +n -ln m nm -n,f m +n +m +n =1m +n-2m +n +a +m +n=1m +n -ln m nm -n =1m -n m -n m +n -ln m n.不妨设m >n >0,t =mn,则t >1,要证f m +n +m +n <0,只需证明m -n m +n -ln mn<0,即证t -1t +1-ln t <0.设g t =t -1t +1-ln t t >1 ,则gt =2t +12-1t =2t t +1 2t t +1 2=-t 2+1t t +1 2<0,∴g t 在1,+∞ 上单调递减,g t <1-11+1-ln1=0,故f m +n +m +n <0.【点睛】方法点睛:(1)研究函数零点、极值时,一般需要求导分析函数、导函数的单调性,并结合特值进行分析判断;(2)证明有关零点的不等式时,需要观察不等式,构造常用函数g t =t -1t +1-ln t t >1 证明即可.题型二 利用导数求函数最值求含有参数的函数的最值,需先求函数的定义域、导函数,通过对参数分类讨论,判断函数的单调性,从而得到函数f (x )的最值.命题点1 不含参函数的最值13(2024·陕西·模拟预测)∀x ∈1,2 ,有a ≥-x 2ln x +x 2恒成立,则实数a 的取值范围为()A.e ,+∞B.1,+∞C.e2,+∞ D.2e ,+∞【答案】C【分析】构造函数μx =-x 2ln x +x 2,x ∈1,2 ,求导可得函数的单调性,即可求解最值μx max =μe =e 2,进而a ≥μx max 即可.【详解】由a ≥-x 2ln x +x 2在x ∈1,2 上恒成立,令μx =-x 2ln x +x 2,x ∈1,2 ,则μ x =-2x ln x -x +2x =-2x ln x +x =x -2ln x +1 .令μ x =0,则x =e ,当x ∈1,e 时,μ x >0,故μ x 在1,e 上单调递增;当x ∈e ,2 时,μ x <0,故μ x 在e ,2 上单调递减;则μx ≤μe =e 2,所以a ≥e2故选:C14(2024·四川·模拟预测)已知f x =x 2-2x +a ln x -x ,若存在x 0∈0,e ,使得f x 0 ≤0成立,则实数a 的取值范围是.【答案】-1,+∞【分析】先用导数证明不等式x -ln x -1≥0,然后对a ≥-1和a <-1分类讨论,即可得出结果.【详解】设g x =x -ln x ,则g x =1-1x =x -1x,从而当0<x <1时g x <0,当x >1时g x >0.所以g x 在0,1 上递减,在1,+∞ 上递增,故对任意x >0有x -ln x =g x ≥g 1 =1,即x -ln x -1≥0.一方面,当a ≥-1时,由于f 1 =1-2-a =-1-a ≤0,故存在x 0=1使得f x 0 ≤0成立;另一方面,当a <-1时,由于对任意x ∈0,e 都有f x =x 2-2x +a ln x -x =x -1 2-1+a ln x -x =x -1 2+-a x -ln x -1=x -1 2+-a x -ln x -1 +-a -1≥0+0+-a -1 (这里用到x -1 2≥0,-a >0,x -ln x -1≥0)=-a -1>0,所以对任意x ∈0,e 都有f x >0.综上,a 的取值范围是-1,+∞ .故答案为:-1,+∞ .【点睛】关键点点睛:对于求取值范围问题,本质上就是要确定一个集合,使得命题成立的充要条件是参数属于该集合. 故本题中我们从两个方面入手,证明了存在x 0∈0,e 使得f x 0 ≤0的充要条件是a ∈-1,+∞ ,即可解决问题15(2024·上海徐汇·二模)如图,两条足够长且互相垂直的轨道l 1,l 2相交于点O ,一根长度为8的直杆AB 的两端点A ,B 分别在l 1,l 2上滑动(A ,B 两点不与O 点重合,轨道与直杆的宽度等因素均可忽略不计),直杆上的点P 满足OP ⊥AB ,则△OAP 面积的取值范围是.【答案】(0,63]【分析】令∠OAB =x 0<x <π2,利用直角三角形边角关系及三角形面积公式求出△OAP 的面积函数,再利用导数求出值域即得.【详解】依题意,设∠OAB =x 0<x <π2,则OA =AB cos x =8cos x ,AP =OA cos x =8cos 2x ,因此△OAP 的面积f (x )=12OA ⋅AP sin x =32sin x cos 3x ,0<x <π2,求导得f (x )=32(cos 4x -3sin 2x cos 2x )=32cos 4x (1-3tan 2x ),当0<x <π6时,f (x )>0,当π6<x <π2时,f (x )<0,即函数f (x )在0,π6 上递增,在π6,π2上递减,因此f (x )max =f π6 =32×32 3×12=63,而f (0)=f π2 =0,则0<f (x )≤63,所以△OAP 面积的取值范围是(0,63].故答案为:(0,63]16(2024·全国·模拟预测)已知函数f x =ln x .(1)求函数g x =f xx的最值.(2)证明:xe x-14x 4-e 2-34x 3-ef x >0(其中e 为自然对数的底数).【答案】(1)最大值为g e =1e,无最小值;(2)证明见解析.【分析】(1)先求出函数的导数,根据导数得出函数的单调区间,从而得出函数的最值.(2)不等式转化为e x-14x3-e2-34x2-e ln xx>0,结合(1)知ln xx≤1e,从而证明:ex-14x3-e2-34x2-1≥0,再结合导数求函数的最小值证得结果.【详解】(1)由题意知g x =ln xx,定义域为0,+∞,从而g x =1-ln x x2.所以当x∈0,e时,g x >0;当x∈e,+∞时,g x <0.所以函数g x 在0,e上单调递增,在e,+∞上单调递减.所以函数g x 的最大值为g e =1e,无最小值.(2)欲证xe x-14x4-e2-34x3-ef x >0,只需证e x-14x3-e2-34x2-e ln xx>0.由(1)知ln xx≤1e,从而e ln xx≤1,当且仅当x=e时取等号.下面证明:e x-14x3-e2-34x2-1≥0.设h x =e x-14x3-e2-34x2-1,x>0,则h x =e x-34x2-e2-32x.设H x =e x-34x2-e2-32x,则H x =e x-32x-e2-32.设F x =e x-32x-e2-32,则Fx =e x-32,故当x∈0,ln 3 2时,F x <0;当x∈ln32,+∞时,F x >0.所以函数F x 在0,ln 3 2上单调递减,在ln32,+∞上单调递增.由于F0 =5-e22<0,F2 =e2-32>0,F ln32=32-32ln32-e2-32<0,故设存在唯一的x0∈ln 3 2 ,2,使F x0 =0,且当x∈0,x0时,F x <0,当x∈x0,+∞时,F x >0.故函数H x 在0,x0上单调递减,在x0,+∞上单调递增.又H0 =1,H1 =e-e22+34=4e+3-2e24<0,H2 =e2-3-e2-3=0,所以存在唯一的x1∈0,1,使H x1=0,故当x∈0,x1∪2,+∞时,H x >0;当x∈x1,2时,H x <0.从而函数h x 在0,x1,2,+∞上分别单调递增,在x1,2上单调递减.因为h0 =e0-0-0-1=0,h2 =e2-2-e2-3-1=0,所以h x ≥0在0,+∞上恒成立,当且仅当x=2时取等号.因为取等条件不相同,所以e x-14x3-e2-34x2-e ln xx>0恒成立,即xe x-14x4-e2-34x3-ef x >0成立.【点睛】本题第(2)问考查的是利用导数证明不等式.证明时有三个关键点:一是不等式的等价变形,由第(1)问的提示可知,需要把所证明的不等式两端同时除以x,使不等式等价转化为e x-14x 3-e 2-34x 2-e ln xx>0;二是放缩法的应用,由(1)知ln x x ≤1e ,从而e ln x x ≤1,此时只需再证明不等式e x-14x 3-e 2-34x 2-1≥0即可;三是构造函数h x =e x-14x 3-e 2-34x 2-1,通过求导研究h x 的单调性,进一步求得h x 的最小值,在研究h x 单调性的过程中,需要注意特殊点、端点,以及隐零点的讨论.命题点2 含参函数的最值17(2024·四川成都·模拟预测)已知函数f (x )=e x -12(a +1)x 2-bx (a ,b ∈R )没有极值点,则ba +1的最大值为()A.e2B.e 2C.eD.e 22【答案】B【分析】转化为f (x )=e x -1a +1x -b ≥0恒成立,构造函数,求导,得到其单调性和最值,从而得到b ≤1a +1+ln a +1 a +1,故b a +1≤ln a +1 +1a +12,换元后,构造函数,求导得到其单调性和最值,求出答案.【详解】函数f x =e x -12a +1x 2-bx 没有极值点,∴f (x )=e x -1a +1x -b ≥0,或f (x )≤0恒成立,由y =e x 指数爆炸的增长性,f (x )不可能恒小于等于0,∴f (x )=e x -1a +1x -b ≥0恒成立.令h x =e x -1a +1x -b ,则h x =e x -1a +1,当a +1<0时,h x >0恒成立,h x 为R 上的增函数,因为e x ∈0,+∞ 是增函数,-1a +1x -b ∈-∞,+∞ 也是增函数,所以,此时h (x )∈-∞,+∞ ,不合题意;②当a +1>0时,h x =e x -1a +1为增函数,由h x =0得x =-ln a +1 ,令h x >0⇔x >-ln a +1 ,h x <0⇔x <-ln a +1 ,∴h x 在-∞,-ln a +1 上单调递减,在-ln a +1 ,+∞ 上单调递增,当x =-ln a +1 时,依题意有h x min =h -ln a +1 =1a +1+ln a +1 a +1-b ≥0,即b ≤1a +1+ln a +1 a +1,∵a +1>0,∴ba +1≤ln a +1 +1a +12,令a +1=x (x >0),u x =ln x +1x2x >0 ,则u x =x -ln x +1 ⋅2x x4=-2ln x +1x 3,令u x >0⇔0<x <1e ,令u x <0,解得x >1e,所以当x =1e 时,u x 取最大值u 1e=e2.故当a +1=1e,b =e 2,即a =e e -1,b =e 2时,b a +1取得最大值e 2.综上,若函数h x 没有极值点,则b a +1的最大值为e2.故选:B .【点睛】关键点睛:将函数没有极值点的问题转化为导函数恒大于等于0,通过构造函数,借助导数研究函数的最小值,从而得解.18(23-24高三下·重庆·阶段练习)若过点a ,b 可以作曲线y =ln x 的两条切线,则()A.b >ln aB.b <ln aC.a <0D.b >e a【答案】A【分析】设切点坐标为(x 0,y 0),由切点坐标求出切线方程,代入坐标(a ,b ),关于x 0的方程有两个不同的实数解,变形后转化为直线与函数图象有两个交点,构造新函数由导数确定函数的图象后可得.【详解】设切点坐标为(x 0,y 0),由于y =1x ,因此切线方程为y -ln x 0=1x 0(x -x 0),又切线过点(a ,b ),则b -ln x 0=a -x 0x 0,b +1=ln x 0+ax 0,设f (x )=ln x +ax,函数定义域是(0,+∞),则直线y =b +1与曲线f (x )=ln x +a x 有两个不同的交点,f (x )=1x -a x 2=x -ax 2,当a ≤0时,f (x )>0恒成立,f (x )在定义域内单调递增,不合题意;当a >0时,0<x <a 时,f (x )<0,f (x )单调递减,x >a 时,f (x )>0,f (x )单调递增,所以f (x )min =f (a )=ln a +1,结合图象可知b +1>ln a +1,即b >ln a .故选:A .19(2024·全国·模拟预测)函数f x =x +2 ln x +1 -ax 只有3个零点x 1,x 2,x 3x 1<x 2<x 3<3 ,则a +x 2的取值范围是.【答案】2,10ln23【分析】由题意对函数求导,为判断导数与零的大小关系,对导数再次求导求其最值,利用分类讨论思想,结合零点存在性定理,建立不等式组,可得答案.【详解】函数f x =x +2 ln x +1 -ax 的定义域为-1,+∞ ,则f x =ln x +1 +x +2x +1-a .设g x =f x ,则g x =1x +1-1x +1 2=xx +1 2,所以当x ∈-1,0 时,g x <0,f x 单调递减,当x ∈0,+∞ 时,g x >0,f x 单调递增,所以f x ≥f 0 =2-a .当2-a ≥0,即a ≤2时,f x ≥0,f x 单调递增,且f 0 =0,此时f x 只有1个零点,不满足题意;当2-a <0,即a >2时,由f1e a -1 =ln 1e a -1+1+1e a-1+21ea -1+1-a =e a +1-2a >0,f e a -1 =ln e a -1+1 +e a-1+2e a-1+1-a =1+1ea >0存在m ∈-1,0 ,n ∈0,+∞ ,使得f m =0,f n =0,当x ∈-1,m ∪n ,+∞ 时,f x >0;当x ∈m ,n 时,f x <0,所以f x 在-1,m 上单调递增,在m ,n 上单调递减,在n ,+∞ 上单调递增,又f 0 =0,易知f m >0,f n <0,由f1ea-1 =1ea-1+2 ln1ea-1+1-a1ea-1=-2ae -a <0,f e a -1 =e a -1+2 ln e a -1+1 -a e a -1 =2a >0,则f x 在-1,m ,n ,+∞ 上各有1个零点,此时满足题意.所以a >2,且x 2=0.由x 3<3,得f 3 =5ln4-3a >0,得a <10ln23.所以a +x 2的取值范围是2,10ln23.故答案为:2,10ln23.【点睛】关键点点睛:本题的关键是对a 分a ≤2和a >2讨论,当a >2时,需要利用零点存在性定理证明其满足题意,再根据x 3<3,则f 3 =5ln4-3a >0,解出即可.4.2024·北京海淀·一模)已知函数f (x )=xe a -12x .(1)求f (x )的单调区间;(2)若函数g (x )=f (x )+e -2a ,x ∈(0,+∞)存在最大值,求a 的取值范围.【答案】(1)f (x )的增区间为-∞,2 ,减区间为(2,+∞)(2)a ≥-1【分析】(1)对函数求导,得到f(x )=ea -12x 1-12x ,再求出f(x )>0和f(x )<0对应的x 取值,即可求出结果;(2)令h (x )=f (x )+e -2a ,对h (x )求导,利用导数与函数单调性间的关系,求出h (x )的单调区间,进而得出h (x )在(0,+∞)上取值范围,从而将问题转化成2e a -1+e -2a ≥e -2a 成立,构造函数m (x )=e x -1+e -2x ,再利用m (x )的单调性,即可求出结果.【详解】(1)易知定义域为R ,因为f (x )=xe a -12x ,所以f(x )=e a -12x -12xe a -12x =e a -12x 1-12x ,由f (x )=0,得到x =2,当x <2时,f (x )>0,当x >2时,f (x )<0,所以,函数f (x )的单调递增区间为-∞,2 ,单调递减区间为2,+∞ .(2)令h (x )=f (x )+e -2a ,则h (x )=f (x ),由(1)知,函数f (x )的单调递增区间为-∞,2 ,单调递减区间为2,+∞ ,所以h (x )在x =2时取得最大值h (2)=2e a -1+e -2a ,所以当x >2时,h (x )=xe a -12x +e -2a >e -2a =h (0),当0<x <2时,h (x )>h (0),即当x ∈(0,+∞)时,h (x )∈h (0),h (2) ,所以函数g (x )=xea -12x +e -2a 在(0,+∞)存在最大值的充要条件是2e a -1+e -2a ≥e -2a ,即2e a -1+e -2a +e -2a 2=e a -1+e -2a ≥0,令m (x )=e x -1+e -2x ,则m (x )=e x -1+e -2>0恒成立,所以m (x )=e x -1+e -2x 是增函数,又因为m (-1)=e -2-e -2=0,所以m (a )=e a -1+e -2a ≥0的充要条件是a ≥-1,所以a 的取值范围为-1,+∞ .【点睛】关键点点晴:本题的关键在于第(2)问,构造函数h (x )=xe a -12x +e -2a ,利用函数单调性得到x ∈(0,+∞)时,h (x )∈h (0),h (2) ,从而将问题转化成2e a -1+e -2a ≥e -2a ,构造函数m (x )=e x -1+e -2x ,再利用m (x )的单调性来解决问题【课后强化】基础保分练一、单选题1(2023·广西·模拟预测)函数f x =x 3+ax 在x =1处取得极小值,则极小值为()A.1B.2C.-2D.-1【答案】C【分析】求出函数f (x )的导数,利用极小值点求出a 值,再借助导数求出极小值作答.【详解】依题意,f x =3x 2+a ,因为函数f (x )在x =1处取得极小值,则f 1 =3+a =0,解得a =-3,此时f x =3x 2-3=3(x +1)(x -1),当x <-1或x >1时,f (x )>0,当-1<x <1,时f (x )<0,因此函数f (x )在-∞,-1 ,1,+∞ 上单调递增,在(-1,1)上单调递减,所以函数f x =x 3-3x 在x =1处取得极小值f (1)=-2.故选:C2(2024·四川凉山·二模)若f x =x sin x +cos x -1,x ∈-π2,π ,则函数f x 的零点个数为()A.0B.1C.2D.3【答案】C【分析】求导,研究函数单调性,极值,画图,根据图象得零点个数.【详解】f x =sin x +x cos x -sin x =x cos x ,当x ∈-π2,0 时,f x <0,f x 单调递减,当x ∈0,π2 时,f x >0,f x 单调递增,当x ∈π2,π 时,f x <0,f x 单调递减,又f -π2 =π2-1>0,f 0 =0,f π2 =π2-1>0,f π =-2<0,则f x =x sin x +cos x -1的草图如下:由图象可得函数f x 的零点个数为2.故选:C .3(2024·黑龙江哈尔滨·一模)在同一平面直角坐标系内,函数y=f x 及其导函数y=f x 的图象如图所示,已知两图象有且仅有一个公共点,其坐标为0,1,则()A.函数y=f x ⋅e x的最大值为1B.函数y=f x ⋅e x的最小值为1C.函数y=f xe x的最大值为1 D.函数y=f xe x的最小值为1【答案】C【分析】AB选项,先判断出虚线部分为y=f x ,实线部分为y=f x ,求导得到y=f x ⋅e x在R上单调递增,AB错误;再求导得到x∈(-∞,0)时,y=f(x)e x单调递增,当x∈(0,+∞)时,y=f(x)e x单调递减,故C正确,D错误.【详解】AB选项,由题意可知,两个函数图像都在x轴上方,任何一个为导函数,则另外一个函数应该单调递增,判断可知,虚线部分为y=f x ,实线部分为y=f x ,故y =f x ⋅e x+f x ⋅e x=f x +f x⋅e x>0恒成立,故y=f x ⋅e x在R上单调递增,则A,B显然错误,对于C,D,y =f (x)e x-f(x)e xe x2=f (x)-f(x)e x,由图像可知x∈(-∞,0),y =f (x)-f(x)e x>0恒成立,故y=f(x)e x单调递增,当x∈(0,+∞),y =f (x)-f(x)e x<0,y=f(x)e x单调递减,所以函数y=f(x)e x在x=0处取得极大值,也为最大值,f0e0=1,C正确,D错误.故选:C4(2024·陕西安康·模拟预测)已知函数f x =ae2x+be x+2x有2个极值点,则()A.0<a<b216B.b>0C.a<4bD.b>2a【答案】A【分析】求出函数的导函数,令t=e x,依题意可得关于t的方程2at2+bt+2=0有两个不相等的正实根t1、t2,则2a≠0Δ>0t1+t2>0t1t2>0,即可判断.【详解】函数f x =ae2x+be x+2x的定义域为R,且f x =2ae2x+be x+2,依题意f x =0有两个不相等实数根,令t=e x,则关于t的方程2at2+bt+2=0有两个不相等的正实根t1、t2,所以2a ≠0Δ=b 2-16a >0t 1+t 2=-b 2a >0t 1t 2=1a >0,所以0<a <b216,b <0.故选:A5(2024·全国·模拟预测)已知函数f x =a sin x +cos xe x+x 在0,π 上恰有两个极值点,则实数a的取值范围是()A.0,22e π4B.-∞,e πC.0,e πD.22e π4,+∞【答案】D【分析】函数f x 在0,π 上恰有两个极值点,fx 在0,π 上有两个变号零点,分离常数得a =e x 2sin x,转化为两函数图象有两个不同的交点,利用数形结合思想进行求解;或直接求函数f x 的单调性,求图象在0,π 上与x 轴有两个交点的条件.【详解】解法一:由题意可得f x =-2a sin xex+1,因为函数f x 在0,π 上恰有两个极值点,所以f x 在0,π 上有两个变号零点.令fx =-2a sin x e x+1=0,可得a =e x 2sin x ,令g x =e x 2sin x ,x ∈0,π ,则直线y =a 与函数y =g x ,x ∈0,π 的图象有两个不同的交点,g x =2e x sin x -cos x 2sin x 2=22e x sin x -π4 2sin x 2,当x ∈π4,π 时,g x >0,所以g x 在π4,π 上单调递增,当x ∈0,π4 时,g x <0,所以g x 在0,π4上单调递减,又g π4 =22e π4,当x 趋近于0时,g x 趋近于+∞,当x 趋近于π时,g x 趋近于+∞,所以可作出g x 的图象如图所示,数形结合可知a >22e π4,即实数a 的取值范围是22e π4,+∞,故选:D .解法二 由题意可得f x =-2a sin xex+1.因为函数f x 在0,π 上恰有两个极值点,所以f x 在0,π 上有两个变号零点.当a ≤0时,f x >0在0,π 上恒成立,不符合题意.当a >0时,令h x =fx =-2a sin x e x +1,则hx=22a sin x -π4 e x,当x ∈π4,π 时,h x >0,h x 单调递增,当x ∈0,π4时,h x <0,h x 单调递减,因为h 0 =h π =1,h π4 =1-2a e π4,所以h π4 =1-2a eπ4<0,则a >22e π4,即实数a 的取值范围是22e π4,+∞,故选:D .【点睛】方法点睛:导函数中常用的两种常用的转化方法:一是利用导数研究含参函数的单调性,常化为不等式恒成立问题.注意分类讨论与数形结合思想的应用;二是函数的零点、不等式证明常转化为函数的单调性、极(最)值问题处理,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.二、多选题6(2024·全国·模拟预测)已知函数f x =ae x +bx在定义域内既存在极大值点又存在极小值点,则()A.ab >0B.b a ≤4e2C.4a -be 2>0 D.对于任意非零实数a ,总存在实数b 满足题意【答案】AD【分析】根据给定条件,分类讨论,逐项判断即可.【详解】由题意,得f x =ae x-b x 2=ax 2e x -b x 2.令f x =0,得x 2e x =b a .令g x =x 2e x ,则g x =x x +2 e x .当x ∈-∞,-2 ∪0,+∞ 时,g x >0,此时g x 单调递增;当x ∈-2,0 时,g x <0,此时g x 单调递减.∵g -2 =4e 2,g 0 =0,当x →-∞时,g x →0,∴当0<b a <4e2时,f x 在定义域内既存在极大值点又存在极小值点.故A 正确,B 不正确.当a <0时,由0<b a <4e2知,当b <0时,4a -be 2<0,故C 不正确.对于任意非零实数a ,总存在实数b ,使得0<b a <4e2成立,故D 正确.故选:AD .7(2024·湖北武汉·模拟预测)已知各项都是正数的数列a n 的前n 项和为S n ,且S n =a n 2+12a n,则下列结论正确的是()A.当m >n m ,n ∈N * 时,a m >a nB.S n +S n +2<2S n +1C.数列S 2n 是等差数列D.S n -1S n≥ln n 【答案】BCD【分析】计算数列首项及第二项可判定A ,利用等差数列的定义及S n ,a n 的关系可判定C ,从而求出S n 的通项公式结合基本不等式、函数的单调性可判定B 、D .【详解】对A ,由题意可知a 1=a 12+12a 1⇒a 21=1,所以a 1=1,则a 1+a 2=a 22+12a 2⇒a 22+2a 2-1=0,所以a 2=2-1<a 1,故A 错误;对C ,由S n =a n 2+12a n ⇒S n =S n -S n -12+12S n -S n -1⇒S 2n -S 2n -1=1n ≥2 ,故C 正确;对C ,所以S 2n =1+n -1 =n ⇒S n =n ,则S n +S n +2=n +n +2<2n +n +22=2S n +1,故B 正确;对D ,易知S n -1S n =n -1n,令f x =x -1x -2ln x x ≥1 ,则f x =1+1x2-2x =1x -1 2≥0,则f x 单调递增,所以f x ≥f 1 =0⇒n -1n ≥ln n ,即S n -1S n ≥ln n ,故D 正确.故选:BCD 三、填空题8(2024·上海黄浦·二模)如图是某公园局部的平面示意图,图中的实线部分(它由线段CE ,DF 与分别以OC ,OD 为直径的半圆弧组成)表示一条步道.其中的点C ,D 是线段AB 上的动点,点O 为线段AB ,CD 的中点,点E ,F 在以AB 为直径的半圆弧上,且∠OCE ,∠ODF 均为直角.若AB =1百米,则此步道的最大长度为百米.【答案】π2+42【分析】设半圆步道直径为x 百米,连接AE ,BE ,借助相似三角形性质用x 表示CE ,结合对称性求出步道长度关于x 的函数关系,利用导数求出最大值即得.【详解】设半圆步道直径为x 百米,连接AE ,BE ,显然∠AEB =90°,由点O 为线段AB ,CD 的中点,得两个半圆步道及直道CE ,DF 都关于过点O 垂直于AB 的直线对称,则AC =12-x ,BC =12+x ,又CE ⊥AB ,则Rt △ACE ∽Rt △ECB ,有CE 2=AC ⋅BC ,即有DF =CE =14-x 2,因此步道长f (x )=214-x 2+πx =1-4x 2+πx ,0<x <12,求导得f (x )=-4x 1-4x 2+π,由f(x )=0,得x =π2π2+4,当0<x <π2π2+4时,f (x )>0,函数f (x )递增,当π2π2+4<x <12时,f(x )<0,函数f (x )递减,因此当x =π2π2+4时,f (x )max =1-4π2π2+42+π22π2+4=π2+42,所以步道的最大长度为π2+42百米.故答案为:π2+429(2023·江西赣州·模拟预测)当x =0时,函数f x =ae -x +bx 取得极小值1,则a +b =.【答案】2【分析】求导函数f x =-ae -x +b ,根据f (0)=a =1f (0)=-a +b =0求得a ,b 的值,检验极值点后可得a +b 的值.【详解】函数f x =ae -x +bx ,则f x =-ae -x +b 当x =0时,函数f x =ae -x +bx 取得极小值1,所以f (0)=a =1f (0)=-a +b =0,解得a =1,b =1,所以f x =-e -x+1=e x -1ex ,则函数在x ∈-∞,0 时,f x <0,函数单调递减;在x ∈0,+∞ 时,f x >0,函数单调递增;符合x =0是函数的极值点;故a +b =2.故答案为:2.四、解答题10(2023·河南洛阳·一模)已知函数f x =12x 2+1x +12.(1)求f x 的图像在点2,f 2 处的切线方程;(2)求f x 在12,2上的值域.【答案】(1) 7x -4y -2=0;(2)2,3 .【分析】(1)把点2,f 2 代入函数解析式,得切点坐标,通过求导,得到切线的斜率,根据直线的点斜式方程,求切线方程.(2)解不等式f x >0,得函数增区间,解不等式f x <0,得函数减区间,结合x ∈12,2,确定函数单调性,求得最值,进而得出f x 在12,2上的值域.【详解】(1)因为f x =12x 2+1x +12,所以f x =x -1x2,所以f 2 =3,f 2 =74,故所求切线方程为y -3=74x -2 ,即7x -4y -2=0.(2)由(1)知f x =x 3-1x 2=x -1 x 2+x +1 x 2,x ∈12,2 .令f x >0,得1<x ≤2;令f x <0,得12≤x <1.所以f x 在12,1上单调递减,在1,2 上单调递增,所以f x min =f 1 =2.又f 12 =218,f 2 =3,因为f 2 >f 12,所以2≤f x ≤3,即f x 在12,2上的值域为2,3 .11(2024·上海静安·二模)已知k ∈R ,记f (x )=a x +k ⋅a -x (a >0且a ≠1).(1)当a =e (e 是自然对数的底)时,试讨论函数y =f (x )的单调性和最值;(2)试讨论函数y =f (x )的奇偶性;(3)拓展与探究:① 当k 在什么范围取值时,函数y =f (x )的图象在x 轴上存在对称中心?请说明理由;②请提出函数y =f (x )的一个新性质,并用数学符号语言表达出来.(不必证明)【答案】(1)详见解析;(2)详见解析;(3)①当k <0时,函数y =f (x )有对称中心12log (-k ),0,理由见解析;②答案见解析.【分析】(1)当a =e 时,求得f (x )=e x -k ⋅e -x ,分k ≤0和k >0,两种情况讨论,分别求得函数的单调性,进而求得函数的最值;(2)根据题意,分别结合f (-x )=f (x )和f (-x )=-f (x ),列出方程求得k 的值,即可得到结论;(3)根据题意,得到当k <0时,函数y =f (x )有对称中心12log (-k ),0 ,且k <0时,对于任意的x ∈R ,都有-x ∈R ,并且f (log a (-k )-x )=-f (x ).【详解】(1)解:当a =e 时,函数f (x )=e x +k ⋅e -x ,可得f (x )=e x -k ⋅e -x ,若k ≤0时,f (x )>0,故函数y =f (x )在R 上单调递增,函数y =f (x )在R 上无最值;若k >0时,令f (x )=0,可得x =12ln k ,当x ∈-∞,12ln k 时,f x <0,函数y =f (x )在-∞,12ln k 上为严格减函数;当x ∈12ln k ,+∞ 时,f x >0,函数y =f (x )在12ln k ,+∞ 上为严格增函数,所以,当x =12ln k 时,函数取得最小值,最小值为f 12ln k =2k ,无最大值.综上:当k ≤0时,函数f (x )在R 上无最值;当k >0时,最小值为2k ,无最大值.(2)解:因为“y =f (x )为偶函数”⇔“对于任意的x ∈R ,都有f (-x )=f (x )”即对于任意的x ∈R ,都有-x ∈R ,并且a x +k ⋅a -x =a -x +k ⋅a x ;即对于任意的x ∈R ,(k -1)(a x -a -x )=0,可得k =1,所以k =1是y =f (x )为偶函数的充要条件.因为“y =f (x )为奇函数”⇔“对于任意的x ∈R ,都有f (-x )=-f (x )”,即对于任意的x ∈R ,都有-x ∈R ,并且-a x -k ⋅a -x =a -x +k ⋅a x ,即对于任意的x ∈R ,(k +1)(a x +a -x )=0,可得k =-1,所以k =-1是y =f (x )为奇函数的充要条件,当k ≠±1时,y =f (x )是非奇非偶函数.(3)解:①当k <0时,函数y =f (x )有对称中心12log (-k ),0,当k <0时,对于任意的x ∈R ,都有-x ∈R ,并且f (log a (-k )-x )=-f (x ).证明:当k <0时,令f (x )=0,解得x =12log a (-k )为函数y =f (x )的零点,由f (x )=a x +k ⋅a -x ,。
利用导数求函数的极值与最值内容再现1、函数的单调性与其导数正负的关系:在某个区间内,如果,那么函数在这个区间内单调递增;在某个区间内,如果,那么函数在这个区间内单调递减;若恒有,则函数在这个区间内是常函数。
2、利用函数判断函数值的增减快慢:如果一个函数在某一范围内导数的绝对值,那么函数在这个范围内变化的快,这时函数的图像比较“陡峭”(向上或向下):反之,若函数在这个范围内导数的绝对值,那么函数在这个范围内变化的比较慢,这时函数的图像比较“平缓”。
3、判断函数极大、极小值的方法: 解方程,当时:(1)如果在附近的左侧,右侧,那么是极大值,是极大值点。
(2)如果在附近的左侧,右侧,那么是极小值点。
4、(1)函数的闭区间上的最值:如果在闭区间上函数的图像是一条曲线,则该函数在上一定能取得和,并且函数的最值必在或取得。
(2)求函数在区间上的最值的步骤:求函数在的;将函数的与比较,其中最大的一个是最大值,最小的一个是最小值。
三、巩固练习1、已知函数在区间内可导,且,则( )(A) (B) (C) (D)2、函数在区间 ( )(A) 上单调递减 (B) 上单调递减(C) 上单调递减 (D) 上单调递增3、已知在上有最小值,则在上,的最大值是4、已知是函数的一个极值点,其中,(I)求与的关系式;(II)求的单调区间;(III)当时,函数的图象上任意一点的切线斜率恒大于3,求的取值五、典型例题1、一个物体的运动方程为其中S的单位是米,t的单位是秒,那么物体在3秒末的瞬时速度是()A、 7米/秒B、6米/秒C、 5米/秒D、 8米/秒DCxOA By 2、用边长为48cm 的正方形铁皮做一个无盖的铁盒时,在铁皮的四角各截去一个面积相等的小正方形,然后把四边折起,就能焊接成铁盒,所做铁盒容积最大时,在四角截去的正方形的边长为( ) A .6cm B .8cm C .10cm D .12cm3、如图,某农场要修建3个养鱼塘,每个面积为10 000米2,鱼塘前面要留4米的运料通道,其余各边为2米宽的堤埂,则占地面积最少时,每个鱼塘的长宽分别为 ( ) A .长102米,宽米B .长150米,宽66米C .长宽均为100米D .长100米,宽米4、过抛物线y=x 2-3x 上一点P 的切线的倾斜角为45°,它与两坐标轴交于A ,B 两点,则△AOB 的面积是5、如图,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器.当这个正六棱柱容器的底面边长为_______时,其容积最大.6、6、某旅行社在暑假期间推出如下旅游团组团办法:达到100人的团体,每人收费1000元。
高考数学之利用导数研究函数的极值和最值一.知识点睛1.可导函数的极值:①如果函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,我们就把a叫做函数的极小值点,f(a)叫做函数的极小值.②如果函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,我们就把b叫做函数的极大值点,f(b)叫做函数的极大值.注意:①.可导函数y=f(x)在点x0取得极值的充要条件是f′(x0)=0,且在点x0左侧和右侧,f′(x)异号②.导数为0的点不一定是极值点,比如y=x3即导数为0的点是该点为极值点的必要条件,而不是充分条件。
③.若极值点处的导数存在,则一定为02.求可导函数极值的步骤:①.确定函数的定义域②求导f′(x)③求方程f′(x)=0的根④把定义域划分为部分区间,并列成表格,检查f′(x)在方程根左右的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值。
二.方法点拨:1.已知具体函数求极值2.已知含参函数的极值点和极值,确定参数:①极值点处导数为0②由极值点,极值组成的坐标在曲线上,由这两点建立有关参数的方程,求出参数值以后还须检验,看参数是否符合函数取得极值的条件。
3.已知含参函数极值点个数,确定参数范围:函数f(x)的极值点导函数f′(x) 的异号零点f′(x)=0的根函数y=k与函数y=g(x)图像交点的横坐标注意:导函数f′(x)的零点并不是函数f(x)的极值点,导函数f′(x)的异号零点才对应函数f(x)的极值点。
因此方程f′(x)=0的根及函数y=k与函数y=g(x)图像交点的横坐标,必须对应f′(x) 的异号零点。
方法总结:解决函数的零点,极值点,及方程根的关系问题时,优先考虑分离参数法,若分离参数不容易实现或者分离后依然不好解决问题,再考虑以下解题思路:(1)研究函数图像与X轴的位置关系⑵研究非水平的动直线(定点直线系或者斜率不为0的平行直线系)与固定函数曲线的位置关系⑶研究动态曲线与曲线的位置关系。
第三节导数与函数的极值、最值❖基础知识1.函数的极值(1)函数的极小值:函数y=f(x)在点x=a的函数值f(a)比它在点x=a附近其他点的函数值都小,f′(a)=0;而且在点x=a附近的左侧f′(x)<0,右侧f′(x)>0,则点a叫做函数y=f(x)的极小值点,f(a)叫做函数y=f(x)的极小值.(2)函数的极大值:函数y=f(x)在点x=b的函数值f(b)比它在点x=b附近其他点的函数值都大,f′(b)=0;而且在点x=b附近的左侧f′(x)>0,右侧f′(x)<0,则点b叫做函数y=f(x)的极大值点,f(b)叫做函数y=f(x)的极大值.极小值点、极大值点统称为极值点,极大值和极小值统称为极值.①函数f(x)在x0处有极值的必要不充分条件是f′(x0)=0,极值点是f′(x)=0的根,但f′(x)=0的根不都是极值点(例如f(x)=x3,f′(0)=0,但x=0不是极值点).②极值反映了函数在某一点附近的大小情况,刻画的是函数的局部性质.极值点是函数在区间内部的点,不会是端点.2.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.❖常用结论(1)若函数f(x)的图象连续不断,则f(x)在[a,b]上一定有最值.(2)若函数f(x)在[a,b]上是单调函数,则f(x)一定在区间端点处取得最值.(3)若函数f(x)在区间(a,b)内只有一个极值点,则相应的极值点一定是函数的最值点.考点一利用导数解决函数的极值问题考法(一)利用导数求函数的极值或极值点[典例](2018·天津高考改编)设函数f(x)=(x-t1)·(x-t2)(x-t3),其中t1,t2,t3∈R,且t1,t2,t3是公差为d的等差数列.(1)若t2=0,d=1,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若d =3,求f (x )的极小值点及极大值.[解] (1)由已知,可得f (x )=x (x -1)(x +1)=x 3-x ,故f ′(x )=3x 2-1.因此f (0)=0,f ′(0)=-1.因此曲线y =f (x )在点(0,f (0))处的切线方程为y -f (0)=f ′(0)(x -0),故所求切线方程为x +y =0. (2)由已知可得f (x )=(x -t 2+3)(x -t 2)(x -t 2-3) =(x -t 2)3-9(x -t 2)=x 3-3t 2x 2+(3t 22-9)x -t 32+9t 2.故f ′(x )=3x 2-6t 2x +3t 22-9.令f ′(x )=0,解得x =t 2-3或x =t 2+ 3. 当x 变化时,f ′(x ),f (x )的变化情况如下表:[解题技法] 求函数的极值或极值点的步骤(1)求导数f ′(x ),不要忘记函数f (x )的定义域; (2)求方程f ′(x )=0的根;(3)检查在方程的根的左右两侧f ′(x )的符号,确定极值点或函数的极值. 考法(二) 已知函数极值点或极值求参数的值或范围[典例] (2018·北京高考节选)设函数f (x )=[ax 2-(3a +1)x +3a +2]e x ,若f (x )在x =1处取得极小值,求a 的取值范围.[解] 由f (x )=[ax 2-(3a +1)x +3a +2]e x ,得f ′(x )=[ax 2-(a +1)x +1]e x =(ax -1)(x -1)e x . 若a >1,则当x ∈⎝⎛⎭⎫1a ,1时,f ′(x )<0; 当x ∈(1,+∞)时,f ′(x )>0. 所以f (x )在x =1处取得极小值.若a ≤1,则当x ∈(0,1)时,ax -1≤x -1<0, 所以f ′(x )>0.所以1不是f (x )的极小值点.综上可知,a 的取值范围是(1,+∞).[解题技法]已知函数极值点或极值求参数的2个要领[题组训练]1.设函数f (x )=2x+ln x ,则( )A .x =12为f (x )的极大值点B .x =12为f (x )的极小值点C .x =2为f (x )的极大值点D .x =2为f (x )的极小值点解析:选D ∵f (x )=2x+ln x (x >0),∴f ′(x )=-2x 2+1x ,令f ′(x )=0,则x =2.当0<x <2时,f ′(x )<0;当x >2时,f ′(x )>0. 所以x =2为f (x )的极小值点.2.(2019·广州高中综合测试)已知函数f (x )=x 3+ax 2+bx +a 2在x =1处的极值为10,则数对(a ,b )为( )A .(-3,3)B .(-11,4)C .(4,-11)D .(-3,3)或(4,-11)解析:选Cf ′(x )=3x 2+2ax +b ,依题意可得⎩⎪⎨⎪⎧f ′(1)=0,f (1)=10,即⎩⎪⎨⎪⎧3+2a +b =0,1+a +b +a 2=10,消去b 可得a 2-a -12=0,解得a =-3或a =4,故⎩⎪⎨⎪⎧a =-3,b =3或⎩⎪⎨⎪⎧a =4,b =-11.当⎩⎪⎨⎪⎧a =-3,b =3时,f ′(x )=3x 2-6x +3=3(x-1)2≥0,这时f (x )无极值,不合题意,舍去,故选C.3.设函数f (x )=ax 3-2x 2+x +c (a >0).(1)当a =1,且函数f (x )的图象过点(0,1)时,求函数f (x )的极小值; (2)若f (x )在(-∞,+∞)上无极值点,求a 的取值范围. 解:f ′(x )=3ax 2-4x +1.(1)函数f (x )的图象过点(0,1)时,有f (0)=c =1.当a =1时,f (x )=x 3-2x 2+x +1,f ′(x )=3x 2-4x +1, 由f ′(x )>0,解得x <13或x >1;由f ′(x )<0,解得13<x <1.所以函数f (x )在⎝⎛⎭⎫-∞,13和(1,+∞)上单调递增,在⎝⎛⎭⎫13,1上单调递减, 所以函数f (x )的极小值是f (1)=13-2×12+1+1=1. (2)若f (x )在(-∞,+∞)上无极值点, 则f (x )在(-∞,+∞)上是单调函数,即f ′(x )=3ax 2-4x +1≥0或f ′(x )=3ax 2-4x +1≤0恒成立. 因为a >0,所以f ′(x )=3ax 2-4x +1≥0在(-∞,+∞)上恒成立, 则有Δ=(-4)2-4×3a ×1≤0,即16-12a ≤0,解得a ≥43.故a 的取值范围为⎣⎡⎭⎫43,+∞. 考点二 利用导数解决函数的最值问题[典例] (2017·北京高考)已知函数f (x )=e x cos x -x .(1)求曲线y =f (x )在点(0,f (0))处的切线方程; (2)求函数f (x )在区间⎣⎡⎦⎤0,π2上的最大值和最小值. [解] (1)因为f (x )=e x cos x -x ,所以f ′(x )=e x (cos x -sin x )-1,f ′(0)=0. 又因为f (0)=1,所以曲线y =f (x )在点(0,f (0))处的切线方程为y =1. (2)设h (x )=e x (cos x -sin x )-1,则h ′(x )=e x (cos x -sin x -sin x -cos x )=-2e x sin x . 当x ∈⎝⎛⎭⎫0,π2时,h ′(x )<0, 所以h (x )在区间⎣⎡⎦⎤0,π2上单调递减. 所以对任意x ∈⎝⎛⎦⎤0,π2,有h (x )<h (0)=0, 即f ′(x )<0.所以函数f (x )在区间⎣⎡⎦⎤0,π2上单调递减. 因此f (x )在区间⎣⎡⎦⎤0,π2上的最大值为f (0)=1, 最小值为f ⎝⎛⎭⎫π2=-π2.[解题技法]导数法求给定区间上函数的最值问题的一般步骤(1)求函数f (x )的导数f ′(x );(2)求f (x )在给定区间上的单调性和极值; (3)求f (x )在给定区间上的端点值;(4)将f (x )的各极值与f (x )的端点值进行比较,确定f (x )的最大值与最小值; (5)反思回顾,查看关键点,易错点和解题规范. [题组训练]1.(2018·珠海摸底)如图,将一张16 cm ×10 cm 的长方形纸片剪下四个全等的小正方形,使得剩余部分经过折叠能糊成一个无盖的长方体纸盒,则这个纸盒的最大容积是________ cm 3.解析:设剪下的四个小正方形的边长为x cm ,则经过折叠以后,糊成的长方体纸盒是一个底面是长为(16-2x ) cm ,宽为(10-2x ) cm 的长方形,其面积为(16-2x )(10-2x )cm 2,长方体纸盒的高为x cm ,则体积V =(16-2x )(10-2x )×x =4x 3-52x 2+160x (0<x <5)cm 3,所以V ′=12(x -2)·⎝⎛⎭⎫x -203,由V ′>0,得0<x <2,则函数V =4x 3-52x 2+160x (0<x <5)在(0,2)上单调递增;由V ′<0,得2<x <5,则函数V =4x 3-52x 2+160x (0<x <5)在(2,5)上单调递减,所以当x =2时,V max =144(cm 3). 答案:1442.已知函数f (x )=ln x -a x.(1)若a >0,试判断f (x )在定义域内的单调性; (2)若f (x )在[1,e]上的最小值为32,求实数a 的值.解:(1)由题意得f (x )的定义域是(0,+∞),且f ′(x )=x +ax 2, 因为a >0,所以f ′(x )>0, 故f (x )在(0,+∞)上单调递增. (2)由(1)可得f ′(x )=x +ax 2,因为x ∈[1,e],①若a ≥-1,则x +a ≥0,即f ′(x )≥0在[1,e]上恒成立, 此时f (x )在[1,e]上单调递增, 所以f (x )min =f (1)=-a =32,所以a =-32(舍去).②若a ≤-e ,则x +a ≤0,即f ′(x )≤0在[1,e]上恒成立, 此时f (x )在[1,e]上单调递减, 所以f (x )min =f (e)=1-a e =32,所以a =-e2(舍去).③若-e<a <-1,令f ′(x )=0,得x =-a , 当1<x <-a 时,f ′(x )<0, 所以f (x )在(1,-a )上单调递减; 当-a <x <e 时,f ′(x )>0, 所以f (x )在(-a ,e)上单调递增,所以f (x )min =f (-a )=ln(-a )+1=32,所以a =- e.综上,a =- e.[课时跟踪检测]A 级1.(2019·辽宁鞍山一中模拟)已知函数f (x )=x 3-3x -1,在区间[-3,2]上的最大值为M ,最小值为N ,则M -N =( )A .20B .18C .3D .0解析:选A ∵f ′(x )=3x 2-3=3(x -1)(x +1),∴f (x )在(-∞,-1)和(1,+∞)上单调递增,在(-1,1)上单调递减,又∵f (-3)=-19,f (-1)=1,f (1)=-3,f (2)=1,∴M =1,N =-19,M -N =1-(-19)=20.2.(2018·梅州期末)函数y =f (x )的导函数的图象如图所示,则下列说法错误的是( )A .(-1,3)为函数y =f (x )的单调递增区间B .(3,5)为函数y =f (x )的单调递减区间C .函数y =f (x )在x =0处取得极大值D .函数y =f (x )在x =5处取得极小值解析:选C 由函数y =f (x )的导函数的图象可知,当x <-1或3<x <5时,f ′(x )<0,y =f (x )单调递减;当x >5或-1<x <3时,f ′(x )>0,y =f (x )单调递增.所以函数y =f (x )的单调递减区间为(-∞,-1),(3,5),单调递增区间为(-1,3),(5,+∞).函数y =f (x )在x =-1,5处取得极小值,在x =3处取得极大值,故选项C 错误.3.(2019·湖北襄阳四校联考)函数f (x )=12x 2+x ln x -3x 的极值点一定在区间( )A .(0,1)内B .(1,2)内C .(2,3)内D .(3,4)内解析:选B 函数的极值点即导函数的零点,f ′(x )=x +ln x +1-3=x +ln x -2,则f ′(1)=-1<0,f ′(2)=ln 2>0,由零点存在性定理得f ′(x )的零点在(1,2)内,故选B.4.已知函数f (x )=x 3+3x 2-9x +1,若f (x )在区间[k,2]上的最大值为28,则实数k 的取值范围为( ) A .[-3,+∞) B .(-3,+∞) C .(-∞,-3)D .(-∞,-3]解析:选D 由题意知f ′(x )=3x 2+6x -9,令f ′(x )=0,解得x =1或x =-3,所以f ′(x ),f (x )随x 的变化情况如下表:5.(2019·皖南八校联考)已知函数f (x )=-13x 3+bx 2+cx +bc 在x =1处有极值-43,则b =( )A .-1B .1C .1或-1D .-1或3解析:选A f ′(x )=-x 2+2bx +c ,因为f (x )在x =1处有极值-43,所以⎩⎪⎨⎪⎧f ′(1)=-1+2b +c =0,f (1)=-13+b +c +bc =-43,Δ=4b 2+4c >0,解得⎩⎪⎨⎪⎧b =-1,c =3,故选A.6.设直线x =t 与函数h (x )=x 2,g (x )=ln x 的图象分别交于点M ,N ,则当|MN |最小时t 的值为( )A .1 B.12C.52D.22解析:选D 由已知条件可得|MN |=t 2-ln t ,设f (t )=t 2-ln t (t >0),则f ′(t )=2t -1t ,令f ′(t )=0,得t =22, 当0<t <22时,f ′(t )<0;当t >22时,f ′(t )>0. ∴当t =22时,f (t )取得最小值,即|MN |取得最小值时t =22. 7.(2019·江西阶段性检测)已知函数y =ax -1x2在x =-1处取得极值,则a =________.解析:因为y ′=a +2x 3,所以当x =-1时,a -2=0,所以a =2,经验证,可得函数y =2x -1x 2在x =-1处取得极值,因此a =2. 答案:28.f (x )=2x +1x 2+2的极小值为________.解析:f ′(x )=2(x 2+2)-2x (2x +1)(x 2+2)2=-2(x +2)(x -1)(x 2+2)2.令f ′(x )<0,得x <-2或x >1; 令f ′(x )>0,得-2<x <1.∴f (x )在(-∞,-2),(1,+∞)上是减函数,在(-2,1)上是增函数, ∴f (x )极小值=f (-2)=-12.答案:-129.若商品的年利润y (万元)与年产量x (百万件)的函数关系式为y =-x 3+27x +123(x >0),则获得最大利润时的年产量为________百万件. 解析:y ′=-3x 2+27=-3(x +3)(x -3),当0<x <3时,y ′>0;当x >3时,y ′<0. 故当x =3时,该商品的年利润最大. 答案:310.已知函数f (x )=x 3+3ax 2+3bx +c 在x =2处有极值,其图象在x =1处的切线平行于直线6x +2y +5=0,则f (x )的极大值与极小值之差为________. 解析:因为f ′(x )=3x 2+6ax +3b ,所以⎩⎪⎨⎪⎧ f ′(2)=3×22+6a ×2+3b =0,f ′(1)=3×12+6a +3b =-3⇒⎩⎪⎨⎪⎧a =-1,b =0.所以y ′=3x 2-6x ,令3x 2-6x =0,得x =0或x =2. 当x <0或x >2时,y ′>0;当0<x <2时,y ′<0.故当x =0时,f (x )取得极大值,当x =2时,f (x )取得极小值, 所以f (x )极大值-f (x )极小值=f (0)-f (2)=4. 答案:411.设函数f (x )=a ln xx+b (a ,b ∈R ),已知曲线y =f (x )在点(1,0)处的切线方程为y =x -1.(1)求实数a ,b 的值; (2)求f (x )的最大值.解:(1)因为f (x )的定义域为(0,+∞),f ′(x )=a (1-ln x )x 2.所以f ′(1)=a ,又因为切线斜率为1,所以a =1. 由曲线y =f (x )过点(1,0),得f (1)=b =0. 故a =1,b =0.(2)由(1)知f (x )=ln xx ,f ′(x )=1-ln x x 2.令f ′(x )=0,得x =e.当0<x <e 时,有f ′(x )>0,得f (x )在(0,e)上是增函数; 当x >e 时,有f ′(x )<0,得f (x )在(e ,+∞)上是减函数. 故f (x )在x =e 处取得最大值f (e)=1e .12.已知函数f (x )=ln x -ax (a ∈R ).(1)当a =12时,求f (x )的极值;(2)讨论函数f (x )在定义域内极值点的个数.解:(1)当a =12时,f (x )=ln x -12x ,函数f (x )的定义域为(0,+∞),f ′(x )=1x -12=2-x2x.令f ′(x )=0,得x =2,于是当x 变化时,f ′(x ),f (x )的变化情况如下表:故f (x )(2)由(1)知,函数f (x )的定义域为(0,+∞),f ′(x )=1x -a =1-ax x(x >0).当a ≤0时,f ′(x )>0在(0,+∞)上恒成立,即函数f (x )在(0,+∞)上单调递增,此时函数f (x )在定义域上无极值点; 当a >0时,令f ′(x )=0,得x =1a .当x ∈⎝⎛⎭⎫0,1a 时,f ′(x )>0, 当x ∈⎝⎛⎭⎫1a ,+∞时,f ′(x )<0, 故函数f (x )在x =1a处有极大值.综上所述,当a ≤0时,函数f (x )无极值点; 当a >0时,函数f (x )有一个极大值点.B 级1.已知函数f (x )=x 3-3ax +b 的单调递减区间为(-1,1),其极小值为2,则f (x )的极大值是________. 解析:因为f (x )的单调递减区间为(-1,1),所以a >0.由f ′(x )=3x 2-3a =3(x -a )(x +a ),可得a =1, 由f (x )=x 3-3x +b 在x =1处取得极小值2, 可得1-3+b =2,故b =4.所以f (x )=x 3-3x +4的极大值为f (-1)=(-1)3-3×(-1)+4=6. 答案:62.(2019·“超级全能生”高考全国卷26省联考)已知函数f (x )=t 3x 3-32x 2+2x +t 在区间(0,+∞)上既有极大值又有极小值,则t 的取值范围是________.解析:f ′(x )=tx 2-3x +2,由题意可得f ′(x )=0在(0,+∞)上有两个不等实根,即tx 2-3x +2=0在(0,+∞)有两个不等实根,所以⎩⎪⎨⎪⎧t ≠0,3t >0,2t >0,Δ=9-8t >0,解得0<t <98.答案:⎝⎛⎭⎫0,98 3.已知函数f (x )=a ln x +1x(a >0).(1)求函数f (x )的单调区间和极值;(2)是否存在实数a ,使得函数f (x )在[1,e]上的最小值为0?若存在,求出a 的值;若不存在,请说明理由.贾老师数学解:由题意,知函数的定义域为(0,+∞),f ′(x )=a x -1x 2=ax -1x 2(a >0). (1)由f ′(x )>0,解得x >1a, 所以函数f (x )的单调递增区间是⎝⎛⎭⎫1a ,+∞; 由f ′(x )<0,解得0<x <1a, 所以函数f (x )的单调递减区间是⎝⎛⎭⎫0,1a . 所以当x =1a 时,函数f (x )有极小值f ⎝⎛⎭⎫1a =a ln 1a+a =a -a ln a ,无极大值. (2)不存在实数a 满足条件.由(1)可知,当x ∈⎝⎛⎭⎫0,1a 时,函数f (x )单调递减; 当x ∈⎝⎛⎭⎫1a ,+∞时,函数f (x )单调递增.①若0<1a≤1,即a ≥1时,函数f (x )在[1,e]上为增函数, 故函数f (x )的最小值为f (1)=a ln 1+1=1,显然1≠0,故不满足条件a ≥1.②若1<1a <e ,即1e<a <1时,函数f (x )在⎣⎡⎭⎫1,1a 上为减函数,在⎝⎛⎦⎤1a ,e 上为增函数, 故函数f (x )的最小值为f (x )的极小值f ⎝⎛⎭⎫1a =a ln 1a+a =a -a ln a =a (1-ln a )=0,即ln a =1,解得a =e ,故不满足条件1e<a <1. ③若1a ≥e ,即0<a ≤1e 时,函数f (x )在[1,e]上为减函数,故函数f (x )的最小值为f (e)=a ln e +1e=a +1e=0, 即a =-1e ,故不满足条件0<a ≤1e. 综上所述,不存在这样的实数a ,使得函数f (x )在[1,e]上的最小值为0.。