数学参考答案 玉林市2020年中考模拟考试(二)
- 格式:doc
- 大小:252.50 KB
- 文档页数:4
广西玉林市2020版中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)若x=1,则|x-4|=()A . 3B . -3C . 5D . -52. (2分) (2019七上·诸暨期末) 下列计算正确的是()A .B .C .D .3. (2分) (2019九下·河南月考) 如图是正方体的表面展开图,请问展开前与“我”字相对的面上的字是()A . 是B . 好C . 朋D . 友4. (2分) (2020七上·蚌埠期末) 中华汉字,源远流长.某校为了传承中华优秀传统文化,组织了一次全校2000名学生参加的“汉字听写”大赛,为了解本次大赛的成绩,学校随机抽取了其中100名学生的成绩进行统计分析在这个问题中,下列说法:①这2000名学生的“汉字听写”大赛成绩的全体是总体②每个学生是个体③100名学生是总体的一个样本④样本容量是100其中说法正确的有()A . 1个B . 2个C . 3个D . 4个5. (2分) (2017九上·宜城期中) 菱形ABCD的一条对角线长为6,边AB的长是方程的一个根,则菱形ABCD的周长是()A . 20或8B . 8C . 20D . 126. (2分)(2020·杭州) 如图,已知BC是⊙O的直径,半径OA⊥BC,点D在劣弧AC上(不与点A,点C重合),BD与OA交于点E,设∠AED=α,∠AOD=β,则()A . 3α+β=180°B . 2α+β=180°C . 3α-β=90°D . 2α-β=90°7. (2分)小明在梳理平行四边形、矩形、菱形、正方形的性质时,发现它们的对角线都具有一个共同的性质,这条性质是对角线()A . 互相平分B . 相等C . 互相垂直D . 平分一组对角8. (2分) (2019八上·龙湖期末) 解分式方程=3时,去分母后变形为()A . 2-(x+2)=3B . 2+(x+2)=3C . 2+(x+2)=3(x-1)D . 2-(x+2)=3(x-1)9. (2分) (2018九上·桥东月考) 已知抛物线y=x2+2x上三点A(﹣5,y1),B(2.5,y2),C(12,y3),则y1 , y2 , y3满足的关系式为()A . y1<y2<y3B . y3<y2<y1C . y2<y1<y3D . y3<y1<y210. (2分) (2018九上·温州开学考) 如图,在正方OABC中,点B的坐标是(4,4),点E、F分别在边BC,BA上, .若,则点F的纵坐标是()A . 1B .C . 2D .二、填空题 (共5题;共5分)11. (1分) (2017七上·十堰期末) 2016年是“红军长征胜利80周年”。
广西省玉林市2019-2020学年第二次中考模拟考试数学试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为()A.23B.2 C.3 D.62.下列计算正确的是()A.(a+2)(a﹣2)=a2﹣2 B.(a+1)(a﹣2)=a2+a﹣2C.(a+b)2=a2+b2D.(a﹣b)2=a2﹣2ab+b23.《九章算术》是中国古代数学的重要著作,方程术是它的最高成就,其中记载:今有牛五、羊二,直金十两;牛二、羊五,直金八两。
问:牛、羊各直金几何?译文:“假设有 5 头牛、2 只羊,值金10 两;2 头牛、5 只羊,值金8 两。
问:每头牛、每只羊各值金多少两?” 设每头牛值金x 两,每只羊值金y 两,则列方程组错误的是()A.5210258x yx y+=⎧⎨+=⎩B.52107718x yx y+=⎧⎨+=⎩C.7718258x yx y+=⎧⎨+=⎩D.5282510x yx y+=⎧⎨+=⎩4.如图,BD为⊙O的直径,点A为弧BDC的中点,∠ABD=35°,则∠DBC=()A.20°B.35°C.15°D.45°5.已知抛物线y=x2+(2a+1)x+a2﹣a,则抛物线的顶点不可能在()A.第一象限B.第二象限C.第三象限D.第四象限6.下列实数0,233π,其中,无理数共有()A.1个B.2个C.3个D.4个7.已知某校女子田径队23人年龄的平均数和中位数都是13岁,但是后来发现其中一位同学的年龄登记错误,将14岁写成15岁,经重新计算后,正确的平均数为a岁,中位数为b岁,则下列结论中正确的是()A.a<13,b=13 B.a<13,b<13 C.a>13,b<13 D.a>13,b=138.如图,已知AB ∥CD ,∠1=115°,∠2=65°,则∠C 等于( )A .40°B .45°C .50°D .60°9.如图,已知A 、B 两点的坐标分别为(-2,0)、(0,1),⊙C 的圆心坐标为(0,-1),半径为1.若D 是⊙C 上的一个动点,射线AD 与y 轴交于点E ,则△ABE 面积的最大值是A .3B .113C .103D .410.在一次体育测试中,10名女生完成仰卧起坐的个数如下:38,52,47,46,50,50,61,72,45,48,则这10名女生仰卧起坐个数不少于50个的频率为( )A .0.3B .0.4C .0.5D .0.611.如图,已知数轴上的点A 、B 表示的实数分别为a ,b ,那么下列等式成立的是( )A .a b a b +=-B .a b a b +=--C .a b b a +=-D .a b a b +=+12.下列命题中,错误的是( )A .三角形的两边之和大于第三边B .三角形的外角和等于360°C .等边三角形既是轴对称图形,又是中心对称图形D .三角形的一条中线能将三角形分成面积相等的两部分二、填空题:(本大题共6个小题,每小题4分,共24分.)13.16的算术平方根是 .14.如图,在△ABC 中,3∠BAC=120°,点D 、E 都在边BC 上,∠DAE=60°.若BD=2CE ,则DE 的长为________.15.如图,已知△ABC ,AB=6,AC=5,D 是边AB 的中点,E 是边AC 上一点,∠ADE=∠C ,∠BAC 的平分线分别交DE 、BC 于点F 、G ,那么AF AG 的值为__________.16.若式子x 1x+有意义,则x 的取值范围是 . 17.在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中随机抽取一张,抽到中心对称图形的概率是________.18.如图,在矩形ABCD 中,E 是AD 边的中点,BE AC ⊥,垂足为点F ,连接DF ,分析下列四个结论:AEF V ①∽CAB V ;CF 2AF =②;DF DC =③;tan CAD 2.∠=④其中正确的结论有______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在Rt △ABC 中,∠C =90°,AC 5=,tanB 12=,半径为2的⊙C 分别交AC ,BC 于点D 、E ,得到DE 弧.求证:AB 为⊙C 的切线.求图中阴影部分的面积.20.(6分)某超市对今年“元旦”期间销售A 、B 、C 三种品牌的绿色鸡蛋情况进行了统计,并绘制如图所示的扇形统计图和条形统计图.根据图中信息解答下列问题:该超市“元旦”期间共销售个绿色鸡蛋,A品牌绿色鸡蛋在扇形统计图中所对应的扇形圆心角是度;补全条形统计图;如果该超市的另一分店在“元旦”期间共销售这三种品牌的绿色鸡蛋1500个,请你估计这个分店销售的B种品牌的绿色鸡蛋的个数?21.(6分)解不等式组12342xx+>⎧⎨-≤⎩①②,请结合题意填空,完成本题的解答.(1)解不等式①,得_____;(2)解不等式②,得_____;(3)把不等式①和②的解集在数轴上表示出来;(4)原不等式组的解集为_____.22.(8分)如图,AB是⊙O的直径,D是⊙O上一点,点E是AC的中点,过点A作⊙O的切线交BD 的延长线于点F.连接AE并延长交BF于点C.(1)求证:AB=BC;(2)如果AB=5,tan∠FAC=12,求FC的长.23.(8分)如图,在平面直角坐标系中,函数的图象经过点,直线与x轴交于点.求的值;过第二象限的点作平行于x轴的直线,交直线于点C,交函数的图象于点D.①当时,判断线段PD与PC的数量关系,并说明理由;②若,结合函数的图象,直接写出n 的取值范围.24.(10分)先化简:2222421121x x x x x x x ---÷+--+,然后在不等式2x ≤的非负整数解中选择一个适当的数代入求值. 25.(10分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y (千克)与销售价x (元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为w 元.求w 与x 之间的函数关系式.该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?26.(12分)《孙子算经》是中国传统数学的重要著作之一,其中记载的“荡杯问题”很有趣.《孙子算经》记载“今有妇人河上荡杯.津吏问曰:‘杯何以多?’妇人曰:‘家有客.’津吏曰:‘客几何?’妇人曰:‘二人共饭,三人共羹,四人共肉,凡用杯六十五.’不知客几何?”译文:“2人同吃一碗饭,3人同吃一碗羹,4人同吃一碗肉,共用65个碗,问有多少客人?”27.(12分)一个不透明的口袋中有四个完全相同的小球,把它们分别标号为1,2,3,4.随机摸取一个小球然后放回,再随机摸出一个小球,求下列事件的概率:两次取出的小球标号相同;两次取出的小球标号的和等于4.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.A【解析】连接BD,交AC于O,∵正方形ABCD,∴OD=OB,AC⊥BD,∴D和B关于AC对称,则BE交于AC的点是P点,此时PD+PE最小,∵在AC上取任何一点(如Q点),QD+QE都大于PD+PE(BE),∴此时PD+PE最小,此时PD+PE=BE,∵正方形的面积是12,等边三角形ABE,∴BE=AB=1223,即最小值是23,故选A.【点睛】本题考查了正方形的性质,等边三角形的性质,轴对称-最短路线问题等知识点的应用,关键是找出PD+PE最小时P点的位置.2.D【解析】A、原式=a2﹣4,不符合题意;B、原式=a2﹣a﹣2,不符合题意;C、原式=a2+b2+2ab,不符合题意;D、原式=a2﹣2ab+b2,符合题意,故选D3.D【解析】【分析】由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,据此可得答案.【详解】解:设每头牛值金x两,每只羊值金y两,由5头牛、2只羊,值金10两可得:5x+2y=10,由2头牛、5只羊,值金8两可得2x+5y=8,则7头牛、7只羊,值金18两,据此可知7x+7y=18,所以方程组5282510x yx y+=⎧⎨+=⎩错误,故选:D.【点睛】本题主要考查由实际问题抽象出二元一次方程组,解题的关键是理解题意找到相等关系及等式的基本性质.4.A【解析】【分析】根据∠ABD=35°就可以求出»AD的度数,再根据»180BD︒=,可以求出»AB,因此就可以求得ABC∠的度数,从而求得∠DBC【详解】解:∵∠ABD=35°,∴的度数都是70°,∵BD为直径,∴的度数是180°﹣70°=110°,∵点A为弧BDC的中点,∴的度数也是110°,∴的度数是110°+110°﹣180°=40°,∴∠DBC==20°,故选:A.【点睛】本题考查了等腰三角形性质、圆周角定理,主要考查学生的推理能力.5.D【解析】【分析】求得顶点坐标,得出顶点的横坐标和纵坐标的关系式,即可求得.【详解】抛物线y=x2+(2a+1)x+a2﹣a的顶点的横坐标为:x=﹣212a+=﹣a﹣12,纵坐标为:y =()()224214a a a --+=﹣2a ﹣14, ∴抛物线的顶点横坐标和纵坐标的关系式为:y =2x+34, ∴抛物线的顶点经过一二三象限,不经过第四象限,故选:D .【点睛】 本题考查了二次函数的性质,得到顶点的横纵坐标的关系式是解题的关键.6.B【解析】【分析】根据无理数的概念可判断出无理数的个数.【详解】解:无理数有:3,π.故选B.【点睛】本题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数. 7.A【解析】试题解析:∵原来的平均数是13岁,∴13×23=299(岁),∴正确的平均数a=≈12.97<13,∵原来的中位数13岁,将14岁写成15岁,最中间的数还是13岁,∴b=13;故选A .考点:1.平均数;2.中位数.8.C【解析】分析:根据两直线平行,同位角相等可得1115EGD ∠=∠=︒,再根据三角形内角与外角的性质可得∠C 的度数.详解:∵AB ∥CD ,∴1115EGD ∠=∠=︒,∵265∠=o,o o o,∴1156550∠=-=C故选C.点睛:考查平行线的性质和三角形外角的性质,三角形的一个外角等于与它不相邻的两个内角的和. 9.B【解析】试题分析:解:当射线AD与⊙C相切时,△ABE面积的最大.连接AC,∵∠AOC=∠ADC=90°,AC=AC,OC=CD,∴Rt△AOC≌Rt△ADC,∴AD=AO=2,连接CD,设EF=x,∴DE2=EF•OE,∵CF=1,∴DE=,∴△CDE∽△AOE,∴=,即=,解得x=,S△ABE===.故选B.考点:1.切线的性质;2.三角形的面积.10.C【解析】【分析】用仰卧起坐个数不少于10个的频数除以女生总人数10计算即可得解.【详解】仰卧起坐个数不少于10个的有12、10、10、61、72共1个,所以,频率=510=0.1.故选C.【点睛】本题考查了频数与频率,频率=频数数据总和.11.B【解析】【分析】根据图示,可得:b<0<a,|b|>|a|,据此判断即可.【详解】∵b<0<a,|b|>|a|,∴a+b<0,∴|a+b|= -a-b.故选B.【点睛】此题主要考查了实数与数轴的特征和应用,以及绝对值的含义和求法,要熟练掌握.12.C【解析】【分析】根据三角形的性质即可作出判断.【详解】解:A、正确,符合三角形三边关系;B、正确;三角形外角和定理;C、错误,等边三角形既是轴对称图形,不是中心对称图形;D、三角形的一条中线能将三角形分成面积相等的两部分,正确.故选:C.【点睛】本题考查了命题真假的判断,属于基础题.根据定义:符合事实真理的判断是真命题,不符合事实真理的判断是假命题,不难选出正确项.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.4 【解析】【详解】正数的正的平方根叫算术平方根,0的算术平方根还是0;负数没有平方根也没有算术平方根∵2(4)16±=∴16的平方根为4和-4∴16的算术平方根为414.13-1.【解析】【分析】将△ABD 绕点A 逆时针旋转120°得到△ACF ,取CF 的中点G ,连接EF 、EG ,由AB=AC=23、∠BAC=120°,可得出∠ACB=∠B=10°,根据旋转的性质可得出∠ECG=60°,结合CF=BD=2CE 可得出△CEG 为等边三角形,进而得出△CEF 为直角三角形,通过解直角三角形求出BC 的长度以及证明全等找出DE=FE ,设EC=x ,则BD=CF=2x ,DE=FE=6-1x ,在Rt △CEF 中利用勾股定理可得出FE=3x ,利用FE=6-1x=3x 可求出x 以及FE 的值,此题得解.【详解】将△ABD 绕点A 逆时针旋转120°得到△ACF ,取CF 的中点G ,连接EF 、EG ,如图所示.∵3,∠BAC=120°,∴∠ACB=∠B=∠ACF=10°,∴∠ECG=60°.∵CF=BD=2CE ,∴CG=CE ,∴△CEG 为等边三角形,∴EG=CG=FG ,∴∠EFG=∠FEG=12∠CGE=10°, ∴△CEF 为直角三角形.∵∠BAC=120°,∠DAE=60°,∴∠BAD+∠CAE=60°,∴∠FAE=∠FAC+∠CAE=∠BAD+∠CAE=60°.在△ADE 和△AFE 中,60AD AF DAE FAE AE AE ⎧⎪∠∠︒⎨⎪⎩====,∴△ADE ≌△AFE (SAS ),∴DE=FE .设EC=x ,则BD=CF=2x ,DE=FE=6-1x ,在Rt △CEF 中,∠CEF=90°,CF=2x ,EC=x ,x ,∴,,∴-1.故答案为:.【点睛】本题考查了全等三角形的判定与性质、勾股定理以及旋转的性质,通过勾股定理找出方程是解题的关键.15.35【解析】【分析】由题中所给条件证明△ADF ~△ACG ,可求出AF AG的值. 【详解】解:在△ADF 和△ACG 中,AB=6,AC=5,D 是边AB 的中点AG 是∠BAC 的平分线,∴∠DAF=∠CAG∠ADE =∠C∴△ADF ~△ACG∴35AF AD AG AC ==. 故答案为35. 【点睛】本题考查了相似三角形的判定和性质,难度适中,需熟练掌握.16.x 1≥-且x 0≠【解析】【详解】在实数范围内有意义, ∴x+1≥0,且x≠0,解得:x≥-1且x≠0.故答案为x≥-1且x≠0.17.35【解析】【分析】在形状为等腰三角形、圆、矩形、菱形、直角梯形的5张纸片中,中心对称图案的卡片是圆、矩形、菱形,直接利用概率公式求解即可求得答案.【详解】∵在:等腰三角形、圆、矩形、菱形和直角梯形中属于中心对称图形的有:圆、矩形和菱形3种, ∴从这5张纸片中随机抽取一张,抽到中心对称图形的概率为:35. 故答案为35. 18.①②③【解析】【分析】①证明∠EAC=∠ACB ,∠ABC=∠AFE=90°即可;②由AD ∥BC ,推出△AEF ∽△CBF ,得到AE AF BC CF =,由AE=12AD=12BC ,得到12AF CF =,即CF=2AF ; ③作DM ∥EB 交BC 于M ,交AC 于N ,证明DM 垂直平分CF ,即可证明;④设AE=a ,AB=b ,则AD=2a ,根据△BAE ∽△ADC ,得到2b a a b =,即a ,可得tan ∠CAD=2b a = 【详解】如图,过D作DM∥BE交AC于N,∵四边形ABCD是矩形,∴AD∥BC,∠ABC=90°,AD=BC,∵BE⊥AC于点F,∴∠EAC=∠ACB,∠ABC=∠AFE=90°,∴△AEF∽△CAB,故①正确;∵AD∥BC,∴△AEF∽△CBF,∴AE AF BC CF=,∵AE=12AD=12BC,∴12AFCF=,即CF=2AF,∴CF=2AF,故②正确;作DM∥EB交BC于M,交AC于N,∵DE∥BM,BE∥DM,∴四边形BMDE是平行四边形,∴BM=DE=12 BC,∴BM=CM,∴CN=NF,∵BE⊥AC于点F,DM∥BE,∴DN⊥CF,∴DM垂直平分CF,∴DF=DC,故③正确;设AE=a,AB=b,则AD=2a,由△BAE∽△ADC,∴2b aa b=,即2a,∴tan∠CAD=2 2ba=故答案为:①②③.【点睛】本题主要考查了相似三角形的判定和性质,矩形的性质,图形面积的计算以及解直角三角形的综合应用,正确的作出辅助线构造平行四边形是解题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19. (1)证明见解析;(2)1-π.【解析】【分析】(1)解直角三角形求出BC ,根据勾股定理求出AB ,根据三角形面积公式求出CF ,根据切线的判定得出即可;(2)分别求出△ACB 的面积和扇形DCE 的面积,即可得出答案.【详解】(1)过C 作CF ⊥AB 于F .∵在Rt △ABC 中,∠C =90°,AC 5=,tanB 12AC BC ==,∴BC =25,由勾股定理得:AB 22AC BC =+=1.∵△ACB 的面积S 1122AB CF AC BC =⨯⨯=⨯⨯,∴CF 525⨯==2,∴CF 为⊙C 的半径. ∵CF ⊥AB ,∴AB 为⊙C 的切线;(2)图中阴影部分的面积=S △ACB ﹣S 扇形DCE 219025252360π⨯==1﹣π. 【点睛】本题考查了勾股定理,扇形的面积,解直角三角形,切线的性质和判定等知识点,能求出CF 的长是解答此题的关键.20.(1)2400,60;(2)见解析;(3)500【解析】整体分析:(1)由C 品牌1200个占总数的50%可得鸡蛋的数量,用A 品牌占总数的百分比乘以360°即可;(2)计算出B 品牌的数量;(3)用B 品牌与总数的比乘以1500.解:(1)共销售绿色鸡蛋:1200÷50%=2400个,A品牌所占的圆心角:4002400×360°=60°;故答案为2400,60;(2)B品牌鸡蛋的数量为:2400﹣400﹣1200=800个,补全统计图如图:(3)分店销售的B种品牌的绿色鸡蛋为:8002400×1500=500个.21.(1)x>1;(1)x≤1;(3)答案见解析;(4)1<x≤1.【解析】【分析】根据一元一次不等式的解法分别解出两个不等式,根据不等式的解集的确定方法得到不等式组的解集.【详解】解:(1)解不等式①,得x>1;(1)解不等式②,得x≤1;(3)把不等式①和②的解集在数轴上表示出来:(4)原不等式组的解集为:1<x≤1.【点睛】本题考查了一元一次不等式组的解法,掌握确定解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到是解题的关键.22.(1)见解析;(2)10 3.【解析】分析:(1)由AB是直径可得BE⊥AC,点E为AC的中点,可知BE垂直平分线段AC,从而结论可证;(2)由∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,可得∠FAC=∠ABE,从而可设AE=x,BE=2x,由勾股定理求出AE、BE、AC的长. 作CH⊥AF于H,可证Rt△ACH∽Rt△BAC,列比例式求出HC、AH 的值,再根据平行线分线段成比例求出FH,然后利用勾股定理求出FC的值.详解:(1)证明:连接BE.∵AB是⊙O的直径,∴∠AEB=90°,∴BE⊥AC,而点E为AC的中点,∴BE垂直平分AC,∴BA=BC;(2)解:∵AF为切线,∴AF⊥AB,∵∠FAC+∠CAB=90°,∠CAB+∠ABE=90°,∴∠FAC=∠ABE,∴tan∠ABE=∠FAC=,在Rt△ABE中,tan∠ABE==,设AE=x,则BE=2x,∴AB=x,即x=5,解得x=,∴AC=2AE=2,BE=2作CH⊥AF于H,如图,∵∠HAC=∠ABE,∴Rt△ACH∽Rt△BAC,∴==,即==,∴HC=2,AH=4,∵HC∥AB,∴=,即=,解得FH=在Rt△FHC中,FC==.点睛:本题考查了圆周角定理的推论,线段垂直平分线的判定与性质,切线的性质,勾股定理,相似三角形的判定与性质,平行线分线段成比例定理,锐角三角函数等知识点及见比设参的数学思想,得到BE垂直平分AC是解(1)的关键,得到Rt△ACH∽Rt△BAC是解(2)的关键.23.(1).(2)①判断:.理由见解析;②或.【解析】【分析】(1)利用代点法可以求出参数;(2)①当时,即点P的坐标为,即可求出点的坐标,于是得出;②根据①中的情况,可知或再结合图像可以确定的取值范围;【详解】解:(1)∵函数的图象经过点,∴将点代入,即,得:∵直线与轴交于点,∴将点代入,即,得:(2)①判断:.理由如下:当时,点P的坐标为,如图所示:∴点C的坐标为,点D的坐标为∴,.∴.②由①可知当时所以由图像可知,当直线往下平移的时也符合题意,即,得;当时,点P的坐标为∴点C的坐标为,点D的坐标为∴,∴当时,即,也符合题意,所以的取值范围为:或.【点睛】本题主要考查了反比例函数和一次函数,熟练求反比例函数和一次函数解析式的方法、坐标与线段长度的转化和数形结合思想是解题关键.24.21x+;2.【解析】【分析】先将后面的两个式子进行因式分解并约分,然后计算减法,根据题意选择x=0代入化简后的式子即可得出答案.【详解】解:原式=()()()()2221 21112x xxx x x x---⋅++--=()21 211xxx x--++=21 x+2x≤的非负整数解有:2,1,0,其中当x取2或1时分母等于0,不符合条件,故x只能取0∴将x=0代入得:原式=2【点睛】本题考查的是分式的化简求值,注意选择数时一定要考虑化简前的式子是否有意义. 25.(1)2w2x120x1600=-+-;(2) 该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元;(3)该农户想要每天获得150元的销售利润,销售价应定为每千克25元.【解析】【分析】(1)根据销售额=销售量×销售价单x,列出函数关系式.(2)用配方法将(2)的函数关系式变形,利用二次函数的性质求最大值.(3)把y=150代入(2)的函数关系式中,解一元二次方程求x ,根据x 的取值范围求x 的值.【详解】解:(1)由题意得:()()()2w x 20y x 202x 802x 120x 1600=-⋅=--+=-+-, ∴w 与x 的函数关系式为:2w 2x 120x 1600=-+-.(2)()22w 2x 120x 16002x 30200=-+-=--+,∵﹣2<0,∴当x=30时,w 有最大值.w 最大值为2.答:该产品销售价定为每千克30元时,每天销售利润最大,最大销售利润2元.(3)当w=150时,可得方程﹣2(x ﹣30)2+2=150,解得x 1=25,x 2=3.∵3>28,∴x 2=3不符合题意,应舍去.答:该农户想要每天获得150元的销售利润,销售价应定为每千克25元.26.x=60【解析】【分析】设有x 个客人,根据题意列出方程,解出方程即可得到答案.【详解】解:设有x 个客人,则 65234x x x ++= 解得:x=60;∴有60个客人.【点睛】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键. 27.(1)14(2)316 【解析】【详解】试题分析:首先根据题意进行列表,然后求出各事件的概率.试题解析:(1)P(两次取得小球的标号相同)=41 164;(2)P(两次取得小球的标号的和等于4)=3 16.考点:概率的计算.。
广西省玉林市2019-2020学年中考数学二模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.在数轴上到原点距离等于3的数是( )A .3B .﹣3C .3或﹣3D .不知道 2.化简:(a+343a a --)(1﹣12a -)的结果等于( ) A .a ﹣2 B .a+2 C .23a a -- D .32a a -- 3.如图,梯形ABCD 中,AD ∥BC ,AB=DC ,DE ∥AB ,下列各式正确的是( )A .AB DC =u u u r u u u r B .DE DC =u u u v u u u v C .AB ED =u u u v u u u v D .AD BE =u u u v u u u v4.一个正比例函数的图象过点(2,﹣3),它的表达式为( )A .3y -2x =B .2y 3x =C .3y 2x =D .2y -3x = 5.某校决定从三名男生和两名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰为一男一女的概率是( )A .45B .35C .25D .156.已知一次函数 y=kx+b 的大致图象如图所示,则关于 x 的一元二次方程 x 2﹣2x+kb+1=0 的根的情况是( )A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .有一个根是 07.如图,△ABC 在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC 的面积为10,且sinA =5,那么点C 的位置可以在( )A .点C 1处B .点C 2处 C .点C 3处D .点C 4处8.2018年春运,全国旅客发送量达29.8亿人次,用科学记数法表示29.8亿,正确的是( ) A .29.8×109 B .2.98×109 C .2.98×1010 D .0.298×10109.如图,在Rt ABC ∆中,90,ABC BA BC ∠=︒=.点D 是AB 的中点,连结CD ,过点B 作BG CD ⊥,分别交CD CA 、于点E F 、,与过点A 且垂直于AB 的直线相交于点G ,连结DF .给出以下四个结论:①AG FG AB FB =;②点F 是GE 的中点;③23AF AB =;④6ABC BDF S S ∆∆=,其中正确的个数是( )A .4B .3C .2D .110.某班7名女生的体重(单位:kg )分别是35、37、38、40、42、42、74,这组数据的众数是( ) A .74 B .44 C .42 D .4011.1903年、英国物理学家卢瑟福通过实验证实,放射性物质在放出射线后,这种物质的质量将减少,减少的速度开始较快,后来较慢,实际上,放射性物质的质量减为原来的一半所用的时间是一个不变的量,我们把这个时间称为此种放射性物质的半衰期,如图是表示镭的放射规律的函数图象,根据图象可以判断,镭的半衰期为( )A .810 年B .1620 年C .3240 年D .4860 年12.下列各数中,最小的数是( )A .3-B .()2--C .0D .14- 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.化简:1m m -÷21m m-=_____. 14.如图,平面直角坐标系中,经过点B(﹣4,0)的直线y =kx+b 与直线y =mx+2相交于点A(32-,-1),则不等式mx+2<kx+b <0的解集为____.15.如图,直线4y x =+与双曲线k y x=(k≠0)相交于A (﹣1,a )、B 两点,在y 轴上找一点P ,当PA+PB 的值最小时,点P 的坐标为_________.16.九(5)班有男生27人,女生23人,班主任发放准考证时,任意抽取一张准考证,恰好是女生的准考证的概率是________________.17.如图,边长为6的菱形ABCD 中,AC 是其对角线,∠B=60°,点P 在CD 上,CP=2,点M 在AD 上,点N 在AC 上,则△PMN 的周长的最小值为_____________ .18.如图,矩形纸片ABCD 中,AB=3,AD=5,点P 是边BC 上的动点,现将纸片折叠使点A 与点P 重合,折痕与矩形边的交点分别为E ,F ,要使折痕始终与边AB ,AD 有交点,BP 的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在△ABC 中,∠C =90°,∠CAB =50°,按以下步骤作图:①以点A 为圆心,小于AC 长为半径画弧,分别交AB 、AC 于点E 、F ;②分别以点E 、F 为圆心,大于12EF 长为半径画弧,两弧相交于点G ;③作射线AG ,交BC 边于点D .则∠ADC 的度数为( )A.40°B.55°C.65°D.75°20.(6分)某数学教师为了解所教班级学生完成数学课前预习的具体情况,对该班部分学生进行了一学期的跟踪调查,将调查结果分为四类并给出相应分数,A:很好,95分;B:较好75分;C:一般,60分;D:较差,30分.并将调查结果绘制成以下两幅不完整的统计图,请你根据统计图解答下列问题:(Ⅰ)该教师调查的总人数为,图②中的m值为;(Ⅱ)求样本中分数值的平均数、众数和中位数.21.(6分)在“植树节”期间,小王、小李两人想通过摸球的方式来决定谁去参加学校植树活动,规则如下:在两个盒子内分别装入标有数字1,2,3,4的四个和标有数字1,2,3的三个完全相同的小球,分别从两个盒子中各摸出一个球,如果所摸出的球上的数字之和小于5,那么小王去,否则就是小李去.(1)用树状图或列表法求出小王去的概率;(2)小李说:“这种规则不公平”,你认同他的说法吗?请说明理由.22.(8分)计算:|﹣2|++(2017﹣π)0﹣4cos45°23.(8分)如图,轮船从点A处出发,先航行至位于点A的南偏西15°且点A相距100km的点B处,再航行至位于点A的南偏东75°且与点B相距200km的点C处.(1)求点C与点A的距离(精确到1km);(2)确定点C相对于点A的方向.(参考数据:)24.(10分)先化简,再求值:22111211a a a a a a ---÷----,其中21a =+. 25.(10分)如图,AB 为⊙O 的直径,点E 在⊙O 上,C 为»BE的中点,过点C 作直线CD ⊥AE 于D ,连接AC 、BC . (1)试判断直线CD 与⊙O 的位置关系,并说明理由;(2)若AD=2,AC=6,求AB 的长.26.(12分)观察规律并填空.21133(1)2224-=⨯=221113242(1)(1)2322333--=⨯⨯⨯=2221111324355(1)(1)(1)2342233448---=⨯⨯⨯⨯⨯= ⋯⋯2222211111(1)(1)(1)(1)(1)2345n -----=L L ______(用含n 的代数式表示,n 是正整数,且 n ≥ 2) 27.(12分)甲、乙两个商场出售相同的某种商品,每件售价均为3000元,并且多买都有一定的优惠.甲商场的优惠条件是:第一件按原售价收费,其余每件优惠30%;乙商场的优惠条件是:每件优惠25%.设所买商品为x 件时,甲商场收费为y 1元,乙商场收费为y 2元.分别求出y 1,y 2与x 之间的关系式;当甲、乙两个商场的收费相同时,所买商品为多少件?当所买商品为5件时,应选择哪个商场更优惠?请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】根据数轴上到原点距离等于3的数为绝对值是3的数即可求解.【详解】绝对值为3的数有3,-3.故答案为C.【点睛】本题考查数轴上距离的意义,解题的关键是知道数轴上的点到原点的距离为绝对值.2.B【解析】【分析】【详解】解:原式=(3)342132a a a a a a -+---⋅--=24332a a a a --⋅--=(2)(2)332a a a a a +--⋅--=2a +. 故选B .考点:分式的混合运算.3.D【解析】∵AD//BC ,DE//AB ,∴四边形ABED 是平行四边形,∴AB DE =u u u v u u u v ,AD BE =u u u v u u u v ,∴选项A 、C 错误,选项D 正确,选项B 错误,故选D.4.A【解析】【分析】利用待定系数法即可求解.【详解】设函数的解析式是y=kx ,根据题意得:2k=﹣3,解得:k=32-. ∴ 函数的解析式是:32y x =-. 故选A .5.B【解析】试题解析:列表如下:∴共有20种等可能的结果,P (一男一女)=123=205. 故选B .6.A【解析】【分析】 判断根的情况,只要看根的判别式△=b 2−4ac 的值的符号就可以了.【详解】∵一次函数y=kx+b 的图像经过第一、三、四象限∴k>0, b<0 ∴△=b 2−4ac=(-2)2-4(kb+1)=-4kb>0,∴方程x 2﹣2x+kb+1=0有两个不等的实数根,故选A .【点睛】根的判别式7.D【解析】如图:∵AB=5,10ABC S =△, ∴D 4C =4, ∵5sin 5A =, ∴545DC AC AC ==,∴5∵在RT △AD 4C 中,D 44C =,AD=8, ∴A 4C 228445+=故答案为D.8.B【解析】【分析】根据科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,且为这个数的整数位数减1,由此即可解答.【详解】29.8亿用科学记数法表示为:29.8亿=2980000000=2.98×1.故选B.【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.C【解析】【分析】用特殊值法,设出等腰直角三角形直角边的长,证明△CDB∽△BDE,求出相关线段的长;易证△GAB≌△DBC,求出相关线段的长;再证AG∥BC,求出相关线段的长,最后求出△ABC和△BDF的面积,即可作出选择.【详解】解:由题意知,△ABC是等腰直角三角形,设AB=BC=2,则AC=,∵点D是AB的中点,∴AD=BD=1,在Rt△DBC中,DC(勾股定理)∵BG⊥CD,∴∠DEB=∠ABC=90°,又∵∠CDB=∠BDE,∴△CDB∽△BDE,∴∠DBE=∠DCB,BD CD CBDE BD BE==,即121DE BE==∴DE,BE在△GAB和△DBC中,DBE DCBAD BCGAB DBC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△GAB ≌△DBC(ASA)∴AG =DB =1,BG =CD∵∠GAB+∠ABC =180°,∴AG ∥BC ,∴△AGF ∽△CBF , ∴12AG AF GF CB CF BF ===,且有AB =BC ,故①正确,∵GB AC =∴AF =3=3AB ,故③正确,GF =3,FE =BG ﹣GF ﹣BE =15,故②错误,S △ABC =12AB•AC =2,S △BDF =12BF•DE =1213,故④正确. 故选B .【点睛】本题考查了相似三角形的判定与性质、全等三角形的判定与性质以及等腰直角三角形的相关性质,中等难度,注意合理的运用特殊值法是解题关键.10.C【解析】试题分析:众数是这组数据中出现次数最多的数据,在这组数据中42出现次数最多,故选C.考点:众数.11.B【解析】【分析】根据半衰期的定义,函数图象的横坐标,可得答案.【详解】由横坐标看出1620年时,镭质量减为原来的一半,故镭的半衰期为1620年,故选B .【点睛】本题考查了函数图象,利用函数图象的意义及放射性物质的半衰期是解题关键.12.A【解析】【分析】应明确在数轴上,从左到右的顺序,就是数从小到大的顺序,据此解答.【详解】解:因为在数轴上-3在其他数的左边,所以-3最小;故选A.【点睛】此题考负数的大小比较,应理解数字大的负数反而小.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.m【解析】解:原式=1mm-•21mm-=m.故答案为m.14.﹣4<x<﹣3 2【解析】根据函数的图像,可知不等式mx+2<kx+b<0的解集就是y=mx+2在函数y=kx+b的下面,且它们的值小于0的解集是﹣4<x<﹣3 2 .故答案为﹣4<x<﹣3 2 .15.(0,52).【解析】试题分析:把点A坐标代入y=x+4得a=3,即A(﹣1,3),把点A坐标代入双曲线的解析式得3=﹣k,即k=﹣3,联立两函数解析式得:,解得:,,即点B坐标为:(﹣3,1),作出点A关于y轴的对称点C,连接BC,与y轴的交点即为点P,使得PA+PB的值最小,则点C坐标为:(1,3),设直线BC的解析式为:y=ax+b,把B、C的坐标代入得:,解得:,所以函数解析式为:y=x+52,则与y轴的交点为:(0,52).考点:反比例函数与一次函数的交点问题;轴对称-最短路线问题.16.【解析】【分析】用女生人数除以总人数即可.【详解】 由题意得,恰好是女生的准考证的概率是. 故答案为:.【点睛】此题考查了概率公式,如果一个事件有n 种可能,而且这些事件的可能性相同,其中事件A 出现m 种结果,那么事件A 的概率P (A )=.17.21【解析】【分析】过P 作关于AC 和AD 的对称点,连接1P 和2P ,过P 作2P C BC ⊥, 1P 和2P ,M ,N 共线时最短,根据对称性得知△PMN 的周长的最小值为12PP .因为四边形ABCD 是菱形,AD 是对角线,可以求得60DCF ∠=︒,根据特殊三角形函数值求得1,3CF PF ==3PE =再根据线段相加勾股定理即可求解.【详解】过P 作关于AC 和AD 的对称点,连接1P 和2P ,过P 作2P C BC ⊥,Q 四边形ABCD 是菱形,AD 是对角线,60B BAC BCA DCA DAC D ︒∴∠=∠=∠=∠=∠=∠=,180BCD DCF ∠+∠=︒Q ,18012060DCF ∴∠=︒-︒=︒,cos60sin 60CF PF CP CP=︒=︒Q , 1,3CF PF ∴==4PD CD CP =-=Q ,sin 60PE PD=︒ 23PE ∴= 又由题意得222,43PE P E P P PE P E ==+=2253FP FP PP ∴=+=113PF PC CF =+=Q ()()221212221PP FP FP ∴=+=【点睛】 本题主要考查对称性质,菱形性质,内角和定理和勾股定理,熟悉掌握定理是关键.18.1≤x≤1【解析】【分析】此题需要运用极端原理求解;①BP 最小时,F 、D 重合,由折叠的性质知:AF=PF ,在Rt △PFC 中,利用勾股定理可求得PC的长,进而可求得BP的值,即BP的最小值;②BP最大时,E、B重合,根据折叠的性质即可得到AB=BP=1,即BP的最大值为1;【详解】解:如图:①当F、D重合时,BP的值最小;根据折叠的性质知:AF=PF=5;在Rt△PFC中,PF=5,FC=1,则PC=4;∴BP=x min=1;②当E、B重合时,BP的值最大;由折叠的性质可得BP=AB=1.所以BP的取值范围是:1≤x≤1.故答案为:1≤x≤1.【点睛】此题主要考查的是图形的翻折变换,正确的判断出x的两种极值下F、E点的位置,是解决此题的关键.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.C.【解析】试题分析:由作图方法可得AG是∠CAB的角平分线,∵∠CAB=50°,∴∠CAD=∠CAB=25°,∵∠C=90°,∴∠CDA=90°﹣25°=65°,故选C.考点:作图—基本作图.20.(Ⅰ)25、40;(Ⅱ)平均数为68.2分,众数为75分,中位数为75分.【解析】【分析】(1)由直方图可知A的总人数为5,再依据其所占比例20%可求解总人数;由直方图中B的人数为10及总人数可知m的值;(2)根据平均数、众数和中位数的定义求解即可.【详解】(Ⅰ)该教师调查的总人数为(2+3)÷20%=25(人),m%=×100%=40%,即m=40,故答案为:25、40;(Ⅱ)由条形图知95分的有5人、75分的有10人、60分的有6人、30分的有4人,则样本分知的平均数为955751060630468.225⨯+⨯+⨯+⨯=(分),众数为75分,中位数为第13个数据,即75分.【点睛】理解两幅统计图中各数据的含义及其对应关系是解题关键.21.(1)12;(2)规则是公平的;【解析】试题分析:(1)先利用画树状图展示所有12种等可能的结果数,然后根据概率公式求解即可;(2)分别计算出小王和小李去植树的概率即可知道规则是否公平.试题解析:(1)画树状图为:共有12种等可能的结果数,其中摸出的球上的数字之和小于6的情况有9种,所以P(小王)=34;(2)不公平,理由如下:∵P(小王)=34,P(小李)=14,34≠14,∴规则不公平.点睛:本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.22.1.【解析】【分析】直接利用零指数幂的性质以及特殊角的三角函数值和绝对值的性质分别化简得出答案.【详解】解:原式=2+2+1﹣4×=2+2+1﹣2=1.【点睛】此题主要考查了实数运算,正确化简各数是解题关键.23.(1)173;(2)点C位于点A的南偏东75°方向.【解析】试题分析:(1)作辅助线,过点A作AD⊥BC于点D,构造直角三角形,解直角三角形即可.(2)利用勾股定理的逆定理,判定△ABC为直角三角形;然后根据方向角的定义,即可确定点C相对于点A的方向.试题解析:解:(1)如答图,过点A作AD⊥BC于点D.由图得,∠ABC=75°﹣10°=60°.在Rt△ABD中,∵∠ABC=60°,AB=100,∴BD=50,AD=50.∴CD=BC﹣BD=200﹣50=1.在Rt△ACD中,由勾股定理得:AC=(km).答:点C与点A的距离约为173km.(2)在△ABC中,∵AB2+AC2=1002+(100)2=40000,BC2=2002=40000,∴AB2+AC2=BC2. ∴∠BAC=90°.∴∠CAF=∠BAC﹣∠BAF=90°﹣15°=75°.答:点C位于点A的南偏东75°方向.考点:1.解直角三角形的应用(方向角问题);2. 锐角三角函数定义;3.特殊角的三角函数值;4. 勾股定理和逆定理.24.1a-1,22【解析】【分析】先根据完全平方公式进行约分化简,再代入求值即可.【详解】 原式=2a 1--2a-11a-1⋅()=21-a-1a-1=1a-1,将a =2+1代入得,原式=2+11-=2=22,故答案为2. 【点睛】本题主要考查了求代数式的值、分式的运算,解本题的要点在于正确化简,从而得到答案.25.(1)证明见解析(2)3【解析】【分析】(1)连接OC ,由C 为BE ∧的中点,得到12∠=∠,等量代换得到2ACO ∠=∠,根据平行线的性质得到OC CD ⊥,即可得到结论;(2)连接CE ,由勾股定理得到222CD AC AD =-=,根据切割线定理得到2CD AD DE =⋅,根据勾股定理得到223CE CD DE =+=,由圆周角定理得到90ACB ∠=︒,即可得到结论.【详解】 ()1相切,连接OC ,∵C 为¶BE的中点, ∴12∠=∠,∵OA OC =,∴1ACO ∠=∠,∴2ACO ∠=∠,∴//AD OC ,∵CD AD ⊥,∴OC CD ⊥,∴直线CD 与O e 相切;()2方法1:连接CE ,∵2AD =,AC =∵90ADC ∠=o ,∴CD∵CD 是O e 的切线,∴2CD AD DE =⋅,∴1DE =,∴CE =∵C 为¶BE的中点,∴BC CE ==∵AB 为O e 的直径,∴90ACB ∠=o ,∴3AB ==.方法2:∵DCA B ∠=∠,易得ADC ACB V V ∽, ∴AD AC AC AB=, ∴3AB =.【点睛】本题考查了直线与圆的位置关系,切线的判定和性质,圆周角定理,勾股定理,平行线的性质,切割线定理,熟练掌握各定理是解题的关键.26.12n n+ 【解析】【分析】由前面算式可以看出:算式的左边利用平方差公式因式分解,中间的数字互为倒数,乘积为1,只剩下两端的(1﹣12)和(1+1n )相乘得出结果. 【详解】 2222211111111112345n -----L L ()()()()() =1111111111111111223344n n ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫-⨯+⨯-⨯+⨯-⨯+⨯⨯-⨯+ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭L=132431 (22334)nn+⨯⨯⨯⨯⨯⨯=1 2nn+.故答案为:1 2nn+.【点睛】本题考查了算式的运算规律,找出数字之间的联系,得出运算规律,解决问题.27.(1);y2=2250x;(2)甲、乙两个商场的收费相同时,所买商品为6件;(3)所买商品为5件时,应选择乙商场更优惠.【解析】试题分析:(1)由两家商场的优惠方案分别列式整理即可;(2)由收费相同,列出方程求解即可;(3)由函数解析式分别求出x=5时的函数值,即可得解试题解析:(1)当x=1时,y1=3000;当x>1时,y1=3000+3000(x﹣1)×(1﹣30%)=2100x+1.∴;y2=3000x(1﹣25%)=2250x,∴y2=2250x;(2)当甲、乙两个商场的收费相同时,2100x+1=2250x,解得x=6,答:甲、乙两个商场的收费相同时,所买商品为6件;(3)x=5时,y1=2100x+1=2100×5+1=11400,y2=2250x=2250×5=11250,∵11400>11250,∴所买商品为5件时,应选择乙商场更优惠.考点:一次函数的应用。
广西省玉林市2019-2020学年中考数学二模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.用加减法解方程组437651x y x y +=⎧⎨-=-⎩①②时,若要求消去y ,则应( )A .32⨯+⨯①②B .3-2⨯⨯①②C .53⨯+⨯①②D .5-3⨯⨯①②2.如图是由6个完全相同的小长方体组成的立体图形,这个立体图形的左视图是( )A .B .C .D .3.如图,为了测量河对岸l 1上两棵古树A 、B 之间的距离,某数学兴趣小组在河这边沿着与AB 平行的直线l 2上取C 、D 两点,测得∠ACB =15°,∠ACD =45°,若l 1、l 2之间的距离为50m ,则A 、B 之间的距离为( )A .50mB .25mC .(50﹣503)m D .(50﹣253)m 4.如图,每个小正方形的边长均为1,则下列图形中的三角形(阴影部分)与111A B C ∆相似的是( )A .B .C .D .5.已知二次函数y =x 2﹣4x+m 的图象与x 轴交于A 、B 两点,且点A 的坐标为(1,0),则线段AB 的长为( )A .1B .2C .3D .46.如图,△ABC 中,AB=AC=15,AD 平分∠BAC ,点E 为AC 的中点,连接DE ,若△CDE 的周长为21,则BC 的长为( )A .16B .14C .12D .67.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( )A .9人B .10人C .11人D .12人8.计算tan30°的值等于( )A .B .C .D .9.如图,一次函数1y ax b =+和反比例函数2k y x=的图象相交于A ,B 两点,则使12y y >成立的x 取值范围是( )A .20x -<<或04x <<B .2x <-或04x <<C .2x <-或4x >D .20x -<<或4x > 10.下列各式计算正确的是( )A .(b+2a )(2a ﹣b )=b 2﹣4a 2B .2a 3+a 3=3a 6C .a 3•a=a 4D .(﹣a 2b )3=a 6b 3 11.22)-的相反数是( )A .2B .﹣2C .4D 212.PM2.5是指大气中直径≤0.0000025米的颗粒物,将0.0000025用科学记数法表示为( ) A .2.5×10﹣7 B .2.5×10﹣6 C .25×10﹣7 D .0.25×10﹣5二、填空题:(本大题共6个小题,每小题4分,共24分.)13.若⊙O 所在平面内一点P 到⊙O 的最大距离为6,最小距离为2,则⊙O 的半径为_____. 14.如图,在边长为3的正方形ABCD 中,点E 是BC 边上的点,EC=2,∠AEP=90°,且EP 交正方形外角的平分线CP 于点P ,则PC 的长为_____.15.已知梯形ABCD ,AD ∥BC ,BC=2AD ,如果,,那么=_____(用、 表示). 16.有两个一元二次方程:M :ax 2+bx+c=0,N :cx 2+bx+a=0,其中a+c=0,以下列四个结论中正确的是_____(填写序号).①如果方程M 有两个不相等的实数根,那么方程N 也有两个不相等的实数根;②如果方程M 有两根符号相同,那么方程N 的两根符号也相同;③如果方程M 和方程N 有一个相同的根,那么这个根必是x=1;④如果5是方程M 的一个根,那么15是方程N 的一个根. 17.2011年,我国汽车销量超过了18500000辆,这个数据用科学记数法表示为▲ 辆.18.如果把抛物线y=2x 2﹣1向左平移1个单位,同时向上平移4个单位,那么得到的新的抛物线是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间(用t 表示,单位:小时),采用随机抽样的方法进行问卷调查,调查结果按0t 2≤<,2t 3≤<,3t 4≤<,t 4≥分为四个等级,并依次用A ,B ,C ,D 表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:1()求本次调查的学生人数;2()求扇形统计图中等级B 所在扇形的圆心角度数,并把条形统计图补充完整; 3()若该校共有学生1200人,试估计每周课外阅读时间满足3t 4≤<的人数. 20.(6分)如图①,在正方形ABCD 的外侧,作两个等边三角形ABE 和ADF ,连结ED 与FC 交于点M ,则图中ADE V ≌DFC △,可知ED FC =,求得DMC ∠=______.如图②,在矩形>的外侧,作两个等边三角形ABE和ADF,连结ED与FC交于点M.ABCD AB BC()()1求证:ED FC=.()2若20∠的度数.ADE∠=o,求DMC21.(6分)在东营市中小学标准化建设工程中,某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.求每台电脑、每台电子白板各多少万元?根据学校实际,需购进电脑和电子白板共30台,总费用不超过30万元,但不低于28万元,请你通过计算求出有几种购买方案,哪种方案费用最低.22.(8分)抚顺某中学为了解八年级学生的体能状况,从八年级学生中随机抽取部分学生进行体能测试,测试结果分为A,B,C,D四个等级.请根据两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该中学八年级共有700名学生,请你估计该中学八年级学生中体能测试结果为D等级的学生有多少名?(4)若从体能为A等级的2名男生2名女生中随机的抽取2名学生,做为该校培养运动员的重点对象,请用列表法或画树状图的方法求所抽取的两人恰好都是男生的概率.23.(8分)新农村社区改造中,有一部分楼盘要对外销售.某楼盘共23层,销售价格如下:第八层楼房售价为4 000元/米2,从第八层起每上升一层,每平方米的售价提高50元;反之,楼层每下降一层,每平方米的售价降低30元,已知该楼盘每套房面积均为120米2.若购买者一次性付清所有房款,开发商有两种优惠方案:降价8%,另外每套房赠送a元装修基金;降价10%,没有其他赠送.请写出售价y(元/米2)与楼层x(1≤x≤23,x取整数)之间的函数表达式;老王要购买第十六层的一套房,若他一次性付清所有房款,请帮他计算哪种优惠方案更加合算.24.(10分)如图,抛物线2y ax 2ax c =-+(a≠0)交x 轴于A 、B 两点,A 点坐标为(3,0),与y 轴交于点C (0,4),以OC 、OA 为边作矩形OADC 交抛物线于点G .求抛物线的解析式;抛物线的对称轴l 在边OA (不包括O 、A 两点)上平行移动,分别交x 轴于点E ,交CD 于点F ,交AC 于点M ,交抛物线于点P ,若点M 的横坐标为m ,请用含m 的代数式表示PM 的长;在(2)的条件下,连结PC ,则在CD 上方的抛物线部分是否存在这样的点P ,使得以P 、C 、F 为顶点的三角形和△AEM 相似?若存在,求出此时m 的值,并直接判断△PCM的形状;若不存在,请说明理由.25.(10分)将如图所示的牌面数字分别是1,2,3,4 的四张扑克牌背面朝上,洗匀后放在桌面上.从中随机抽出一张牌,牌面数字是偶数的概率是_____;先从中随机抽出一张牌,将牌面数字作为十位上的数字,然后将该牌放回并重新洗匀,再随机抽取一张,将牌面数字作为个位上的数字,请用画树状图或列表的方法求组成的两位数恰好是 4 的倍数的概率.26.(12分)为了解某校落实新课改精神的情况,现以该校九年级二班的同学参加课外活动的情况为样本,对其参加“球类”、“绘画类”、“舞蹈类”、“音乐类”、“棋类”活动的情况进行调查统计,并绘制了如图所示的统计图.(1)参加音乐类活动的学生人数为 人,参加球类活动的人数的百分比为(2)请把图2(条形统计图)补充完整;(3)该校学生共600人,则参加棋类活动的人数约为 .(4)该班参加舞蹈类活动的4位同学中,有1位男生(用E 表示)和3位女生(分别用F,G ,H 表示),先准备从中选取两名同学组成舞伴,请用列表或画树状图的方法求恰好选中一男一女的概率.27.(12分)计算:20112(1)6tan 303π-︒⎛⎫+--+- ⎪⎝⎭解方程:544101236x x x x -++=--参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】【分析】利用加减消元法53⨯+⨯①②消去y 即可.【详解】用加减法解方程组437651x y x y +=⎧⎨-=-⎩①②时,若要求消去y ,则应①×5+②×3, 故选C【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法. 2.B【解析】【分析】根据题意找到从左面看得到的平面图形即可.【详解】这个立体图形的左视图是, 故选:B .【点睛】本题考查了简单组合体的三视图,解题的关键是掌握左视图所看的位置.如图,过点A 作AM ⊥DC 于点M ,过点B 作BN ⊥DC 于点N .则AM=BN .通过解直角△ACM 和△BCN 分别求得CM 、CN 的长度,则易得AB =MN=CM ﹣CN ,即可得到结论.【详解】如图,过点A 作AM ⊥DC 于点M ,过点B 作BN ⊥DC 于点N .则AB=MN ,AM=BN .在直角△ACM 中,∵∠ACM=45°,AM=50m ,∴CM=AM=50m .在直角△BCN 中,∵∠BCN=∠ACB+∠ACD=60°,BN=50m ,∴CN=503tan6033BN ==︒(m ),∴MN=CM ﹣CN=50﹣503(m ). 则AB=MN=(50﹣503)m . 故选C .【点睛】本题考查了解直角三角形的应用.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.4.B【解析】【分析】根据相似三角形的判定方法一一判断即可.【详解】解:因为111A B C ∆中有一个角是135°,选项中,有135°角的三角形只有B ,且满足两边成比例夹角相等,故选:B .【点睛】本题考查相似三角形的性质,解题的关键是学会利用数形结合的思想解决问题,属于中考常考题型.先将点A(1,0)代入y=x2﹣4x+m,求出m的值,将点A(1,0)代入y=x2﹣4x+m,得到x1+x2=4,x1•x2=3,即可解答【详解】将点A(1,0)代入y=x2﹣4x+m,得到m=3,所以y=x2﹣4x+3,与x轴交于两点,设A(x1,y1),b(x2,y2)∴x2﹣4x+3=0有两个不等的实数根,∴x1+x2=4,x1•x2=3,∴AB=|x1﹣x2|=2;故选B.【点睛】此题考查抛物线与坐标轴的交点,解题关键在于将已知点代入.6.C【解析】【分析】先根据等腰三角形三线合一知D为BC中点,由点E为AC的中点知DE为△ABC中位线,故△ABC的周长是△CDE的周长的两倍,由此可求出BC的值.【详解】∵AB=AC=15,AD平分∠BAC,∴D为BC中点,∵点E为AC的中点,∴DE为△ABC中位线,∴DE=12 AB,∴△ABC的周长是△CDE的周长的两倍,由此可求出BC的值.∴AB+AC+BC=42,∴BC=42-15-15=12,故选C.【点睛】此题主要考查三角形的中位线定理,解题的关键是熟知等腰三角形的三线合一定理.设参加酒会的人数为x 人,根据每两人都只碰一次杯,如果一共碰杯55次,列出一元二次方程,解之即可得出答案.【详解】设参加酒会的人数为x 人,依题可得: 12x (x-1)=55, 化简得:x 2-x-110=0,解得:x 1=11,x 2=-10(舍去),故答案为C.【点睛】考查了一元二次方程的应用,解题的关键是根据题中的等量关系列出方程.8.C【解析】tan30°= .故选C .9.B【解析】【分析】根据图象找出一次函数图象在反比例函数图象上方时对应的自变量的取值范围即可.【详解】观察函数图象可发现:2x <-或04x <<时,一次函数图象在反比例函数图象上方,∴使12y y >成立的x 取值范围是2x <-或04x <<,故选B .【点睛】本题考查了反比例函数与一次函数综合,函数与不等式,利用数形结合思想是解题的关键.10.C【解析】各项计算得到结果,即可作出判断.解:A 、原式=4a 2﹣b 2,不符合题意;B 、原式=3a 3,不符合题意;C 、原式=a 4,符合题意;D 、原式=﹣a 6b 3,不符合题意,故选C .11.A【解析】分析:根据只有符号不同的两个数是互为相反数解答即可.详解:2-的相反数是2,即2. 故选A.点睛:本题考查了相反数的定义,解答本题的关键是熟练掌握相反数的定义,正数的相反数是负数,0的相反数是0,负数的相反数是正数.12.B【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n ,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000 0025=2.5×10﹣6; 故选B .【点睛】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n ,其中1≤|a|<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.2或1【解析】【分析】点P 可能在圆内.也可能在圆外,因而分两种情况进行讨论.【详解】解:当这点在圆外时,则这个圆的半径是(6-2)÷2=2; 当点在圆内时,则这个圆的半径是(6+2)÷2=1. 故答案为2或1.【点睛】此题主要考查点与圆的位置关系,解题的关键是注意此题应分为两种情况来解决.14【解析】【分析】在AB上取BN=BE,连接EN,根据已知及正方形的性质利用ASA判定△ANE≌△ECP,从而得到NE=CP,在等腰直角三角形BNE中,由勾股定理即可解决问题.【详解】在AB上取BN=BE,连接EN,作PM⊥BC于M.∵四边形ABCD是正方形,∴AB=BC,∠B=∠DCB=∠DCM=90°.∵BE=BN,∠B=90°,∴∠BNE=45°,∠ANE=135°.∵PC平分∠DCM,∴∠PCM=45°,∴∠ECP=135°.∵AB=BC,BN=BE,∴AN=EC.∵∠AEP=90°,∴∠AEB+∠PEC=90°.∵∠AEB+∠NAE=90°,∴∠NAE=∠PEC,∴△ANE≌△ECP(ASA),∴NE=CP.∵BC=3,EC=2,∴NB=BE=1,∴NE=22=2,∴PC=2.11故答案为:2.【点睛】本题考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.15.【解析】【分析】根据向量的三角形法则表示出,再根据BC、AD的关系解答.【详解】如图,∵,,∴=-=-,∵AD∥BC,BC=2AD,∴==(-)=-.故答案为-.【点睛】本题考查了平面向量,梯形,向量的问题,熟练掌握三角形法则和平行四边形法则是解题的关键.16.①②④【解析】试题解析:①在方程ax2+bx+c=0中△=b2-4ac,在方程cx2+bx+a=0中△=b2-4ac,∴如果方程M有两个不相等的实数根,那么方程N也有两个不相等的实数根,正确;②∵ca和ac符号相同,ba和ab符号也相同,∴如果方程M有两根符号相同,那么方程N的两根符号也相同,正确;③、M-N得:(a-c)x2+c-a=0,即(a-c)x2=a-c,∵a≠c,∴x2=1,解得:x=±1,错误;④∵5是方程M的一个根,∴25a+5b+c=0,∴a+15b+1+25c=0,∴15是方程N的一个根,正确.故正确的是①②④.17.2.85×2.【解析】【分析】根据科学记数法的定义,科学记数法的表示形式为a×20n,其中2≤|a|<20,n为整数,表示时关键要正确确定a的值以及n的值.在确定n的值时,看该数是大于或等于2还是小于2.当该数大于或等于2时,n为它的整数位数减2;当该数小于2时,-n为它第一个有效数字前0的个数(含小数点前的2个0).【详解】解:28500000一共8位,从而28500000=2.85×2.18.y=2(x+1)2+1.【解析】原抛物线的顶点为(0,-1),向左平移1个单位,同时向上平移4个单位,那么新抛物线的顶点为(-1,1);可设新抛物线的解析式为y=2(x-h )2+k ,代入得:y=2(x+1)2+1.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.()1本次调查的学生人数为200人;()2B 所在扇形的圆心角为54o ,补全条形图见解析;()3全校每周课外阅读时间满足3t 4≤<的约有360人.【解析】【分析】()1根据等级A 的人数及所占百分比即可得出调查学生人数;()2先计算出C 在扇形图中的百分比,用()1[A D C -++在扇形图中的百分比]可计算出B 在扇形图中的百分比,再计算出B 在扇形的圆心角;()3总人数⨯课外阅读时间满足3t 4≤<的百分比即得所求.【详解】()1由条形图知,A 级的人数为20人,由扇形图知:A 级人数占总调查人数的10%, 所以:1002010%20200(10÷=⨯=人), 即本次调查的学生人数为200人;()2由条形图知:C 级的人数为60人,所以C 级所占的百分比为:60100%30%200⨯=, B 级所占的百分比为:110%30%45%15%---=,B 级的人数为20015%30(⨯=人),D 级的人数为:20045%90(⨯=人),B 所在扇形的圆心角为:36015%54⨯=o o ,补全条形图如图所示:;()3因为C 级所占的百分比为30%,所以全校每周课外阅读时间满足3t 4≤<的人数为:120030%360(⨯=人),答:全校每周课外阅读时间满足3t 4≤<的约有360人.【点睛】本题考查了扇形图和条形图的相关知识,从统计图中找到必要的信息进行解题是关键.扇形图中某项的百分比100%=⨯该项人数总人数,扇形图中某项圆心角的度数360=⨯o 该项在扇形图中的百分比.20.阅读发现:90°;(1)证明见解析;(2)100°【解析】【分析】阅读发现:只要证明15DFC DCF ADE AED ∠=∠=∠=∠=o ,即可证明.拓展应用:()1欲证明ED FC =,只要证明ADE V ≌DFC △即可. ()2根据DMC FDM DFC FDA ADE DFC ∠=∠+∠=∠+∠+∠即可计算.【详解】解:如图①中,Q 四边形ABCD 是正方形,AD AB CD ∴==,90ADC ∠=o ,ADE QV ≌DFC △,DF CD AE AD ∴===,6090150FDC ∠=+=o o o Q ,15DFC DCF ADE AED ∴∠=∠=∠=∠=o ,601575FDE ∴∠=+=o o o ,90MFD FDM ∴∠+∠=o ,90FMD ∴∠=o ,故答案为90o()1ABE QV 为等边三角形,60EAB ∴∠=o ,EA AB =.ADF QV 为等边三角形,60FDA ∴∠=o ,AD FD =.Q 四边形ABCD 为矩形,90BAD ADC ∴∠=∠=o ,DC AB =.EA DC ∴=.150EAD EAB BAD ∠=∠+∠=o Q ,150CDF FDA ADC ∠=∠+∠=o ,EAD CDF ∴∠=∠.在EAD V 和CDF V中, AE CD EAD FDC AD DF =⎧⎪∠=∠⎨⎪=⎩,EAD ∴V ≌CDF V. ED FC ∴=;()2EAD QV ≌CDF V ,20ADE DFC ∴∠=∠=o ,602020100DMC FDM DFC FDA ADE DFC ∴∠=∠+∠=∠+∠+∠=++=o o o o .【点睛】本题考查全等三角形的判定和性质、正方形的性质、矩形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的寻找解决问题,属于中考常考题型.21.(1)每台电脑0.5万元,每台电子白板1.5万元(2)见解析【解析】解:(1)设每台电脑x 万元,每台电子白板y 万元,根据题意得:x 2y 3.5{2x y 2.5+=+=,解得:x 0.5{y 1.5==。
2020年广西玉林市中考数学一模试卷一、选择题(本大题共12小题,共36.0分)1.−6的绝对值等于()A. −6B. 6C. −16D. 162.点A(−2,−3)和点B(2,3)在直角坐标系中()A. 关于x轴对称B. 关于y轴对称C. 关于原点对称D. 不关于坐标轴和原点对称3.一个几何体如下图,则它的左视图是()A.B.C.D.4.PM2.5是指大气中直径小于或等于0.00000025m的颗粒物,将0.00000025用科学记数法表示为()A. 2.5×10−7B. 2.5×10−8C. 25×10−6D. 0.25×10−75.将一副三角尺按如图的方式摆放,其中l1//l2,则∠α的度数是()A. 30°B. 45°C. 60°D. 70°6.如图,⊙O是△ABC的内切圆,则点O是△ABC的()A. 三条边的垂直平分线的交点B. 三条角平分线的交点C. 三条中线的交点D. 三条高的交点7.若5y−x=7时,则代数式3−2x+10y的值为()A. 17B. 11C. −11D. 108.将一条宽度为2cm的彩带按如图所示的方法折叠,折痕为AB,重叠部分为△ABC(图中阴影部分),若∠ACB=45°,则重叠部分的面积为()A. 2√2cm2B. 2√3cm2C. 4cm2D.4√2cm29.关于x的一元二次方程(m−1)x2−4mx+4m−2=0有实数根,则m满足的条件()A. m≤1B. m≥1C. m≥13且m≠1 D. −1<m≤110.如图,过双曲线y=kx(k是常数,k>0,x>0)的图象上两点A,B分别作AC⊥x轴于C,BD⊥x轴于D,则△AOC的面积S1和△BOD的面积S2的大小关系为()A. S1>S2B. S1=S2C. S1<S2D. S1与S2无法确定11.如图,在平面直角坐标系中,点A(0,4),B(3,0),连接AB.将△AOB沿过点B的直线BC折叠,使点A落在x轴上的点A′处,折痕所在的直线交y轴正半轴于点C,则直线BC的解析式为________.()A. y=12x+32B. y=12x−32C. y=−12x+32D. y=−12x−3212.如图,在△ABC中,∠BAC=90°,AD⊥BC于点D,DE⊥AB于点E,若AD=3,DE=2,则AC的长为()A. 212B. 92C. √152D. √15二、填空题(本大题共6小题,共18.0分)13.计算7+(−2)的结果为______ .14.因式分解2a3b−8ab3=______________.15.一组数据:24,58,45,36,75,48,80,则这组数据的中位数是______.16. 如图,在4×4的正方形网格中,有4个小正方形已经涂黑,若再涂黑任意1个白色的小正方形(每个白色小正方形被涂黑的可能性相同),使新构成的黑色部分图形是轴对称图形的概率是______.17. 如图是“赵爽弦图”,△ABH 、△BCG 、△CDF 和△DAE 是四个全等的直角三角形,四边形ABCD 和EFGH 都是正方形,如果AB =10,EF =2,那么AH 为a ,BH 为b ,则a +b = ______ .18. 如图,在矩形ABCD 中,E 是BC 中点,且DE ⊥AC ,则CD ︰AD =__________.三、计算题(本大题共1小题,共5.0分)19. 计算:√12−4sin60°+(π+2)0+(12)−2.四、解答题(本大题共7小题,共61.0分)20. 求不等式组{2−3x ≤83x−12−(x −1)<0的整数解.21.在平面直角坐标系xOy中,已知△ABC和△DEF的顶点坐标分别为A(1,0)、B(3,0)、C(2,1)、D(4,3)、E(6,5)、F(4,7).按下列要求画图:以O为位似中心,将△ABC向y轴左侧按比例尺2:1放大得△ABC的位似图形△A1B1C1,并解决下列问题:(1)顶点A1的坐标为______,B1的坐标为______,C1的坐标为______;(2)请你利用旋转、平移两种变换,使△A1B1C1通过变换后得到△A2B2C2,且△A2B2C2恰与△DEF拼接成一个平行四边形(非正方形),写出符合要求的变换过程.22.某校在推进新课改的过程中,开设的“课程超市”有:A.炫彩剧社,B.烹饪,C.游泳,D.羽毛球,E.科技等五个科目,学生可根据自己的爱好选修一门,负责“课程超市”的老师对七年级一班全体同学的选课情况进行调查统计,并将结果绘制成了如下两幅尚不完整的统计图:根据图中提供的信息,解答下列问题:(1)请求出该班的总人数;(2)扇形统计图中,D所在扇形的圆心角度数为______,并补全条形统计图;(3)该班班委4人中,1人选修炫彩剧社,2人选修烹饪,1人选修游泳,老师要从这4人中任选2人了解他们对“课程超市”课程安排的看法,请你用列表或画树状图的方法,求选出的2人恰好1人选修炫彩剧社,1人选修烹饪的概率.23.如图,AB为⊙O直径,C、D为⊙O上不同于A、B的两点,∠ABD=2∠BAC,连接CD.过点C作CE⊥DB,垂足为E,直线AB与CE相交于F点.(1)求证:CF为⊙O的切线;(2)当BF=5,sinF=3时,求BD的长.524.欧城物业为美化小区,要对面积为9600平方米的区域进行绿化,计划安排甲、乙两个园林队完成,已知甲园林队每天绿化面积是乙园林队每天绿化面积的2倍,并且甲、乙两园林队独立完成面积为800平方米区域的绿化时,甲园林队比乙园林队少用2天.(1)求甲、乙两园林队每天能完成绿化的面积分别是多少平方米.(2)物业每天需付给甲园林队的绿化费用为0.4万元,乙园林队的绿化费用为0.25万元,如果这次绿化总费用不超过10万元,那么欧城物业至少应安排甲园林队工作多少天?25.如图,在矩形ABCD中,AB=5,AD=4,E为AD边上一动点(不与点A重合),AF⊥BE,垂足为F,GF⊥CF,交AB于点G,连接EG.设AE=x,S△BEG=y.(1)证明:△AFG∽△BFC;(2)求y与x的函数关系式,并求出y的最大值;(3)若△BFC为等腰三角形,请直接写出x的值.26.如图,已知抛物线与x轴交于A(1,0),B(−3,0)两点,与y轴交于点C(0,3),抛物线的顶点为P,连接AC.(1)求此抛物线的解析式;(2)抛物线对称轴上是否存在一点M,使得S△MAP=2S△ACP?若存在,求出M点坐标;若不存在,请说明理由.-------- 答案与解析 --------1.答案:B解析:解:|−6|=6,故选:B.根据一个负数的绝对值是它的相反数进行解答即可.本题考查的是绝对值的性质:一个正数的绝对值是它本身,一个负数的绝对值是它的相反数,0的绝对值是0.2.答案:C解析:【分析】本题考查了关于x轴、y轴对称点的坐标,解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.根据“关于原点对称的点,横坐标与纵坐标都互为相反数”解答.【解答】解:点A(−2,−3)和点B(2,3)在直角坐标系中关于原点对称.故选C.3.答案:A解析:【分析】本题考查了简单几何体的三视图,从左边看得到的图形是左视图,从正面看到的图形是正视图,从上往下看的视图是俯视图.解答此题从左边看得到的应该是一个直角三角形,据此解答即可.【解答】解:从左面看到的图形应该是一个直角三角形,如图所示:故选A.4.答案:A解析:解:将0.00000025用科学记数法表示为2.5×10−7,故选:A.绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10−n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.本题考查用科学记数法表示较小的数,一般形式为a×10−n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.5.答案:C解析:解:如图所示,∵l1//l2,∴∠A=∠ABC=30°,又∵∠CBD=90°,∴∠α=90°−30°=60°,故选:C.依据平行线的性质,可得∠ABC,再根据∠CBD=90°,即可得到∠α=90°−30°=60°.本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.6.答案:B解析:【分析】本题考查了三角形的内切圆与内心;熟练掌握三角形的内切圆的圆心性质是关键.根据三角形的内切圆得出点O到三边的距离相等,即可得出结论.【解答】解:∵⊙O是△ABC的内切圆,则点O到三边的距离相等,∴点O是△ABC的三条角平分线的交点,故选:B.7.答案:A解析:【解答】解:∵5y−x=7,∴3−2x+10y=3−2(x−5y)=3+2(5y−x)=3+2×7=3+14=17,故选:A.【分析】根据5y−x=7,可以求得代数式3−2x+10y的值.本题考查代数式求值,解题的关键是明确代数式求值的方法.8.答案:A解析:解:如图,过B作BD⊥AC于D,则∠BDC=90°,∵∠ACB=45°,∴∠CBD=45°,∴BD=CD=2cm,∴Rt△BCD中,BC=√22+22=2√2(cm),×2√2×2=2√2(cm),∴重叠部分的面积为12故选:A.过B作BD⊥AC于D,则∠BDC=90°,依据勾股定理即可得出BC的长,进而得到重叠部分的面积.本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.9.答案:C解析:【分析】此题主要考查了根的判别式和一元二次方程的定义.正确得出关于k的不等关系是解题关键.利用一元二次方程ax2+bx+c=0(a≠0)的根与△=b2−4ac有如下关系:①当△>0时,方程有两个不相等的实数根;②当△=0时,方程有两个相等的实数根;③当△<0时,方程无实数根,进而得出△≥0且m−1≠0,求出m的范围.【解答】解:由题意得:△≥0且m−1≠0,则(−4m)2−4(m−1)(4m−2)⩾0,24m−8≥0,m≥1,3∵m−1≠0,∴m≠1,则m≥1且m≠1.3故选C.10.答案:B解析:【分析】(k是常数,k>0,x>0)的图象上的两点,根据过双曲线上任意一点与因为A,B都是双曲线y=kx|k|,可知原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S是个定值,即S=12S1=S2.中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形主要考查了反比例函数y=kx面积为|k|,是经常考查的一个知识点;这里体现了数形结合的思想,做此类题一定要正确理解k的几何意义.图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S的|k|.关系即S=12【解答】|k|.解:依题意可知,△AOC的面积S1和△BOD的面积S2有S1=S2=12故选B.11.答案:C解析:y=−x+【分析】本题主要考查用待定系数法求一次函数的解析式,涉及的知识点有:折叠的性质,勾股定理,熟练掌握折叠的性质及勾股定理是解题的关键.首先利用勾股定理求出AB,根据折叠性质得出BA′=BA,CA′=CA,再根据勾股定理求出C点坐标,最后用待定系数法即可求出直线BC的解析式.【解答】解:∵A(0,4),B(3,0),∴OA=4,OB=3,在Rt△OAB中,AB==5,∵△AOB沿过点B的直线折叠,使点A落在x轴上的点A′处,∴BA′=BA=5,CA′=CA,∴OA′=BA′−OB=5−3=2,设OC=t,则CA=CA′=4−t,在Rt△OA′C中,解得t=,∴C点坐标为(0,),设直线BC的解析式为y=kx+b,把B(3,0)、C(0,)代入得,解得,∴直线BC的解析式为y=−x+.故答案为y=−x+.12.答案:B解析:【分析】本题考查了相似三角形的判定和性质,掌握判定三角形相似的方法是关键.先证明Rt△ACD∽Rt△DAE,根据对应边成比例得出AD:AC=DE:AD,从而得出AC的长即可.【解答】解:∵AD⊥BC,DE⊥AB,∴∠ADC=∠AED=90°,∵∠BAC=90°,∴∠DAE+∠DAC=∠C+∠DAC,∴∠DAE=∠C,∴Rt△ACD∽Rt△DAE,∴ADAC =DEAD,∵AD=3,DE=2,∴3AC =23,∴AC=92,故选B.13.答案:5解析:解:7+(−2)=5.故答案为:5.绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值.考查了有理数加法法则:在进行有理数加法运算时,首先判断两个加数的符号:是同号还是异号,是否有0.从而确定用那一条法则.在应用过程中,要牢记“先符号,后绝对值”.14.答案:2ab(a+2b)(a−2b)解析:【分析】本题考查了提公因式法与公式法分解因式,要求灵活使用各种方法对多项式进行因式分解,一般来说,如果可以先提取公因式的要先提取公因式,再考虑运用公式法分解.此多项式有公因式,应先提取公因式,再对余下的多项式进行观察,有2项,可采用平方差公式继续分解.【解答】解:2a3b−8ab3=2ab(a2−4b2)=2ab(a+2b)(a−2b).故答案为2ab(a+2b)(a−2b).15.答案:48解析:解:将这组数据重新排列为24、36、45、48、58、75、80,所以这组数据的中位数为48,故答案为:48.根据中位数的概念求解.本题考查了中位数的概念:将一组数据按照从小到大(或从大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果这组数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数.16.答案:16解析:解:如图所示:当分别将1,2位置涂黑,构成的黑色部分图形是轴对称图形,故新构成的黑色部分图形是轴对称图形的概率是:212=16.故答案为:16.直接利用轴对称图形的性质结合概率求法得出答案.此题主要考查了利用轴对称设计图案以及几何概率,正确掌握轴对称图形的性质是解题关键.17.答案:14解析:【分析】此题考查勾股定理的应用,关键是应用直角三角形中勾股定理的运用.先求大正方形的面积是100,小正方形的面积是4,然后得出四个直角三角形面积和为96,设AH为a,BH为b,可得ab的值,继而得出a+b的值.【解答】.解:∵AB=10,EF=2,∴大正方形的面积是100,小正方形的面积是4,∴四个直角三角形面积和为100−4=96,设AH为a,BH为b,即4×12ab=96,∴2ab=96,a2+b2=100,∴(a+b)2=a2+b2+2ab=100+96=196,∴a+b=14,故答案为:14.18.答案:√2:2解析:【分析】本题考查相似三角形的性质和判定及矩形的性质,熟练掌握相似三角形的知识是解决此题的关键.先证明△ADC∽△DCE,再根据AD=BC=2EC,即可得结论.【解答】解:如图,在矩形ABCD中,AD=BC,∠ADC=∠DCE=90°,∵DE⊥AC,∴∠DAC+∠ADE=∠ADE+∠CDE=90°,∴∠DAC=∠CDE,∴△ADC∽△DCE,∴AD:CD=CD:CE,∵E是BC的中点,AD=BC,∴EC =12AD ,∴AD :CD =CD :12AD , ∴CD 2=12AD 2,即CD :AD =√2:2. 故答案为√2:2.19.答案:解:原式=2√3−4×√32+1+4 =5.解析:本题涉及零指数幂、负整指数幂、特殊角的三角函数值、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等考点的运算. 20.答案:解:{2−3x ≤8①3x−12−(x −1)<0② 由①得:x ≥−2,由②得:x <−1,不等式组的解集为:−2≤x <−1, 则整数解为−2.解析:先求不等式组的解集,再求不等式组的整数解.解答此题的关键是求出不等式的解集,要根据解不等式组的原则解答:同大取较大,同小取较小,小大大小中间找,大大小小解不了.21.答案:解:(1)如图所示,△A 1B 1C 1即为所求的三角形,A 1(−2,0);B 1(−6,0);C 1(−4,−2). (2)如图,把△A 1B 1C 1绕点O 顺时针旋转90°,再向右平移6个单位,向下平移1个单位,使B 2C 2与DE 重合,或者:把△A 1B 1C 1绕点O 顺时针旋转90°,再向右平移6个单位,向上平移3个单位,使A 2C 2与EF 重合,都可以拼成一个平行四边形.解析:(1)延长AO 到A 1,使A 1O =2AO ,延长BO 到B 1,使B 1O =2BO ,连接CO 并延长到C 1,使C 1O =2CO ,然后顺次连接即可,再根据平面直角坐标系写出各点的坐标即可;(2)先绕点O 顺时针旋转90°,然后向右平移再向下(或向上)平移,使△A 2B 2C 2的直角边与△DEF 的直角边重合即可.本题考查了利用位似变换作图,利用平移变换与旋转变换作图,熟练掌握网格结构,准确找出对应点的位置是解题的关键.22.答案:(1)该班的总人数为12÷24%=50(人),故答案为:50;(2)表示D所在扇形的圆心角是360°×950=64.8°,E科目人数为50×10%=5(人),A科目人数为50−(7+12+9+5)=17(人),补全图形如下:故答案为:64.8°;(3)画树状图为:共有12种等可能的结果数,其中选出的2人中,1人选修炫彩剧社,1人选修烹饪的占4种,所以选出的2人恰好1人选修炫彩剧社,1人选修烹饪的概率=412=13.解析:解:(1)该班的总人数为12÷24%=50(人),故答案为:50;(2)表示D所在扇形的圆心角是360°×950=64.8°,E科目人数为50×10%=5(人),A科目人数为50−(7+12+9+5)=17(人),补全图形如下:故答案为:64.8°;(3)画树状图为:共有12种等可能的结果数,其中选出的2人中,1人选修炫彩剧社,1人选修烹饪的占4种,所以选出的2人恰好1人选修炫彩剧社,1人选修烹饪的概率=412=13.(1)用C组的人数除以它所占的百分比即可得到全班人数;(2)用D组的所占百分比乘以360°即可得到在扇形统计图中“D”对应扇形的圆心角的度数,先计算出E组人数和A组人数,然后补全频数分布直方图;(3)先画树状图展示所有12种等可能的结果数,找出选出的2人恰好1人选修炫彩剧社,1人选修烹饪所占结果数,然后根据概率公式求解.本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件;注意概率=所求情况数与总情况数之比.23.答案:(1)证明:连接OC,∵OA=OC,∴∠1=∠2.又∵∠3=∠1+∠2,∴∠3=2∠1.又∵∠4=2∠1,∴∠4=∠3,∴OC//DB.∵CE⊥DB,∴OC⊥CF.又∵OC为⊙O的半径,∴CF为⊙O的切线;(2)解:连结AD.在Rt△BEF中,∵∠BEF=90°,BF=5,sinF=35,∴BE=BF⋅sinF=3.∵OC//BE,∴△FBE∽△FOC,∴FBFO =BEOC.设⊙O的半径为r,∴55+r =3r,∴r=152.∵AB为⊙O直径,∴AB=15,∠ADB=90°,∵∠4=∠EBF,∴∠F=∠BAD,∴sin∠BAD=BDAB =sinF=35,∴BD15=35,∴BD=9.解析:本题考查了切线的判定,解直角三角形,相似三角形的判定与性质等知识点.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.(1)连接OC.先根据等边对等角及三角形外角的性质得出∠3=2∠1,由已知∠4=2∠1,得到∠4=∠3,则OC//DB,再由CE⊥DB,得到OC⊥CF,根据切线的判定即可证明CF为⊙O的切线;(2)连结AD.先解Rt△BEF,得出BE=BF⋅sinF=3,由OC//BE,得出△FBE∽△FOC,则FBFO =BEOC,设⊙O的半径为r,由此列出方程,解方程求出r的值,由AB为⊙O直径,得出AB=15,∠ADB=90°,再根据三角形内角和定理证明∠F=∠BAD,则由sin∠BAD=BDAB =35,求出BD的长.24.答案:解:(1)设乙园林队每天能完成绿化的面积为x平方米,则甲园林队每天能完成绿化的面积为2x平方米,根据题意得:800x −8002x=2,解得:x=200,经检验,x=200是原分式方程的解,∴当x=200时,2x=400;答:甲、乙两园林队每天能完成绿化的面积分别是400平方米和200平方米;(2)设欧城物业应安排甲园林队工作y天,则乙园林队工作9600−400y200=(48−2y)天,根据题意得:0.4y+0.25(48−2y)≤10,解得:y≥20,∴y的最小值为20.答:甲工程队至少应工作20天.解析:(1)设乙工程队每天能完成的绿化面积为x平方米,则甲工程队每天能完成的绿化面积为2x 平方米,根据工作时间=工作总量÷工作效率结合甲队比乙队少用2天,即可得出关于x的分式方程,解之并检验后即可得出结论;(2)设应安排甲工程队工作y天,则乙工程队工作(48−2y)天,根据总费用=0.4×甲工程队工作天数+0.25×乙工程队工作天数结合总费用不超过10万元,即可得出关于y的一元一次不等式,解之即可得出y的取值范围,取其内的最小值即可.本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据数量关系,列出一元一次不等式.25.答案:(1)证明:在矩形ABCD中,∠ABC=90°.∴∠ABF+∠FBC=90°.∵AF⊥BE,∴∠AFB=90°.∴∠ABF+∠GAF=90°.∴∠GAF=∠FBC.∵FG⊥FC,∴∠GFC=90°.∴∠AFB=∠GFC∴∠ABF−∠GFB=∠GFC−∠GFB.即∠AFG=∠CFB.∴△AFG∽△BFC;(2)解:由(1)得△AFG∽△BFC,∴AGBC =AFBF.在Rt△ABF中,tan∠ADF=AFBF,在Rt△EAB中,tan∠EBA=EAAB,∴AFBF =EAAB.∴AGBC =EAAB.∵BC=AD=4,AB=5,∴AG=EA⋅BCAB =4x5.∴BG=AB−AG=5−45x.∴y=12BG⋅AE=12(5−45x)x=−25x2+52x=−25(x−258)2+12532.∴y的最大值为12532;(3)解:∵△BFC为等腰三角形∴①当FC=FB时,如图1,过点F作FH⊥BC于H,∴BH=CH=12BC=2,过点F作FP⊥AB于P,∴四边形BHFP是矩形,∴FP=BH=2,在Rt△BPF中,tan∠PBF=FPPB =2PB,在Rt△APF中,tan∠AFP=APFP =AP2,∵∠AFP+∠PAF=90°,∠PBF+∠PAF=90°,∴∠PBF=∠AFP,∴2PB =AP2,∵AP+PB=AB=5,∴AP=5−PB,∴2PB =5−PB2,∴PB=4或PB=1(舍),∵PF//AE,∴△PBF∽△ABE,∴PBAB =FPAE,∴45=2AE,∴x=AE=52;②当BF=BC=4时,在Rt△ABF中,AF=√AB2−BF2=3,易得,△AEF∽△BAF,∴AEAB =AFBF,∴AE5=34,∴x=AE=154;③当FC=BC=4时,如图2,连接CG,在Rt△CFG和Rt△CBG中,{CG=CG CF=CB,∴Rt△CFG≌Rt△CBG,∴FG=BG,∵△ABF是直角三角形,∴点G是AB的中点,∴AG =BG =12AB =52, 由(2)知,AG =45x , ∴45x =52, ∴x =258;即:x 的值为52,258或154.解析:(1)先判断出∠GAF =∠FBC ,再判断出∠AFB =∠GFC 即可得出结论; (2)先判断出AFBF =EAAB .再表示出AG =EA⋅BC AB=4x5,BG =5−45x.最后用三角形的面积公式即可得出结论; (3)分三种情况讨论利用等腰三角形的性质和相似三角形的性质即可得出结论.此题是相似形综合题,主要考查了相似三角形的判断和性质,锐角三角函数,矩形的判定全等三角形的判定和性质,直角三角形的性质,等腰三角形的性质,解(1)的关键是得出∠ABF =∠GFC ,解(2)的关键是得出AG 和BG ,解(3)的关键是分类讨论的思想解决问题,是一道中等难度的中考常考题.26.答案:解:(1)∵抛物线与x 轴交于A(1,0),B(−3,0)两点,∴设抛物线的解析式为y =a(x +3)(x −1), ∵点C(0,3),∴−3a =3,解得a =−1,∴抛物线的解析式为y =−(x +3)(x −1),即y =−x 2−2x +3;(2)∵抛物线的解析式为y =−x 2−2x +3; ∴其对称轴x =−1,顶点P 的坐标为(−1,4) ∵点M 在抛物线的对称轴上, ∴设M(−1,m),∵A(1,0),P(−1,4),∴设过点A 、P 的直线解析式为y =kx +b(k ≠0), ∴{k +b =0−k +b =4,解得{k =−2b =2,∴直线AP 的解析式为y =−2x +2, ∴E(0,2),∴S △ACP =S △ACE +S △PEC =12CE ⋅1+12CE ⋅1=12×1×1+12×1×1=1, ∵S △MAP =2S △ACP ,∴12MP ×2=2,解得MP =2,当点M 在P 点上方时,m −4=2,解得m =6, ∴此时M(−1,6);当点M 在P 点下方时,4−m =2,解得m =2,∴此时M(−1,2),综上所述,M1(−1,6),M2(−1,2).解析:(1)设抛物线的解析式为y=a(x+3)(x−1),再把C(0,3)代入求出a的值即可;(2)根据(1)中抛物线的解析式求出求出抛物线的对称轴方程及顶点坐标,设出M点的坐标,利用待定系数法求出直线AP的解析式,求出E点坐标,故可得出△ACP的面积,进而可得出M点的坐标.本题考查的是二次函数综合题,涉及到用待定系数法求一次函数及二次函数的解析式、三角形的面积公式等知识,难度不大.。
玉林市2020版中考数学一模试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019八上·揭阳期中) 下列说法中错误的是()A . 9的算术平方根是3B . 的平方根是±2C . 27的立方根为±3D . 立方根等于1的数是12. (2分)三明市地处福建省中西部,面积为22900平方千米,将22900用科学记数法表示为()A . 229×102B . 22.9×103C . 2.29×104D . 0.229×1053. (2分)下列图形中,既是轴对称又是中心对称的是()A .B .C .D .4. (2分) (2016九上·简阳期末) 已知x1、x2是方程x2﹣5x﹣6=0的两个根,则代数式x12+x22的值是()A . 37B . 26C . 13D . 105. (2分)(2019·曲靖模拟) 下面几何体的俯视图是()A .B .C .D .6. (2分)(2017·商河模拟) 一个袋子中装有3个红球和2个黄球,这些球的形状、大小.质地完全相同,在看不到球的条件下,随机从袋子里同时摸出2个球,其中2个球的颜色相同的概率是()A .B .C .D .7. (2分)如图,点A、B、C、D、O都在方格纸的格点上,若△COD是由△AOB绕点O按逆时针方向旋转而得,则旋转的角度为()A . 30°B . 45°C . 90°D . 135°8. (2分)若关于y的不等式组至少有两个整数解,且关于x的分式方程有非负整数解,求符合条件的所有整数a的值之和为A . 14B . 15C . 16D . 179. (2分) (2017七上·德惠期末) 如图,将矩形ABCD纸片沿对角线BD折叠,使点C落在C′处,BC′交AD于E,∠DBC=22.5°,则在不添加任何辅助线的情况下,图中45°的角(虚线也视为角的边)有()A . 6个B . 5个C . 4个D . 3个10. (2分)某天,小华到学校时发现有物品遗忘在家中,此时离上课还有15分钟,于是立即步行回家去取.同时,他爸爸从家里出发骑自行车以他3倍的速度给他送遗忘的物品,两人在途中相遇,相遇后小华立即坐爸爸的自行车赶回学校.爸爸和小华在这个过程中,离学校的路程S(米)与所用时间t(分钟)之间的函数关系如图所示(假设骑自行车和步行的速度始终保持不变).下列说法:①学校离家的距离是2400米;②小华步行速度是每分钟60米;③爸爸骑自行车的速度是每分钟180米;④小华能在上课开始前到达学校.其中正确的说法有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共10题;共24分)11. (1分)计算:|-2|- =________.12. (1分) (2020八下·温岭期末) 函数y= 的自变量x的取值范围为________.13. (1分) (2019七下·利辛期末) 下列各式① :② :③ ;④ :⑤中分子与分母没有公因式的分式是________.(填序号).14. (1分)(2017·株洲) 分式方程﹣ =0的解为________.15. (1分)(2020·西湖模拟) 如图,直角三角形纸片的两直角边长分别为4,8,现将△ABC如图那样折叠,使点A与点B重合,折痕为DE,则tan∠CBE的值是________.16. (1分)(2017·东营模拟) 如图,反比例函数y= 的图象经过Rt△OAB的顶点A,D为斜边OA的中点,则过点D的反比例函数的解析式为________.17. (1分)如图,在矩形ABCD中,AB=4,BC=8,Rt△EFG中,EF=4,EG=3,∠GEF=90°,与点B与点E重合时,将△EFG绕点E顺时针旋转α(0°<α<90°),直线FG分别与直线AD、BD相交于M、N,当△DMN是直角三角形时,线段MN的值是________.18. (1分) (2018九上·台州期中) 如图,在△ABC中,∠A=70°,AC=BC ,以点B为旋转中心把△ABC按顺时针方向旋转得到△A′BC′,点A′恰好落在边AC上,连接CC′,则∠ACC′=________.19. (1分)(2018·遵义模拟) 菱形的两条对角线的长分别是6cm和8cm,则菱形的周长是________cm.20. (15分)(2018·杭州) 如图,在正方形ABCD中,点G在边BC上(不与点B,C重合),连接AG,作DE⊥AG,于点E,BF⊥AG于点F,设。
玉林市2020年中考数学模拟试题及答案注意事项:1 .考生务必将自己的姓名、准考证号填涂在试卷和答题卡的规定位置。
2 .考生必须把答案写在答题卡上,在试卷上答题一律无效。
考试结束后,本试卷和答题卡一并 交回。
3 .本试卷满分120分,考试时间120分钟。
、选择题(本题共12小题。
每小题3分,共36分。
在每小题给出的四个选项中,只有一项是正 确的。
)1 .下列计算正确的是( )B. (- 3x 2) 2=6x 2D. 6x 3y 2+ ( 3x) = 2x 2y 22.据统计,截止2019年2月,我市实际居住人口约不为()A. 42.1 X 105B. 4.21 X105C. 4.21 X 106D. 4.21 X 1073.如右图是某个几何体的侧面展开图,则该几何体是( )A.三棱锥B.四棱锥C.三棱柱D.四棱柱2x 2-2x-1 = 0的较大实数根在下列哪两个相邻的整数之间(5.小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:抛掷次数 100 200300 400 500 正面朝上的频数5398156202244若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()A. 20B. 300C. 500D. 800A. x ?- 3x 2= - 2x 4C. x 2y ?2x 3=2x 6y4210000人,4210000这个数用科学记数法表4. 一■兀二次方程 A. 4, 3B. 3, 2C. 2, 1D. 1, 06.下列图形中既是轴对称图形,又是中心对称图形的是(7.关于一次函数 y=5x-3的描述,下列说法正确的是( A.图象经过第一、二、三象限④—2m 3+m 3= — m 3D.小李休息前爬山的平均速度大于休息后爬山的平均速度11.如图,四边形 ABC 虚。
的内接四边形,/ B=70° ,则/ D 的度数是()AC= 2.现将制作的几何探究工具放在平面直角坐标系中O 开始向右滑动,点 B 在射线OY 上也随之向点。
玉林市2020年中考模拟考试(二)数 学(全卷共三大题26小题,满分120分,考试时间120分钟)注意事项:1.请将答案直接填写在答题卡...上,在试卷上作答无效........。
考试结束后,将答题卡交回。
2.选择题每小题选出答案后,用2B 铅笔把答题卡...上对应题目的选项标号涂黑。
3.非选择题用直径0.5毫米黑色签字笔在答题..卡.上各题的答题区域内作答。
第Ⅰ卷(选择题 共36分)一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有一项是符合题目要求的,把正确答案的标号填涂在答题卡内相应的位置上) 1.-3的倒数是A .13B .- 13C .3D .-32.在-7,5,0,﹣3这四个数中,最大的数是 A .-7B .5C .0D .-33.由四舍五入法得到的近似数6.8×103,下列说法中正确的是 A .精确到十位B .精确到百分位C .精确到百位D .精确到千位4.使代数式 √x+1x−3 有意义的x 的取值范围是A .x >-1B .x ≥-1C .x ≥3D .x ≥-1且x ≠35.若α=28°15′,则α的补角等于 A .61°45′B .61°15′C .150°45′D .151°45′6.一个十字路口的交通信号灯每分钟红灯亮25s ,绿灯亮30s ,黄灯亮5s ,当你抬头看信号灯时,是黄灯的概率是A .512 B .112C .13D .127.已知x 1,x 2是一元二次方程x 2-2x -1=0的两个实数根,则12112121x x +--的值是 A .−27B .27C .-2D .-68.已知x 2+3x =6,则-6x -2x 2+3的值为 A .-9B .15C .16D .179.如图所示,△ABC ∽△BEF ,相似比为2:3,在△BEF 中∠E =60°,EF =12,则AC 的长为A .16√33B .8C.D .610.如图,是由27个相同的小立方块搭成的几何体,它的三个视图是3×3的正方形,若拿掉若干个小立方块(几何体不倒掉),其三个视图仍都为3×3的正方形,则最多能拿掉小立方块的个数为 A .9 B .10C .12D .1511.若二次函数y =-x 2+x +c 的图象与x 轴没有交点,则二次函数y =-x 2+x +c 的图象与反比例函数cy x=的图象的交点在 A .第一象限B .第二象限C .第三象限D .第四象限12.如图,△ABC 和△CDE 均为等腰直角三角形,点B 、C 、D 在一条直线上,点M 是AE 的中点,下列结论:①tan ∠AEC =CDBC; ②S △ABC +S △CDE ≥S △ACE ;③BM ⊥DM ;④BM =DM 。
广西省玉林市2020年中考第二次适应性考试数学试题一、选择题1.有理数a ,b 在数轴上的对应点如图所示,则下面式子中正确的是( ) ①b <0<a ; ②|b|<|a|; ③ab >0; ④a ﹣b >a+b .A .①②B .①④C .②③D .③④ 2.下列运算中,正确的是( )A .x 8÷x 2=x 4B .2x ﹣x =1C .(x 3)3=x 6D .x+x =2x3.下列图形中,是轴对称图形但不是中心对称图形的是( )A .B .C .D .4.如图,在平面直角坐标系xOy 中,菱形ABCD 的顶点A 的坐标为(2,0),点B 的坐标为(0,1),对角线BD 与x 轴平行,若直线y =kx+5+2k (k≠0)与菱形ABCD 有交点,则k 的取值范围是( )A.3243k -≤-… B.223k --剟C.324k --剟D.﹣2≤k≤2且k≠05.如图,在等边ABC △中,已知6AB =,N 为AB 上一点,且2AN =,BAC ∠的平分线交BC 于点D ,M 是AD 上的动点,连结BM ,MN ,则BM MN +的最小值是( )A .8B .10C .D .6.计算的结果为( )A.bB.–bC. D.7.如图,菱形ABCD 中60ABC ∠=,对角线AC ,BD 相交于点O ,点E 是AB 中点,且4AC =,则BOE ∆的面积为( )B. C. D.28.如图,已知E ,F 分别为正方形ABCD 的边AB ,BC 的中点,AF 与DE 交于点M ,O 为BD 的中点,则下列结论:①∠AME=90°;②∠BAF=∠EDB ;③∠BMO=90°;④MD=2AM=4EM ;⑤23AM MF =.其中正确结论的是( )A .①③④B .②④⑤C .①③⑤D .①③④⑤9.如图所示,E 是边长为的正方形ABCD 的对角线BD 上一点,且BE=BC ,P 为CE 上任意一点,PQ ⊥BC 于点Q ,PR ⊥BE 于点R ,则PQ+PR 的值是( )A B .12C D .2310.下列命题中哪一个是假命题( ) A .8的立方根是2B .在函数y =3x 的图象中,y 随x 增大而增大C .菱形的对角线相等且平分D .在同圆中,相等的圆心角所对的弧相等11.抛物线2y ax bx c =++(,,a b c 为常数,0a <)经过点(0,2),且关于直线1x =-对称,()1,0x 是抛物线与x 轴的一个交点.有下列结论:①方程22ax bx c ++=的一个根是x=-2;②若112x <<,则2134a -<<-;③若4m =时,方程2ax bx c m ++=有两个相等的实数根,则2a =-;④若302x -≤≤时,23y ≤≤,则1a =-.其中正确结论的个数是( ) A .1B .2C .3D .412.如图,在菱形ABCD 中,∠A =60°,AD =4,点F 是AB 的中点,过点F 作FE ⊥AD ,垂足为E ,将△AEF 沿点A 到点B 的方向平移,得到△A'E'F',设点P 、P'分别是EF 、E'F'的中点,当点A'与点B 重合时,四边形PP'CD 的面积为( )A.B.C.D. 4 二、填空题13.关于x,y的二元一次方程组321x yx y+=⎧⎨-=-⎩,则4x2﹣4xy+y2的值为_____.14.如图,O是坐标原点,菱形OABC的顶点A的坐标为(﹣3,﹣4),顶点C在x轴的负半轴上,函数y=kx(x<0)的图象经过菱形OABC中心E点,则k的值为_____.15.计算3=__________.16.点A(3,﹣2)关于y轴的对称点B在反比例函数y=kx的图象上,则B点的坐标为_____;k=_____.17.化简:222xx x---=_____.18.关于x的方程(m﹣2)x2+2x+1=0有实数根,则偶数m的最大值为_____.三、解答题19.如图,△ABC(∠B>∠A).(1)在边AC上用尺规作图作出点D,使∠ADB+2∠A=180°(保留作图痕迹);(2)在(1)的情况下,连接BD,若CB=CD,∠A=35°,求∠C的度数.20.如图,抛物线y=ax2+bx﹣2与x轴交于两点A(﹣1,0)和B(4,0),与Y轴交于点C,连接AC、BC、AB,(1)求抛物线的解析式;(2)点D 是抛物线上一点,连接BD 、CD ,满足ABC35DBC S S ∆=,求点D 的坐标;(3)点E 在线段AB 上(与A 、B 不重合),点F 在线段BC 上(与B 、C 不重合),是否存在以C 、E 、F 为顶点的三角形与△ABC 相似,若存在,请直接写出点F 的坐标,若不存在,请说明理由.21.如图△ABC 中,∠ABC =90°,CD 平分∠ACB 交AB 于点D ,以点D 为圆心,BD 为半径作⊙D 交AB 于点E .(1)求证:⊙D 与AC 相切;(2)若AC =5,BC =3,试求AE 的长.22.(1)计算:(0+3tan30°﹣2|+11()2- (2)解方程:3+1x xx x -= 23.2011年,陕西西安被教育部列为“减负”工作改革试点地区.学生的学业负担过重会严重影响学生对待学习的态度.为此我市教育部门对部分学校的八年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层级,A 级:对学习很感兴趣;B 级:对学习较感兴趣;C 级:对学习不感兴趣),并将调查结果绘制成图①和图②的统计图(不完整).请根据图中提供的信息,解答下列问题: (1)此次抽样调查中,共调查了 名学生; (2)将图①补充完整;(3)求出图②中C 级所占的圆心角的度数;(4)根据抽样调查结果,请你估计我市近80000名八年级学生中大约有多少名学生学习态度达标(达标包括A 级和B 级)?24.有一道作业题:(1)请你完成这道题的证明;已知:如图1,在正方形ABCD 中,G 是对角线BD 上一点(G 与B ,D 不重合)连结AG ,CG 求证:△BAG ≌△BCG(2)做完(1)后,小颖善于反思,她又提出了如下的问题,请你解答. 如果在射线CB 上取点E ,使GE =GC ,连结GE . ①如图2,当点E 在线段CB 上时,求证:AG ⊥EG . ②探究线段AB ,BE ,BG 之间的数量关系.25.春暖花开,树木萌芽,某种时令蔬菜的价格呈上升趋势,若这种蔬菜开始时的售价为每斤20元,并且每天涨价2元,从第六天开始,保持每斤30元的稳定价格销售,直到11天结束,该蔬菜退市. (1)请写出该种蔬菜销售价格y 与天数x 之间的函数关系式;(2)若该种蔬菜于进货当天售完,且这种蔬菜每斤进价z 与天数x 的关系为z =﹣21(8)8-x +12(1≤x≤11),且x 为整数,那么该种蔬菜在第几天售出后,每斤获得利润最大?最大利润为多少?【参考答案】一、选择题二、填空题 13.4 14.815.616.(﹣3,﹣2), 6. 17.1 18.2 三、解答题19.(1)作AB 的垂直平分线,交边AC 于D ,如图所示:见解析;(2)∠C =40°. 【解析】 【分析】(1)作AB 的垂直平分线,交边AC 于D 即可;(2)依据等腰三角形的性质以及三角形内角和定理,即可得到∠C 的度数. 【详解】(1)作AB 的垂直平分线,交边AC 于D ,如图所示:∴点D 即为所求; (2)∵CB =CD , ∴∠CDB =∠CBD , 由(1)可得,DA =DB , ∴∠A =∠ABD =35°, ∴∠CDB =70°, ∴△BCD 中,∠C =40°. 【点睛】本题主要参考了等腰三角形的性质以及线段垂直平分线的性质的运用,解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.20.(1)213y x x 222=--;(2)D 的坐标为2⎛- ⎝⎭,2⎛+ ⎝⎭,(1,﹣3)或(3,﹣2).(3)存在,F 的坐标为48,55⎛⎫- ⎪⎝⎭,(2,﹣1)或53,24⎛⎫- ⎪⎝⎭. 【解析】 【分析】(1)根据点A ,B 的坐标,利用待定系数法可求出抛物线的解析式;(2)利用二次函数图象上点的坐标特征可求出点C 的坐标,结合点A ,B 的坐标可得出AB ,AC ,BC 的长度,由AC 2+BC 2=25=AB 2可得出∠ACB =90°,过点D 作DM ∥BC ,交x 轴于点M ,这样的M 有两个,分别记为M 1,M 2,由D 1M 1∥BC 可得出△AD 1M 1∽△ACB ,利用相似三角形的性质结合S △DBC =35S ABC ∆ ,可得出AM 1的长度,进而可得出点M 1的坐标,由BM 1=BM 2可得出点M 2的坐标,由点B ,C 的坐标利用待定系数法可求出直线BC 的解析式,进而可得出直线D 1M 1,D 2M 2的解析式,联立直线DM 和抛物线的解析式成方程组,通过解方程组即可求出点D 的坐标;(3)分点E 与点O 重合及点E 与点O 不重合两种情况考虑:①当点E 与点O 重合时,过点O 作OF 1⊥BC 于点F 1,则△COF 1∽△ABC ,由点A ,C 的坐标利用待定系数法可求出直线AC 的解析式,进而可得出直线OF 1的解析式,联立直线OF 1和直线BC 的解析式成方程组,通过解方程组可求出点F 1的坐标;②当点E 不和点O 重合时,在线段AB 上取点E ,使得EB =EC ,过点E 作EF 2⊥BC 于点F 2,过点E 作EF 3⊥CE ,交直线BC 于点F 3,则△CEF 2∽△BAC ∽△CF 3E .由EC =EB 利用等腰三角形的性质可得出点F 2为线段BC 的中点,进而可得出点F 2的坐标;利用相似三角形的性质可求出CF 3的长度,设点F 3的坐标为(x ,12x ﹣2),结合点C 的坐标可得出关于x 的方程,解之即可得出x 的值,将其正值代入点F 3的坐标中即可得出结论.综上,此题得解. 【详解】(1)将A (﹣1,0),B (4,0)代入y =ax 2+bx ﹣2,得:2016420a b a b --=⎧⎨+-=⎩ ,解得:1232a b ⎧=⎪⎪⎨⎪=-⎪⎩, ∴抛物线的解析式为y =12 x 2﹣32x ﹣2. (2)当x =0时,y =12x 2﹣32x ﹣2=﹣2, ∴点C 的坐标为(0,﹣2).∵点A 的坐标为(﹣1,0),点B 的坐标为(4,0), ∴AC,BC=AB =5. ∵AC 2+BC 2=25=AB 2, ∴∠ACB =90°.过点D 作DM ∥BC ,交x 轴于点M ,这样的M 有两个,分别记为M 1,M 2,如图1所示. ∵D 1M 1∥BC , ∴△AD 1M 1∽△ACB . ∵S △DBC =35S ABC ∆, ∴125AM AB =, ∴AM 1=2,∴点M 1的坐标为(1,0), ∴BM 1=BM 2=3,∴点M 2的坐标为(7,0).设直线BC 的解析式为y =kx+c (k≠0), 将B (4,0),C (0,﹣2)代入y =kx+c ,得: 402k c c +=⎧⎨=-⎩ ,解得:122k c ⎧=⎪⎨⎪=-⎩ , ∴直线BC 的解析式为y =12x ﹣2. ∵D 1M 1∥BC ∥D 2M 2,点M 1的坐标为(1,0),点M 2的坐标为(7,0), ∴直线D 1M 1的解析式为y =12 x ﹣12 ,直线D 2M 2的解析式为y =12x ﹣72. 联立直线DM 和抛物线的解析式成方程组,得:2112213222y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩或2172213222y x y x x ⎧=-⎪⎪⎨⎪=--⎪⎩,解得:112x y ⎧=⎪⎨=⎪⎩,222x y ⎧=⎪⎨=⎪⎩,3313x y =⎧⎨=-⎩ ,4432x y =⎧⎨=-⎩, ∴点D 的坐标为(2),(),(1,﹣3)或(3,﹣2).(3)分两种情况考虑,如图2所示.①当点E 与点O 重合时,过点O 作OF 1⊥BC 于点F 1,则△COF 1∽△ABC , 设直线AC 的解析设为y =mx+n (m≠0),将A (﹣1,0),C (0,﹣2)代入y =mx+n ,得:-02m n n +=⎧⎨=-⎩ ,解得:22m n =-⎧⎨=-⎩ , ∴直线AC 的解析式为y =﹣2x ﹣2. ∵AC ⊥BC ,OF 1⊥BC ,∴直线OF 1的解析式为y =﹣2x .连接直线OF 1和直线BC 的解析式成方程组,得:2122y xy x =-⎧⎪⎨=-⎪⎩ , 解得:4585x y ⎧=⎪⎪⎨⎪=⎪⎩,∴点F 1的坐标为(45 ,﹣85); ②当点E 不和点O 重合时,在线段AB 上取点E ,使得EB =EC ,过点E 作EF 2⊥BC 于点F 2,过点E 作EF 3⊥CE ,交直线BC 于点F 3,则△CEF 2∽△BAC ∽△CF 3E . ∵EC =EB ,EF 2⊥BC 于点F 2, ∴点F 2为线段BC 的中点, ∴点F 2的坐标为(2,﹣1); ∵BC =, ∴CF 2=12 BC,EF 2=12 CF 2,F 2F 3=12 EF 2=4 , ∴CF 3. 设点F 3的坐标为(x ,12x ﹣2), ∵CF 3=4,点C 的坐标为(0,﹣2), ∴x 2+[12x ﹣2﹣(﹣2)]2=12516,解得:x 1=﹣52 (舍去),x 2=52, ∴点F 3的坐标为(52,﹣34). 综上所述:存在以C 、E 、F 为顶点的三角形与△ABC 相似,点F 的坐标为(45 ,﹣85),(2,﹣1)或(52 ,﹣34).【点睛】本题考查了待定系数法求二次函数解析式、二次函数图象上点的坐标特征、勾股定理的逆定理、待定系数法求一次函数解析式、一次函数图象上点的坐标特征、平行线的性质、相似三角形的性质以及两点间的距离公式,解题的关键是:(1)根据点的坐标,利用待定系数法求出二次函数解析式;(2)找出过点D且与直线BC平行的直线的解析式;(3)分点E与点O重合及点E与点O不重合两种情况,利用相似三角形的性质及等腰三角形的性质求出点F的坐标.21.(1)见解析;(2)AE=1.【解析】【分析】(1)过D作DF⊥AC于F,利用角平分线的性质定理可得BD=FD即可证明:⊙D与AC相切;(2)在直角三角形ABC中由勾股定理可求出AB的长,设圆的半径为x,利用切线长定理可求出CF=BC=3,所以AF=2,AD=4-x,利用勾股定理建立方程求出x,进而求出AE的长.【详解】(1)证明:过D作DF⊥AC于F,∵∠B=90°,∴AB⊥BC,∵CD平分∠ACB交AB于点D,∴BD=DF,∴⊙D与AC相切;(2)解:设圆的半径为x,∵∠B=90°,BC=3,AC=5,∴AB4,∵AC,BC,是圆的切线,∴BC=CF=3,∴AF=AB﹣CF=2,∵AB=4,∴AD=AB﹣BD=4﹣x,在Rt△AFD中,(4﹣x)2=x2+22,解得:32x=,∴AE=4﹣3=1.【点睛】本题考查了圆的切线的判定、角平分线的性质、切线长定理以及勾股定理的运用,解题的关键是构造直角三角形,利用勾股定理列方程.22.(1);(2)x=﹣1.5.【解析】【分析】(1)根据0指数幂、特殊的三角函数值、绝对值及负整数指数幂即可解答.(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【详解】(1)原式=13221+-++=+(2)去分母得:x2=x2﹣2x﹣3,移项合并得:﹣2x=3,解得:x=﹣1.5,经检验x=﹣1.5是原方程的解.【点睛】本题考查了0指数幂、特殊的三角函数值、绝对值、负整数指数幂及解分式方程,掌握各种运算的法则是关键,解分式方程必须检验.23.(1)200,(2)补图见解析;(3)54°;(4)680000人.【解析】【分析】(1)根据A级有50人,所占的比例是25%,据此即可求解;(2)求得C级所占的比例,乘以总人数即可求解,进而作出条形图;(3)利用360度,乘以C级所占的比例即可求解;(4)总人数乘以A,B两级所占的比例的和即可求解.【详解】解:(1)50÷25%=200(名);(2)C级的人数是:200×(1﹣25%﹣60%)=30(人).;(3)C级所占的圆心角的度数是:360×(1﹣25%﹣60%)=54°;(4)80000×(25%+60%)=68000(人).【点睛】本题考查扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°比.24.(1)见解析;(2)①见解析;②当点E在线段CB上时,AB+BE;当点E在线段CB延长线上时,AB﹣BE BG.【解析】【分析】(1)由正方形知BD平分∠ABC,据此得∠ABG=∠CBG,结合AB=BC,BG=BG即可得证;(2)①由△BAG≌△BCG知∠BAG=∠BCG,据此得GE=GC,∠BCG=∠GEC,从而知∠GEC=∠BAG,再根据∠GEC+∠BEG=180°知∠BAG+∠BEG=180°,从而得∠ABE+∠AGE=180°,即可得证;②分点E在线段CB上和点E在线段CB延长线上两种情况分别求解可得.【详解】解:(1)如图1,在正方形ABCD中,BD是对角线,∴BD平分∠ABC,∴∠ABG=∠CBG,又∵AB=BC,BG=BG,∴△BAG≌△BCG(SAS);(2)①如图2,由(1)知△BAG≌△BCG,∴∠BAG=∠BCG,∴GE=GC,∴∠BCG=∠GEC,∴∠GEC=∠BAG,又∵∠GEC+∠BEG=180°,∴∠BAG+∠BEG=180°,∴∠ABE+∠AGE=180°,又∵∠ABE=90°,∴∠AEG=90°,∴AG⊥EG.②如图3,当点E在线段CB上时,作GH⊥BC于H,在Rt△BGH中,BHBG,∵BE=BH﹣EH①,AB=BH+CH②,∵GE=GC,∴EH=CH,∴①+②,得:AB+BE=2BH,∴AB+BEBG;如图3,当点E在线段CB延长线上时,作GH⊥BC于H,在Rt△BGH中,BHBG,∵BE=EH﹣BH①,AB=BH+HC②,∴②﹣①,得:AB﹣BE=2BH,∴AB﹣BEBG.【点睛】本题是四边形的综合问题,解题的关键是熟练掌握正方形的性质、全等三角形的判定与性质及直角三角形的有关性质等知识点.25.(1)202(1)218(16)30(611)x x xyx+-=+<⎧=⎨⎩…剟;(2)在第11天进货并售出后,所获利润最大,且为每件最大利润为19.125元.【解析】【分析】(1)根据销售价格随时间的变化关系设y与x之间的函数关系为y=kx+b,由分段函数求出其值即可; (2)根据利润=售价﹣进价就可以表示出利润与时间之间的关系,由二次函数的性质就可以求出结论.【详解】解:(1)该种蔬菜销售价格y 与天数x 之间的函数关系式:y =()()()20212181630611x x x x ⎧+-=+≤≤⎪⎨≤≤⎪⎩; (2)设利润为W,则W =y ﹣z =()()()()()()()222211218812141688113081281861188x x x x x x x x x ⎧++--=+≤≤⎪⎪⎨⎪+--=-+≤≤⎪⎩为整数为整数, W =21148x +,对称轴是直线x =0,当x >0时,W 随x 的增大而增大, ∴当x =5时,W 最大=258+14=17.125(元) W =()218188x -+,对称轴是直线x =8,当x >8时,W 随x 的增大而增大, ∴当x =11时,W 最大=18×9+18=1918=19.125(元) 综上可知:在第11天进货并售出后,所获利润最大且为每件19.125元.【点睛】本题主要考查了二次函数的应用,待定系数法求函数的解析式的运用,二次函数的最值的运用,解答时求出利润的解析式是关键.。
玉林市2020年中考数学模拟试题及答案注意事项:1.考生务必将自己的姓名、准考证号填涂在试卷和答题卡的规定位置。
2.考生必须把答案写在答题卡上,在试卷上答题一律无效。
考试结束后,本试卷和答题卡一并交回。
3.本试卷满分120分,考试时间120分钟。
一、选择题(本题共12小题。
每小题3分,共36分。
在每小题给出的四个选项中,只有一项是正确的。
)1.下列计算正确的是()A.x2﹣3x2=﹣2x4B.(﹣3x2)2=6x2C.x2y•2x3=2x6y D.6x3y2÷(3x)=2x2y22.据统计,截止2019年2月,我市实际居住人口约4210000人,4210000这个数用科学记数法表示为()A.42.1×105B.4.21×105C.4.21×106D.4.21×1073.如右图是某个几何体的侧面展开图,则该几何体是()A.三棱锥B.四棱锥C.三棱柱D.四棱柱4.一元二次方程2x2﹣2x﹣1=0的较大实数根在下列哪两个相邻的整数之间()A.4,3 B.3,2 C.2,1 D.1,05.小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:若抛掷硬币的次数为1000,则“正面朝上”的频数最接近()A.20 B.300 C.500 D.8006.下列图形中既是轴对称图形,又是中心对称图形的是()A. B.C. D.7.关于一次函数y=5x﹣3的描述,下列说法正确的是()A.图象经过第一、二、三象限B.向下平移3个单位长度,可得到y=5xC.函数的图象与x轴的交点坐标是(0,﹣3)D.图象经过点(1,2)8.如右图,AB∥CD,直线MN与AB、CD分别交于点E、F,FG平分∠EFD,EG⊥FG于点G,若∠CFN=110°,则∠BEG=()A.20°B.25°C.35°D.40°9.下列计算正确的有()个。
①(﹣2a2)3=﹣6a6②(x﹣2)(x+3)=x2﹣6 ③(x﹣2)2=x2﹣4④﹣2m3+m3=﹣m3⑤﹣16=﹣1.A.0 B.1 C.2 D.310.小李双休日爬山,他从山脚爬到山顶的过程中,中途休息了一段时间,设他从山脚出发后所用的时间为t分钟,所走的路程为s米,s与t之间的函数关系式如图所示,下列说法错误的是()A.小李中途休息了20分钟B.小李休息前爬山的速度为每分钟70米C.小李在上述过程中所走的路程为6600米D.小李休息前爬山的平均速度大于休息后爬山的平均速度11. 如图,四边形ABCD是⊙O的内接四边形,∠B=70°,则∠D的度数是()A. 110°B. 90°C. 70°D. 50°12.图1是用钢丝制作的一个几何探究工具,其中△ABC内接于⊙G,AB是⊙G的直径,AB=6,AC=2.现将制作的几何探究工具放在平面直角坐标系中(如图2),然后点A在射线OX上由点O开始向右滑动,点B在射线OY上也随之向点O滑动(如图3),当点B滑动至与点O重合时运动结束.在整个运动过程中,点C运动的路程是()A.4 B.6 C.4﹣2 D.10﹣4二、填空题(本题共6小题,满分18分。
广西省玉林市2019-2020学年中考数学仿真第二次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知在四边形ABCD中,AD//BC,对角线AC、BD交于点O,且AC=BD,下列四个命题中真命题是()A.若AB=CD,则四边形ABCD一定是等腰梯形;B.若∠DBC=∠ACB,则四边形ABCD一定是等腰梯形;C.若AO COOB OD=,则四边形ABCD一定是矩形;D.若AC⊥BD且AO=OD,则四边形ABCD一定是正方形.2.实数21-的相反数是()A.21-B.21+C.21--D.12-3.下列各数中,比﹣1大1的是()A.0 B.1 C.2 D.﹣34.反比例函数y=ax(a>0,a为常数)和y=2x在第一象限内的图象如图所示,点M在y=ax的图象上,MC⊥x轴于点C,交y=2x的图象于点A;MD⊥y轴于点D,交y=2x的图象于点B,当点M在y=ax的图象上运动时,以下结论:①S△ODB=S△OCA;②四边形OAMB的面积不变;③当点A是MC的中点时,则点B是MD的中点.其中正确结论的个数是()A.0 B.1 C.2 D.35.下列图形中,线段MN的长度表示点M到直线l的距离的是()A.B.C. D.6.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于()A .75°B .90°C .105°D .115°7.如图,▱ABCD 的对角线AC ,BD 相交于点O ,E 是AB 中点,且AE+EO=4,则▱ABCD 的周长为( )A .20B .16C .12D .88.如图,BC ⊥AE 于点C ,CD ∥AB ,∠B =55°,则∠1等于( )A .35°B .45°C .55°D .25°9.关于x 的方程2(5)410a x x ---=有实数根,则a 满足( )A .1a ≥B .1a >且5a ≠C .1a ≥且5a ≠D .5a ≠10.下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有( )A .1个B .2个C .3个D .4个11.等腰三角形三边长分别为2a b 、、,且a b 、是关于x 的一元二次方程2610x x n -+-=的两根,则n 的值为( )A .9B .10C .9或10D .8或1012.如图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P 从点A 出发,沿A→D→E→F→G→B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B ),则△ABP 的面积S 随着时间t 变化的函数图象大致是( )A .B .C .D .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,A,B两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C,连接CA,CB,分别延长到点M,N,使AM=AC,BN=BC,测得MN=200m,则A,B间的距离为_____m.14.一个斜面的坡度i=1:0.75,如果一个物体从斜面的底部沿着斜面方向前进了20米,那么这个物体在水平方向上前进了_____米.15.不等式5x﹣3<3x+5的非负整数解是_____.16.不等式组340 12412xx+≥⎧⎪⎨-≤⎪⎩的所有整数解的积为__________.17.已知关于x的方程x2+mx+4=0有两个相等的实数根,则实数m的值是______.18.如图,已知正六边形ABCDEF的外接圆半径为2cm,则正六边形的边心距是__________cm.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,AB是半圆O的直径,D为弦BC的中点,延长OD交弧BC于点E,点F为OD的延长线上一点且满足∠OBC=∠OFC,求证:CF为⊙O的切线;若四边形ACFD是平行四边形,求sin∠BAD 的值.20.(6分)如图,二次函数232(0)2y ax x a=-+≠的图象与x轴交于A、B两点,与y轴交于点C,已知点A(﹣4,0).求抛物线与直线AC的函数解析式;若点D(m,n)是抛物线在第二象限的部分上的一动点,四边形OCDA的面积为S,求S关于m的函数关系式;若点E为抛物线上任意一点,点F为x 轴上任意一点,当以A、C、E、F为顶点的四边形是平行四边形时,请求出满足条件的所有点E的坐标.21.(6分)为有效治理污染,改善生态环境,山西太原成为国内首个实现纯电动出租车的城市,绿色环保的电动出租车受到市民的广泛欢迎,给市民的生活带来了很大的方便,下表是行驶路程在15公里以内时普通燃油出租车和纯电动出租车的运营价格:车型起步公里数起步价格超出起步公里数后的单价普通燃油型 3 13元 2.3元/公里纯电动型 3 8元2元/公里张先生每天从家打出租车去单位上班(路程在15公里以内),结果发现,正常情况下乘坐纯电动出租车比乘坐燃油出租车平均每公里节省0.8元,求张先生家到单位的路程.22.(8分)如图,正六边形ABCDEF在正三角形网格内,点O为正六边形的中心,仅用无刻度的直尺完成以下作图.(1)在图1中,过点O作AC的平行线;(2)在图2中,过点E作AC的平行线.23.(8分)图1、图2是两张形状和大小完全相同的方格纸,方格纸中每个小正方形的边长均为1,线段AC的两个端点均在小正方形的顶点上.(1)如图1,点P在小正方形的顶点上,在图1中作出点P关于直线AC的对称点Q,连接AQ、QC、CP、PA,并直接写出四边形AQCP的周长;(2)在图2中画出一个以线段AC为对角线、面积为6的矩形ABCD,且点B和点D均在小正方形的顶点上.24.(10分)在平面直角坐标系xOy 中,将抛物线21:23G y mx =+(m≠0)向右平移3个单位长度后得到抛物线G 2,点A 是抛物线G 2的顶点.(1)直接写出点A 的坐标;(2)过点(0,3)且平行于x 轴的直线l 与抛物线G 2交于B ,C 两点.①当∠BAC =90°时.求抛物线G 2的表达式;②若60°<∠BAC <120°,直接写出m 的取值范围.25.(10分)一辆高铁与一辆动车组列车在长为1320千米的京沪高速铁路上运行,已知高铁列车比动车组列车平均速度每小时快99千米,且高铁列车比动车组列车全程运行时间少3小时,求这辆高铁列车全程运行的时间和平均速度.26.(12分)如图,某人在山坡坡脚C 处测得一座建筑物顶点A 的仰角为63.4°,沿山坡向上走到P 处再测得该建筑物顶点A 的仰角为53°.已知BC =90米,且B 、C 、D 在同一条直线上,山坡坡度i =5:1.(1)求此人所在位置点P 的铅直高度.(结果精确到0.1米)(2)求此人从所在位置点P 走到建筑物底部B 点的路程(结果精确到0.1米)(测倾器的高度忽略不计,参考数据:tan53°≈43,tan63.4°≈2)27.(12分)某景区门票价格80元/人,景区为吸引游客,对门票价格进行动态管理,非节假日打a 折,节假日期间,10人以下(包括10人)不打折,10人以上超过10人的部分打b 折,设游客为x 人,门票费用为y 元,非节假日门票费用y 1(元)及节假日门票费用y 2(元)与游客x (人)之间的函数关系如图所示.(1)a= ,b= ;(2)确定y 2与x 之间的函数关系式:(3)导游小王6月10日(非节假日)带A旅游团,6月20日(端午节)带B旅游团到该景区旅游,两团共计50人,两次共付门票费用3040元,求A、B两个旅游团各多少人?参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】A、因为满足本选项条件的四边形ABCD有可能是矩形,因此A中命题不一定成立;B、因为满足本选项条件的四边形ABCD有可能是矩形,因此B中命题不一定成立;C、因为由AO COBO OD=结合AO+CO=AC=BD=BO+OD可证得AO=CO,BO=DO,由此即可证得此时四边形ABCD是矩形,因此C中命题一定成立;D、因为满足本选项条件的四边形ABCD有可能是等腰梯形,由此D中命题不一定成立. 故选C.2.D【解析】【分析】根据相反数的定义求解即可.【详解】21的相反数是21,故选D.【点睛】本题考查了实数的性质,在一个数的前面加上负号就是这个数的相反数.3.A【解析】【分析】用-1加上1,求出比-1大1的是多少即可.【详解】∵-1+1=1,∴比-1大1的是1.故选:A .【点睛】本题考查了有理数加法的运算,解题的关键是要熟练掌握: “先符号,后绝对值”.4.D【解析】【分析】根据反比例函数的性质和比例系数的几何意义逐项分析可得出解.【详解】①由于A 、B 在同一反比例函数y=2x图象上,由反比例系数的几何意义可得S △ODB =S △OCA =1,正确; ②由于矩形OCMD 、△ODB 、△OCA 为定值,则四边形MAOB 的面积不会发生变化,正确; ③连接OM ,点A 是MC 的中点,则S △ODM =S △OCM =2a ,因S △ODB =S △OCA =1,所以△OBD 和△OBM 面积相等,点B 一定是MD 的中点.正确;故答案选D .考点:反比例系数的几何意义.5.A【解析】解:图B 、C 、D 中,线段MN 不与直线l 垂直,故线段MN 的长度不能表示点M 到直线l 的距离;图A 中,线段MN 与直线l 垂直,垂足为点N ,故线段MN 的长度能表示点M 到直线l 的距离.故选A .6.C【解析】分析:依据AB ∥EF ,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.详解:∵AB∥EF,∴∠BDE=∠E=45°,又∵∠A=30°,∴∠B=60°,∴∠1=∠BDE+∠B=45°+60°=105°,故选C.点睛:本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.7.B【解析】【分析】首先证明:OE=BC,由AE+EO=4,推出AB+BC=8即可解决问题;【详解】∵四边形ABCD是平行四边形,∴OA=OC,∵AE=EB,∴OE=BC,∵AE+EO=4,∴2AE+2EO=8,∴AB+BC=8,∴平行四边形ABCD的周长=2×8=16,故选:B.【点睛】本题考查平行四边形的性质、三角形的中位线定理等知识,解题的关键是熟练掌握三角形的中位线定理,属于中考常考题型.8.A【解析】【分析】根据垂直的定义得到∠∠BCE=90°,根据平行线的性质求出∠BCD=55°,计算即可.【详解】解:∵BC⊥AE,∴∠BCE=90°,∵CD∥AB,∠B=55°,∴∠BCD=∠B=55°,∴∠1=90°-55°=35°,故选:A.【点睛】本题考查的是平行线的性质和垂直的定义,两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.9.A【解析】【分析】分类讨论:当a=5时,原方程变形一元一次方程,有一个实数解;当a≠5时,根据判别式的意义得到a≥1且a≠5时,方程有两个实数根,然后综合两种情况即可得到满足条件的a的范围.【详解】当a=5时,原方程变形为-4x-1=0,解得x=-14;当a≠5时,△=(-4)2-4(a-5)×(-1)≥0,解得a≥1,即a≥1且a≠5时,方程有两个实数根,所以a的取值范围为a≥1.故选A.【点睛】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2-4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.10.B【解析】【分析】【详解】解:根据中心对称的概念可得第一个图形是中心对称图形,第二个图形不是中心对称图形,第三个图形是中心对称图形,第四个图形不是中心对称图形,所以,中心对称图有2个.故选B.【点睛】本题考查中心对称图形的识别,掌握中心对称图形的概念是本题的解题关键.11.B【解析】【分析】【详解】由题意可知,等腰三角形有两种情况:当a,b为腰时,a=b,由一元二次方程根与系数的关系可得a+b=6,所以a=b=3,ab=9=n-1,解得n=1;当2为腰时,a=2(或b=2),此时2+b=6(或a+2=6),解得b=4(a=4),这时三边为2,2,4,不符合三角形三边关系:两边之和大于第三边,两边之差小于第三边,故不合题意.所以n只能为1.故选B12.B【解析】解:当点P在AD上时,△ABP的底AB不变,高增大,所以△ABP的面积S随着时间t的增大而增大;当点P在DE上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在EF上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;当点P在FG上时,△ABP的底AB不变,高不变,所以△ABP的面积S不变;当点P在GB上时,△ABP的底AB不变,高减小,所以△ABP的面积S随着时间t的减小而减小;故选B.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.1【解析】【详解】∵AM=AC,BN=BC,∴AB是△ABC的中位线,∴AB=12MN=1m,故答案为1.14.1.【解析】【分析】直接根据题意得出直角边的比值,即可表示出各边长进而得出答案.【详解】如图所示:∵坡度i=1:0.75,∴AC:BC=1:0.75=4:3,∴设AC=4x,则BC=3x,∴,∵AB=20m,∴5x=20,解得:x=4,故3x=1,故这个物体在水平方向上前进了1m .故答案为:1.【点睛】此题主要考查坡度的运用,需注意的是坡度是坡角的正切值,是铅直高度h 和水平宽l 的比,我们把斜坡面与水平面的夹角叫做坡角,若用α表示坡角,可知坡度与坡角的关系是tan h i lα==. 15.0,1,2,1【解析】5x ﹣1<1x+5,移项得,5x ﹣1x <5+1,合并同类项得,2x <8,系数化为1得,x <4所以不等式的非负整数解为0,1,2,1;故答案为0,1,2,1.【点睛】根据不等式的基本性质正确解不等式,求出解集是解答本题的关键.16.1【解析】【详解】 解:34012412x x +≥⎧⎪⎨-≤⎪⎩①②, 解不等式①得:43x ≥-, 解不等式②得:50x ≤,∴不等式组的整数解为﹣1,1,1…51,所以所有整数解的积为1,故答案为1.【点睛】本题考查一元一次不等式组的整数解,准确计算是关键,难度不大.17.±4【解析】分析:由方程有两个相等的实数根,得到根的判别式等于0,列出关于m 的方程,求出方程的解即可得到m 的值.详解:∵方程240x mx ++=有两个相等的实数根,∴2244140b ac m =-=-⨯⨯=V ,解得: 4.m =±故答案为 4.±点睛:考查一元二次方程()200++=≠ax bx c a 根的判别式24b ac ∆=-, 当240b ac ∆=->时,方程有两个不相等的实数根.当240b ac ∆=-=时,方程有两个相等的实数根.当240b ac ∆=-<时,方程没有实数根.18.3 【解析】连接OA ,作OM ⊥AB 于点M ,∵正六边形ABCDEF 的外接圆半径为2cm∴正六边形的半径为2 cm , 即OA =2cm在正六边形ABCDEF 中,∠AOM=30°,∴正六边形的边心距是OM= cos30°×OA=323⨯=(cm) 故答案为3.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19. (1)见解析;(2)13. 【解析】【分析】(1)连接OC ,根据等腰三角形的性质得到∠OCB=∠B ,∠OCB=∠F ,根据垂径定理得到OF ⊥BC ,根据余角的性质得到∠OCF=90°,于是得到结论;(2)过D作DH⊥AB于H,根据三角形的中位线的想知道的OD=12AC,根据平行四边形的性质得到DF=AC,设OD=x,得到AC=DF=2x,根据射影定理得到CD=2x,求得BD=2x,根据勾股定理得到AD=226AC CD+=x,于是得到结论.【详解】解:(1)连接OC,∵OC=OB,∴∠OCB=∠B,∵∠B=∠F,∴∠OCB=∠F,∵D为BC的中点,∴OF⊥BC,∴∠F+∠FCD=90°,∴∠OCB+∠FCD=90°,∴∠OCF=90°,∴CF为⊙O的切线;(2)过D作DH⊥AB于H,∵AO=OB,CD=DB,∴OD=12 AC,∵四边形ACFD是平行四边形,∴DF=AC,设OD=x,∴AC=DF=2x,∵∠OCF=90°,CD⊥OF,∴CD2=OD•DF=2x2,∴2x,∴2x,∴=,∵OD=x ,x ,∴,∴DH=CD BD OB ⋅=x , ∴sin ∠BAD=DH AD =13. 【点睛】 本题考查了切线的判定和性质,平行四边形的性质,垂径定理,射影定理,勾股定理,三角函数的定义,正确的作出辅助线是解题的关键.20.(1)122y x =+(1)S=﹣m 1﹣4m+4(﹣4<m <0)(3)(﹣3,1)、(32-,﹣1)、(32-+,﹣1)【解析】【分析】(1)把点A 的坐标代入抛物线的解析式,就可求得抛物线的解析式,根据A ,C 两点的坐标,可求得直线AC 的函数解析式;(1)先过点D 作DH ⊥x 轴于点H ,运用割补法即可得到:四边形OCDA 的面积=△ADH 的面积+四边形OCDH 的面积,据此列式计算化简就可求得S 关于m 的函数关系;(3)由于AC 确定,可分AC 是平行四边形的边和对角线两种情况讨论,得到点E 与点C 的纵坐标之间的关系,然后代入抛物线的解析式,就可得到满足条件的所有点E 的坐标.【详解】(1)∵A (﹣4,0)在二次函数y=ax 1﹣32x+1(a≠0)的图象上, ∴0=16a+6+1,解得a=﹣12, ∴抛物线的函数解析式为y=﹣12x 1﹣32x+1; ∴点C 的坐标为(0,1),设直线AC 的解析式为y=kx+b ,则04{2k b b=-+=,解得1 {22kb==,∴直线AC的函数解析式为:122y x=+;(1)∵点D(m,n)是抛物线在第二象限的部分上的一动点,∴D(m,﹣12m1﹣32m+1),过点D作DH⊥x轴于点H,则DH=﹣12m1﹣32m+1,AH=m+4,HO=﹣m,∵四边形OCDA的面积=△ADH的面积+四边形OCDH的面积,∴S=12(m+4)×(﹣12m1﹣32m+1)+12(﹣12m1﹣32m+1+1)×(﹣m),化简,得S=﹣m1﹣4m+4(﹣4<m<0);(3)①若AC为平行四边形的一边,则C、E到AF的距离相等,∴|y E|=|y C|=1,∴y E=±1.当y E=1时,解方程﹣12x1﹣32x+1=1得,x1=0,x1=﹣3,∴点E的坐标为(﹣3,1);当y E=﹣1时,解方程﹣12x1﹣32x+1=﹣1得,x1=32--,x1=32-+,∴点E,﹣1,﹣1);②若AC为平行四边形的一条对角线,则CE∥AF,∴y E=y C=1,∴点E的坐标为(﹣3,1).综上所述,满足条件的点E的坐标为(﹣3,1)、(32-,﹣1)、(32-,﹣1).21.8.2 km【解析】【分析】首先设小明家到单位的路程是x千米,根据题意列出方程进行求解.【详解】解:设小明家到单位的路程是x千米.依题意,得13+2.3(x-3)=8+2(x-3)+0.8x.解得:x=8.2答:小明家到单位的路程是8.2千米.【点睛】本题考查一元一次方程的应用,找准等量关系是解题关键.22.(1)作图见解析;(2)作图见解析.【解析】试题分析:利用正六边形的特性作图即可.试题解析:(1)如图所示(答案不唯一):(2)如图所示(答案不唯一):23.(1)作图见解析;;(2)作图见解析.【解析】试题分析:(1)通过数格子可得到点P关于AC的对称点,再直接利用勾股定理可得到周长;(2)利用网格结合矩形的性质以及勾股定理可画出矩形.试题解析:(1)如图1所示:四边形AQCP即为所求,它的周长为:;(2)如图2所示:四边形ABCD即为所求.考点:1轴对称;2勾股定理.24.(1)3,3;(2)①y=3-x32+333m<<【解析】【分析】(1)先求出平移后是抛物线G2的函数解析式,即可求得点A的坐标;(2)①由(1)可知G2的表达式,首先求出AD的值,利用等腰直角的性质得出3B 的坐标,代入即可得解;②分别求出当∠BAC=60°时,当∠BAC=120°时m的值,即可得出m的取值范围.【详解】(1)∵将抛物线G1:y=mx2+3m≠03G2,∴抛物线G2:y=m(x32+3∵点A是抛物线G2的顶点.∴点A33.(2)①设抛物线对称轴与直线l交于点D,如图1所示.∵点A是抛物线顶点,∴AB=AC.∵∠BAC=90°,∴△ABC为等腰直角三角形,∴CD=AD3∴点C的坐标为(23,3).∵点C在抛物线G2上,∴3=m(23-3)2+23,解得:33m=-.②依照题意画出图形,如图2所示.同理:当∠BAC=60°时,点C的坐标为(3+1,3);当∠BAC=120°时,点C的坐标为(3+3,3).∵60°<∠BAC<120°,∴点(3+1,3)在抛物线G2下方,点(3+3,3)在抛物线G2上方,∴()()22313233333233 mm⎧+-+>⎪⎨⎪+-+<⎩,解得:33m-<<-.【点睛】此题考查平移中的坐标变换,二次函数的性质,待定系数法求二次函数的解析式,等腰直角三角形的判定和性质,等边三角形的判定和性质,熟练掌握坐标系中交点坐标的计算方法是解本题的关键,利用参数顶点坐标和交点坐标是解本题的难点.25.这辆高铁列车全程运行的时间为1小时,平均速度为264千米/小时.【解析】【分析】设动车组列车的平均速度为x千米/小时,则高铁列车的平均速度为(x+99)千米/小时,根据时间=路程÷速度结合高铁列车比动车组列车全程运行时间少3小时,即可得出关于x的分式方程,解之经检验后即可得出结论.【详解】设动车组列车的平均速度为x千米/小时,则高铁列车的平均速度为(x+99)千米/小时,根据题意得:﹣=3,解得:x1=161,x2=﹣264(不合题意,舍去),经检验,x=161是原方程的解,∴x+99=264,1320÷(x+99)=1.答:这辆高铁列车全程运行的时间为1小时,平均速度为264千米/小时.【点睛】本题考查了列分式方程解实际问题的运用及分式方程的解法的运用,解答时根据条件建立方程是关键,解答时对求出的根必须检验,这是解分式方程的必要步骤.26.(1)此人所在P的铅直高度约为14.3米;(2)从P到点B的路程约为17.1米【解析】分析:(1)过P作PF⊥BD于F,作PE⊥AB于E,设PF=5x,在Rt△ABC中求出AB,用含x的式子表示出AE,EP,由tan∠APE,求得x即可;(2)在Rt△CPF中,求出CP的长.详解:过P作PF⊥BD于F,作PE⊥AB于E,∵斜坡的坡度i=5:1,设PF=5x,CF=1x,∵四边形BFPE为矩形,∴BF=PEPF=BE.在RT△ABC中,BC=90,tan∠ACB=AB BC,∴AB=tan63.4°×BC≈2×90=180,∴AE=AB-BE=AB-PF=180-5x,EP=BC+CF≈90+10x.在RT△AEP中,tan∠APE=1805490123 AE xEP x-≈=+,∴x=207,∴PF=5x=10014.3 7≈.答:此人所在P的铅直高度约为14.3米.由(1)得CP =13x ,∴CP =13×207≈37.1,BC +CP =90+37.1=17.1. 答:从P 到点B 的路程约为17.1米.点睛:本题考查了解直角三角形的应用,关键是正确的画出与实际问题相符合的几何图形,找出图形中的相关线段或角的实际意义及所要解决的问题,构造直角三角形,用勾股定理或三角函数求相应的线段长. 27.(1)a=6,b=8;(2)()28001064160(10)x x y x x ⎧≤≤=⎨+>⎩;(3)A 团有20人,B 团有30人. 【解析】【分析】(1)根据函数图像,用购票款数除以定价的款数,计算即可求得a 的值;用11人到20人的购票款数除以定价的款数,计算即可解得b 的值;(2)分0≤x≤10与x >10,利用待定系数法确定函数关系式求得y 2的函数关系式即可;(3)设A 团有n 人,表示出B 团的人数为(50-n ),然后分0≤x≤10与x >10两种情况,根据(2)中的函数关系式列出方程求解即可.【详解】(1)由y 1图像上点(10,480),得到10人的费用为480元,∴a=480106800⨯=; 由y 2图像上点(10,480)和(20,1440),得到20人中后10人的费用为640元, ∴b=640108800⨯=; (2)0≤x≤10时,设y 2=k 2x,把(10, 800)代入得10k 2=800,解得k 2=80,∴y 2=80x ,x >10,设y 2=kx+b,把(10, 800)和(20,1440)代入得10800201440k b k b +=⎧⎨+=⎩解得64160k b =⎧⎨=⎩∴y 2=64x+160∴()28001064160(10)x x y x x ⎧≤≤=⎨+>⎩(3)设B 团有n 人,则A 团的人数为(50-n ) 当0≤n≤10时80n+48(50-n )=3040,解得n=20(不符合题意舍去)当n >10时801064n 104850n 3040⨯+-+-=()(), 解得n=30.则50-n=20人,则A 团有20人,B 团有30人.【点睛】此题主要考查一次函数的综合运用,解题的关键是熟知待定系数法确定函数关系式.。
中考数学二调试卷一.选择题(共6小题)1.抛物线y=x2﹣1与y轴交点的坐标是()A.(﹣1,0)B.(1,0)C.(0,﹣1)D.(0,1)2.如果抛物线y=(a+2)x2开口向下,那么a的取值范围为()A.a>2 B.a<2 C.a>﹣2 D.a<﹣23.如图,在Rt△ABC中,∠C=90°,如果AC=5,AB=13,那么cos A的值为()A.B.C.D.4.如图,传送带和地面所成斜坡AB的坡度为1:2,物体从地面沿着该斜坡前进了10米,那么物体离地面的高度为()A.5 米B.5米C.2米D.4米5.如果向量与单位向量的方向相反,且长度为3,那么用向量表示向量为()A.B.C.D.6.如图,在△ABC中,AD平分∠BAC交BC于点D,点E在AD上,如果∠ABE=∠C,AE=2ED,那么△ABE与△ADC的周长比为()A.1:2 B.2:3 C.1:4 D.4:9二.填空题(共12小题)7.如果=,那么的值为.8.计算:=.9.如果抛物线y=ax2+2经过点(1,0),那么a的值为.10.如果抛物线y=(m﹣1)x2有最低点,那么m的取值范围为.11.如果抛物线y=(x﹣m)2+m+1的对称轴是直线x=1,那么它的顶点坐标为.12.如果点A(﹣5,y1)与点B(﹣2,y2)都在抛物线y=(x+1)2+1上,那么y1y2(填“>”、“<”或“=”)13.在Rt△ABC中,∠C=90°,如果sin A=,BC=4,那么AB=.14.如图,AB∥CD∥EF,点C、D分别在BE、AF上,如果BC=6,CE=9,AF=10,那么DF 的长为.15.如图,在△ABC中,点G为ABC的重心,过点G作DE∥AC分别交边AB、BC于点D、E,过点D作DF∥BC交AC于点F,如果DF=4,那么BE的长为.16.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD交BC于点E,如果AC=2,BC=4,那么cot∠CAE=.17.定义:如果△ABC内有一点P,满足∠PAC=∠PCB=∠PBA,那么称点P为△ABC的布罗卡尔点,如图,在△ABC中,AB=AC=5,BC=8,点P为△ABC的布罗卡尔点,如果PA =2,那么PC=.18.如图,正方形ABCD的边长为4,点O为对角线AC、BD的交点,点E为边AB的中点,△BED绕着点B旋转至△BD1E1,如果点D、E、D1在同一直线上,那么EE1的长为.三.解答题(共6小题)19.计算:20.已知抛物线y=2x2﹣4x﹣6.(1)请用配方法求出顶点的坐标;(2)如果该抛物线沿x轴向左平移m(m>0)个单位后经过原点,求m的值.21.如图,在Rt△ABC中,∠C=90°,cot A=,BC=6,点D、E分别在边AC、AB上,且DE∥BC,tan∠DBC=.(1)求AD的长;(2)如果=,=,用、表示.22.如图1是小区常见的漫步机,当人踩在踏板上,握住扶手,像走路一样抬腿,就会带动踏板连杆绕轴旋转,如图2,从侧面看,立柱DE高1.8米,踏板静止时踏板连杆与DE 上的线段AB重合,BE长为0.2米,当踏板连杆绕着点A旋转到AC处时,测得∠CAB=37°,此时点C距离地面的高度CF为0.45米,求AB和AD的长(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)23.如图,在△ABC中,AB=AC,D是边BC的中点,DE⊥AC,垂足为点E.(1)求证:DE•CD=AD•CE;(2)设F为DE的中点,连接AF、BE,求证:AF•BC=AD•BE.24.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴相交于原点O和点B(4,0),点A(3,m)在抛物线上.(1)求抛物线的表达式,并写出它的对称轴;(2)求tan∠OAB的值.(3)点D在抛物线的对称轴上,如果∠BAD=45°,求点D的坐标.25.如图,在四边形ABCD中AD∥BC,∠A=90°,AB=6,BC=10,点E为边AD上一点,将ABE沿BE翻折,点A落在对角线BD上的点G处,连接EG并延长交射线BC于点F.(1)如果cos∠DBC=,求EF的长;(2)当点F在边BC上时,连接AG,设AD=x,=y,求y关于x的函数关系式并写出x的取值范围;(3)连接CG,如果△FCG是等腰三角形,求AD的长.参考答案与试题解析一.选择题(共6小题)1.抛物线y=x2﹣1与y轴交点的坐标是()A.(﹣1,0)B.(1,0)C.(0,﹣1)D.(0,1)【分析】通过计算自变量为对应的函数值可得到抛物线y=x2﹣1与y轴交点的坐标.【解答】解:当x=0时,y=x2﹣1=﹣1,所以抛物线y=x2﹣1与y轴交点的坐标为(0,﹣1).故选:C.2.如果抛物线y=(a+2)x2开口向下,那么a的取值范围为()A.a>2 B.a<2 C.a>﹣2 D.a<﹣2【分析】由抛物线的开口向下可得出a+2<0,解之即可得出结论.【解答】解:∵抛物线y=(a+2)x2开口向下,∴a+2<0,∴a<﹣2.故选:D.3.如图,在Rt△ABC中,∠C=90°,如果AC=5,AB=13,那么cos A的值为()A.B.C.D.【分析】锐角A的邻边b与斜边c的比叫做∠A的余弦,记作cos A.【解答】解:∵∠C=90°,AC=5,AB=13,∴cos A==,故选:A.4.如图,传送带和地面所成斜坡AB的坡度为1:2,物体从地面沿着该斜坡前进了10米,那么物体离地面的高度为()A.5 米B.5米C.2米D.4米【分析】作BC⊥地面于点C,根据坡度的概念、勾股定理列式计算即可.【解答】解:作BC⊥地面于点C,设BC=x米,∵传送带和地面所成斜坡AB的坡度为1:2,∴AC=2x米,由勾股定理得,AC2+BC2=AB2,即(2x)2+x2=102,解得,x=2,即BC=2米,故选:C.5.如果向量与单位向量的方向相反,且长度为3,那么用向量表示向量为()A.B.C.D.【分析】根据平面向量的定义即可解决问题.【解答】解:∵向量为单位向量,向量与单位向量的方向相反,∴.故选:B.6.如图,在△ABC中,AD平分∠BAC交BC于点D,点E在AD上,如果∠ABE=∠C,AE=2ED,那么△ABE与△ADC的周长比为()A.1:2 B.2:3 C.1:4 D.4:9【分析】根据已知条件先求得S△ABE:S△BED=2:1,再根据三角形相似求得S△ACD=S△ABE 即可求得.【解答】解:∵AD:ED=3:1,∴AE:AD=2:3,∵∠ABE=∠C,∠BAE=∠CAD,∴△ABE∽△ACD,∴L△ABE:L△ACD=2:3,故选:B.二.填空题(共12小题)7.如果=,那么的值为.【分析】直接利用已知把a,b用同一未知数表示,进而计算得出答案.【解答】解:∵=,∴设a=2x,则b=3x,那么==.故答案为:.8.计算:=.【分析】通过去括号,移项合并同类项即可求得.【解答】解:原式==.故答案是:.9.如果抛物线y=ax2+2经过点(1,0),那么a的值为﹣2 .【分析】把已知点的坐标代入抛物线解析式可求出a的值.【解答】解:把(1,0)代入y=ax2+2得a+2=0,解得a=﹣2.故答案为﹣2.10.如果抛物线y=(m﹣1)x2有最低点,那么m的取值范围为m>1 .【分析】由于抛物线y=(m﹣1)x2有最低点,这要求抛物线必须开口向上,由此可以确定m的范围.【解答】解:∵抛物线y=(m﹣1)x2有最低点,∴m﹣1>0,即m>1.故答案为m>1.11.如果抛物线y=(x﹣m)2+m+1的对称轴是直线x=1,那么它的顶点坐标为(1,2).【分析】首先根据对称轴是直线x=1,从而求得m的值,然后根据顶点式直接写出顶点坐标;【解答】解:∵抛物线y=(x﹣m)2+m+1的对称轴是直线x=1,∴m=1,∴解析式y=(x﹣1)2+2,∴顶点坐标为:(1,2),故答案为:(1,2).12.如果点A(﹣5,y1)与点B(﹣2,y2)都在抛物线y=(x+1)2+1上,那么y1>y2(填“>”、“<”或“=”)【分析】利用二次函数的性质得到当x<﹣1时,y随x的增大而减小,然后利用自变量的大小关系得到y1与y2的大小关系.【解答】解:抛物线的对称轴为直线x=﹣1,而抛物线开口向上,所以当x<﹣1时,y随x的增大而减小,所以y1>y2.故答案为>.13.在Rt△ABC中,∠C=90°,如果sin A=,BC=4,那么AB= 6 .【分析】由sin A=知AB=,代入计算可得.【解答】解:∵在Rt△ABC中,sin A==,且BC=4,∴AB===6,故答案为:6.14.如图,AB∥CD∥EF,点C、D分别在BE、AF上,如果BC=6,CE=9,AF=10,那么DF 的长为 6 .【分析】根据平行线分线段成比例、比例的基本性质解答即可.【解答】解:∵AB∥CD∥EF,∴=,∴=,∴DF=6,故答案为:6.15.如图,在△ABC中,点G为ABC的重心,过点G作DE∥AC分别交边AB、BC于点D、E,过点D作DF∥BC交AC于点F,如果DF=4,那么BE的长为8 .【分析】连接BG并延长交AC于H,根据G为ABC的重心,得到=2,根据平行四边形的性质得到CE=DF=4,根据相似三角形的性质即可得到结论【解答】解:连接BG并延长交AC于H,∵G为ABC的重心,∴=2,∵DE∥AC,DF∥BC,∴四边形DECF是平行四边形,∴CE=DF=4,∵GE∥CH,∴△BEG∽△CBH,∴=2,∴BE=8,故答案为:8.16.如图,在Rt△ABC中,∠ACB=90°,CD为AB边上的中线,过点A作AE⊥CD交BC于点E,如果AC=2,BC=4,那么cot∠CAE= 2 .【分析】根据直角三角形的性质得到AD=CD=BD,根据等腰三角形的性质得到∠ACD=∠CAD,∠DCB=∠B,根据余角的性质得到∠CAE=∠B,于是得到结论.【解答】解:∵∠ACB=90°,CD为AB边上的中线,∴AD=CD=BD,∴∠ACD=∠CAD,∠DCB=∠B,∵AE⊥CD,∴∠CAE+∠ACD=∠B+∠CAD=90°,∴∠CAE=∠B,∴cot∠CAE=cot B===2,故答案为:2.17.定义:如果△ABC内有一点P,满足∠PAC=∠PCB=∠PBA,那么称点P为△ABC的布罗卡尔点,如图,在△ABC中,AB=AC=5,BC=8,点P为△ABC的布罗卡尔点,如果PA =2,那么PC=.【分析】根据两角对应相等的两三角形相似得出△ACP∽△CBP,利用相似三角形对应边的比相等即可求出PC.【解答】解:∵AB=AC,∵∠PCB=∠PBA,∴∠ACB﹣∠PCB=∠ABC﹣∠PBA,即∠ACP=∠CBP.在△ACP与△CBP中,,∴△ACP∽△CBP,∴=,∵AC=5,BC=8,PA=2,∴PC==.故答案为.18.如图,正方形ABCD的边长为4,点O为对角线AC、BD的交点,点E为边AB的中点,△BED绕着点B旋转至△BD1E1,如果点D、E、D1在同一直线上,那么EE1的长为.【分析】根据正方形的性质得到AB=AD=4,根据勾股定理得到BD=AB=4,==2,过B作BF⊥DD1于F,根据相似三角形的性质得到EF=,求得DF=2+=,根据旋转的性质得到BD1=BD,∠D1BD=∠E1BE,BE1=BE,根据相似三角形的性质即可得到结论.【解答】解:∵正方形ABCD的边长为4,∴AB=AD=4,∴BD=AB=4,∵点E为边AB的中点,∴AE=AB=2,∴DE==2,过B作BF⊥DD1于F,∴∠DAE=∠EFB=90°,∵∠AED=∠BEF,∴△ADE∽△FEB,∴,∴=,∴EF=,∴DF=2+=,∵△BED绕着点B旋转至△BD1E1,∴BD1=BD,∠D1BD=∠E1BE,BE1=BE,∴DD1=2DF=,△D1BD∽△E1BE,∴=,∴=,∴EE1=,故答案为:.三.解答题(共6小题)19.计算:【分析】直接利用特殊角的三角函数值代入进而得出答案.【解答】解:原式====3+2.20.已知抛物线y=2x2﹣4x﹣6.(1)请用配方法求出顶点的坐标;(2)如果该抛物线沿x轴向左平移m(m>0)个单位后经过原点,求m的值.【分析】(1)直接利用配方法求出二次函数的顶点坐标即可;(2)直接求出图象与x轴的交点,进而得出平移规律.【解答】解:(1)y=2x2﹣4x﹣6=2(x2﹣2x)﹣6=2(x﹣1)2﹣8,故该函数的顶点坐标为:(1,﹣8);(2)当y=0时,0=2(x﹣1)2﹣8,解得:x1=﹣1,x2=3,即图象与x轴的交点坐标为:(﹣1,0),(3,0),故该抛物线沿x轴向左平移3个单位后经过原点,即m=3.21.如图,在Rt△ABC中,∠C=90°,cot A=,BC=6,点D、E分别在边AC、AB上,且DE∥BC,tan∠DBC=.(1)求AD的长;(2)如果=,=,用、表示.【分析】(1)通过解Rt△ABC求得AC=8,解Rt△BCD得到CD=3,易得AD=AC﹣CD=5;(2)由平行线截线段成比例求得DE的长度,利用向量表示即可.【解答】解:(1)∵在Rt△ABC中,∠C=90°,cot A=,BC=6,∴==,则AC=8.又∵在Rt△BCD中,tan∠DBC=,∴==,∴CD=3.∴AD=AC﹣CD=5.(2)∵DE∥BC,∴==.∴DE=BC.∵=,=,∴=﹣=﹣.∴=﹣.22.如图1是小区常见的漫步机,当人踩在踏板上,握住扶手,像走路一样抬腿,就会带动踏板连杆绕轴旋转,如图2,从侧面看,立柱DE高1.8米,踏板静止时踏板连杆与DE 上的线段AB重合,BE长为0.2米,当踏板连杆绕着点A旋转到AC处时,测得∠CAB=37°,此时点C距离地面的高度CF为0.45米,求AB和AD的长(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)【分析】过点C作CG⊥AB于G,得到四边形CFEG是矩形,根据矩形的性质得到EG=CF =0.45,设AD=x,求得AE=1.8﹣x,AC=AB=AE﹣BE=1.6﹣x,AG=AE﹣CF=1.35﹣x,根据三角函数的定义列方程即可得到结论.【解答】解:过点C作CG⊥AB于G,则四边形CFEG是矩形,∴EG=CF=0.45,设AD=x,∴AE=1.8﹣x,∴AC=AB=AE﹣BE=1.6﹣x,AG=AE﹣CF=1.35﹣x,在Rt△ACG中,∠AGC=90°,∠CAG=37°,cos∠CAG===0.8,解得:x=0.35,∴AD=0.35米,AB=1.25米,答:AB和AD的长分别为1.25米,0.35米.23.如图,在△ABC中,AB=AC,D是边BC的中点,DE⊥AC,垂足为点E.(1)求证:DE•CD=AD•CE;(2)设F为DE的中点,连接AF、BE,求证:AF•BC=AD•BE.【分析】(1)由AB=AC,D是边BC的中点,利用等腰三角形的性质可得出∠ADC=90°,由同角的余角相等可得出∠ADE=∠DCE,结合∠AED=∠DEC=90°可证出△AED∽△DEC,再利用相似三角形的性质可证出DE•CD=AD•CE;(2)利用等腰三角形的性质及中点的定义可得出CD=BC,DE=2DF,结合DE•CD=AD•CE可得出=,结合∠BCE=∠ADF可证出△BCE∽△ADF,再利用相似三角形的性质可证出AF•BC=AD•BE.【解答】证明:(1)∵AB=AC,D是边BC的中点,∴AD⊥BC,∴∠ADC=90°,∴∠ADE+∠CDE=90°.∵DE⊥AC,∴∠CED=90°,∴∠CDE+∠DCE=90°,∴∠ADE=∠DCE.又∵∠AED=∠DEC=90°,∴△AED∽△DEC,∴=,∴DE•CD=AD•CE;(2)∵AB=AC,∴BD=CD=BC.∵F为DE的中点,∴DE=2DF.∵DE•CD=AD•CE,∴2DF•BC=AD•CE,∴=.又∵∠BCE=∠ADF,∴△BCE∽△ADF,∴=,∴AF•BC=AD•BE.24.如图,在平面直角坐标系xOy中,抛物线y=﹣x2+bx+c与x轴相交于原点O和点B(4,0),点A(3,m)在抛物线上.(1)求抛物线的表达式,并写出它的对称轴;(2)求tan∠OAB的值.(3)点D在抛物线的对称轴上,如果∠BAD=45°,求点D的坐标.【分析】(1)把点O(0,0),点B(4,0)分别代入y=﹣x2+bx+c,解之,得到b和c 的值,即可得到抛物线的表达式,根据抛物线的对称轴x=﹣,代入求值即可,(2)把点A(3,m)代入y=﹣x2+4x,求出m的值,得到点A的坐标,过点B作BD⊥OA,交OA于点D,过点A作AE⊥OB,交OB于点E,根据三角形的面积和勾股定理,求出线段BD和AD的长,即可得到答案.(3)把AB绕点B逆时针旋转90°得到BC,如图2,作AE⊥OB于E,CF⊥OB于F,CA 交直线x=2于D点,利用△BAC为等腰直角三角形得到∠CAB=45°,证明△ABE≌△BCF 得到BF=AE=3,BE=CF=1,则C(1,﹣1),根据待定系数法求出直线AC的解析式为y=2x﹣3,然后计算自变量为2对应的一次函数值得到D点坐标.【解答】解:(1)把点O(0,0),点B(4,0)分别代入y=﹣x2+bx+c得:,解得:,即抛物线的表达式为:y=﹣x2+4x,它的对称轴为:x=﹣=2;(2)把点A(3,m)代入y=﹣x2+4x得m=﹣32+4×3=3,则点A的坐标为:(3,3),过点B作BD⊥OA,交OA于点D,过点A作AE⊥OB,交OB于点E,如图1,AE=3,OE=3,BE=4﹣3=1,OA==3,AB==,∵S△OAB=×OB×AE=×OA×BD,∴BD===2,∴AD==,∴tan∠OAB==2;(3)把AB绕点B逆时针旋转90°得到BC,如图2,作AE⊥OB于E,CF⊥OB于F,CA 交直线x=2于D点,∴BA=BC,∠ABC=90°,∴△BAC为等腰直角三角形,∴∠CAB=45°,∵∠ABE=∠BCF,∠AEB=∠BFC=90°,∴△ABE≌△BCF(AAS),∴BF=AE=3,BE=CF=1,∴C(1,﹣1),易得直线AC的解析式为y=2x﹣3,当x=2时,y=2x﹣3=1,∴D点坐标为(2,1).25.如图,在四边形ABCD中AD∥BC,∠A=90°,AB=6,BC=10,点E为边AD上一点,将ABE沿BE翻折,点A落在对角线BD上的点G处,连接EG并延长交射线BC于点F.(1)如果cos∠DBC=,求EF的长;(2)当点F在边BC上时,连接AG,设AD=x,=y,求y关于x的函数关系式并写出x的取值范围;(3)连接CG,如果△FCG是等腰三角形,求AD的长.【考点】LO:四边形综合题.【专题】16:压轴题;32:分类讨论;33:函数思想.【分析】(1)利用S△BEF=BF•AB=EF•BG,即可求解;(2)y====,tanα===,即可求解;(3)分GF=FC、CF=CG两种情况,求解即可.【解答】解:(1)将ABE沿BE翻折,点A落在对角线BD上的点G处,∴BG⊥EF,BG=AB=6,cos∠DBC ===,则:BF=9,S△BEF =BF•AB =EF•BG,即:9×6=6×EF,则EF=9;(2)过点A作AH⊥BG交于点H,连接AG,设:BF=a,在Rt△BGF中,cos∠GBF=cos α==,则tan α=,sin α=,y ====…①,tan α===,解得:a2=36+()2…②,把②式代入①式整理得:y =(x);(3)①当GF=FC时,FC=10﹣a=GF=a sin α=,把②式代入上式并解得:x =,②当CF=CG时,同理可得:x =;故:AD 的长为或.21。
2020年广西玉林市中考数学模拟试卷
一.选择题(共12小题,满分36分,每小题3分)
1.﹣的倒数是()
A .
B .﹣
C .
D .﹣2.下列说法正确的是()
A.不是有限小数就是无理数
B.带根号的数都是无理数
C.无理数一定是无限小数
D.所有无限小数都是无理数
3.下列立体图形中,俯视图是三角形的是()
A .
B .
C .
D .
4.2.6万用科学记数法表示为()
A.0.26×103B.2.6×103C.0.26×104D.2.6×104 5.∠COD=36°19′,下列正确的是()
A.∠COD=36.19°B.∠COD的补角为144°41′C.∠COD的余角为53°19′D.∠COD的余角为53°41′6.2x3可以表示为()
A.x3+x3B.2x4﹣x C.x3•x3D.2x6÷x2 7.下列说法错误的是()
A.平行四边形的对角相等
B.正方形的对称轴有四条
C.矩形既是中心对称图形又是轴对称图形
第1 页共23 页。
玉林市2020年中考数学试卷(II)卷姓名:________ 班级:________ 成绩:________一、选择题 (共14题;共28分)1. (2分) (2017七上·昆明期中) 的相反数是()A .B .C .D .2. (2分) (2016七上·嵊州期末) 方程2x=6的解是()A . 4B .C . 3D . ﹣33. (2分)如图所示的几何体,从左面看到的形状图是()A .B .C .D .4. (2分)(2016·三门峡模拟) 为了解居民用水情况,在某小区随机抽查了15户家庭的月用水量,结果如下表:月用水量(吨)45689户数25431则这15户家庭的月用水量的众数与中位数分别为()A . 9、6B . 6、6C . 5、6D . 5、55. (2分)已知23×29=2n ,则n的值为()A . 8B . 12C . 18D . 276. (2分) (2018七上·新洲期中) 小明给希望工作捐款15000元,15000用科学计数法表示为()A . 15×103B . 1.5×103C . 1.5×104D . 1.5×1057. (2分) (2019九下·十堰月考) 方程的解为()A . -3B . 2C . -1D . 58. (2分)若|x+y+2|+(xy﹣1)2=0,则(3x﹣xy+1)﹣(xy﹣3y﹣2)的值为()A . 3B . -3C . -5D . 119. (2分)直线y=3x与双曲线的一个分支(k≠0、x>0)相交,则该分支所在象限为()A . 1B . 2C . 3D . 410. (2分)(2017·钦州模拟) 在平面直角坐标系中,△ABC的三个顶点分别为A(﹣4,3),B(﹣6,1),C (﹣1,1),将△ABC绕着原点O顺时针旋转180°后得到△A1B1C1 ,则点B的对应点B1的坐标是()A . (1,﹣1)B . (4,﹣3)C . (﹣1,﹣1)D . (6,﹣1)11. (2分)已知在一个不透明的口袋中有4个形状、大小、材质完全相同的球,其中1个红色球,3个黄色球.从口袋中随机取出一个球(不放回),接着再取出一个球,则取出的两个都是黄色球的概率为()A .B .C .D .12. (2分) (2015九下·深圳期中) 如图,已知AB是⊙O的直径,C是⊙O上的点,,则⊙O的半径等于()A . 4B . 3C . 2D .13. (2分)(2020·河池模拟) 如图,已知,直线与相交.若,则()A .B .C .D .14. (2分)(2019·寿阳模拟) 如图,把一个长方形的纸片按图示对折两次,然后剪下一部分,为了得到一个钝角为120°的菱形,剪口与第二次折痕所成角的度数应为()A . 30°或50°B . 30°或60°C . 40°或50°D . 40°或60°二、填空题 (共4题;共4分)15. (1分) (2018八上·黑龙江期末) 若,,则的值是________.16. (1分) (2018七上·朝阳期中) 小何买了4本笔记本,10支圆珠笔,设笔记本的单价为a元,圆珠笔的单价为b元,则小何共花费________元.(用含a,b的代数式表示)17. (1分)(2018·玉林) 小华为了求出一个圆盘的半径,他用所学的知识,将一宽度为2cm的刻度尺的一边与圆盘相切,另一边与圆盘边缘两个交点处的读数分别是“4”和“16”(单位:cm),请你帮小华算出圆盘的半径是________cm.18. (1分)(2019·宿迁模拟) 如果一个函数的图象关于y轴成轴对称图形,那么我们把这个函数叫做偶函数,则下列5个函数:①y=﹣3x﹣1,② ,③y=x2+1,④y=﹣|x|,⑤ 中的偶函数是________(填序号).三、解答题 (共6题;共70分)19. (10分) (2016八上·县月考) 解不等式(组)(1) 2x-7>3(x-1)(2)20. (5分)(2017·泰兴模拟) 学校准备添置一批课桌椅,原计划订购60套,每套100元.店方表示:如果多购可以优惠.结果校方购了72套,每套减价3元,但商店获得同样多的利润.求每套课桌椅的成本.21. (15分) (2017八下·乌海期末) 为了了解某校八年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成如下的两个统计图.(1)求本次抽测的男生人数,并把条形统计图补充完整;(2)求这部分男生抽测数据的众数和中位数;(3)若规定引体向上5次以上(含5次)为体能达标,则该校350名九年级男生中估计有多少人体能达标.22. (10分)(2018·奉贤模拟) 如图,为了将货物装入大型的集装箱卡车,需要利用传送带AB将货物从地面传送到高1.8米(即BD=1.8米)的操作平台BC上.已知传送带AB与地面所成斜坡的坡角∠BAD=37°.(1)求传送带AB的长度;(2)因实际需要,现在操作平台和传送带进行改造,如图中虚线所示,操作平台加高0.2米(即BF=0.2米),传送带与地面所成斜坡的坡度i=1:2.求改造后传送带EF的长度.(精确到0.1米)(参考数值:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,≈1.41,≈2.24)23. (10分) (2019八上·灌云月考) 如图,AB=CD,DE⊥AC,BF⊥AC,点E,F是垂足,AE=CF,求证:(1)△ABF≌△CDE;(2)AB∥CD.24. (20分)(2019·黄冈模拟) 已知,如图,在平面直角坐标系中,的斜边BC在x轴上,直角顶点A在y轴的正半轴上,, .(1)求过A、B、C三点的抛物线的解析式和对称轴;(2)设点是抛物线在第一象限部分上的点,的面积为S,求S关于m的函数关系式,并求使S最大时点P的坐标;(3)在抛物线对称轴上,是否存在这样的点M,使得为等腰三角形(P为上述(2)问中使S最大时的点)?若存在,请直接写出点M的坐标;若不存在,请说明理由;(4)设点M是直线AC上的动点,试问:在平面直角坐标系中,是否存在位于直线AC下方的点N,使得以点O、A、M、N为顶点的四边形是菱形?若存在,求出点N的坐标;若不存在,说明理由.参考答案一、选择题 (共14题;共28分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、二、填空题 (共4题;共4分)15-1、16-1、17-1、18-1、三、解答题 (共6题;共70分)19-1、19-2、20-1、21-1、21-2、21-3、22-1、22-2、23-1、23-2、24-1、24-2、24-3、24-4、。
广西玉林市2020年(春秋版)数学中考一模试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分) (2020八上·浦北期末) 已知,则的值为()A .B .C .D .2. (2分)在直角三角形中,若各边的长度都缩小5倍,那么锐角∠A的正弦值()A . 扩大5倍B . 缩小5倍C . 没有变化D . 不能确定3. (2分)已知二次函数y=ax2+bx+c的图象如图示,有下列结论:①a+b+c<0;②a-b+c>0;③abc>0;④b=2a;⑤b2-4ac>0.其中正确的结论有()A . 4个B . 3个C . 2个D . 1个4. (2分)下列语句中正确的个数是()①矩形的四边中点在同一个圆上;②菱形的四边中点在同一个圆上;③等腰梯形的四边中点在同一个圆上;④平行四边形的四边中点在同一个圆上.A . 1B . 2C . 3D . 45. (2分)如图,已知矩形ABCD,AB=4,AD=2,E为AB的中点,连接DE与AC交于点F,则CF的长等于()A .B .C .D .6. (2分)若相交两圆的半径分别为1和2,则此两圆的圆心距可能是()A . 1B . 2C . 3D . 4二、填空题 (共12题;共13分)7. (1分) (2020九上·醴陵期末) 已知,则的值是________.8. (1分)一个多项式减去x3-2y3等于x3+y3 ,则这个多项式为________.9. (1分) (2016九上·黔西南期中) 若y=(n2+n)x 是二次函数,则n=________.10. (2分)三角形ABC的三个顶点A(1,2),B(-1,-2),C(-2,3),将其平移到点A′(-1,-2)处,使A与A′重合,则B、C两点的坐标分别为________,________.11. (1分)(2016·河南) 已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是________.12. (1分) (2018八下·肇源期末) 如图,△ABC与△A'B'C'是位似图形,点O是位似中心,若OA=2AA',S△ABC=8,则S△A'B'C'=________.13. (1分) (2020九上·川汇期末) 如图,在矩形ABCD中,已知AB=2,点E是BC边的中点,连接AE,△AB′E 和△ABE关于AE所在直线对称,若△B′CD是直角三角形,则BC边的长为________.14. (1分)(2017·临高模拟) 如图,在边长为4的正方形ABCD中,E是AB边上的一点,且AE=3,点Q为对角线AC上的动点,则△BEQ周长的最小值为________.15. (1分) (2015九上·宁波月考) △ABC中,∠A、∠B均为锐角,且,则△ABC的形状是________.16. (1分) (2017九上·官渡期末) 如图,在⊙O中,弦AB=6,圆心O到AB的距离OC=2,则⊙O的半径长为________.17. (1分)两圆的半径分别为3和5,若两圆的公共点不超过1个,圆心距的取值范围是________ .18. (1分)如图,在△ABC中,点D为AC上一点,且,过点D作DE∥BC交AB于点E,连接CE,过点D作DF∥CE交AB于点F.若AB=15,则EF=________.三、解答题 (共7题;共67分)19. (10分) (2019八下·嘉兴开学考) 计算:(1)(2)()()-()20. (15分) (2019九上·湖州月考) 许多家庭以燃气作为烧水做饭的燃料,节约用气是我们日常生活中非常现实的问题.某款燃气灶旋钮位置从0度到90度,燃气关闭时,燃气灶旋钮位置为0度,旋钮角度越大,燃气流量越大,燃气开到最大时,旋钮角度为90度.为测试燃气灶旋钮在不同位置上的燃气用量,在相同条件下,选择在燃气灶旋钮的5个不同位置上分别烧开一壶水(当旋钮角度太小时,其火力不能够将水烧开,故答案为:旋钮角度度的范围是),记录相关数据得到下表:旋钮角度(度)2050708090所用燃气量(升)73678397115(1)请你从所学习过的一次函数、反比例函数和二次函数中确定哪种函数能表示所用燃气量升与旋转角度度的变化规律?说明确定这种函数而不是其他函数的理由,并求出它的解析式;(2)当旋转角度为多少时,烧开一壶水所用燃气量最少?最少是多少?(3)某家庭使用此款燃气灶,以前习惯把燃气开到最大,现采用最节省燃气的旋转角度,若该家庭现在每月的平均燃气用量为13立方米,求现在每月平均能比以前每月节省燃气多少立方米?21. (5分)(2018·崇明模拟) 如图,港口B位于港口A的南偏东37°方向,灯塔C恰好在AB的中点处,一艘海轮位于港口A的正南方向,港口B的正西方向的D处,它沿正北方向航行5km到达E处,测得灯塔C在北偏东45°方向上,这时,E处距离港口A有多远?(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)22. (10分)(2019·湖州模拟) 定义:长宽比为:1(n为正整数)的矩形称为矩形.下面,我们通过折叠的方式折出一个矩形,如图a所示.操作1:将正方形ABEF沿过点A的直线折叠,使折叠后的点B落在对角线AE上的点G处,折痕为AH.操作2:将FE沿过点G的直线折叠,使点F、点E分别落在边AF,BE上,折痕为CD.则四边形ABCD为矩形.(1)证明:四边形ABCD为矩形;(2)点M是边AB上一动点.①如图b,O是对角线AC的中点,若点N在边BC上,OM⊥ON,连接MN.求tan∠OMN的值;②若AM=AD,点N在边BC上,当△DMN的周长最小时,求的值;③连接CM,作BR⊥CM,垂足为R.若AB=2 ,则DR的最小值=.23. (15分)如图,在等腰梯形ABCD中,∠C=60°,AD∥BC,且AD=DC,E、F分别在AD、DC的延长线上,且DE=CF,AF、BE交于点P.(1)求证:AF=BE;(2)请你猜测∠BPF的度数,并证明你的结论;(3)连接EF,试猜想△PEF能否为等边三角形,并说明理由.24. (10分)(2018·兴化模拟) 如图,点C在⊙O上,连接CO并延长交弦AB于点D,弧AC=弧BC,连接AC、OB,若CD=8,AC= .(1)求弦AB的长;(1)根据垂径定理得出CD⊥AB,AB=2AD=2BD,根据勾股定理算出AD的长,从而得出答案;(2)求sin∠ABO的值.25. (2分)(2016·平武模拟) 小数在数学外小组活动中遇到这样一个问题:如果α、β都为锐角,且tanα=,tanβ= .求α+β的度数.(1)小敏是这样解决问题的:如图1,把α,β放在正方形网格中,使得∠ABD=α,∠CBE=β,且BA,BC 在直线BD的两侧,连接AC,可证得△ABC是等腰直角三角形,因此可求得α+β=∠ABC=________°.(2)请你参考小敏思考问题的方法解决问题:如果α,β都为锐角,当tanα=4,tanβ= 时,在图2的正方形网格中,利用已作出的锐角α,画出∠MON=α﹣β,由此可得α﹣β=________°.参考答案一、单选题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共12题;共13分)7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15、答案:略16-1、17-1、18-1、三、解答题 (共7题;共67分)19-1、19-2、20-1、20-2、20-3、21-1、22-1、23-1、23-2、23-3、24-1、24-2、25-1、25-2、。
2020年广西玉林市中考数学仿真试卷一、单选题1.将0.00002018用科学记数法表示应为( )A .42.01810-⨯B .52.01810-⨯C .62.01810-⨯D .40.201810-⨯2.计算2a -a ,正确的结果是( )A .-2a 3B .1C .2D .a3.在样本2,7,1,2,14,3,6中,平均数是( )A .5B .7C .9D .104.已知a <3,则下列四个不等式中,不正确的是( )A .a -2<3-2B .a +2<3+2C .2a <2×3D .-2a <-65.如图所示,下列说法错误的是( )A .嘉琪家在图书馆南偏西60︒方向上B .学校在图书馆南偏东30方向上C .学校在嘉琪家南偏东60︒方向上D .图书馆到学校的距离为5km6.下列命题是真命题的有( ).①对顶角相等;②两直线平行,内错角相等; ③点到直线的距离是点到直线的垂线段;④过一点有且只有一条直线与已知直线平行A .1个B .2个C .3个D .4个7.将正整数的算术平方根按如图所示的规律排列下去.若用有序实数对(m ,n )表示第m 排,从左到右第n 个数,如(4,38,6)表示的实数是( )A B C D 8.如图,该几何体由棱长为1的六个小正方体叠合形成,其左视图面积是( )A .3B .4C .5D .69.下面是小明在一次测验中解答的填空题:①若x 2 =1,则x=1; ②方程12x(x-1)=x-1的解是x=2;③已知三角形两边分别为2和9,第三边长是方程x 2-14x+48=0的根,则这个三角形的周长是17或19;④方程121x x =+的解是x=3,试卷中每个填空题5分,最后小明填空题的得分是( ). A .0分 B .5分 C .10分 D .15分10.在矩形ABCD 中,E ,P ,G ,H 分别是边AB ,BC ,CD ,DA 上的点(不与端点重合),对于任意矩形ABCD ,下面四个结论中正确的是( )①存在无数个四边形EFGH 是平行四边形.②存在无数个四边形EFGH 是矩形.③存在且仅有一个四边形EFGH 是菱形.④除非矩形ABCD 为正方形,否则不存在四边形EFGH 是正方形.A .①②B .①②③C .①②④D .①③④11.若a 、b 互为相反数,c 、d 互为倒数,m 的绝对值为2,则代数式a b m cd m +-+的值为( ) A .-3 B .1 C .±3 D .-3或112.如图,等边ABC 的边长为6cm ,动点P 从点A 出发,以每秒2cm 的速度,沿A B C →→的方向运动,到达点C 时停止,设运动时间为x 秒,2y PC =,则y 关于x 的函数图像大致为( )A .B .C .D .二、填空题13.(1)11--=______;(2)2(1)----=______.14.分解因式:2327a -=__________.15.已知x +y =-5,xy =3,则x 2+y 2的值为_______.16.△ABC 中,∠B=∠C=15°,AB=2cm ,CD ⊥AB 交BA 的延长线于点D ,•则CD•=___cm .17.随机掷一枚质地均匀的正方形骰子,骰子的六个面上分别刻有1到6的点数,则这个骰子向上的一面点数是质数的概率是_____.18.如图,四边形纸片ABCD 中,AB BC =, 90ABC ADC ∠=∠=︒.若该纸片的面积为10 cm 2,则对角线BD =______cm .三、解答题19.如,已知抛物线y =ax 2+bx+ c 经过坐标原点,与x 轴的另一个交点为A ,且顶点M 坐标为(1,2),(1)求该抛物线的解析式;(2)现将它向右平移m(m>0)个单位,所得抛物线与x轴交于C、D两点,与原抛物线交于点P,△CDP的面积为S,求S关于m的关系式;(3)如图,以点A为圆心,以线段OA为半径画圆交抛物线y =ax2+bx+ c的对称轴于点B,连结AB,若将抛物线向右平移m(m>0)个单位后,B点的对应点为B′,A点的对应点为A′点,且满足四边形BAA B''为菱形,平移后的抛物线的对称轴与菱形的对角线BA′交于点E,在x轴上是否存在一点F,使得以E、F、A′为顶点的三角形与△BAE相似,若存在求出F点坐标,若不存在说明理由.20.如图1,正方形ABCD的顶点A、D分别在平行线l1、l2上,由B、D向l1作垂线,垂足分别为M、N.(1)求证:AM=DN;(2)如图2,正方形AEFG的顶点E在直线l2上,过点F、C分别作l2的垂线段FP、CQ,求证:FP+CQ=DE;(3)如图3,正方形AEFG 的顶点A 、G 在直线l 1上,顶点E 、F 在直线l 2上,连接BG 并延长交l2于点R ,若∠BRD=30°,AB .21.解方程(组)(1) (2)22.在实数范围内将关于x 的二次三项式因式分解:22237x xy y --.23.若a 与b 互为相反数,c 与d 互为倒数,m 的倒数等于它本身,求值:m. 24.国家规定“中小学生每天在校体育活动时间不低于1小时(h )”,某市就“你每天在校体育活动时间是多少?”的问题随机调查了辖区内300名初中学生.根据调查结果绘制成的统计图(部分)如图所示,其中分组情况是:A 组:t <0.5h ;B 组:0.5h≤t<1h ;C 组:1h≤t<1.5h ;D 组:t≥1.5h.请根据上述信息解答下列问题(1)补全条形统计图;(2)某市约有25000名初中学生,请你结合以上数据进行分析:①估计达到国家规定体育活动时间的人数是多少?②如果要估算本市初中生每天在校体育活动时间是多少,你认为选择众数、中位数和平均数三个量中的哪个更合适?25.若1x ,2x 是关于x 的方程20x bx c ++=的两个实数根,且122x x k +=(k 是整数),则称方程20x bx c ++=为“偶系二次方程”.如方程26270x x --=,2280x x --=,227304x x +-=,26270x x +-=,2440x x ++=,都是“偶系二次方程”. ()1判断方程2120x x +-=是否是“偶系二次方程”,并说明理由;()2对于任意一个整数b ,是否存在实数c ,使得关于x 的方程20x bx c ++=是“偶系二次方程”,并说明理由.26.某图书馆计划选购甲、乙两种图书.甲图书每本价格是乙图书每本价格的2.5倍,如果用900元购买图书,则单独购买甲图书比单独购买乙图书要少18本.(1)甲、乙两种图书每本价格分别为多少元?(2)如果该图书馆计划购买乙图书的本数比购买甲图书本数的2倍多8本,且用于购买甲、乙两种图书的总费用不超过1725元,那么该图书馆最多可以购买多少本乙图书?。
玉林市2020年中考模拟考试(二)
数学 参考答案与评分细则
一、选择题(本大题共12小题,每小题3分,共36分。
在每小题给出的四个选项中,只有
一项是符合题目要求的,把正确答案的标号填涂在答题卡内相应的位置上) 题号 1 2 3 4 5 6 7 8 9 10 11 12 答案
B
B
C
D
D
B
A
A
C
C
D
D
二、填空题(本大题共6小题,每小题3分,共18分,把答案填在答题卡中的横线上) 13.2
14.a
15.4
16.54
17.4π
18243
三、解答题(本大题共8小题,满分共66分。
解答应写出证明过程或演算步骤<含相应的
文字说明>,将解答写在答题卡上) 19.(6分)解:原式=2
3
33﹣4 …………………………………………4分 3+23﹣7 ………………………………………………5分 =-5. …………………………… …………………………………6分
20.(6分)解:5x –4x –2=4x +10
3(x –2)
-1 .
3(5x -4)=4x +10-3(x -2).……………………………………………2分 14x =28 ………………………………………………………………………3分 x =2.…………………………………………………………………………4分 检验:当x =2时,x -2=0,………………………5分 ∴x =2是增根,原方程无解. …………………… 6分
21.(6分)解:(1)如图所示,BD 即为所求;……………………3分 (2)设DC =x ,过点D 作DE ⊥AB 于E ,则∠DEB =∠C =90°,
∵BD 平分∠ABC ,∴DE =DC =x ,
∵∠A =30°,BC 3,∴AD =2DE =2x ,AB =2BC =3,………………4分 由BC 2+AC 2=AB 23)2+(3x )2=(3)2,……………………………5分 解得:x =1(负值舍去),
∴DE =1,即点D 到AB 的距离等于1.………………6分
22.(8分)解:(1)60,…………………………… 1分
90°;……………………………2分
(2)补全的条形统计图如图所示;………………4分
(3)对食品安全知识达到“了解”和“基本了解”的学生所占比例为
1551
603
+=,…………………………………………………………………………6分 由样本估计总体,该中学学生中对食品安全知识达到 “了解”和“基本了解”程度的总人数为1
12004003
⨯
=………………………8分 23.(9分)(1)证明:如图,连接OD .
∵OA =OB ,CD =BD ,∴OD ∥AC .………………1分 ∴∠ODE =∠CED .………………………………… 2分 又∵DE ⊥AC ,∴∠CED =90°.∴∠ODE =90°, 即OD ⊥DE .………………………………………… 3分 ∴DE 是⊙O 的切线. ……………………………… 4分 (2)解:∵OD ∥AC ,∠BAC =60°,
∴∠BOD =∠BAC =60°,∠C =∠ODB .…………………………………………5分 又∵OB =OD ,∴△BOD 是等边三角形.…………………………………………6分 ∴∠C =∠ODB =60°,CD =BD =6.………………………………………………7分 ∵DE ⊥AC ,∴DE =CD•sin ∠C =6×sin60°=33. ……………………………9分
24.(9分)解:(1)设每个篮球和每个排球的销售利润分别为x 元,y 元,
根据题意得:810372
1520720x y x y +=⎧⎨+=⎩,…………………………………………………2分
解得:24
18
x y =⎧⎨=⎩,…………………………………………………………………… 3分
答:每个篮球和每个排球的销售利润分别为24元,18元;…………………… 4分 (2)设购进篮球m 个,排球(80﹣m )个,
根据题意得:()2001508013400802
m m m
m +-≤⎧⎪
⎨-≥⎪⎩,…………………………………6分 解得:
80
3
≤m≤28,………………………………………………………………… 7分 ∴m=27或m=28,………………………………………………………………… 8分 ∴购进篮球27个排球53个,或购进篮球28个排球52个两种购买方案.
25.(10分)证明:(1) ∵四边形ABCD 是平行四边形,
∴DC ∥AB ,AB DC =;…………………………………………………………2分
∵AB BE =,∴BE DC =;………………………………………………………3分 又DC ∥BE ,∴四边形DBEC 是平行四边形.…………………………………4分 (2) ∵AF AB AD ⋅=2,∴
AD
AF
AB AD =,……………………………………………5分 又A A ∠=∠,∴ADB ∆∽AFD ∆,∴DFA ADB ∠=∠; ………………6分 ∵DC ∥AB ,∴DFA CDF ∠=∠;
∵四边形ABCD 是平行四边形,∴BC ∥AD ,∴DBC ADB ∠=∠; ∵四边形DBEC 是平行四边形,∴CE ∥DB ,∴DBC MCN ∠=∠; ∴CDF MCN ∠=∠;………………7分
又DMC CMN ∠=∠,∴CMN ∆∽CMD ∆,………………8分 ∴
DC
CN
DM CM =, ∵AB DC =,∴
AB
CN
DM CM =,………………9分 ∴CN DM AB CM ⋅=⋅. ………………10分
26.(12分)解:(1)(0,-3),b =-
9
4
; ……………… ………………………………2分 (2)由(1),得y =
34x 2-9
4
x -3,它与x 轴交于A ,B 两点,得B (4,0). ∴OB =4,又∵OC =3,∴BC =5.…………………3分 由题意,得△BHP ∽△BOC , ∵OC ∶OB ∶BC =3∶4∶5,
∴HP ∶HB ∶BP =3∶4∶5,…………………………4分 ∵PB =5t ,∴HB =4t ,HP =3t .
∴OH =OB -HB =4-4t .……………………………5分 由y =
3
4t
x -3与x 轴交于点Q ,得Q (4t ,0). ∴OQ =4t .……………………………………………………………………………6分 ①当H 在Q 、B 之间时, QH =OH -OQ
=(4-4t )-4t =4-8t .…………………………………………………………7分 ②当H 在O 、Q 之间时, QH =OQ -OH
=4t -(4-4t )=8t -4.…………………………………………………………8分 综合①,②得QH =|4-8t |;……………………………………………………9分 (3)存在t 的值,使以P 、H 、Q 为顶点的三角形与△COQ 相似. t 1
1,t 2=
732,t 3=25
32
……………………………………………………12分
解析:①当H在Q、B之间时,QH=4-8t,
若△QHP∽△COQ,则QH∶CO=HP∶OQ,得483 34
t t
t -
=,
∴t=7 32
.
若△PHQ∽△COQ,则PH∶CO=HQ∶OQ,得348 34
t t
t
-
=,
即t2+2t-1=0.
∴t11,t2=1(舍去).②当H在O、Q之间时,QH=8t-4.
若△QHP∽△COQ,则QH∶CO=HP∶OQ,得843 34
t t
t -
=,
∴t=25 32
.
若△PHQ∽△COQ,则PH∶CO=HQ∶OQ,得384 34
t t
t
-
=,
即t2-2t+1=0.
∴t1=t2=1(舍去).
综上所述,存在t的值,t11,t2=7
32
,t3=
25
32
.。