当前位置:文档之家› (完整版)导数中双变量的函数构造(2)

(完整版)导数中双变量的函数构造(2)

(完整版)导数中双变量的函数构造(2)
(完整版)导数中双变量的函数构造(2)

导数中双变量的函数构造

21.(12分)已知函数()ln e x f x x λ-=-(λ∈R ). (1)若函数()f x 是单调函数,求λ的取值范围;

(2)求证:当120x x <<时,都有21112

1

e e 1x x x x --->-

. 21.解:(1)函数()f x 的定义域为(0,)+∞,∵()ln e x

f x x λ-=-,∵e ()e

x

x

x f x x

x

λ

λ--+'=+=

∵函数()f x 是单调函数,∵()0f x '≤或()0f x '≥在(0,)+∞上恒成立, ∵∵()0f x '≤,∵e 0x

x x

λ-+≤,即e 0x x λ-+≤,e e x x

x

x λ--=-

≤, 令()e x x x ?=-

,则1

()e

x

x x ?-'=,当01x <<时,()0x ?'<;当1x >时,()0x ?'>. 则()x ?在(0,1)上递减,(1,)+∞上递增,∵min 1()(1)x e ??==-,∵1

e

λ-≤;

∵∵()0f x '≥,∵e 0x

x x

λ-+≥,即e 0x x λ-+≥,e e x x x x λ--=-≥,

由∵得()e

x x

x ?=-在(0,1)上递减,(1,)+∞上递增,又(0)0?=,x →+∞时()0x ?<,∵0λ≥;

综上∵∵可知,

1e

λ-≤或0λ≥; ...............................6分

(2)由(1)可知,当1e λ-=时,1()ln e e

x f x x -=--在(0,)+∞上递减,∵120x x <<, ∵12()()f x f x >,即121211ln e ln e e e

x x x x ---->--,∵211112e e ln ln x x x x --->-, 要证21112

1

e e 1x x x x --->-

,只需证2121ln ln 1x x x x ->-,即证1221ln 1x x x x >-,

令12x t x =

,(0,1)t ∈,则证1ln 1t t >-,令1()ln 1h t t t =+-,则21

()0t h t t

-'=<, ∵()h t 在(0,1)上递减,又(1)0h =,∵()0h t >,即1

ln 1t t

>-,得证. ...............................12分

[典例] 已知函数f (x )=ax 2+x ln x (a ∈R)的图象在点(1,f (1))处的切线与直线x +3y =0垂直.

(1)求实数a 的值;

(2)求证:当n >m >0时,ln n -ln m >m n -n m . [解] (1)因为f (x )=ax 2+x ln x ,

所以f ′(x )=2ax +ln x +1,

因为切线与直线x +3y =0垂直,所以切线的斜率为3, 所以f ′(1)=3,即2a +1=3,故a =1. (2)证明:要证ln n -ln m >m n -n

m ,

即证ln n m >m n -n m ,只需证ln n m -m n +n

m >0. 令n m =x ,构造函数g (x )=ln x -1

x +x (x ≥1), 则g ′(x )=1x +1

x

2+1.

因为x ∈[1,+∞),所以g ′(x )=1x +1

x 2+1>0,

故g (x )在(1,+∞)上单调递增. 由已知n >m >0,得n

m >1, 所以g ? ??

??

n m >g (1)=0,

即证得ln n m -m n +n

m >0成立,所以命题得证.

1.(2017·石家庄质检)已知函数f (x )=a x -x 2

e x (x >0),其中e 为自然对数的底

数.

(1)当a =0时,判断函数y =f (x )极值点的个数;

(2)若函数有两个零点x 1,x 2(x 1<x 2),设t =x 2

x 1,证明:x 1+x 2随着t 的增大而

增大.

解:(1)当a =0时,f (x )=-x 2

e x (x >0),

f ′(x )=-2x ·e x -(-x 2)·e x (e x )2=x (x -2)

e x ,

令f ′(x )=0,得x =2,

当x ∈(0,2)时,f ′(x )<0,y =f (x )单调递减, 当x ∈(2,+∞)时,f ′(x )>0,y =f (x )单调递增,

所以x =2是函数的一个极小值点,无极大值点, 即函数y =f (x )有一个极值点.

(2)证明:令f (x )=a x -x 2

e

x =0,得x 3

2=a e x ,

因为函数有两个零点x 1,x 2(x 1<x 2),

所以x 132

1=a e x 1,x 32

2=a e x 2,可得3

2ln x 1=ln a +x 1,

3

2

ln x 2=ln a +x 2. 故x 2-x 1=32ln x 2-32ln x 1=32ln x 2

x 1.

又x 2

x 1

=t ,则t >1,且???

x 2=tx 1,

x 2-x 1=32ln t ,

解得x 1=32ln t t -1,x 2=3

2

t ln t t -1.

所以x 1+x 2=32·(t +1)ln t

t -1.①

令h (x )=(x +1)ln x

x -1

,x ∈(1,+∞),

则h ′(x )=

-2ln x +x -1

x

(x -1)2

令u (x )=-2ln x +x -1

x ,得u ′(x )=?

????x -1x 2. 当x ∈(1,+∞)时,u ′(x )>0. 因此,u (x )在(1,+∞)上单调递增, 故对于任意的x ∈(1,+∞),u (x )>u (1)=0, 由此可得h ′(x )>0,故h (x )在(1,+∞)上单调递增. 因此,由①可得x 1+x 2随着t 的增大而增大.

2.(2016·全国乙卷)已知函数f(x)=(x-2)e x+a(x-1)2有两个零点.

(1)求a的取值范围;

(2)设x1,x2是f(x)的两个零点,证明:x1+x2<2.

解:(1)f′(x)=(x-1)e x+2a(x-1)=(x-1)(e x+2a).

①设a=0,则f(x)=(x-2)e x,f(x)只有一个零点.

②设a>0,则当x∈(-∞,1)时,f′(x)<0;

当x∈(1,+∞)时,f′(x)>0,

所以f(x)在(-∞,1)内单调递减,在(1,+∞)内单调递增.

又f(1)=-e,f(2)=a,取b满足b<0且b

2

则f(b)>a

2(b-2)+a(b-1)2=a

?

?

?

?

?

b2-

3

2b>0,

故f(x)存在两个零点.

③设a<0,由f′(x)=0得x=1或x=ln(-2a).

若a≥-e

2

,则ln(-2a)≤1,

故当x∈(1,+∞)时,

f′(x)>0,因此f(x)在(1,+∞)内单调递增.

又当x≤1时,f(x)<0,所以f(x)不存在两个零点.

若a<-e

2

,则ln(-2a)>1,

故当x∈(1,ln(-2a))时,f′(x)<0;

当x∈(ln(-2a),+∞)时,f′(x)>0.

因此f(x)在(1,ln(-2a))内单调递减,在(ln(-2a),+∞)内单调递增.又当x≤1时,f(x)<0,所以f(x)不存在两个零点.

综上,a的取值范围为(0,+∞).

(2)证明:不妨设x1

所以x1+x2<2等价于f(x1)>f(2-x2),即f(2-x2)<0.

由于f(2-x2)=-x2e2-x2+a(x2-1)2,

而f(x2)=(x2-2)e x2+a(x2-1)2=0,

所以f(2-x2)=-x2e2-x2-(x2-2)e x2.

设g(x)=-x e2-x-(x-2)e x,

则g′(x)=(x-1)(e2-x-e x).

所以当x>1时,g′(x)<0,而g(1)=0,

故当x>1时,g(x)<0.

从而g(x2)=f(2-x2)<0,故x1+x2<2.

3.已知函数f(x)=e x-ax-1(a为常数),曲线y=f(x)在与y轴的交点A处的切线斜率为-1.

(1)求a的值及函数y=f(x)的单调区间;

(3)若x1<ln 2,x2>ln 2,且f(x1)=f(x2),试证明:x1+x2<2ln 2.

解:(1)由f(x)=e x-ax-1,

得f′(x)=e x-a.

又f′(0)=1-a=-1,

所以a=2,

所以f(x)=e x-2x-1,f′(x)=e x-2.

由f′(x)=e x-2>0,得x>ln 2.

所以函数y=f(x)在区间(-∞,ln 2)上单调递减,在(ln 2,+∞)上单调递增.

(2)证明:设x>ln 2,

所以2ln 2-x<ln 2,

f(2ln 2-x)=e(2ln 2-x)-2(2ln 2-x)-1

=4

e x +2x -4ln 2-1. 令g (x )=

f (x )-f (2ln 2-x ) =e x -4

e x -4x +4ln 2(x ≥ln 2),

所以g ′(x )=e x +4e -x -4≥0, 当且仅当x =ln 2时,等号成立,

所以g (x )=f (x )-f (2ln 2-x )在(ln 2,+∞)上单调递增. 又g (ln 2)=0, 所以当x >ln 2时,

g (x )=f (x )-f (2ln 2-x )>g (ln 2)=0, 即f (x )>f (2ln 2-x ), 所以f (x 2)>f (2ln 2-x 2), 又因为f (x 1)=f (x 2), 所以f (x 1)>f (2ln 2-x 2), 由于x 2>ln 2, 所以2ln 2-x 2<ln 2, 因为x 1<ln 2,

由(1)知函数y =f (x )在区间(-∞,ln 2)上单调递减, 所以x 1<2ln 2-x 2, 即x 1+x 2<2ln 2.

4.(2017·沈阳质监)已知函数f (x )=1

2

x 2-a ln x +b (a ∈R).

(1)若曲线y =f (x )在x =1处的切线的方程为3x -y -3=0,求实数a ,b 的值; (2)若x =1是函数f (x )的极值点,求实数a 的值;

(3)若-2≤a <0,对任意x 1,x 2∈(0,2],不等式|f (x 1)-f (x 2)|≤m ??????1x 1-1x 2恒成立,

求m 的最小值.

解:(1)因为f (x )=1

2x 2-a ln x +b ,

所以f ′(x )=x -a

x ,

因为曲线y =f (x )在x =1处的切线的方程为3x -y -3=0, 所以?????

f ′(1)=3,f (1)=0,即???

1-a =3,1

2+b =0,

解得???

a =-2,

b =-1

2

.

(2)因为x =1是函数f (x )的极值点, 所以f ′(1)=1-a =0,所以a =1.

当a =1时,f (x )=1

2

x 2-ln x +b ,定义域为(0,+∞),

f ′(x )=x -1x =x 2

-1x =(x -1)(x +1)

x

, 当0<x <1时,f ′(x )<0,f (x )单调递减, 当x >1时,f ′(x )>0,f (x )单调递增, 所以a =1.

(3)因为-2≤a <0,0<x ≤2,所以f ′(x )=x -a

x >0, 故函数f (x )在(0,2]上单调递增, 不妨设0<x 1≤x 2≤2,

则|f (x 1)-f (x 2)|≤m ??????

1x 1-1x 2可化为f (x 2)+m x 2≤f (x 1)+m x 1,

设h (x )=f (x )+m x =12x 2-a ln x +b +m

x ,

则h (x 1)≥h (x 2).

所以h (x )为(0,2]上的减函数,

即h ′(x )=x -a x -m

x 2≤0在(0,2]上恒成立,

等价于x 3-ax -m ≤0在(0,2]上恒成立, 即m ≥x 3-ax 在(0,2]上恒成立,

又-2≤a <0,所以ax ≥-2x ,所以x 3-ax ≤x 3+2x , 而函数y =x 3+2x 在(0,2]上是增函数,

所以x 3+2x ≤12(当且仅当a =-2,x =2时等号成立). 所以m ≥12, 即m 的最小值为12.

5.已知函数f (x )=x -1

x ,g (x )=a ln x (a ∈R). (1)当a ≥-2时,求F (x )=f (x )-g (x )的单调区间;

(2)设h (x )=f (x )+g (x ),且h (x )有两个极值点为x 1,x 2,其中x 1∈? ????

0,12,求

h (x 1)-h (x 2)的最小值.

解:(1)由题意得F (x )=x -1

x -a ln x (x >0),

则F ′(x )=x 2-ax +1

x 2,令m (x )=x 2-ax +1,则Δ=a 2-4. ①当-2≤a ≤2时,Δ≤0,从而F ′(x )≥0, 所以F (x )的单调递增区间为(0,+∞); ②当a >2时,Δ>0,设F ′(x )=0的两根为 x 1=

a -a 2-42,x 2=a +a 2-4

2

, 所以F (x )的单调递增区间为

? ????0,a -a 2-42和? ??

??

a +a 2-42,+∞,

F (x )的单调递减区间为? ????

a -a 2-42,

a +a 2-42. 综上,当-2≤a ≤2时,F (x )的单调递增区间为(0,+∞); 当a >2时,F (x )的单调递增区间为 ? ????0,a -a 2-42和? ??

??

a +a 2-42,+∞,

F (x )的单调递减区间为? ????

a -a 2-42,

a +a 2-42. (2)对h (x )=x -1

x +a ln x ,x ∈(0,+∞)求导得,

h ′(x )=1+1x 2+a x =x 2

+ax +1

x 2

h ′(x )=0的两根分别为x 1,x 2,则有x 1·x 2=1,x 1+x 2=-a , 所以x 2=1x 1,从而有a =-x 1-1

x 1.

令H (x )=h (x )-h ? ??

??

1x

=x -1x +? ????-x -1x ln x -??????1x -x +? ?

???-x -1x ·ln 1x =2???????

?

???-x -1x ln x +x -1x , 即H ′(x )=2? ????

1x 2-1ln x =2(1-x )(1+x )ln x x 2

(x >0).

当x ∈? ????0,12时,H ′(x )<0,所以H (x )在? ????

0,12上单调递减,

又H (x 1)=h (x 1)-h ? ????

1x 1=h (x 1)-h (x 2),

所以[h (x 1)-h (x 2)]min =H ? ????

12=5ln 2-3.

6.设f (x )=e x -a (x +1).

(1)若?x ∈R ,f (x )≥0恒成立,求正实数a 的取值范围;

(2)设g (x )=f (x )+a

e x ,且A (x 1,y 1),B (x 2,y 2)(x 1≠x 2)是曲线y =g (x )上任意两点,

若对任意的a ≤-1,直线AB 的斜率恒大于常数m ,求m 的取值范围.

[解] (1)因为f (x )=e x -a (x +1), 所以f ′(x )=e x -a . 由题意,知a >0, 故由f ′(x )=e x -a =0, 解得x =ln a .

故当x∈(-∞,ln a)时,

f′(x)<0,函数f(x)单调递减;

当x∈(ln a,+∞)时,

f′(x)>0,函数f(x)单调递增.

所以函数f(x)的最小值为f(ln a)=e ln a-a(ln a+1)=-a ln a.由题意,若?x∈R,f(x)≥0恒成立,

即f(x)=e x-a(x+1)≥0恒成立,

故有-a ln a≥0,

又a>0,所以ln a≤0,解得0<a≤1.

所以正实数a的取值范围为(0,1].

(2)设x1,x2是任意的两个实数,且x1<x2.

则直线AB的斜率为k=g(x2)-g(x1)

x2-x1

由已知k>m,

即g(x2)-g(x1)

x2-x1

>m.

因为x2-x1>0,

所以g(x2)-g(x1)>m(x2-x1),

即g(x2)-mx2>g(x1)-mx1.

因为x1<x2,

所以函数h(x)=g(x)-mx在R上为增函数,故有h′(x)=g′(x)-m≥0恒成立,

所以m≤g′(x).

而g′(x)=e x-a-a

e x

又a≤-1<0,

故g′(x)=e x+(-a)

e x

-a≥2e x·

(-a)

e x

-a=2-a-a.

而2-a-a=2-a+(-a)2=(-a+1)2-1≥3,所以m的取值范围为(-∞,3].

练习:

1已知函数()()()x a x g x x f ln ,2

12

==

. (1)若曲线()()x g x f y -=在1=x 处的切线的方程为0526=--y x ,求实数a 的值; (2)设()()()x g x f x h +=,若对任意两个不等的正数21,x x ,都有()()22

121>--x x x h x h 恒成立,求实数a 的取值范围;

(3)若在[]e ,1上存在一点0x ,使得()()()()

0'

0'

0'0'

11x g x g x f x f -<+

成立,求实数a 的取值范围.

2.已知函数()()R a x a x x x f ∈-

=2

2

ln . (1)若0>x ,恒有()x x f ≤成立,求实数的取值范围; (2)若函数()()x x f x g -=有两个极值点()2121,x x x x ≠,求证:ae x x 2ln 1ln 12

1>+.

函数导数中双变量问题的四种转化化归思想-厦门一中

处理函数双变量问题的六种解题思想 吴享平(福建省厦门第一中学)361000 在解决函数综合题时,我们经常会遇到在某个范围内都可以任意变动的双变量问题,由 于两个变量都在变动,因此不知把那个变量当成自变量进行函数研究,从而无法展开思路, 造成无从下手的之感,正因为如此,这样的问题往往穿插在试卷压轴题的某些步骤之中,是 学生感到困惑的难点问题之一,本文笔者给出处理这类问题的六种解题思想,希望能给同学 们以帮助和启发。 一、改变“主变量”思想 例1.已知时在|2|,1)(2≤≥-+=m m mx x x f 恒成立,求实数x 的取值范围. 分析:从题面上看,本题的函数式)(x f 是以x 为主变量,但由于该题中的“恒”字是 相对于变量m 而言的,所以该题应把m 当成主变量,而把变量x 看成系数,我们称这种思 想方法为改变“主变量”思想。 解: 01)1(122≥-+-?≥-+x x m m mx x 时在|2|≤m 恒成立,即关于m 为自 变量的一次函数=)(m h 1)1(2-+-x m x 在]2,2[-∈m 时的函数值恒为非负值{0 )2(0 )2(≥-≥?h h 得{130 1203222≥-≤?≥+-≥-+x x x x x x 或。 对于题目所涉及的两个变元,已知其中一个变元在题设给定范围内任意变动,求另一个 变元的取值范围问题,这类问题我们称之为“假”双变元问题,这种“假”双变元问题,往 往会利用我们习以常的x 字母为变量的惯性“误区”来设计,其实无论怎样设计,只要我们 抓住“任意变动的量”为主变量,“所要求范围的量”为常数,便可找到问题所隐含的自变 量,而使问题快速获解。 二、指定“主变量”思想 例2.已知,0n m <≤试比较)1ln(++-m e m n 与)1ln(1++n 的大小,并给出证明. 分析:本题涉及到两个变量m,n ,这里不妨把m 当成常数,指定n 为主变量x ,解答如下 解:构造函数 ),[),1ln(1)1ln()(+∞∈+--++=-m x x m e x f m x ,0≥m , 由0)1()1(1111)(>+-+=+-=+-='-m m x m x m x e x e e x x e e x e x f 在),[+∞∈m x 上恒成立,∴)(x f 在),[+∞m 上递增,∴0)()(min ==m f x f ,于是,当n m <≤0时, 0)1ln(1)1ln()(>+--++=-n m e n f m n 即)1ln(++-m e m n >)1ln(1++n 。 因此,有些问题虽然有两个变量,只要把其中一个当常数,另一个看成自变量,便可使 问题得以解决,我们称这种思想方法为:指定“主变量”思想。 三、化归为值域或最值思想 例3.已知函数)1(,ln )(2 >-+=a a x x a x f x ,对1|)()(|],1,1[,2121-≤--∈?e x f x f x x ,

专题6.1 导数中的构造函数 高考数学选填题压轴题突破讲义(解析版)

【方法综述】 函数与方程思想、转化与化归思想是高中数学思想中比较重要的两大思想,而构造函数的解题思路恰好是这两种思想的良好体现,尤其是在导数题型中.在导数小题中构造函数的常见结论:出现()()nf x xf x '+形式,构造函数()()F n x x f x =;出现()()xf x nf x '-形式,构造函数()() F n f x x x = ;出现()()f x nf x '+形式,构造函数()()F nx x e f x =;出现()()f x nf x '-形式,构造函数()() F nx f x x e = . 【解答策略】 类型一、利用()f x 进行抽象函数构造 1.利用()f x 与x (n x )构造 常用构造形式有()xf x , ()f x x ;这类形式是对u v ?,u v 型函数导数计算的推广及应用,我们对u v ?,u v 的导函数观察可得知,u v ?型导函数中体现的是“+”法,u v 型导函数中体现的是“-”法,由此,我们可以猜测,当导函数形式出现的是“+”法形式时,优先考虑构造u v ?型,当导函数形式出现的是“-”法形式时,优先考虑构造 u v . 例1.【2019届高三第二次全国大联考】设 是定义在上的可导偶函数,若当 时, ,则函数 的零点个数为 A .0 B .1 C .2 D .0或2 【答案】A 【解析】 设 ,因为函数 为偶函数,所以 也是上的偶函数,所以 .由已知, 时, ,可得当 时, , 故函数在上单调递减,由偶函数的性质可得函数在 上单调递增.所以

,所以方程,即无解,所以函数没有零点.故选A. 【指点迷津】设,当时,,可得当时,,故函数 在上单调递减,从而求出函数的零点的个数. 【举一反三】【新疆乌鲁木齐2019届高三第二次质量检测】的定义域是,其导函数为,若,且(其中是自然对数的底数),则 A.B. C.当时,取得极大值D.当时, 【答案】C 【解析】 设,则 则 又得 即,所以 即 , 由得,得,此时函数为增函数 由得,得,此时函数为减函数 则,即,则,故错误 ,即,则,故错误 当时,取得极小值 即当,,即,即,故错误 当时,取得极小值 此时,则取得极大值

(完整版)导数中双变量的函数构造(2)

导数中双变量的函数构造 21.(12分)已知函数()ln e x f x x λ-=-(λ∈R ). (1)若函数()f x 是单调函数,求λ的取值范围; (2)求证:当120x x <<时,都有21112 1 e e 1x x x x --->- . 21.解:(1)函数()f x 的定义域为(0,)+∞,∵()ln e x f x x λ-=-,∵e ()e x x x f x x x λ λ--+'=+= , ∵函数()f x 是单调函数,∵()0f x '≤或()0f x '≥在(0,)+∞上恒成立, ∵∵()0f x '≤,∵e 0x x x λ-+≤,即e 0x x λ-+≤,e e x x x x λ--=- ≤, 令()e x x x ?=- ,则1 ()e x x x ?-'=,当01x <<时,()0x ?'<;当1x >时,()0x ?'>. 则()x ?在(0,1)上递减,(1,)+∞上递增,∵min 1()(1)x e ??==-,∵1 e λ-≤; ∵∵()0f x '≥,∵e 0x x x λ-+≥,即e 0x x λ-+≥,e e x x x x λ--=-≥, 由∵得()e x x x ?=-在(0,1)上递减,(1,)+∞上递增,又(0)0?=,x →+∞时()0x ?<,∵0λ≥; 综上∵∵可知, 1e λ-≤或0λ≥; ...............................6分 (2)由(1)可知,当1e λ-=时,1()ln e e x f x x -=--在(0,)+∞上递减,∵120x x <<, ∵12()()f x f x >,即121211ln e ln e e e x x x x ---->--,∵211112e e ln ln x x x x --->-, 要证21112 1 e e 1x x x x --->- ,只需证2121ln ln 1x x x x ->-,即证1221ln 1x x x x >-, 令12x t x = ,(0,1)t ∈,则证1ln 1t t >-,令1()ln 1h t t t =+-,则21 ()0t h t t -'=<, ∵()h t 在(0,1)上递减,又(1)0h =,∵()0h t >,即1 ln 1t t >-,得证. ...............................12分 [典例] 已知函数f (x )=ax 2+x ln x (a ∈R)的图象在点(1,f (1))处的切线与直线x +3y =0垂直. (1)求实数a 的值; (2)求证:当n >m >0时,ln n -ln m >m n -n m . [解] (1)因为f (x )=ax 2+x ln x ,

导数中的双变量问题

导数 1、设函数/(x) = (2-a)Inx + 2l/(x1)-/(x2)P?成立,求实数加的 取值范围. 2、已知二次函数g(x)对PxwR都满足g(x-l) + g(l-x)" - 2x-l且g(l) = j,设函数 19 = g(x + -) + m\nx + - ( m x>0 ) ? e R r 2o (I)求gd)的表达式;(II)若3xe/?+,使/W<0成立,求实数用的取值范围; (【II)设15", H(x) = f(x)-(m + l)x,求证:对于Vxp x2e[l,w],恒有I//(x1)-//(x2)l< 10

3、设x = 3是函数/(x) = (x2 + ax+e /?)的一个极值点. (1)求"与〃的关系式(用"表示方),并求的单调区间; 95 (2)设。>0,曲)=oh扌若存在匚盒可0,4],使得|/(切-&(幻<1成立,求"的取 x q丿 值范围. 4、f (A) = (x2 + cix + b)e x(x 已R). (1)若a = 2t b = -2f求函数/⑴的极值; (2)若x = l是函数/(x)的一个极值点,试求出“关于b的关系式(用。表示b ),并确定/(兀)的单调区间; (3)在(2)的条件下,设。>0,函数g(x) = (/ +⑷严.若存在衛仆[0,4]使得1/(2,)-/(22)1<1成立,求"的取值范围.

5、已知函数f(^x) = ax i+bx2 -3x(a,beR)在点(1J⑴)处的切线方程为y + 2 = 0. ⑴求函数f(x)的解析式; ⑵若对于区间[-2,2]±任意两个自变量的值几花都有|/(州)-/(勺)|“,求实数c的最小值; ⑶若过点M(2冲)(〃?工2)可作曲线y = f(X)的三条切线,求实数山的取值范围. 6、设函数/(x) = x —丄一dlnx(dR). x ⑴讨论函数/(劝的单调性; ⑵若/⑴有两个极值点州內,记过点心后)),BgJ(兀2))的直线斜率为问:是否存在",使得k = 2-a若存在,求出"的值;若不存在,请说明理由.

用导数的基本运算法则巧构造导函数的原函数

用导数的基本运算法则巧构造导函数的原函数 构造函数是解决抽象不等式的基本方法,根据题设的条件,并借助初等函数的导数公式和导数的基本运算法则,相应地构造出辅助函数. 通过进一步研究辅助函数的有关性质,给予巧妙的解答. 本文从一到高考试题出发,追根溯源,研究并揭示高考试题的本质. 1 高考真题 真题 设函数()f x '是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,()()0xf x f x '-<,则使得()0f x >成立的x 取值范围( ). A. (,1)(0,1)-∞- B. (1,0)(1,)-+∞ C. (,1)(1,0)-∞-- D. (0,1)(1,)+∞ 解析:设()()f x F x x =,则2 ()()'()xf x f x F x x '-=. 因为0x >时,()()0xf x f x '-<,所以'()0F x <,即当0x >时,()F x 单调递减. 又因为()f x 为奇函数,且(1)0f -=,所以()()f x F x x = 为偶函数,且(1)(1)0F F -==, 则当0x <时,()F x 单调递增.当(,1)x ∈-∞-时,()0F x <,()0f x >.当(0,1)x ∈时,()0F x <,()0f x >.所以()0f x >成立的x 取值范围(,1)(0,1)-∞-,即答案为A.. 上述题为2015年课标全国Ⅱ选择题第12题,创新有难度,丰富有内涵. 此其题表面看上,不知道如何入手,解决问题. 因为这是一道没有具体函数表达式的不等式试题,且不等式中含有()f x '和()f x ,更是难上加难. 从试题的解析可以看出,巧妙地构造出了函数()F x ,通过分析()F x 的单调性和奇偶性,解答问题. 解题突破口不易寻找,给人一种“旧时茅店社林边,路转溪桥忽见”的感觉. 对题的解析过程进行回顾,本题是如何构造出()()f x F x x = ,从而给出极其巧妙的解答. 为了寻求问题的本质,这里对以下例题进行分析. 2 巧构导函数的原函数 例 1 已知函数()f x 的图像关于y 轴对称,且当(,0)x ∈-∞时,()()0f x xf x '+<成立,若0.20.22(2)a f =?,log 3(log 3)b f ππ=?,33log 9(log 9)b f =?,则,,a b c 的大小关系( ) A. b a c >> B. c a b >> C. c b a >> D. a b c >> 解析:设()()F x xf x =,则'()()()F x f x xf x '=+.因为0x <时,()()0f x xf x '+<,所以'()0F x <,则 当0x <时,()F x 单调递减.又因为函数()f x 的图像关于y 轴对称,所以()f x 为奇函数,当0x >时, ()F x 单调递减.又因为0.2122<<,0log 31π<<,3log 92=,则b a c >>,即答案为A. 例 2已知函数()f x 满足:()2()0f x f x '+>,那么系列不等式成立的是( ) A. (1)f B. (0)(2)f f e < C. (1)(2)f D. 2(0)(4)f e f > 解析:设12()2()x F x e f x =,则1 112221'()2[()()][()2()]2 x x x F x e f x e f x e f x f x ''=+=+.因为()2()0f x f x '+>,所以'()0F x >,则()F x 在定义域上单调递增,所以(1)(0)F F >,则(1)f ,即答案为A. 例 3 已知()f x 为定义在(,)-∞+∞上的可导函数,且()()f x f x '<对于x R ∈恒成立且e 为自然对数的底,则( ) A. 2012(1)(0),(2012)(0)f e f f e f >?>? B. 2012(1)(0),(2012)(0)f e f f e f ? C. 2012(1)(0),(2012)(0)f e f f e f >?,(2012)(0)F F >即答案为A. 例4 定义在(0, )2π上的函数()f x ,()f x '是它的导函数,且恒有()()tan f x f x x '>成立,则( ) ()()43π π B. (1)2()sin16f f π>()()64f ππ>()()63f ππ > 解析:因为(0,)2x π ∈,所以sin 0x >,cos 0>.由()()tan f x f x x '>,得()cos ()sin 0f x x f x x '->

导数运算中构造函数解决抽象函数问题

导数运算中构造函数解决抽象函数问题 【模型总结】 关系式为“加”型 (1)'()()0f x f x +≥ 构造[()]'['()()]x x e f x e f x f x =+ (2)'()()0xf x f x +≥ 构造[()]''()()xf x xf x f x =+ (3)'()()0xf x nf x +≥ 构造11[()]''()()['()()]n n n n x f x x f x nx f x x xf x nf x --=+=+ (注意对x 的符号进行讨论) 关系式为“减”型 (1)'()()0f x f x -≥ 构造2()'()()'()()[]'()x x x x x f x f x e f x e f x f x e e e --== (2)'()()0xf x f x -≥ 构造2()'()()[ ]'f x xf x f x x x -= ! (3)'()()0xf x nf x -≥ 构造121 ()'()()'()()[]'()n n n n n f x x f x nx f x xf x nf x x x x -+--== (注意对x 的符号进行讨论) 小结:1.加减形式积商定 2.系数不同幂来补 3.符号讨论不能忘 典型例题: 例1.设()()f x g x 、是R 上的可导函数,'()()()'()0f x g x f x g x +<,(3)0g -=,求不等式()()0f x g x <的解集 变式:设()()f x g x 、分别是定义在R 上的奇函数、偶函数,当0x <时,'()()()'()0f x g x f x g x +>,(3)0g -=,求不等式()()0f x g x <的解集. 例 2.已知定义在R 上的函数()()f x g x 、满足()() x f x a g x =,且'()()()'()f x g x f x g x <,(1)(1)5(1)(1)2f f g g -+=-,若有穷数列*()()()f n n N g n ??∈???? 的前n 项和等于3132,则n 等于 . 变式:已知定义在R 上的函数()()f x g x 、满足()() x f x a g x =,且'()()()'()f x g x f x g x <,

导数双变量专题

导数-双变量问题 1.构造函数利用单调性证明 2.任意性与存在性问题 3.整体换元—双变单 4.极值点偏移 5.赋值法 构造函数利用单调性证明 形式如:1212|()()|||f x f x m x x -≥- 方法:将相同变量移到一边,构造函数 1.已知函数23 9()()(24 f x x x =++)对任意[]12,1,0x x ∈-,不等式12|()()|f x f x m -≤恒成立,试求m 的取值范围。 2.已知函数2 ()(1)ln 1f x a x ax =+++.设1a <-,如果对12,(0,)x x ?∈+∞,有 1212|()()|4||f x f x x x -≥-,求实数a 的取值范围. 3.已知函数2 )1ln()(x x a x f -+=区间)1,0(内任取两个实数q p ,,且q p ≠时,若不等式 1) 1()1(>-+-+q p q f p f 恒成立,求实数a 的取值范围。 4.已知函数2 1()2ln (2),2 f x x a x a x a R = -+-∈.是否存在实数a ,对任意的 ()12,0,x x ∈+∞,且21x x ≠,有 2121 ()() f x f x a x x ->-,恒成立,若存在求出a 的取值范围, 若不存在,说明理由. 练习1:已知函数2 ()ln =+f x a x x ,若0>a ,且对任意的12,[1,]∈x x e ,都有 1212 11 |()()|| |-<-f x f x x x ,求实数a 的取值范围. 练习2.设函数 ()ln ,m f x x m R x =+ ∈.若对任意()()0,1f b f a b a b a ->><-恒成立, 求m 的取值范围.

构造函数法在导数不等式中应用

构造函数在导数不等式中的应用 构造函数是解决抽象不等式的基本方法,根据题设的条件,并借助初等函数的导数公式和导数的基本运算法则,相应地构造出辅助函数. 通过进一步研究辅助函数的有关性质,给予巧妙的解答. 1 真题 设函数()f x '是奇函数()()f x x R ∈的导函数,(1)0f -=,当0x >时,()()0xf x f x '-<,则使得()0f x >成立的x 取值范围( ). A. (,1)(0,1)-∞-U B. (1,0)(1,)-+∞U C. (,1)(1,0)-∞--U D. (0,1)(1,)+∞U 解析:设()()f x F x x = , 则2()()'()xf x f x F x x '-=. 因为0x >时,()()0xf x f x '-<,所以'()0F x <,即当0x >时,()F x 单调递减. 又因为()f x 为奇函数,且(1)0f -=,所以()()f x F x x = 为偶函数,且(1)(1)0F F -==, 则当0x <时,()F x 单调递增. 当(,1)x ∈-∞-时,()0F x <,()0f x >. 当(0,1)x ∈时,()0F x <,()0f x >. 所以()0f x >成立的x 取值范围 (,1)(0,1)-∞-U ,即答案为A.. 对题的解析过程进行回顾,本题是如何构造出()()f x F x x = ,从而给出极其巧妙的解答. 为了寻求问题的本质,这里对以下例题进行分析. 【典例】 例 1 已知函数()f x 的图像关于y 轴对称,且当(,0)x ∈-∞时,()()0f x xf x '+<成立,若0.20.22(2)a f =?,log 3(log 3)b f ππ=?,33log 9(log 9)b f =?,则,,a b c 的大小关系( ) A. b a c >> B. c a b >> C. c b a >> D. a b c >> 解析:设()()F x xf x =,则'()()()F x f x xf x '=+. 因为0x <时,()()0f x xf x '+<,所以'()0F x <,则当0x <时,()F x 单调递减. 又因为函数()f x 的图像关于y 轴对称,所以()f x 为奇函数,当0x >时,()F x 单调递减. 又因为0.2122<<,0log 31π<<,3log 92=,则b a c >>,即答案为A. 例 2已知函数()f x 满足:()2()0f x f x '+>,那么系列不等式成立的是( ) A. (1)f >

【高考数学】构造函数法证明导数不等式的八种方法

第 1 页 共 6 页 构造函数法证明不等式的八种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法: 一、移项法构造函数 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有 x x x ≤+≤+-)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(-++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-+++=x x x g , 22) 1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即011 1)1ln(≥-++ +x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ), 那么要证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明 【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数33 2)(x x g =的图象的下方;

导数中双变量问题的四种策略

双变量问题的几种处理策略 策略一:合的思想 问题1:已知函数x x f ln )(=的图象上任意不同的两点, ,线段的中点为 ,记直线的斜率为,试证明:. 解析:因为 ∴, ∴,又 不妨设 , 要比较与的大小,即比较与的大小, 又∵,∴ 即比较与 的大小. 令,则, ∴在上位增函数. 又,∴, ∴,即 二:分的思想 问题2:若1 ln )(++=x a x x g ,且对任意的(]2,1,21∈x x ,, 都有, 求a 的取值范围. 解析∵ ,∴ 由题意得在区间(]2,1上是减函数. ∴ () 11,y x A () 22,y x B AB ),(00y x C AB k )(0x f k '>x x f ln )(=x x f 1)(='210021)(x x x x f +=='121212121212ln ln ln )()(x x x x x x x x x x x f x f k -= --=--=12x x >k )(0x f '1 212 ln x x x x -2 12 x x +12x x >12ln x x 1)1( 2) (21 2 1 2 2 112+-=+-x x x x x x x x )1(1) 1(2ln )(≥+--=x x x x x h 0) 1()1()1(41)(2 22≥+-=+-='x x x x x x h )(x h [)+∞,1112>x x 0)1()(12 =>h x x h 1)1( 2ln 1 2 1 2 1 2+->x x x x x x )(0x f k '>21x x ≠1 ) ()(1 212-<--x x x g x g 1)()(1 212-<--x x x g x g []0)()(121122<-+-+x x x x g x x g x x g x F +=)()(1)1(1)(2 ++-= 'x a x x F

构造函数求解导数题的基本策略

构造函数求解导数题的基本策略 湖北省黄梅县第一中学 赵光新 一构造函数求解恒成立问题,弥补“等号”问题 例1已知函数f (x )=-x 3+ax 2+b (a ,b ∈R ). (1)若函数y=f (x )的图象上任意不同的两点的连线的斜率小于2,求a 的取值范围 分析:本题学生易将图象上任意不同的两点的连线的斜率与 '()f x 混为一谈,错解为:由f (x )=-x 3+ax 2+b 得'2()32f x x ax =-+,'()2,f x <∴Q 23220x ax -+>对一切的x R ∈恒成立,从而 2(2)4320a ?=--??<,260a ∴-< a << 正确解法:不妨设12,x x R ∈且12x x <则1212 ()()2f x f x x x -<<,整理得 1122()2()2f x x f x x ->-,因此构造函数()()2g x f x x =-=322x ax x b -+-+, 则12()()g x g x >,从而()g x 为R 上的减函数,所以' ()0g x ≤即 23220x ax -+≥对一切的x R ∈恒成立,从而 2(2)4320a ?=--??<,260a ∴-≤ a ≤≤ 二构造函数解决多元变量的证明问题 在不等式的证明中,常常会出现多个变量。此时若能用主元思想,将其中一个看成主元,另一个变量看成常数,构造一元函数,利用一元函数的性质,使得多元变量不等式的证明得到很好的解决,高考题中常常出现。 例2已知函数()ln f x x =,当0a b <<时,求证222()()()b b a f b f a --> 3222222' 2222221242()(2)()()()b b x bx b x b x bx F x x x b x x b ----+=--=-++,0x b <= 所以原命题得证。 三构造函数求解代数式的最值问题

构造函数法证明导数不等式的八种方法Word版

构造函数法证明不等式的八种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法: 一、移项法构造函数 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有x x x ≤+≤+-)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(-++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+-=-+='x x x x f ∴当01<< -x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时,0)0()(=≤f x f , 即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证), 现证左面,令111)1ln()(-++ +=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即0111)1ln(≥-++ +x x ∴111) 1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ),那么要 证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明 【例2】已知函数.ln 2 1)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数332)(x x g =的图象的下方; 分析:函数)(x f 的图象在函数)(x g 的图象的下方)()(x g x f =F

导数中的双变量任意

导数中的双变量任意、存在恒成立问题 解决方法:转化为最值问题处理 ●类型 一:若2211D x D x ∈?∈?,,)()(21x g x f >恒成立 ?max 2min 1)()(x g x f >. 基本思想是:函数)(x f 的任一函数值均大于)(x g 的任一函数值, 故只需max 2min 1)()(x g x f >即可. 几何解释如图一. 例1、已知x x x f ln )(=,3)(2++-=ax x x g ,若对)0(1∞+∈?,x , ]1[2e x ,∈?使得)(21x f ≥)(2x g 成立,求实数a 的取值范围. 【变式训练1】已知函数14341ln )(-+-=x x x x f ,42)(2-+-=bx x x g ,若)20(1,∈?x , ]21[2,∈?x ,不等式)(1x f ≥)(2x g 恒成立,求实数b 的取值范围. ●类型 二:若2211D x D x ∈?∈?,,)()(21x g x f >恒成立 ?min 2max 1)()(x g x f >. 基本思想是:函数)(x f 的某些函数值大于)(x g 的某些函数值, 只要求有这样的函数值,不要求所有的函数值. 故只需min 2max 1)()(x g x f >即可. 几何解释如图二. 例2、已知a ≤2,设函数x a x x x f ln 1)(--=,e x x x g 1ln )(--=, 若在]1 [e ,上存在21x x ,,使)(1x f ≥)(2x g 成立,求实数a 取值范围. 【变式训练2】已知函数x x x g ln )(=,ax x g x f -=)()(. (1)求函数)(x g 的单调区间; (2)若函数)(x f 在(1,∞+)上是减函数,求实数a 的最小值; (3)若存在][221e e x x ,,∈,使得)(1x f ≤a x f +')(2成立,求实数a 取值范围.

高考数学专题07+导数有关的构造函数方法-(理)(教师版)

专题07 导数有关的构造函数方法 一.知识点 基本初等函数的导数公式 (1)常用函数的导数 ①(C )′=________(C 为常数); ②(x )′=________; ③(x 2)′=________; ④???? 1x ′=________; ⑤(x )′=________. (2)初等函数的导数公式 ①(x n )′=________; ②(sin x )′=__________; ③(cos x )′=________; ④(e x )′=________; ⑤(a x )′=___________; ⑥(ln x )′=________; ⑦(log a x )′=__________. 5.导数的运算法则 (1)[f (x )±g (x )]′=________________________; (2)[f (x )·g (x )]′=_________________________; (3)???? ??f (x )g (x )′=____________________________. 6.复合函数的导数 (1)对于两个函数y =f (u )和u =g (x ),如果通过变量u ,y 可以表示成x 的函数,那么称这两个函数(函数y =f (u )和u =g (x ))的复合函数为y =f (g (x )). (2)复合函数y =f (g (x ))的导数和函数y =f (u ),u =g (x )的导数间的关系为___________________,即y 对x 的导数等于y 对u 的导数与u 对x 的导数的乘积. 二.题型分析 1.构造多项式函数 2.构造三角函数型 3.构造x e 形式的函数 4.构造成积的形式 5.与ln x 有关的构造 6.构造成商的形式

导数中双变量处理策略

导数中双变量处理策略 Company Document number:WTUT-WT88Y-W8BBGB-BWYTT-19998

导数-双变量问题处理策略 1.构造函数利用单调性证明 2.任意性与存在性问题 3.整体换元—双变单 4.极值点偏移 【构造函数利用单调性证明】 形式如:1212|()()|||f x f x m x x -≥- 例1、设函数. (1)讨论函数在定义域内的单调性; (2)当时,任意,恒成立,求实数的取值范围. 【任意与存在性问题】 例2、 已知函数()2 a f x x x =+,()ln g x x x =+,其中0a >. (1)若函数()x f y =在[]e ,1上的图像恒在()x g y =的上方,求实数a 的取值范围. (2)若对任意的[]12,1x x e ∈,(e 为自然对数的底数)都有()1f x ≥()2g x 成立, 求实数a 的取值范围. 【整体换元——双变单】 例3、已知函数的图象为曲线, 函数的图象为直线. (Ⅰ) 当时, 求的最大值; (Ⅱ) 设直线与曲线的交点的横坐标分别为, 且, 求证: . 【对称轴问题12x x +的证明】 例4、已知函数 ⑴求函数的单调区间和极值; ⑵已知函数对任意满足,证明:当时, ⑶如果,且,证明: 221()(2)ln (0)ax f x a x a x +=-+<()f x (3,2)a ∈--12,[1,3]x x ∈12(ln 3)2ln 3|()()|m a f x f x +->-m x x x f ln )(=C b ax x g +=2 1)(l 3,2-==b a )()()(x g x f x F -=l C 21,x x 21x x ≠2)()(2121>++x x g x x 1 1()(x x f x x e --=∈R).()f x ()y g x =x ()(4)g x f x =-2x >()();f x g x >12x x ≠12()()f x f x =12 4.x x +>

导数选择题之构造函数法解不等式的一类题

导数选择题之构造函数法解不等式的一类题 一、单选题 1.定义在上的函数的导函数为,若对任意实数,有,且为奇函数,则不等式的解集为 A. B. C. D. 2.设函数是奇函数的导函数,,当时,,则使得 成立的的取值范围是() A. B. C. D. 3.定义在上的偶函数的导函数,若对任意的正实数,都有恒成立,则使成立的实数的取值范围为() A. B. C. D. 4.已知函数定义在数集上的偶函数,当时恒有,且,则不等式的解集为( ) A. B. C. D. 5.定义在上的函数满足,,则不等式的解集为() A. B. C. D. 6.设定义在上的函数满足任意都有,且时,有,则的大小关系是() A. B. C. D. 7.已知偶函数满足,且,则的解集为 A. B. C. D.

8.定义在R上的函数满足:是的导函数,则不等式(其中e为自然对数的底数)的解集为( ) A. B. C. D. 9.已知定义在上的函数的导函数为,满足,且,则不等式 的解集为() A. B. C. D. 10.定义在上的函数f(x)满足,则不等式的解集为A. B. C. D. 11.已知定义在上的函数满足,其中是函数的导函数.若 ,则实数的取值范围为() A. B. C. D. 12.已知函数f(x)是定义在R上的可导函数,且对于?x∈R,均有f(x)>f′(x),则有() A. e2017f(-2017)e2017f(0) B. e2017f(-2017)f(0),f(2017)>e2017f(0) D. e2017f(-2017)>f(0),f(2017)

高考数学热点难点突破技巧第讲导数中的双变量存在性和任意性问题

第07讲:导数中的双变量存在性和任意性问题的处理 【知识要点】 在平时的数学学习和高考中,我们经常会遇到不等式的双变量的存在性和任意性问题,学生由于对于这类问题理解不清,很容易和不等式的恒成立问题混淆,面对这类问题总是感到很棘手,或在解题中出现知识性错误. 1、双存在性问题 “存在...),(1b a x ∈,存在..),(2d c x ∈,使得)()(21x g x f <成立”.称为不等式的双存在性问题,存在..),(1b a x ∈,存在..),(2d c x ∈,使得)()(21x g x f <成立,即)(x f 在区间),(b a 内至少有一个值......)(x f 比函数)(x g 在区间),(d c 内的一个函数值.....小.,即max min )()(x g x f <.(见下图1) “存在..),(1b a x ∈,存在..),(2d c x ∈,使得)()(21x g x f >成立”,即在区间),(b a 内至少有...一个值...)(x f 比函数)(x g 在区间),(d c 内的一个函数值.....大,即min max )()(x g x f >.(见下图2) 2、双任意性问题 “任意..),(1b a x ∈,对任意..的),(2d c x ∈,使得)()(21x g x f <成立” 称为不等式的双任意性问题. 任意..),(1b a x ∈,对任意..的),(2d c x ∈,使得)()(21x g x f <成立,即)(x f 在区间),(b a 任意一个值.....)(x f 比函数)(x g 在区间),(d c 内的任意.. 一个函数值都要小,即max min ()()f x g x <. “任意..),(1b a x ∈,对任意..的),(2d c x ∈,使得)()(21x g x f >成立”,即)(x f 在区间),(b a 内任意一...

原函数与导函数的关系

课题:探究原函数与导函数的关系 首师大附中 数学组 王建华 设计思路 这节课就是在学完导数与积分之后,学生从大量的实例中对原函数与导函数的关系有了一定的认识的基础上展开教学的。由于这部分内容课本上没有,但数学内部的联系规律与对称美又会使学生既觉得有挑战性又充满探究的兴趣。备这个课的过程中我虽然参考了大量已有的资料,但需要做更深入地思考这些命题间的联系,以什么方式展开更利于学生拾级而上,最终登上高峰体会一览众山小的乐趣与成就感。教师实际上就是在引导学生进行一次理论的探险,大胆地猜,小心地证,谨慎地修改条件,步步逼近真理。最终学生能否记住这些结论并不重要,重要的就是研究相互关联的事物的一般思路与方法。对优秀生或热爱数学的学生来说会有更多的收获。 整个教学流程 1、 从经验观察发现,猜想得命题p,q 、 这两个命题为真命题,证明它们的方法用复合函数求导,比较容易上手。 2、 学生自然会想到这个命题的逆命题就是否成立,尝试证明。证明的思路也要逆向思考。发现由于导数确定后原函数不能唯一确定,有上下平移的可能,这样关于y 轴对称的性质能够保持,但关于原点对称的性质就不能保证了。 3、 函数的平移不改变函数图象的对称性,因此将奇函数的性质拓展为关于中心对称,将偶函数的性质拓展为关于直线x a =对称,研究前面的四个命题还就是否成立。研究方法可以类比迁移前面的方法。能成立的严格证明,不能成立的举出反例,并尝试通过改变条件使之成为真命题。 4、已有成果的应用:利用二次函数的对称性性质研究三次函数的对称性。 教学目标 在这个探究过程中 1、加强学生对导函数与原函数相生相伴的关系的理解; 2、增强学生对函数对称性的理解与抽象概括表达能力; 3体验研究事物的角度,一个新定理就是怎样诞生的,怎样才就是全面地认识了一个事物。4、培养学生的思辨能力,分析法解决问题的能力,举反例的能力等等。 教学重点 以原函数与导函数的对称性的联系为载体让学生体验观察发现、概括猜想、辨别真伪的过程。 教学难点 灵活运用所学知识探索未知领域。 新课引入 前面解题时我们常根据导函数的符号示意图画出原函数的单调性示意图,您能根据原函数的图像画出导函数的示意图不? 一. 探究由原函数的奇偶性能否推出导函数的奇偶性。 问题1 已知函数()y f x =的图像,请尝试画出其导函数的图像示意图。 3()f x x = 2'()3y f x x ==

相关主题
文本预览
相关文档 最新文档