纳米SiO2作为润滑油添加剂性能及机理研究进展
- 格式:pdf
- 大小:287.83 KB
- 文档页数:5
纳米二氧化硅在润滑剂中的作用近几年来,随着纳米科技的飞速发展,纳米润滑添加剂的润滑优异性能日益引起人们的关注。
纳米材料在摩擦表面能形成一层摩擦系数较低的薄膜,对摩擦表面进行一定程度的填补和修复。
纳米粒子尺寸较小,可以认为近似球形,可像鹅卵石一样自由滚动,起到微轴承作用;还能对摩擦表面进行抛光和强化作用,并支撑负荷,使承载能力提高,摩擦系数降低。
另外,纳米微粒具有较高的扩散能力和自扩散能力,容易在金属表面形成具有极佳抗磨性能的渗透层或扩散层,表现出原位摩擦化学原理。
因此,纳米润滑添加剂具有突出的抗极压性能、优异的抗磨性和较好的润滑性能,适合在重载、低速、高温下工作翻;同时,它又不同于一般的固体润滑材料,向油脂中加入很少的纳米添加剂,就能大大提高材料的性能。
纳米颗粒在润滑油脂中的用量很小,同时有机一无机复合纳米颗粒添加剂中由 c、H、O组成的有机修饰剂分子对环境潜在的负面影响极小,因此纳米材料作为润滑添加剂还具有环境友好的特性。
纳米二氧化硅(VK-SP15,VK-SP30,VK-SP50)作为一种常用的纳米材料,可以作为稠化剂添加到基础油中,制得的润滑脂滴点高,具有良好的高温I生能;同时它还可以作为添加剂加入油脂中来改善产品的极压抗磨性能。
可以预测,纳米二氧化硅(VK-SP15,VK-SP30,VK-SP50)在润滑剂中的应用将大大改善润滑剂的综合性能。
本文就纳米二氧化硅(VK-SP15,VK-SP30,VK-SP50)在润滑剂中的应用研究现状进行了综述,并对在润滑剂中的纳米润滑材料的研究与开发提出了自己的见解和看法。
1.纳米二氧化硅(VK-SP15,VK-SP30,VK-SP50)的表面结构。
通过红外光谱研究发现,纳米二氧化硅(VK-SP15,VK-SP30,VK-SP50)表面含有硅氧烷基,孤立未受干扰的自由羟基和形成氢键的羟基。
由于表面羟基的存在,故显示出很强的吸水性。
纳米二氧化硅(VK-SP15,VK-SP30,VK-SP50)表面结构中的Si—O活性与其所处的位置有关,处于结构中心的Si—O键具有极性,结合能力大;处于微粒表面的Si—O键活性大,能与其他分子发生力的结合作用。
MoS2晶体属于六方晶系,为典型三明治结构的层状化合物,每个平面层为S-Mo-S的结构,层内Mo和S以共价键结合为三方柱面体结构,层间以微弱的范德华力维系,因此,层状的MoS2容易受外界环境的影响破坏层与层之间的堆垛结构,并形成较为稳定的薄层,当MoS2用作润滑剂时,层状MoS2会转移到金属表面,缓和摩擦和磨损,这一性质使其在摩擦润滑领域有很好的应用,20世纪50年代,普通MoS2就作为固体润滑剂得到了广泛应用。
纳米材料是指至少有一维尺寸为纳米级别的材料,而当材料的尺寸缩小至纳米级别时,会凸显处诸如小尺寸效应、界面效应、量子隧道效应等性能特点。
研究表明,一些纳米尺度的固体粒子加入到润滑油中,可以明显提升润滑油的性能,展现出许多优于传统添加剂的特点。
近年来,将纳米MoS2用作润滑油添加剂得到了广泛关注,本文主要介绍纳米MoS2作为润滑油添加剂的润滑机理。
润滑机理1物理吸附/沉积作用学者们普遍认为,典型的MoS2晶体为层状结构,层与层之间以范德华力连接,在摩擦产生的剪切应力下层状结构剥离,并吸附到摩擦表面,这一过程对抗磨减摩有显著作用,如图1所示摩擦过程中纳米MoS2的层状剥离Wu等研究了纯MoS2和硼酸锌/MoS2纳米复合材料的摩擦学性能,研究发现当使用纯纳米MoS2作为添加剂时,有缺陷的MoS2纳米片和部分氧化的MoS2纳米片会导致润滑不良,在润滑油中加入硼酸锌/MoS2纳米复合材料时,具有极压性能的硼酸锌纳米颗粒能有效地填充MoS2纳米片的表面缺陷,并连续提供保护膜,以进一步降低摩擦系数,提高承载能力。
还有学者指出,纳米MoS2可以填充摩擦表面的微裂纹区域,对磨损位置起到了修复作用化学吸附/反应膜纳米MoS2扩散能力强、表面能高、颗粒表面缺陷结构多,容易参加摩擦化学反应。
有学者报道,在钢制摩擦副中纳米MoS2可以生成含FeS、FeSO4等产物的化学反应膜,反应膜的形成减少了摩擦基体的直接接触,降低了摩擦磨损,图2展示了纳米MoS2参加摩擦化学反应的一种典型方式。
纳米二硫化钼(MoS2)在润滑材料中的研究进展纳米二硫化钼(MoS2)在润滑材料中的研究进展摘要:本文介绍了MoS2的润滑性状、纳米MoS2的性能。
对纳米MoS2在轧制液、机械油、铜合金拉拔润滑脂和空间润滑材料中的摩擦学应用与研究现状进行了综述,并对比了微米级与纳米级MoS2在使用中的效果。
对未来纳米MoS2在润滑材料中的应用与研究进行了展望。
关键词:纳米MoS2;润滑材料;摩擦The research progress of molybdenum disulfidenanoparticles(MoS2) in lubrication materialsAbstract: This paper describes the lubricating properties of MoS2and the performance of nano-MoS2. Nano-MoS2on the rolling fluid, mechanical oil, copper alloy drawing grease and space lubrication materials’ tribology applications and research status are reviewed. The micron and nano-level effect of MoS2 in use is compared. Nano-MoS2 lubricating materials application and research in the future are discussed.Key words: nano-MoS2; lubrication materials; friction0 引言二硫化钼(MoS2)用作固体润滑剂已有50多年的历史,是应用最广泛的固体润滑剂。
在相同条件下,含MoS2的粘结固体润滑膜在真空中的摩擦系数约为大气中的1/3,而耐磨寿命比在大气中高几倍甚至几十倍。
纳米二硫化钼作为润滑油添加剂的摩擦学性能研究李斌;谢凤;张蒙蒙;李磊【摘要】研究纳米二硫化钼作为润滑油添加剂的摩擦学性能。
以不同的表面活性剂和不同的超声波分散时间制备纳米二硫化钼润滑油,考察表面活性剂和超声波分散时间对纳米二硫化钼分散稳定性的影响。
采用四球机和描电镜考察纳米二硫化钼在润滑油中的摩擦学性能。
结果表明,2%油酸表面活性剂和超声波分散30 min 可有效提高纳米二硫化钼在润滑油中的分散稳定性,纳米二硫化钼在润滑油中具有良好的抗磨性能、减摩性能,特别是0.01%二硫化钼在润滑油中的抗磨性能和高负荷下的减磨性能更为突出。
%The tribological properties of nano-MoS2 as additive in lubricating oils were studied.The nano-MoS2 based lubricating oil was prepared by dispersing nano-MoS2 in the base oil with different surface modifier and at different ultra-sonic dispersion time,and the effect on dispersion stability of nano-MoS2 by the different surface modifier and different ul-trasonic dispersion time was investigated.The tribological properties of nano-MoS2 based lubricating oil were studied by Four-Ball Test Machine and SEM.The results show that nano-MoS2 has good dispersion stability in the base oil when with 2% oleic acid as surface modifier and at the ultrasonic dispersion time of 30 min.Nano-MoS2 as additive in lubricating oils has good property of anti-wear and friction reducing properties,especially for 0.01%nano-MoS2 based lubricating oil, which is best in anti-wear and friction reducing property under high load.【期刊名称】《润滑与密封》【年(卷),期】2014(000)009【总页数】5页(P91-95)【关键词】纳米二硫化钼;摩擦学性能;分散稳定性【作者】李斌;谢凤;张蒙蒙;李磊【作者单位】空军勤务学院航空物资油料系江苏徐州221000;空军勤务学院航空物资油料系江苏徐州221000;空军勤务学院航空物资油料系江苏徐州221000;上海后勤训练基地上海200120【正文语种】中文【中图分类】TH117二硫化钼(MoS2)作为固体润滑剂已得到广泛应用[1-2],而纳米MoS2相比普通MoS2,除纳米颗粒本身尺寸效应、表面与界面效应外,纳米MoS2能在摩擦表面形成牢固的吸附膜和化学反应膜,在长期高负荷条件下摩擦性能更为优异[3-4]。
纳米SiO2溶胶缓解油井水泥高温强度衰退的作用机理王成文1,2 陈新2,3 周伟4 王永洪4 薛毓铖2 罗发强41. 非常规油气开发教育部重点实验室·中国石油大学(华东)2. 中国石油大学(华东)石油工程学院3. 加拿大阿尔伯塔大学土木与环境工程学院4.中国石化西北油田分公司工程技术研究院摘 要 油井水泥石强度衰退是高温固井所面临的主要难题之一,而添加纳米SiO2能否缓解水泥石的高温强度衰退以及其作用机理是什么,还有待于验证和确认。
为此,通过室内试验,基于X射线衍射仪、扫描电子显微镜和能谱仪分析水泥石的矿物组成、微观结构和水化产物的元素,测定了高温条件下(150 ℃/35 MPa)纳米SiO2溶胶对G级油井水泥石抗压强度的影响及变化规律,据此研究纳米SiO2溶胶在高温下对水泥水化产物的作用机理。
研究结果表明:①纳米SiO2溶胶可以提高G级油井水泥浆的稠度系数,对水泥浆的流变性会产生不利的影响;②在高温养护初期,纳米SiO2溶胶会降低水泥石的抗压强度,但加入纳米SiO2溶胶的水泥石的抗压强度不会随着养护时间的增加而产生明显的变化;③加入少量纳米SiO2溶胶的G级油井水泥中的纳米SiO2颗粒吸附在水泥矿物表面阻碍水化反应,能够缓解水泥水化产物的高温脱水变质,纳米SiO2颗粒还可以提高水泥微观结构的致密性;④加入大量纳米SiO2溶胶的G级油井水泥中的纳米SiO2与氢氧化钙发生火山灰反应生成一种新型的、结构松散的薄片蜂窝状CSH产物,难以提供较高的抗压强度。
结论认为,纳米SiO2可以作为水泥添加剂以缓解油井水泥高温强度衰退,该研究成果为高温固井水泥浆体系的设计提供了一条新的思路。
关键词 纳米SiO2溶胶 高温 G级油井水泥 水泥石 抗压强度 缓解强度衰退 水化产物 微观结构DOI: 10.3787/j.issn.1000-0976.2019.03.009Working mechanism of nano-SiO2 sol to alleviate the strength decline of oil well ce-ment under high temperatureWang Chengwen1,2, Chen Xin2,3, Zhou Wei4, Wang Yonghong4, Xue Yucheng2 & Luo Faqiang4(1. Key Laboratory of Unconventional Oil & Gas Development//China University of Petroleum <East China>, Qingd-ao, Shandong 266580, China; 2. School of Petroleum Engineering, China University of Petroleum <East China>, Qin-gdao, Shandong 266580, China; 3. Department of Civil and Environmental Engineering, University of Alberta, Edmon-ton, Alberta T6G 2W2, Canada; 4. Research Institute of Petroleum Engineering, Sinopec Northwest, Urumqi, Xinjiang 830011, China)NATUR. GAS IND. VOLUME 39, ISSUE 3, pp.72-79, 3/25/2019. (ISSN 1000-0976; In Chinese)Abstract: Strength decline of oil well set cement is one of the major challenges during well cementing under high temperature. There-fore, it is necessary to verify and confirm whether nano-SiO2 can mitigate this problem and its working mechanism. In this paper, the mineral composition and microstructure of set cement and the elements of its hydration product were experimentally analyzed by using a X-ray diffractometer, a scanning electron microscope and an energy spectrometer. Then, the effect of nano-SiO2 sol on the compressive strength of Class G oil well set cement and its change laws under high temperature (150 ℃/35 MPa) were investigated. Based on this, the working mechanism of nano-SiO2 sol on the hydration product of cement under high temperature was studied. And the following research results were obtained. First, nano-SiO2 sol can increase the consistency coefficient of Grade G oil well slurry and has an adverse impact on the rheological property of slurry. Second, nano-SiO2 sol can decrease the compressive strength of set cement in the early stage of high temperature curing, but the compressive strength of the set cement with nano-SiO2 sol will not change obviously as the curing goes. Third, if a small amount of nano-SiO2 sol is added into Grade G oil well cement, nano-SiO2 particles are adsorbed to the surface of ce-ment minerals to hinder the hydration reaction, so it can mitigate the evaporation metamorphism of the hydration product of cement under high temperature. Besides, nano-SiO2 particles can improve the micro-structural compactness of the cement. Fourth, if a large amount of nano-SiO2 sol is added into Grade G oil well cement, pozzolanic reaction happens between nano-SiO2 and calcium hydroxide, generating a new type of structurally loose honeycomb calcium silicate hydrate (CSH) product, which cannot provide higher compressive strength. In conclusion, nano-SiO2, as cement additive, can mitigate the strength retrogression of oil well cement under high temperature. These research results provide a new idea for the design of a high-temperature cement slurry system.Keywords: Nano-SiO2 sol; High temperature; Class G oil well cement; Set cement; Compressive strength; Mitigation of strength retro-gression; Hydration product; Microstructure基金项目:国家自然科学联合基金重点项目“超深井安全高效井筒工作液构建及调控方法基础研究”(编号:U1762212)、国家自然科学基金项目“CCS咸水层封存中二氧化碳—硫酸盐—镁盐协同作用下油井水泥石的腐蚀机理”(编号:51704325)、山东省自然科学基金项目“高温高密度水泥浆恒稳调控方法及其作用机理研究”(编号:ZR2017MEE056)和长江学者和创新团队发展计划(编号:IRT_14R58)。
纳米材料在润滑油中的应用与性能研究润滑油在机械设备中扮演着重要的角色,它能有效减少摩擦和磨损,延长机械设备的使用寿命。
传统的润滑油通常采用添加剂来改善其性能,然而随着纳米技术的发展,纳米材料在润滑油中的应用逐渐成为研究的热点。
本文将探讨纳米材料在润滑油中的应用与性能,并对其研究现状进行分析和总结。
一、纳米材料在润滑油中的应用1.1 纳米材料的种类纳米材料是一种具有特殊结构和性质的材料,其尺寸在纳米级别(10^-9米)范围内。
常见的纳米材料有纳米金属颗粒、纳米氧化物、纳米碳材料等。
这些纳米材料具有高比表面积、优异的力学性能和独特的表面效应,使其在润滑油中具有广泛的应用潜力。
1.2 纳米材料的应用方式在润滑油中应用纳米材料有两种常见的方式:一是直接将纳米材料添加到润滑油中;二是将纳米材料负载在载体上,形成纳米润滑剂。
这两种方式各有其优势和适用情况。
直接添加纳米材料可以简化工艺流程,但存在分散性和稳定性等问题;而负载纳米润滑剂则可以提高纳米材料的稳定性和分散性,以及润滑油的使用效果。
二、纳米材料在润滑油中的性能研究2.1 摩擦降低性能纳米材料在润滑油中的应用主要目的之一就是降低摩擦系数和磨损率。
通过添加纳米材料,可以改善润滑油的润滑性能,减少金属表面间的直接接触,从而减少摩擦和磨损。
研究表明,纳米金属颗粒和纳米氧化物等纳米材料在润滑油中的应用可以显著降低材料的摩擦系数,并减少磨损量。
2.2 抗氧化性能纳米材料在润滑油中的应用还可以提高润滑油的抗氧化性能。
纳米氧化物具有高度的化学稳定性和抗氧化性能,可以吸附和中和润滑油中的有害物质,延缓润滑油氧化和老化的过程。
研究表明,添加纳米氧化物的润滑油能够在高温高压等恶劣环境下保持较好的抗氧化能力,提高润滑油的使用寿命。
2.3 负载纳米润滑剂的性能研究负载纳米润滑剂是一种新型润滑油材料,其在润滑油中的应用也得到了广泛的关注。
负载纳米润滑剂通常由纳米材料和载体组成,通过纳米材料和润滑油的相互作用,形成稳定的纳米润滑剂。
纳米颗粒对润滑油性能的改善研究纳米材料的应用一直是当代科技领域的研究热点。
在润滑材料领域,纳米颗粒的引入被认为是一种有效的方法,可以提高润滑油的性能和降低机械部件的磨损。
本文将探讨纳米颗粒对润滑油性能的改善研究,包括纳米颗粒的选择、添加方式以及对润滑油性能的影响等方面。
首先,选择合适的纳米颗粒至关重要。
纳米颗粒在润滑油中起到填充物的作用,可以填补润滑油分子之间的空隙,从而改善摩擦和磨损性能。
常见的纳米颗粒包括氧化铁、二氧化硅和碳纳米管等。
这些纳米颗粒具有高比表面积和较大的表面能,使得它们能够与润滑油分子更好地相互作用。
其次,纳米颗粒的添加方式对于润滑油性能的改善也有着重要的影响。
目前常用的添加方式有两种:一是将纳米颗粒直接添加到润滑油中,形成纳米润滑油;另一种是通过阳极氧化、溶胶-凝胶等方法将纳米颗粒引入金属基体,形成含有纳米颗粒的金属复合材料。
两种添加方式都能在一定程度上改善润滑油的性能,但是纳米润滑油的研究更为深入和广泛。
纳米颗粒对润滑油性能的改善主要表现在以下几个方面。
首先,纳米颗粒的添加可以有效减少润滑油的摩擦系数。
纳米颗粒填充润滑油分子之间的空隙,形成一个均匀的纳米网络结构,阻碍摩擦表面的直接接触。
其次,纳米颗粒能够提高润滑油的抗磨损性能。
纳米颗粒的高表面能使其与金属表面形成一层保护膜,有效减少磨损和腐蚀。
此外,纳米颗粒还可以改善润滑油的抗氧化和抗腐蚀性能,延长润滑油的使用寿命。
然而,纳米颗粒对润滑油性能的改善也存在一些挑战与问题。
首先,纳米颗粒的添加需要调整润滑油的配方,这可能增加制造成本。
其次,纳米颗粒的长期稳定性和分散性也是一个关键问题,需要进一步研究和改进。
此外,纳米颗粒的添加可能对环境产生潜在风险,需要进行安全评估。
总之,纳米颗粒对润滑油性能的改善研究是一个具有重要意义的课题。
选择合适的纳米颗粒和添加方式,能够有效地改善润滑油的摩擦和磨损性能,延长机械部件的使用寿命。
然而,仍需解决纳米颗粒长期稳定性和环境风险等问题,促进纳米颗粒在润滑油领域的商业化应用。