2020高考数学二轮复习 专题六 函数与导数 规范答题示例8 函数的单调性、极值与最值问题学案 文
- 格式:doc
- 大小:38.00 KB
- 文档页数:2
导数单调性、极值和最值1.已知0x 是函数()e ln x f x x =-的极值点,若()00,a x ∈, ()0,b x ∈+∞,则 A. ()0f a '>, ()0f b '< B. ()0f a '<, ()0f b '< C. ()0f a '>, ()0f b '> D. ()0f a '<, ()0f b '> 【答案】D()0f a '<, ()0f b '>,故选D.2.已知20a b =≠r r ,且关于x 的函数()321132f x x a x a bx =++⋅rr r 在R 上有极值,则a r 与b r的夹角范围为( )A. 0,6π⎛⎫⎪⎝⎭B.,6ππ⎛⎤⎥⎝⎦C. ,3ππ⎛⎤⎥⎝⎦D. 2,33ππ⎛⎤⎥⎝⎦【答案】C【方法点睛】本题主要考查向量的模及平面向量数量积公式、利用导数研究函数的极值,ma nb +vv 的模(平方后需求a b ⋅v v ).3.在ABC ∆中,,,a b c 分别为,,A B C ∠∠∠所对的边,若函数()()3222113f x x bx a c ac x =+++-+有极值点,则sin 23B π⎛⎫- ⎪⎝⎭的最小值是( )A. 0B.C.D. -1 【答案】D个不同的根,∴△=(2b )2-4(a 2+c 2-ac )>0,即ac >a 2+c 2-b 2,即ac >2accosB ;故选D4.设定义在(0,+∞)上的函数f(x)满足xf′(x)-f(x)=xlnx , 11f e e⎛⎫= ⎪⎝⎭,则f(x)( )A. 有极大值,无极小值B. 有极小值,无极大值C. 既有极大值,又有极小值D. 既无极大值,又无极小值 【答案】D也无极小值,故选D.点睛:根据导函数求原函数,常常需构造辅助函数,一般根据导数法则进行:如5.设a R ∈,若函数,x y e ax x R =+∈有大于零的极值点,则( )A. 1a e <-B. 1a e>- C. 1a >- D. 1a <-【答案】D【解析】()x f x e a '=+(x>0),显然当0a ≥时, ()0f x '>,f(x)在R 上单调递增,无极值点,不符。
高考冲刺之导数(基础篇)1.导数的几何意义函数y=f(x)在x=x0处的导数f′(x0)是曲线y=f(x)在点(x0,f(x0))处切线l的斜率,切线l的方程是y-f(x0)=f′(x0)(x-x0).2.导数的物理意义若物体位移随时间变化的关系为s=f(t),则f′(t0)是物体运动在t=t0时刻的瞬时速度.3.函数的单调性在(a,b)内可导函数f(x),f′(x)在(a,b)任意子区间内都不恒等于0.f′(x)≥0⇔函数f(x)在(a,b)上单调递增;f′(x)≤0⇔函数f(x)在(a,b)上单调递减.4.函数的极值(1)判断f(x0)是极值的方法一般地,当函数f(x)在点x0处连续时,①如果在x0附近的左侧f′(x)>0,右侧f′(x)<0,那么f(x0)是极大值;②如果在x0附近的左侧f′(x)<0,右侧f′(x)>0,那么f(x0)是极小值.(2)求可导函数极值的步骤①求f′(x);②求方程f′(x)=0的根;③检查f′(x)在方程f′(x)=0的根左右值的符号.如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值,如果左右两侧符号一样,那么这个根不是极值点.5.函数的最值(1)在闭区间[a,b]上连续的函数f(x)在[a,b]上必有最大值与最小值.(2)若函数f(x)在[a,b]上单调递增,则f(a)为函数的最小值,f(b)为函数的最大值;若函数f(x)在[a,b]上单调递减,则f(a)为函数的最大值,f(b)为函数的最小值.(3)设函数f(x)在[a,b]上连续,在(a,b)内可导,求f(x)在[a,b]上的最大值和最小值的步骤如下:①求f(x)在(a,b)内的极值;②将f(x)的各极值与f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.6.利用导数解决生活中的优化问题的一般步骤(1)分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y=f(x);(2)求函数的导数f′(x),解方程f′(x)=0;(3)比较函数在区间端点和f′(x)=0的点的函数值的大小,最大(小)者为最大(小)值;(4)回归实际问题作答. 两个注意(1)注意实际问题中函数定义域的确定.(2)在实际问题中,如果函数在区间内只有一个极值点,那么只要根据实际意义判定最大值还是最小值即可,不必再与端点的函数值比较. 三个防范(1)求函数最值时,不可想当然地认为极值点就是最值点,要通过认真比较才能下结论;另外注意函数最值是个“整体”概念,而极值是个“局部”概念. (2)f ′(x 0)=0是y =f (x )在x =x 0取极值的既不充分也不必要条件. 如①y =|x |在x =0处取得极小值,但在x =0处不可导; ②f (x )=x 3,f ′(0)=0,但x =0不是f (x )=x 3的极值点.(3)若y =f (x )可导,则f ′(x 0)=0是f (x )在x =x 0处取极值的必要条件. 易误警示直线与曲线有且只有一个公共点,直线不一定是曲线的切线;反之直线是曲线的切线,但直线不一定与曲线有且只有一个公共点. 两个条件(1)f ′(x )>0在(a ,b )上成立是f (x )在(a ,b )上单调递增的充分条件.(2)对于可导函数f (x ),f ′(x 0)=0是函数f (x )在x =x 0处有极值的必要不充分条件. 三个步骤求函数单调区间的步骤:(1)确定函数f (x )的定义域;(2)求导数f ′(x );(3)由f ′(x )>0(f ′(x )<0)解出相应的x 的范围.当f ′(x )>0时,f (x )在相应的区间上是增函数;当f ′(x )<0时,f (x )在相应的区间上是减函数,还可以列表,写出函数的单调区间. 小题分类1.(导数与积分)定积分ln 20e x dx ⎰的值为( )A. -1B. 1C. 2e 1-D. 2e 【答案】B(2)当0x >时,函数2y x =与函数2xy =的图像所围成的封闭区域的面积是 【答案】427(3)用max{}a b ,表示a ,b 两个数中的最大数,设2()max{f x x =1()4x ≥,那么由函数()y f x =的图象、x 轴、直线14x =和直线2x =所围成的封闭图形的面积是 【答案】3512(4)若dx x c dx x b xdx a ⎰⎰⎰-=-==12111,1,,则c b a ,,的大小关系是 ( )A.c b a <<B.b c a <<C.c a b <<D.ab c << 【答案】A变式设a =⎠⎛0π(sinx +cosx)dx ,则(a x -1x )6的二项展开式中含x 2的系数是( )A .192B .-192C .96D .-96解析:因为a =⎠⎛0π(sinx +cosx)dx =(-cosx +sinx)| π0=(-cosπ+sinπ)-(-cos0+sin0)=2,所以(a x -1x)6=⎝⎛⎭⎪⎫2x -1x 6,则可知其通项T r +1=(-1)r C r 626-r x 6-r2-r 2=(-1)r C r 626-r x 3-r ,令3-r =2⇒r =1,所以展开式中含x 2项的系数是(-1)r C r 626-r =(-1)1C 1626-1=-192,故答案选B.(2)若等比数列{a n }的首项为23,且a 4=⎠⎛14(1+2x)dx ,则公比等于________.解析:⎠⎛14(1+2x)dx =(x +x 2)|41=(4+16)-(1+1)=18,即a 4=18=23·q 3⇒q =3.2.(导数的单调性)若()224ln f x x x x =--,则()f x 的单调递增区间为( )A .()1,0-B .()()1,02,-⋃+∞C .()2,+∞D .()0,+∞ 【答案】C(2)函数()f x 的定义域为R ,对任意实数x 满足(1)(3)f x f x -=-,且(1)(3)f x f x -=-.当l ≤x ≤2时,函数()f x 的导数()0f x '>,则()f x 的单调递减区间是( )A .[2,21]()k k k Z +∈B .[21,2]()k k k Z -∈C .[2,22]()k k k Z +∈D .[22,2]()k k k Z -∈ 【答案】A(3)已知函数2()(21)(R xf x ax x e a -=-+⋅∈,e 为自然对数的底数). 若函数()f x 在[-1,1]上单调递减,求a 的取值范围. 【答案】解: ]322[)12()22()(22+---=⋅+--⋅-='---x ax ax e e x ax eax x f x x x令3)1(2)(2++-=x a ax x g ①若0=a ,则32)(+-=x x g ,在)11(,-内,0)(>x g ,即0)(<'x f ,函数)(x f 在区间]11[,-上单调递减.………………7分②若0>a ,则3)1(2)(2++-=x a ax x g ,其图象是开口向上的抛物线,对称轴为11>+=aa x ,当且仅当0)1(≥g ,即10≤<a 时,在)11(,-内0)(>x g ,0)(<'x f , 函数)(x f 在区间]11[,-上单调递减.③若0<a ,则3)1(2)(2++-=x a ax x g ,其图象是开口向下的抛物线, 当且仅当⎩⎨⎧≥≥-0)1(0)1(g g ,即035<≤-a 时,在)11(,-内0)(>x g ,0)(<'x f , 函数)(x f 在区间]11[,-上单调递减. 综上所述,函数)(x f 在区间]11[,-上单调递减时,a 的取值范围是135≤≤-a .…12分 3.(导数与切线斜率)设R a ∈,函数()e e x xf x a -=+⋅的导函数是()f x ',且()f x '是奇函数,若曲线()y f x =的一条切线的斜率是32,则切点的横坐标为( ) A. ln 22-B.ln 2-C.ln 22D. ln 2 【答案】D(2)已知函数)0()1(2131)(23>++-=a x x aa x x f ,则)(x f 在点))1(,1(f 处的切线的斜率最大时的切线方程是______________【答案】31=y (3)曲线y =13x 3+x 在点⎝ ⎛⎭⎪⎫1,43处的切线与坐标轴围成的三角形面积为 ( ) A.19 B.29 C.13 D.23 【答案】A4.(导数与图像)函数y =f (x )在定义域(-32,3)内的图像如图所示.记y =f (x )的导函数为y =f '(x ),则不等式f '(x )≤0的解集为A .[-13,1]∪[2,3)B .[-1,12]∪[43,83]C .[-32,12]∪[1,2)D .(-32,-13]∪[12,43]∪[43,3)【答案】A(2)设()f x '是函数()f x 的导函数,()y f x '=的图象如右图所示,则()y f x =的图象最有可能的是【答案】C(3)已知R 上可导函数)(x f 的图象如图所示,则不等式0)()32(2>'--x f x x 的解集为( )【答案】DA .),1()2,(+∞⋃--∞B .)2,1()2,(⋃--∞C .),2()0,1()1,(+∞⋃-⋃--∞D. ),3()1,1()1,(+∞⋃-⋃--∞5.(导数的运用)已知定义在R 上的函数)(),(x g x f 满足x a x g x f =)()(,且),()()()(x g x f x g x f '<'25)1()1()1()1(=--+g f g f ,则a 的值是( ) A .2B .21 C .3 D .31【答案】B(2)已知定义在实数集R 上的函数)(x f 满足)1(f =1,且)(x f 的导数)(x f '在R 上恒有)(x f '<)(21R x ∈,则不等式212)(22+<x x f 的解集为( ) A .),1(+∞ B .)1,(--∞ C .)1,1(- D.)1,(--∞∪),1(+∞【答案】D(3)函数)(x f 的定义域为R ,2)1(=-f ,对任意2)(,'>∈x f R x ,则42)(+>x x f 的解集为( )A.)1,1(-B.),1(+∞-C.)1,(--∞D.R 【答案】B(4)()cos(3)(0)f x x ϕϕπ=+<<,若()()f x f x '+是奇函数,则ϕ=【答案】(5))(x f 是定义在),0(+∞上的非负可导函数 ,且满足()()'≤xf x f x ,对任意的正数b a 、,若b a <,则必有 A .)()(a bf b af ≤ B .)()(b bf a af ≥ C .)()(b bf a af ≤D .)()(a bf b af ≥【答案】A大题冲关1.(研究函数的单调性、极值、最值等问题) 例1.设函数2()(1)2ln(1)f x x x =+-+.(I )求()f x 的单调区间;(II )当0<a<2时,求函数2()()1g x f x x ax =---在区间[03],上的最小值.解:(I )定义域为(1,)-+∞. 12(2)()2(1)11x x f x x x x +'=+-=++. 令()0f x '>,则2(2)01x x x +>+,所以2x <-或0x >.因为定义域为(1,)-+∞,所以0x >.令()0f x '<,则2(2)01x x x +<+,所以20x -<<.因为定义域为(1,)-+∞,所以10x -<<.所以函数的单调递增区间为(0,)+∞,单调递减区间为(1,0)-.(II )()(2)2ln(1)g x a x x =--+ (1x >-).2(2)()(2)11a x ag x a x x x--'=--=++. 因为0<a<2,所以20a ->,02a a >-.令()0g x '> 可得2ax a >-. 所以函数()g x 在(0,)2a a -上为减函数,在(,)2a a+∞-上为增函数. ①当032a a <<-,即302a <<时,在区间[03],上,()g x 在(0,)2a a -上为减函数,在(,3)2a a-上为增函数. 所以min 2()()2ln22a g x g a a a==---. ②当32a a ≥-,即322a ≤<时,()g x 在区间(03),上为减函数.所以min ()(3)632ln 4g x g a ==--. 综上所述,当302a <<时,min 2()2ln 2g x a a =--;当322a ≤<时,min ()632ln 4g x a =--.例 2.已知函数ln ()1a x bf x x x=++,曲线()y f x =在点(1,(1))f 处的切线方程为230x y +-=。
专题六函数与导数第1讲函数图象与性质高考定位1。
以基本初等函数为载体,考查函数的定义域、值域、最值、奇偶性、单调性和周期性;2.利用函数的图象研究函数性质,能用函数的图象与性质解决简单问题;3。
函数与方程思想、数形结合思想是高考的重要思想方法。
真题感悟1。
(2020·全国Ⅱ卷)设函数f(x)=ln|2x+1|-ln|2x-1|,则f(x)()A。
是偶函数,且在错误!单调递增B。
是奇函数,且在错误!单调递减C。
是偶函数,且在错误!单调递增D。
是奇函数,且在错误!单调递减解析f(x)=ln|2x+1|-ln|2x-1|的定义域为错误!.∵f(-x)=ln|-2x+1|-ln|-2x-1|=ln|2x-1|-ln|2x+1|=-f(x),∴f(x)为奇函数,故排除A,C。
又当x∈错误!时,f(x)=ln(-2x-1)-ln(1-2x)=ln 错误!=ln 错误!=ln 错误!,∵y=1+错误!在错误!上单调递减,由复合函数的单调性可得f(x)在错误!上单调递减。
故选D.答案D2。
(2019·全国Ⅰ卷)函数f(x)=错误!在[-π,π]的图象大致为()解析显然f(-x)=-f(x),x∈[-π,π],所以f(x)为奇函数,排除A;又当x=π时,f(π)=错误!〉0,排除B,C,只有D适合.答案D3.(2020·新高考山东、海南卷)若定义在R上的奇函数f(x)在(-∞,0)单调递减,且f(2)=0,则满足xf(x-1)≥0的x的取值范围是()A.[-1,1]∪[3,+∞)B.[-3,-1]∪[0,1]C.[-1,0]∪[1,+∞)D.[-1,0]∪[1,3]解析因为函数f(x)为定义在R上的奇函数,则f(0)=0。
又f(x)在(-∞,0)单调递减,且f(2)=0,画出函数f(x)的大致图象如图(1)所示,则函数f(x-1)的大致图象如图(2)所示。
当x≤0时,要满足xf(x-1)≥0,则f(x-1)≤0,得-1≤x≤0.当x>0时,要满足xf(x-1)≥0,则f(x-1)≥0,得1≤x≤3。
第二讲:函数的单调性一、定义:1.设函数)(x f y =的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量的值21,x x ,当21x x <时,都有),()(21x f x f <那么就说)(x f 在区间D 上是增函数.区间D 叫)(x f y =的单调增区间. 注意:增函数的等价式子:0)()(0)]()()[(21212121>--⇔>--x x x f x f x f x f x x ;难点突破:(1)所有函数都具有单调性吗?(2)函数单调性的定义中有三个核心①21x x <②)()(21x f x f <③ 函数)(x f 为增函数,那么①②③中任意两个作为条件,能不能推出第三个?2. 设函数)(x f y =的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量的值21,x x ,当21x x <时,都有),()(21x f x f >那么就说)(x f 在区间D 上是减函数.区间D 叫)(x f y =的单调减区间.注意:(1)减函数的等价式子:0)()(0)]()()[(21212121<--⇔<--x x x f x f x f x f x x ;(2)若函数)(x f 为增函数,且)()(,2121x f x f x x <<则. 题型一:函数单调性的判断与证明例 1.已知函数)(x f 的定义域为R ,如果对于属于定义域内某个区间I 上的任意两个不同的自变量21,x x 都有.0)()(2121>--x x x f x f 则( )A.)(x f 在这个区间上为增函数B.)(x f 在这个区间上为减函数C.)(x f 在这个区间上的增减性不变D.)(x f 在这个区间上为常函数变式训练:定义在R 上的函数)(x f 对任意120x x <<都有1)()(2121<--x x x f x f ,且函数)(x f y =的图象关于原点对称,若,2)2(=f 则不等式0)(>-x x f 的解集为___.例3.证明:函数x x x f +=3)(在R 上是增函数.变式训练:讨论)0()(>+=a xax x f 的单调性.并作出当1=a 时函数的图象.变式训练:已知上的单调性,在判断函数)1,0()()(,2)1(2xx f x g x x x f =-=+并用定义证明.题型二:函数的单调区间难点突破:(1)函数在某个区间上是单调函数,那么它在整个定义域上也是单调函数吗? (2)函数x x f 1)(=的单调减区间是),0()0,(+∞-∞ 上吗?例1.(图像法)求下列函数的单调区间(1)|2||1|)(-++=x x x f . (2)3||2)(2++-=x x x f .(3)|54|)(2+--=x x x f .例2.(直接法)求函数xxx f +-=11)(的单调区间.例3.(复合函数)(2017全国二)函数2()ln(28)f x x x =-- 的单调递增区间是( )A.)2,(--∞B. )1,(--∞C.),1(+∞D. ),4(+∞变式训练:求下列函数的单调区间.(1)312+-=x x y (2)652+-=x x y(3)22311xx y ---=题型三:抽象函数的单调性问题例1.设函数)(x f 是实数集R 上的增函数,令)2()()(x f x f x F --=. (1) 证明:)(x F 是R 上的增函数; (2) 若,0)()(21>+x F x F 求证:221>+x x .例2定义在),0(+∞上的函数)(x f 满足下面三个条件: ①对任意正数b a ,,都有)()()(ab f b f a f =+; ②当1>x 时,0)(<x f ; ③1)2(-=f . (1)求)1(f 的值;(2)使用单调性的定义证明:函数)(x f 在),0(+∞上是减函数; (3)求满足2)13(>+x f 的x 的取值集合.题型四:函数单调性的应用(1)利用函数的单调性比较大小在解决比较函数值大小的问题时,要注意将对应的自变量转化到同一个单调区间上. ①正向应用:②逆向应用:例1.()x f 在()+∞,0上单调递减,那么()12+-a a f 与⎪⎭⎫⎝⎛43f 的大小关系是__________.变式训练:已知函数),1()1()(x f x f x f -=+满足且对任意的)(1,2121x x x x ≠>,有.0)()(2121>--x x x f x f 设),3(),2(),21(f c f b f a ==-=则c b a ,,的大小关系_________.(2)利用函数的单调性解不等式例2.设)(x f 是定义在]1,1[-上的增函数,且)1()2(x f x f -<-成立,求x 的取值范围.变式训练.①设)(x f 是定义在]3,3[-上的偶函数,当30≤≤x 时,)(x f 单调递减,若)()21(m f m f <-成立,求m 的取值范围.②(2015全国二)设函数)12()(,11)1ln()(2->+-+=x f x f x x x f 则使得成立的x 的取值范围是( )A. )1,31(B. ),1()31,(+∞-∞C. )31,31(-D. ),31()31,(+∞--∞③(2018全国一)设函数()201 0x x f x x -⎧=⎨>⎩,≤,,则满足()()12f x f x +<的x 的取值范围 是( ) A .(]1-∞-,B .()0+∞,C .()10-,D .()0-∞,(3)根据函数的单调性求参数的取值范围例1.如果函数1)1(42)(2+--=x a x x f 在区间),3[+∞上是增函数,则实数a 的取值范围是( )A.(1,2)B.(0,2)C.(0,1)D.[)+∞-,2变式训练:如果函数2)1(2)(2+--=x a x x f 在区间)4,[-∞上是减函数,求实数a 的取值范围.例2.若函数⎩⎨⎧≤-+->-+-=0,)2(,0,1)12()(2x x b x x b x b x f 在R 上为增函数,则实数b 的取值范围是__________.例3.若函数||a x y -=在区间]4,(-∞上是减函数,求实数a 的取值范围.第三节:函数的奇偶性一、知识梳理1.函数的奇偶性 例1(2014全国二)偶函数)(x f y =的图象关于直线2=x 对称,3)3(=f ,则=-)1(f ___________.例2(2017全国二) 已知函数()f x 是定义在R 上的奇函数,当(,0)x ∈-∞时, 32()2f x x x =+,则(2)f =__________.例3(2012全国二)设函数1sin )1()(22+++=x xx x f 的最大值为M ,最小值为m ,则M +m =______.2. 函数的图象(1)平移变换:“上加下减,左加右减”例4(2010全国二)设偶函数)(x f 满足)0(42)(≥-=x x f x ,则=>-}0)2(|{x f x ( )A.}42|{>-<x x x 或B.}40|{><x x x 或C.}22|{>-<x x x 或D.}42|{>-<x x x 或 (2)对称变换①)()(x f y x f y x -=−−−−→−=轴对称关于; ②)()(x f y x f y y -=−−−−→−=轴对称关于; ③)()(x f y x f y --=−−−−→−=关于原点对称; ④)10(log )10(≠>=−−−−→−≠>==a a x y a a a y a x y x 且且对称关于;⑤奇函数的图象关于坐标原点对称;偶函数的额图象关于y 轴对称. (3)翻折变换★★①|)(|)(x f y x f y x x =−−−−−−−−−−−→−=轴下方图象翻折上去轴上方图象,将保留. 例5(2010全国二)已知函数⎪⎩⎪⎨⎧+-≤<=621100|,lg |)(x x x x f , 若c b a ,,均不相等,且),()()(c f b f a f ==则c b a ⋅⋅的取值范围是( )A.)10,1(B.)6,5( C )12,10( D.)24,20(例6(2011全国二)已知函数()y f x =的周期为2,当[1,1]x ∈-时2()f x x =,那 么函数()y f x =的图象与函数|lg |y x =的图象的交点共有( ) A .10个 B .9个 C .8个D .1个★★★②)||()()(x f y x f y y x f y y =−−−−−−−−−−−−−−−−−−−→−=轴左侧的图象)在轴对称的图象(去掉原于轴右边图象,并作其关保留. 例7(2011全国二)下列函数中,既是偶函数又在(0,)+∞单调递增的函数是( ) A. 3y x =B .||1y x =+C .21y x =-+D .||2x y -=例8(2010大纲)直线1=y 与曲线a x x y +-=||2有四个交点,则a 的取值范围是____________.(4)函数图象的几种对称关系★①R x x f ∈),(满足)()()(x f y x a f x a f =⇔-=+图象关于直线a x =为轴对称; 例9(2018全国二)已知)(x f 是定义域为),(+∞-∞的奇函数,满足)1()1(x f x f +=-,若)1(f =2,则=++++)50(...)3()2()1(f f f f ( )A .﹣50B .0C .2D .50②)()()(x f x b f x a f ⇔-=+图象关于2ba x +=为轴对称; ③函数)(x a f y +=与函数)(x b f y -=的图象关于直线2ab x -=对称.如:)(x f y =和)1(x f y -=的图象,关于直线21=x 为轴对称.例10(2015全国二)已知函数),的图像过点(4,1-2)(3x ax x f -=则a =________.二、真题演练1.(2014全国一)设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是( )A. )()(x g x f 是偶函数B. )(|)(|x g x f 是奇函数C. |)(|)(x g x f 是奇函数D. |)()(|x g x f 是奇函数2.(2015全国一)已知函数⎩⎨⎧>+-≤-=-1),1(log 1,22)(21x x x x f x 错误!未找到引用源。
第2节 导数与函数的单调性课标要求 1.结合实例,借助几何直观了解函数的单调性与导数的关系,能利用导数研究函数的单调性;2.对于多项式函数,能求不超过三次的多项式函数的单调区间。
【知识衍化体验】知识梳理1.函数的导数与单调性的关系函数y =f (x )在某个区间内可导:(1)若f ′(x )>0,则f (x )在这个区间内 ; (2)若f ′(x )<0,则f (x )在这个区间内 ; (3)若f ′(x )=0,则f (x )在这个区间内是 . 【微点提醒】1.在某区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件.2.可导函数f (x )在(a ,b )上是增(减)函数的充要条件是对∀x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0)且f ′(x )在(a ,b )上的任何子区间内都不恒为零.基础自测 1.函数f(x)=ln x -x 的单调递增区间是( )A .(-∞,1)B .(0,1)C .(1,+∞)D .(0,+∞)2.函数f (x )=x 3-ax 为R 上增函数的一个充分不必要条件是( ) A .a ≤0 B .a <0 C .a ≥0 D .a >03.函数y =f(x)的导函数f′(x)的图象如下图,则函数y =f(x)的图象可能是( )4.若函数f(x)=ln x +ax 2-2在区间⎝ ⎛⎭⎪⎫12,2内单调递增,则实数a 的取值范围是( )A .(-∞,-2]B .(-2,+∞)C.⎝ ⎛⎭⎪⎫-2,-18 D.⎣⎢⎡⎭⎪⎫-18,+∞ 【考点聚焦突破】考点1利用导数求函数的单调区间【例1】已知函数f(x)=4e x (x +1)-x 2-4x ,讨论f (x )的单调性.规律方法当方程f′(x)=0可解时,确定函数的定义域,解方程f′(x)=0,求出实数根,把函数f(x)的间断点即f(x)的无定义点的横坐标和实根按从小到大的顺序排列起来,把定义域分成若干个小区间,确定f′(x)在各个区间内的符号,从而确定单调区间.【训练1】函数f(x)=axx2+1(a>0)的单调递增区间是( )A.(-∞,-1) B.(-1,1)C.(1,+∞)D.(-∞,-1)∪(1,+∞)2.函数f(x)=x+2cos x(x∈(0,π))的单调递减区间为________.考点2利用导数讨论函数的单调区间【例2】 (2015江苏节选)已知函数f(x)=x3+ax2+b(a,b∈R).试讨论f(x)的单调性.规律方法1.研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论.遇二次三项式因式常考虑二次项系数、对应方程的判别式以及根的大小关系,以此来确定分界点,分情况讨论.2.划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点.3.个别导数为0的点不影响所在区间的单调性,如f x=x3,f′x=3x2≥0f′x=0在x=0时取到,f x在R上是增函数.【训练2】已知函数f(x)=e x(ax2-2x+2)(a>0),试讨论f(x)的单调性.考点3函数单调性的简单应用角度1比较大小或解不等式【例3-1】(1)已知函数f (x )=-xex +ln 2,则( )A .f ⎝ ⎛⎭⎪⎫1e =f ⎝ ⎛⎭⎪⎫12B .f ⎝ ⎛⎭⎪⎫1e <f ⎝ ⎛⎭⎪⎫12C .f ⎝ ⎛⎭⎪⎫1e >f ⎝ ⎛⎭⎪⎫12D .大小关系无法确定 (2)已知定义域为R 的函数f (x )满足f (4)=-3,且对任意的x ∈R 总有f ′(x )<3,则不等式f (x )<3x -15的解集为________.角度2 根据函数的单调性求参数【例3-2】已知函数f (x )=x 3-ax -1.(Ⅰ)若f (x )在(-1,1)上为减函数,则实数a 的取值范围为 ; (Ⅱ)若f (x )的单调递减区间为(-1,1),则实数a 的值为 ; (Ⅲ)若f (x )在(-1,1)上不单调,则实数a 的取值范围为 .【训练3】(1)若函数f (x )=x 2+ax +1x 在⎝ ⎛⎭⎪⎫12,+∞上是增函数,则a 的取值范围是________.(2)若函数f (x )=-13x 3+12x 2+2ax 在⎣⎢⎡⎭⎪⎫23,+∞上存在单调递增区间,则a 的取值范围是________.(3)定义在R 上的奇函数f (x ),其导函数为f ′(x ),当x ∈(-∞,0]时,恒有xf ′(x )<f (-x ),则满足13(2x -1)f (2x -1)<f (3)的实数x 的取值范围是________.规律方法1.利用导数比较大小或解不等式的常用技巧,利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式.2. f(x)在区间D上单调递增(减),只要f′(x)≥0(≤0)在D上恒成立即可,如果能够分离参数,则尽可能分离参数后转化为参数值与函数最值之间的关系.反思与感悟【思维升华】1.函数的导数与函数的单调性在一个区间上,f′(x)≥0(个别点取等号)⇔f(x)在此区间上为增函数.在一个区间上,f′(x)≤0(个别点取等号)⇔f(x)在此区间上为减函数.2.根据函数单调性求参数的一般思路:(1)利用集合间的包含关系处理:y=f(x)在(a,b)上单调,则区间(a,b)是相应单调区间的子集.(2)转化为不等式的恒成立问题,即“若函数单调递增,则f′(x)≥0;若函数单调递减,则f′(x)≤0”来求解.【易错防范】1.解题时要注意区分求单调性和已知单调性的问题,处理好f′(x)=0时的情况;区分极值点和导数为0的点.2.研究含参数函数的单调性时,需注意依据参数取值对不等式解集的影响进行分类讨论.第2节 导数与函数的单调性【知识衍化体验】 知识梳理1.(1)单调递增;(2)单调递减;(3)常数函数.基础自测 1.B 2.B 3.D 4.D【考点聚焦突破】【例1】解:f ′(x )=4e x (x +2)-2(x +2)=2(x +2)(2e x-1).令f ′(x )=0,得x 1=-2,x 2=ln 12.当x 变化时, f (x ), f ′(x )的变化情况如下表:x (-∞,-2)-2 ⎝ ⎛⎭⎪⎫-2,ln 12 ln 12 ⎝ ⎛⎭⎪⎫ln 12,+∞ f ′(x ) +-+f (x )极大值极小值∴y =f (x )的单调递增区间为(-∞,-2),(ln 12,+∞),单调递减区间为⎝⎛⎭⎪⎫-2,ln 12.【训练1】B函数f (x )的定义域为R ,f ′(x )=a 1-x 2x 2+12=a 1-x 1+xx 2+12.由于a >0,要使f ′(x )>0,只需(1-x )·(1+x )>0,解得x ∈(-1,1).故选B.2.⎝ ⎛⎭⎪⎫π6,5π6解析 f ′(x )=1-2sin x ,令f ′(x )<0得sin x >12,故π6<x <5π6.【例2】解:由题意, f (x )的定义域为R , f ′(x )=3x 2+2ax ,令f ′(x )=0,解得x 1=0,x 2=-2a 3当a =0时,有f ′(x )=3x 2≥0,所以函数f (x )在(-∞,+∞)上单调递增.当a >0时,令f ′(x )>0,得x ∈⎝ ⎛⎭⎪⎫-∞,- 2a 3∪(0,+∞);令f ′(x )<0,得x ∈⎝ ⎛⎭⎪⎫-2a 3,0,所以函数f (x )在⎝ ⎛⎭⎪⎫-∞,-2a 3,(0,+∞)上单调递增,在⎝ ⎛⎭⎪⎫-2a 3,0上单调递减.当a <0时,令f ′(x )>0,得x ∈(-∞,0)∪⎝ ⎛⎭⎪⎫-2a 3,+∞;令f ′(x )<0,得x ∈⎝ ⎛⎭⎪⎫0,-2a 3,所以函数f (x )在(-∞,0),⎝ ⎛⎭⎪⎫-2a 3,+∞上单调递增,在⎝ ⎛⎭⎪⎫0,-2a 3上单调递减.综上,当a=0时,f (x )在(-∞,+∞)上单调递增;当a >0时,f (x )在⎝⎛⎭⎪⎫-∞,-2a 3,(0,+∞)上单调递增,在⎝ ⎛⎭⎪⎫-2a 3,0上单调递减;当a <0时, f (x )在(-∞,0),⎝ ⎛⎭⎪⎫-2a 3,+∞上单调递增,在⎝⎛⎭⎪⎫0,-2a 3上单调递减 【训练2】解 由题意得f ′(x )=e x[ax 2+(2a -2)x ](a >0),令f ′(x )=0,解得x 1=0,x 2=2-2a a.(1)当0<a <1时,f (x )的单调递增区间为(-∞,0)和⎝ ⎛⎭⎪⎫2-2a a ,+∞,单调递减区间为⎝⎛⎭⎪⎫0,2-2a a ;(2)当a =1时,f (x )在(-∞,+∞)内单调递增;(3)当a >1时,f (x )的单调递增区间为⎝ ⎛⎭⎪⎫-∞,2-2a a 和(0,+∞),单调递减区间为⎝ ⎛⎭⎪⎫2-2a a ,0. 【例3-1】C 解析 f ′(x )=-e x--x exe x ·e x=x -1ex,当x <1时,f ′(x )<0,函数f (x )单调递减.∵1e <12<1,∴f ⎝ ⎛⎭⎪⎫1e >f ⎝ ⎛⎭⎪⎫12.故选C. (2) (4,+∞)令g (x )=f (x )-3x +15,则g ′(x )=f ′(x )-3<0,所以g (x )在R 上是减函数.又g (4)=f (4)-3×4+15=0,所以f (x )<3x -15的解集为(4,+∞).【例3-2】 解(Ⅰ)(法一)由题意,f ′(x )=3x 2-a ,由f (x )在(-1,1)上为减函数,得f ′(x )≤0在(-1,1)上恒成立,即a ≥3x 2恒成立.又因为当x ∈(-1,1)时,函数y =3x 2的值域是[0,3),所以实数a 的取值范围是[3,+∞).(法二)当a ≤0时, f ′(x )=3x 2-a ≥0,显然没有单调递减区间,不符合题意.当a >0时,令f ′(x )=3x 2-a =0,得x =±3a 3,易知当x ∈⎝ ⎛⎭⎪⎫-3a 3,3a 3时, f (x )单调递减.若f (x )在(-1,1)上为减函数,则(-1,1)应为⎝ ⎛⎭⎪⎫-3a 3,3a 3的子区间,即3a 3≥1,解得a ≥3,所以实数a 的取值范围是[3,+∞).(Ⅱ)由(Ⅰ)知f (x )的单调递减区间为( -3a 3, 3a 3),所以3a 3=1,解得a =3. (Ⅲ)由(Ⅰ)知,当a ≤0时,f (x )在R 上单调递增,不符合题意.当a >0时,由f ′(x )=0,得x =±3a 3,因为f (x )在(-1,1)上不单调,所以0<3a3<1,解得0<a <3,所以a 的取值范围是(0,3).【训练3】(1) [3,+∞)由条件知f ′(x )=2x +a -1x 2≥0在⎝ ⎛⎭⎪⎫12,+∞上恒成立,即a ≥1x 2-2x 在⎝ ⎛⎭⎪⎫12,+∞上恒成立.∵函数y =1x 2-2x 在⎝ ⎛⎭⎪⎫12,+∞上为减函数,∴y max <1⎝ ⎛⎭⎪⎫122-2×12=3,∴a ≥3.(2)⎝ ⎛⎭⎪⎫-19,+∞ 对f (x )求导,得f ′(x )=-x 2+x +2a =-⎝ ⎛⎭⎪⎫x -122+14+2a .当x ∈⎣⎢⎡⎭⎪⎫23,+∞时,f ′(x )的最大值为f ′⎝ ⎛⎭⎪⎫23=29+2a .令29+2a >0,解得a >-19.所以a 的取值范围是⎝ ⎛⎭⎪⎫-19,+∞.(3)(-1,2)∵函数f (x )是定义在R 上的奇函数,∴f (-x )=-f (x ),∴由xf ′(x )<f (-x )可得xf ′(x )+f (x )<0,即[xf (x )]′<0,∵当x ∈(-∞,0]时,恒有xf ′(x )<f (-x ),∴当x ∈(-∞,0]时,恒有[xf (x )]′<0,设F (x )=xf (x ),则函数F (x )=xf (x )在(-∞,0]上为减函数,∵F (-x )=(-x )f (-x )=(-x )(-f (x ))=xf (x )=F (x ),∴函数F (x )为R 上的偶函数,∴函数F (x )=xf (x )为[0,+∞)上的增函数,∵13(2x -1)f (2x -1)<f (3),∴(2x -1)f (2x -1)<3f (3),∴F (2x -1)<F (3),∴|2x -1|<3,解得-1<x <2.。
高考数学二轮复习考点知识与题型专题讲解第3讲导数的几何意义及函数的单调性[考情分析] 1.导数的几何意义和计算是导数应用的基础,是高考的热点,多以选择题、填空题的形式考查,难度较小.2.应用导数研究函数的单调性,是导数应用的重点内容,也是高考的常见题型,以选择题、填空题的形式考查,或为导数解答题第一问,难度中等偏上,属综合性问题.考点一导数的几何意义与计算核心提炼1.导数的几何意义(1)函数在某点的导数即曲线在该点处的切线的斜率.(2)曲线在某点的切线与曲线过某点的切线不同.(3)切点既在切线上,又在曲线上.2.复合函数的导数复合函数y=f(g(x))的导数和函数y=f(u),u=g(x)的导数间的关系为y′x=y′u·u′x.例1(1)(2022·焦作模拟)函数f(x)=(2e x-x)·cos x的图象在x=0处的切线方程为()A.x-2y+1=0 B.x-y+2=0C.x+2=0 D.2x-y+1=0答案 B解析由题意,函数f(x)=(2e x-x)·cos x,可得f′(x)=(2e x-1)·cos x-(2e x-x)·sin x,所以f′(0)=(2e0-1)·cos 0-(2e0-0)·sin 0=1,f(0)=(2e0-0)·cos 0=2,所以f(x)在x=0处的切线方程为y-2=x-0,即x-y+2=0.(2)(2022·新高考全国Ⅰ)若曲线y =(x +a )e x 有两条过坐标原点的切线,则a 的取值范围是________. 答案 (-∞,-4)∪(0,+∞)解析 因为y =(x +a )e x ,所以y ′=(x +a +1)e x .设切点为A (x 0,(x 0+a )0e x),O 为坐标原点,依题意得,切线斜率k OA =0=|x x y'=(x 0+a +1)0e x =000e x x a x (+),化简,得x 20+ax 0-a =0.因为曲线y =(x +a )e x 有两条过坐标原点的切线,所以关于x 0的方程x 20+ax 0-a =0有两个不同的根,所以Δ=a 2+4a >0,解得a <-4或a >0,所以a 的取值范围是(-∞,-4)∪(0,+∞).易错提醒 求曲线的切线方程要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点. 跟踪演练1 (1)(2022·新高考全国Ⅱ)曲线y =ln|x |过坐标原点的两条切线的方程为__________,____________.答案 y =1e xy =-1ex 解析 先求当x >0时,曲线y =ln x 过原点的切线方程,设切点为(x 0,y 0),则由y ′=1x ,得切线斜率为1x 0, 又切线的斜率为y 0x 0,所以1x 0=y 0x 0, 解得y 0=1,代入y =ln x ,得x 0=e ,所以切线斜率为1e ,切线方程为y =1ex . 同理可求得当x <0时的切线方程为y =-1ex . 综上可知,两条切线方程为y =1e x ,y =-1ex . (2)(2022·保定联考)已知函数f (x )=a ln x ,g (x )=b e x ,若直线y =kx (k >0)与函数f (x ),g (x )的图象都相切,则a +1b的最小值为( ) A .2 B .2eC .e 2D. e答案 B解析 设直线y =kx 与函数f (x ),g (x )的图象相切的切点分别为A (m ,km ),B (n ,kn ).由f ′(x )=a x ,有⎩⎪⎨⎪⎧ km =a ln m ,a m =k ,解得m =e ,a =e k .又由g ′(x )=b e x ,有⎩⎪⎨⎪⎧kn =b e n ,b e n =k , 解得n =1,b =k e, 可得a +1b =e k +e k≥2e 2=2e , 当且仅当a =e ,b =1e时取“=”.考点二 利用导数研究函数的单调性 核心提炼利用导数研究函数单调性的步骤(1)求函数y =f (x )的定义域.(2)求f (x )的导数f ′(x ).(3)求出f ′(x )的零点,划分单调区间.(4)判断f ′(x )在各个单调区间内的符号.例2(2022·哈师大附中模拟)已知函数f (x )=ax e x -(x +1)2(a ∈R ,e 为自然对数的底数).(1)若f (x )在x =0处的切线与直线y =ax 垂直,求a 的值;(2)讨论函数f (x )的单调性.解 (1)f ′(x )=(x +1)(a e x -2),则f ′(0)=a -2,由已知得(a -2)a =-1,解得a =1.(2)f ′(x )=(x +1)(a e x -2),①当a ≤0时,a e x -2<0,所以f ′(x )>0⇒x <-1,f ′(x )<0⇒x >-1,则f (x )在(-∞,-1)上单调递增,在(-1,+∞)上单调递减;②当a >0时,令a e x -2=0,得x =ln 2a, (ⅰ)当0<a <2e 时,ln 2a>-1, 所以f ′(x )>0⇒x <-1或x >ln 2a, f ′(x )<0⇒-1<x <ln 2a, 则f (x )在(-∞,-1)上单调递增,在⎝⎛⎭⎫-1,ln 2a 上单调递减,在⎝⎛⎭⎫ln 2a ,+∞上单调递增; (ⅱ)当a =2e 时,f ′(x )=2(x +1)(e x +1-1)≥0, 则f (x )在(-∞,+∞)上单调递增;(ⅲ)当a >2e 时,ln 2a<-1, 所以f ′(x )>0⇒x <ln 2a或x >-1, f ′(x )<0⇒ln 2a<x <-1, 则f (x )在⎝⎛⎭⎫-∞,ln 2a 上单调递增,在⎝⎛⎭⎫ln 2a ,-1上单调递减,在(-1,+∞)上单调递增. 综上,当a ≤0时,f (x )在(-∞,-1)上单调递增,在(-1,+∞)上单调递减;当0<a <2e 时,f (x )在(-∞,-1)上单调递增,在⎝⎛⎭⎫-1,ln 2a 上单调递减,在⎝⎛⎭⎫ln 2a ,+∞上单调递增; 当a =2e 时,f (x )在(-∞,+∞)上单调递增;当a >2e 时,f (x )在⎝⎛⎭⎫-∞,ln 2a 上单调递增,在⎝⎛⎭⎫ln 2a ,-1上单调递减,在(-1,+∞)上单调递增. 规律方法 (1)讨论函数的单调性是在函数的定义域内进行的,千万不要忽视了定义域的限制;(2)在能够通过因式分解求出不等式对应方程的根时,依据根的大小进行分类讨论;(3)在不能通过因式分解求出根的情况时,根据不等式对应方程的判别式进行分类讨论.跟踪演练2 (2022·北京模拟)已知函数f (x )=ln x -ln t x -t. (1)当t =2时,求f (x )在x =1处的切线方程;(2)求f (x )的单调区间.解 (1)∵t =2,∴f (x )=ln x -ln 2x -2, ∴f ′(x )=x -2x -ln x +ln 2(x -2)2, ∴f ′(1)=ln 2-1,又f (1)=ln 2,∴切线方程为y -ln 2=(ln 2-1)(x -1),即y =(ln 2-1)x +1.(2)f (x )=ln x -ln t x -t, ∴f (x )的定义域为(0,t )∪(t ,+∞),且t >0,f ′(x )=1-t x -ln x +ln t (x -t )2, 令φ(x )=1-t x-ln x +ln t ,x >0且x ≠t , φ′(x )=t x 2-1x =t -x x 2, ∴当x ∈(0,t )时,φ′(x )>0,当x ∈(t ,+∞)时,φ′(x )<0,∴φ(x )在(0,t )上单调递增,在(t ,+∞)上单调递减,∴φ(x )<φ(t )=0,∴f ′(x )<0,∴f (x )在(0,t ),(t ,+∞)上单调递减.即f (x )的单调递减区间为(0,t ),(t ,+∞),无单调递增区间.考点三 单调性的简单应用 核心提炼1.函数f (x )在区间D 上单调递增(或递减),可转化为f ′(x )≥0(或f ′(x )≤0)在x ∈D 上恒成立.2.函数f (x )在区间D 上存在单调递增(或递减)区间,可转化为f ′(x )>0(或f ′(x )<0)在x ∈D 上有解.例3 (1)若函数f (x )=e x (cos x -a )在区间⎝⎛⎭⎫-π2,π2上单调递减,则实数a 的取值范围是( ) A .(-2,+∞) B .(1,+∞)C .[1,+∞)D .[2,+∞)答案 D解析 f ′(x )=e x (cos x -a )+e x (-sin x )=e x (cos x -sin x -a ),∵f (x )在区间⎝⎛⎭⎫-π2,π2上单调递减,∴f ′(x )≤0在区间⎝⎛⎭⎫-π2,π2上恒成立,即cos x -sin x -a ≤0恒成立,即a ≥cos x -sin x =2cos ⎝⎛⎭⎫x +π4恒成立,∵-π2<x <π2,∴-π4<x +π4<3π4,∴-1<2cos ⎝⎛⎭⎫x +π4≤2,∴a ≥ 2.(2)(2022·新高考全国Ⅰ)设a =0.1e 0.1,b =19,c =-ln 0.9,则( )A .a <b <cB .c <b <aC .c <a <bD .a <c <b答案 C解析 设u (x )=x e x (0<x ≤0.1),v (x )=x 1-x(0<x ≤0.1), w (x )=-ln(1-x )(0<x ≤0.1).则当0<x ≤0.1时,u (x )>0,v (x )>0,w (x )>0.①设f (x )=ln[u (x )]-ln[v (x )]=ln x +x -[ln x -ln(1-x )]=x +ln(1-x )(0<x ≤0.1),则f ′(x )=1-11-x =x x -1<0在(0,0.1]上恒成立, 所以f (x )在(0,0.1]上单调递减,所以f (0.1)<f (0)=0+ln(1-0)=0,即ln[u (0.1)]-ln[v (0.1)]<0,所以ln[u (0.1)]<ln[v (0.1)].又函数y =ln x 在(0,+∞)上单调递增,所以u (0.1)<v (0.1),即0.1e 0.1<19,所以a <b . ②设g (x )=u (x )-w (x )=x e x +ln(1-x )(0<x ≤0.1),则g ′(x )=(x +1)e x -11-x=(1-x 2)e x -11-x(0<x ≤0.1). 设h (x )=(1-x 2)e x -1(0<x ≤0.1),则h ′(x )=(1-2x -x 2)e x >0在(0,0.1]上恒成立,所以h (x )在(0,0.1]上单调递增,所以h (x )>h (0)=(1-02)·e 0-1=0,即g ′(x )>0在(0,0.1]上恒成立,所以g (x )在(0,0.1]上单调递增,所以g (0.1)>g (0)=0·e 0+ln(1-0)=0,即g (0.1)=u (0.1)-w (0.1)>0,所以0.1e 0.1>-ln 0.9,即a >c .综上,c <a <b ,故选C.规律方法 利用导数比较大小或解不等式的策略利用导数比较大小或解不等式,常常要构造新函数,把比较大小或求解不等式的问题,转化为利用导数研究函数单调性问题,再由单调性比较大小或解不等式.跟踪演练3 (1)(2022·全国甲卷)已知9m =10,a =10m -11,b =8m -9,则( )A .a >0>bB .a >b >0C .b >a >0D .b >0>a答案 A解析 ∵9m =10,∴m ∈(1,2),令f (x )=x m -(x +1),x ∈(1,+∞),∴f ′(x )=mx m -1-1, ∵x >1且1<m <2,∴x m -1>1,∴f ′(x )>0, ∴f (x )在(1,+∞)上单调递增,又9m =10,∴9m -10=0,即f (9)=0,又a =f (10),b =f (8),∴f (8)<f (9)<f (10),即b <0<a .(2)已知变量x 1,x 2∈(0,m )(m >0),且x 1<x 2,若2112x x x x 恒成立,则m 的最大值为(e =2.718 28…为自然对数的底数)( )A .e B. e C.1eD .1 答案 A解析 ∵2112x x x x ⇒x 2ln x 1<x 1ln x 2,x 1,x 2∈(0,m ),m >0,∴ln x 1x 1<ln x 2x 2恒成立, 设函数f (x )=ln x x ,∵x 1<x 2,f (x 1)<f (x 2),∴f (x )在(0,m )上单调递增,又f ′(x )=1-ln xx 2,则f ′(x )>0⇒0<x <e ,即函数f (x )的单调递增区间是(0,e),则m 的最大值为e.专题强化练一、单项选择题1.(2022·张家口模拟)已知函数f (x )=1x -2x +ln x ,则函数f (x )在点(1,f (1))处的切线方程为() A .2x +y -2=0 B .2x -y -1=0C .2x +y -1=0D .2x -y +1=0答案 C解析 因为f ′(x )=-1x 2-2+1x ,所以f ′(1)=-2,又f (1)=-1,故函数f (x )在点(1,f (1))处的切线方程为y -(-1)=-2(x -1),化简得2x +y -1=0.2.已知函数f (x )=x 2+f (0)·x -f ′(0)·cos x +2,其导函数为f ′(x ),则f ′(0)等于( )A .-1B .0C .1D .2答案 C解析 因为f (x )=x 2+f (0)·x -f ′(0)·cos x +2,所以f (0)=2-f ′(0).因为f ′(x )=2x +f (0)+f ′(0)·sin x ,所以f ′(0)=f (0).故f ′(0)=f (0)=1.3.(2022·重庆检测)函数f (x )=e -x cos x (x ∈(0,π))的单调递增区间为( ) A.⎝⎛⎭⎫0,π2B.⎝⎛⎭⎫π2,π C.⎝⎛⎭⎫0,3π4 D.⎝⎛⎭⎫3π4,π 答案 D解析 f ′(x )=-e -x cos x -e -x sin x =-e -x (cos x +sin x )=-2e -x sin ⎝⎛⎭⎫x +π4, 当x ∈⎝⎛⎭⎫0,3π4时, e -x >0,sin ⎝⎛⎭⎫x +π4>0,则f ′(x )<0; 当x ∈⎝⎛⎭⎫3π4,π时,e -x >0,sin ⎝⎛⎭⎫x +π4<0,则f ′(x )>0. ∴f (x )在(0,π)上的单调递增区间为⎝⎛⎭⎫3π4,π.4.(2022·厦门模拟)已知函数f (x )=(x -1)e x -mx 在区间x ∈[1,2]上存在单调递增区间,则m 的取值范围为( )A .(0,e)B .(-∞,e)C .(0,2e 2)D .(-∞,2e 2)答案 D解析 ∵f (x )=(x -1)e x -mx ,∴f ′(x )=x e x -m ,∵f (x )在区间[1,2]上存在单调递增区间,∴存在x ∈[1,2],使得f ′(x )>0,即m <x e x ,令g (x )=x e x ,x ∈[1,2],则g ′(x )=(x +1)e x >0恒成立,∴g (x )=x e x 在[1,2]上单调递增,∴g (x )max =g (2)=2e 2,∴m <2e 2,故实数m 的取值范围为(-∞,2e 2).5.(2021·新高考全国Ⅰ)若过点(a ,b )可以作曲线y =e x 的两条切线,则( )A .e b <aB .e a <bC .0<a <e bD .0<b <e a答案 D解析 (用图估算法)过点(a ,b )可以作曲线y =e x 的两条切线,则点(a ,b )在曲线y =e x 的下方且在x 轴的上方,得0<b <e a .6.已知a =e 0.3,b =ln 1.52+1,c = 1.5,则它们的大小关系正确的是( ) A .a >b >c B .a >c >bC .b >a >cD .c >b >a答案 B解析 由b =ln 1.52+1=ln 1.5+1,令f (x )=ln x +1-x ,则f ′(x )=1x -1,当x ∈(0,1)时,f ′(x )>0;当x ∈(1,+∞)时,f ′(x )<0;所以f (x )=ln x +1-x 在(0,1)上单调递增,在(1,+∞)上单调递减,且f (1)=0,则f ( 1.5)<0,因此ln 1.5+1- 1.5<0,所以b <c ,又因为c = 1.5<1.3,所以ln 1.5+1< 1.5<1.3,得ln 1.5<0.3=ln e 0.3, 故 1.5<e 0.3,所以a >c .综上,a >c >b .二、多项选择题7.若曲线f (x )=ax 2-x +ln x 存在垂直于y 轴的切线,则a 的取值可以是() A .-12 B .0 C.18 D.14答案 ABC解析 依题意,f (x )存在垂直于y 轴的切线,即存在切线斜率k =0的切线,又k =f ′(x )=2ax +1x -1,x >0,∴2ax +1x -1=0有正根,即-2a =⎝⎛⎭⎫1x 2-1x 有正根,即函数y =-2a 与函数y =⎝⎛⎭⎫1x 2-1x ,x >0的图象有交点,令1x =t >0,则g (t )=t 2-t =⎝⎛⎭⎫t -122-14,∴g (t )≥g ⎝⎛⎭⎫12=-14,∴-2a ≥-14,即a ≤18.8.已知函数f (x )=ln x ,x 1>x 2>e ,则下列结论正确的是() A .(x 1-x 2)[f (x 1)-f (x 2)]<0B.12[f (x 1)+f (x 2)]<f ⎝⎛⎭⎫x 1+x22C .x 1f (x 2)-x 2f (x 1)>0D .e[f (x 1)-f (x 2)]<x 1-x 2答案 BCD解析 ∵f (x )=ln x 是增函数,∴(x 1-x 2)[f (x 1)-f (x 2)]>0,A 错误;12[f (x 1)+f (x 2)]=12(ln x 1+ln x 2)=12ln(x 1x 2)=ln x 1x 2,f ⎝⎛⎭⎫x 1+x 22=ln x 1+x 22,由x 1>x 2>e ,得x 1+x 22>x 1x 2,又f (x )=ln x 单调递增,∴12[f (x 1)+f (x 2)]<f ⎝⎛⎭⎫x1+x 22,B 正确;令h (x )=f (x )x ,则h ′(x )=1-ln x x 2, 当x >e 时,h ′(x )<0,h (x )单调递减,∴h (x 1)<h (x 2),即 f (x 1)x 1< f (x 2)x 2⇒x 1f (x 2)-x 2f (x 1)>0, C 正确;令g (x )=e f (x )-x ,则g ′(x )=e x-1, 当x >e 时,g ′(x )<0,g (x )单调递减,∴g (x 1)<g (x 2),即e f (x 1)-x 1<e f (x 2)-x 2⇒e[f (x 1)-f (x 2)]<x 1-x 2,D 正确.三、填空题9.(2022·保定模拟)若函数f (x )=ln x -2x+m 在(1,f (1))处的切线过点(0,2),则实数m =______. 答案 6解析 由题意,函数f (x )=ln x -2x +m , 可得f ′(x )=1x +321x , 可得f ′(1)=2,且f (1)=m -2,所以m -2-21-0=2,解得m =6. 10.已知函数f (x )=x 2-cos x ,则不等式f (2x -1)<f (x +1)的解集为________.答案 (0,2)解析 f (x )的定义域为R ,f (-x )=(-x )2-cos(-x )=x 2-cos x =f (x ),∴f (x )为偶函数.当x >0时,f ′(x )=2x +sin x ,令g (x )=2x +sin x ,则g ′(x )=2+cos x >0,∴f ′(x )在(0,+∞)上单调递增,∴f ′(x )>f ′(0)=0,∴f (x )在(0,+∞)上单调递增,又f (x )为偶函数,∴原不等式化为|2x -1|<|x +1|,解得0<x <2,∴原不等式的解集为(0,2).11.(2022·伊春模拟)过点P (1,2)作曲线C :y =4x的两条切线,切点分别为A ,B ,则直线AB 的方程为________.答案 2x +y -8=0解析 设A (x 1,y 1),B (x 2,y 2),y ′=-4x 2, 所以曲线C 在A 点处的切线方程为y -y 1=-4x 21(x -x 1), 将P (1,2)代入得2-y 1=-4x 21(1-x 1), 因为y 1=4x 1,化简得2x 1+y 1-8=0, 同理可得2x 2+y 2-8=0,所以直线AB 的方程为2x +y -8=0.12.已知函数f (x )=12x 2-ax +ln x ,对于任意不同的x 1,x 2∈(0,+∞),有f (x 1)-f (x 2)x 1-x 2>3,则实数a 的取值范围是________.答案a ≤-1解析 对于任意不同的x 1,x 2∈(0,+∞),有 f (x 1)-f (x 2)x 1-x 2>3. 不妨设x 1<x 2,则f (x 1)-f (x 2)<3(x 1-x 2),即f (x 1)-3x 1<f (x 2)-3x 2,设F (x )=f (x )-3x ,则F (x 1)<F (x 2),又x 1<x 2,所以F (x )单调递增,F ′(x )≥0恒成立.F (x )=f (x )-3x =12x 2-(a +3)x +ln x . 所以F ′(x )=x -(3+a )+1x =x 2-(3+a )x +1x, 令g (x )=x 2-(3+a )x +1,要使F ′(x )≥0在(0,+∞)上恒成立,只需g (x )=x 2-(3+a )x +1≥0恒成立,即3+a ≤x +1x 恒成立,x +1x ≥2x ·1x=2, 当且仅当x =1x,即x =1时等号成立, 所以3+a ≤2,即a ≤-1.四、解答题13.(2022·滁州模拟)已知函数f (x )=x 2-2x +a ln x (a ∈R ).(1)若函数在x =1处的切线与直线x -4y -2=0垂直,求实数a 的值;(2)当a >0时,讨论函数的单调性.解 函数定义域为(0,+∞),求导得f ′(x )=2x -2+a x. (1)由已知得f ′(1)=2×1-2+a =-4,得a =-4.(2)f ′(x )=2x -2+a x =2x 2-2x +a x(x >0), 对于方程2x 2-2x +a =0,记Δ=4-8a .①当Δ≤0,即a ≥12时,f ′(x )≥0,函数f (x )在(0,+∞)上单调递增; ②当Δ>0,即0<a <12时,令f ′(x )=0, 解得x 1=1-1-2a 2,x 2=1+1-2a 2. 又a >0,故x 2>x 1>0.当x ∈(0,x 1)∪(x 2,+∞)时,f ′(x )>0,函数f (x )单调递增,当x ∈(x 1,x 2)时,f ′(x )<0,函数f (x )单调递减.综上所述,当a ≥12时,函数f (x )在(0,+∞)上单调递增; 当0<a <12时,函数f (x )在⎝ ⎛⎭⎪⎫0,1-1-2a 2, ⎝ ⎛⎭⎪⎫1+1-2a 2,+∞上单调递增, 在⎝ ⎛⎭⎪⎫1-1-2a 2,1+1-2a 2上单调递减. 14.(2022·湖北八市联考)设函数f (x )=e x -(ax -1)ln(ax -1)+(a +1)x .(e =2.718 28…为自然对数的底数)(1)当a =1时,求F (x )=e x -f (x )的单调区间;(2)若f (x )在区间⎣⎡⎦⎤1e ,1上单调递增,求实数a 的取值范围.解 (1)当a =1时,F (x )=e x -f (x )=(x -1)ln(x -1)-2x ,定义域为(1,+∞),F ′(x )=ln(x -1)-1,令F ′(x )>0,解得x >e +1,令F ′(x )<0,解得1<x <e +1,故F (x )的单调递增区间为(e +1,+∞),单调递减区间为(1,e +1).(2)f (x )在区间⎣⎡⎦⎤1e ,1上有意义,故ax -1>0在⎣⎡⎦⎤1e ,1上恒成立,可得a >e ,依题意可得f ′(x )=e x -a ln(ax -1)+1≥0在⎣⎡⎦⎤1e ,1上恒成立,设g (x )=f ′(x )=e x -a ln(ax -1)+1,g ′(x )=e x-a 2ax -1, 易知g ′(x )在⎣⎡⎦⎤1e ,1上单调递增,故g ′(x )≤g ′(1)=e -a 2a -1<0, 故g (x )=f ′(x )=e x -a ln(ax -1)+1在⎣⎡⎦⎤1e ,1上单调递减,最小值为g (1),故只需g (1)=e -a ln(a -1)+1≥0,设h (a )=e -a ln(a -1)+1,其中a >e ,由h ′(a )=-ln(a -1)-a a -1<0可得, h (a )=e -a ln(a -1)+1在(e ,+∞)上单调递减,又h (e +1)=0,故a ≤e +1.综上所述,a 的取值范围为(e ,e +1].。
高考解答题的审题与答题示范(六)
函数与导数类解答题
[思维流程]——函数与导数问题重在“转”与“分”
[审题方法]—-审结论
问题解决的最终目标就是求出结论或说明已给结论正确或错误.因而解决问题时的思维过程大多都是围绕着结论这个目标进行定向思考的.审视结论,就是在结论的启发下,探索已知条件和结论之间的内在联系和转化规律.善于从结论中捕捉解题信息,善于对结论进行转化,使之逐步靠近条件,从而发现和确定解题方向.
典例(本题满分14分)已知函数f(x)=e x cos x-x. (1)求曲线y=f(x)在点(0,f(0))处的切线方程;(2)求函数f(x)在区间错误!上的最大值和最小值.。
完整版)函数的单调性知识点与题型归纳备考知考情:在高考中,理解函数的单调性、最大值、最小值及其几何意义以及运用基本初等函数的图象分析函数的性质是非常重要的。
函数的单调性是热点,常见问题有求单调区间、判断函数的单调性、求参数的取值、利用函数单调性比较数的大小以及解不等式等。
客观题主要考查函数的单调性,最值的确定与简单应用。
题型多以选择题、填空题的形式出现,若与导数交汇命题,则以解答题的形式出现。
一、知识梳理在研究函数单调性之前,必须先求函数的定义域。
函数的单调区间是定义域的子集,单调区间不能并。
知识点一:函数的单调性单调函数的定义:若函数f(x)在区间D上是增函数或减函数,则称函数f(x)在这一区间上具有(严格的)单调性,区间D 叫做f(x)的单调区间。
注意:1.定义中x1,x2具有任意性,不能是规定的特定值。
2.函数的单调区间必须是定义域的子集。
3.定义有两种变式。
问题探究:1.关于函数单调性的定义应注意哪些问题?1)定义中x1,x2具有任意性,不能是规定的特定值。
2)函数的单调区间必须是定义域的子集。
3)定义有两种变式。
2.单调区间的表示注意哪些问题?单调区间只能用区间表示,不能用集合或不等式表示。
如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结。
知识点二:单调性的证明方法:定义法及导数法高频考点例1:规律方法1) 定义法:利用定义证明函数单调性的一般步骤是:①任取x1、x2∈D,且x1<x2;②作差f(x1)-f(x2),并适当变形(如“分解因式”、配方成同号项的和等);③依据差式的符号确定其增减性。
2) 导数法:x+1x+1a>0)由定义可知。
f(x1f(x2即f(x)在(-1,+∞)上为增函数.法二:导数法f′(x)=a(x+1)-axx+1)2ax+1)2a>0,x∈(-1,+∞))即f(x)在(-1,+∞)上为增函数.例2.(2)《名师一号》P16高频考点例1(2)判断函数f(x)=x2-2x+3在R上的单调性,并证明.法一:导数法f′(x)=2x-22(x-1)当x<1时,f′(x)<0,即f(x)在(-∞,1)上为减函数;当x>1时,f′(x)>0,即f(x)在(1,+∞)上为增函数.综上可知,f(x)在R上单调性不同.法二:二次函数法对于任意实数x,有f(x)=(x-1)2+2因为平方项非负,所以f(x)的最小值为2,即f(x)≥2;又因为当x=1时,f(x)=2,所以f(x)的最小值为2,即f(x)≥2;又因为当x=1时,f(x)=2,所以f(x)在(-∞,1)上为减函数,在(1,+∞)上为增函数.综上可知,f(x)在R上单调性不同.例3.(1)《名师一号》P16高频考点例1(3)设f(x)=exax-b,其中a,b为常数,证明:当a2<4时,f(x)在R上为凸函数;当a2>4时,f(x)在R上为下凸函数;当a2=4时,f(x)在R上为抛物线.证明:f′(x)=exaf′′(x)=ex当a20,即f(x)在R上为凸函数;当a2>4时,f′′(x)<0,即f(x)在R上为下凸函数;当a2=4时,f′′(x)=0,即f(x)为抛物线.因此,当a2<4时,f(x)在R上为凸函数;当a2>4时,f(x)在R上为下凸函数;当a2=4时,f(x)在R上为抛物线.2.1、解析:根据题意,我们可以列出不等式a-2<0,解得a≤2.代入原式得到实数a的取值范围为(-∞。
导数在研究函数中的应用考试要求 1.了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求函数的单调区间(其中多项式函数不超过三次);2.了解函数在某点取得极值的必要条件和充分条件;会用导数求函数的极大值、极小值(其中多项式函数不超过三次);会求闭区间上函数的最大值、最小值(其中多项式函数不超过三次);3.利用导数研究函数的单调性、极(最)值,并会解决与之有关的方程(不等式)问题;4.会利用导数解决某些简单的实际问题.知识梳理1.函数的单调性与导数的关系函数y=f(x)在某个区间内可导,则:(1)若f′(x)>0,则f(x)在这个区间内单调递增;(2)若f′(x)<0,则f(x)在这个区间内单调递减;(3)若f′(x)=0,则f(x)在这个区间内是常数函数.2.函数的极值与导数f′(x0)=0条件x0附近的左侧f′(x)>0,右侧f′(x)<0x0附近的左侧f′(x)<0,右侧f′(x)>0 图象形如山峰形如山谷极值f(x0)为极大值f(x0)为极小值极值点x0为极大值点x0为极小值点(1)函数f(x)在[a,b]上有最值的条件如果在区间[a,b]上函数y=f(x)的图象是一条连续不断的曲线,那么它必有最大值和最小值.(2)求y=f(x)在[a,b]上的最大(小)值的步骤①求函数y=f(x)在(a,b)内的极值;②将函数y=f(x)的各极值与端点处的函数值f(a),f(b)比较,其中最大的一个是最大值,最小的一个是最小值.[常用结论与微点提醒]1.若函数f(x)在区间(a,b)上递增,则f′(x)≥0,所以“f′(x)>0在(a,b)上成立”是“f(x)在(a,b)上单调递增”的充分不必要条件.2.对于可导函数f(x),“f′(x0)=0”是“函数f(x)在x=x0处有极值”的必要不充分条件.3.求最值时,应注意极值点与所给区间的关系,关系不确定时,需要分类讨论,不可想当然认为极值就是最值.4.函数最值是“整体”概念,而函数极值是“局部”概念,极大值与极小值之间没有必然的大小关系.诊断自测1.判断下列结论正误(在括号内打“√”或“×”)(1)若函数f(x)在(a,b)内单调递增,那么一定有f′(x)>0.()(2)如果函数f(x)在某个区间内恒有f′(x)=0,则f(x)在此区间内没有单调性.()(3)函数的极大值一定大于其极小值.()(4)对可导函数f(x),若f′(x0)=0,则x0为极值点.()(5)函数的最大值不一定是极大值,函数的最小值也不一定是极小值.()解析(1)f(x)在(a,b)内单调递增,则有f′(x)≥0.(3)函数的极大值也可能小于极小值.(4)x0为f(x)的极值点的充要条件是f′(x0)=0,且x0两侧导函数异号.答案(1)×(2)√(3)×(4)×(5)√2.(老教材选修1-1P94探究改编)如图是f(x)的导函数f′(x)的图象,则f(x)的极小值点的个数为()A.1B.2C.3D.4解析由题意知在x=-1处f′(-1)=0,且其两侧导数符号为左负右正.答案 A3.(老教材选修1-1P93练习T1改编)函数f(x)=x2-2ln x的单调递减区间是()A.(0,1]B.[1,+∞)C.(-∞,-1]D.[-1,0)∪(0,1]解析由题意知f′(x)=2x-2x=2x2-2x(x>0),由f′(x)≤0,得0<x≤1.答案 A4.(2017·浙江卷)函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )解析 设导函数y =f ′(x )与x 轴交点的横坐标从左往右依次为x 1,x 2,x 3,由导函数y =f ′(x )的图象易得当x ∈(-∞,x 1)∪(x 2,x 3)时,f ′(x )<0;当x ∈(x 1,x 2)∪(x 3,+∞)时,f ′(x )>0(其中x 1<0<x 2<x 3),所以函数f (x )在(-∞,x 1),(x 2,x 3)上单调递减,在(x 1,x 2),(x 3,+∞)上单调递增,观察各选项,只有D 选项符合. 答案 D5.(2020·深圳调研)设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是( ) A.(1,2] B.[4,+∞) C.(-∞,2]D.(0,3]解析 易知f (x )的定义域为(0,+∞),且f ′(x )=x -9x .又x >0,由f ′(x )=x -9x ≤0,得0<x ≤3.因为函数f (x )在区间[a -1,a +1]上单调递减,所以⎩⎪⎨⎪⎧a -1>0,a +1≤3,解得1<a ≤2.答案 A6.(2020·成都七中月考)若函数f (x )=13x 3-4x +m 在[0,3]上的最大值为4,m =________.解析 f ′(x )=x 2-4,x ∈[0,3],当x ∈[0,2)时,f ′(x )<0,当x ∈(2,3]时,f ′(x )>0,所以f (x )在[0,2)上是减函数,在(2,3]上是增函数.又f (0)=m ,f (3)=-3+m . 所以在[0,3]上,f (x )max =f (0)=4,所以m =4. 答案 4第一课时 导数与函数的单调性考点一 讨论函数的单调性【例1】 (2017·全国Ⅰ卷改编)已知函数f (x )=e x (e x -a )-a 2x ,其中参数a ≤0. (1)讨论f (x )的单调性; (2)若f (x )≥0,求a 的取值范围.解 (1)函数f (x )的定义域为(-∞,+∞),且a ≤0. f ′(x )=2e 2x -a e x -a 2=(2e x +a )(e x -a ).①若a =0,则f (x )=e 2x ,在(-∞,+∞)上单调递增. ②若a <0,则由f ′(x )=0,得x =ln ⎝⎛⎭⎫-a2. 当x ∈⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-a 2时,f ′(x )<0; 当x ∈⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2,+∞时,f ′(x )>0. 故f (x )在⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-a 2上单调递减, 在区间⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2,+∞上单调递增. (2)①当a =0时,f (x )=e 2x ≥0恒成立.②若a <0,则由(1)得,当x =ln ⎝⎛⎭⎫-a 2时,f (x )取得最小值,最小值为f ⎝⎛⎭⎫ln ⎝⎛⎭⎫-a 2=a 2⎣⎡⎦⎤34-ln ⎝⎛⎭⎫-a 2, 故当且仅当a 2⎣⎡⎦⎤34-ln ⎝⎛⎭⎫-a 2≥0, 即0>a ≥-2e 34时,f (x )≥0. 综上,a 的取值范围是[-2e 34,0].规律方法 1.(1)研究含参数的函数的单调性,要依据参数对不等式解集的影响进行分类讨论. (2)划分函数的单调区间时,要在函数定义域内讨论,还要确定导数为0的点和函数的间断点. 2.个别导数为0的点不影响所在区间的单调性,如f (x )=x 3,f ′(x )=3x 2≥0(f ′(x )=0在x =0时取到),f (x )在R 上是增函数.【训练1】 已知函数f (x )=ax +ln x (a ∈R ). (1)若a =2,求曲线y =f (x )在x =1处的切线方程; (2)求f (x )的单调区间.解 (1)当a =2时,由已知得f ′(x )=2+1x(x >0),f ′(1)=2+1=3,且f (1)=2,所以切线斜率k=3.所以切线方程为y -2=3(x -1),即3x -y -1=0. 故曲线y =f (x )在x =1处的切线方程为3x -y -1=0. (2)由已知得f ′(x )=a +1x =ax +1x(x >0),①当a ≥0时,由于x >0,故ax +1>0,f ′(x )>0, 所以f (x )的单调递增区间(0,+∞). ②当a <0时,令f ′(x )=0,得x =-1a.在区间⎝⎛⎭⎫0,-1a 上,f ′(x )>0,在区间⎝⎛⎭⎫-1a ,+∞上,f ′(x )<0, 所以函数f (x )的单调递增区间为⎝⎛⎭⎫0,-1a ,单调递减区间为⎝⎛⎭⎫-1a ,+∞. 考点二 根据函数单调性求参数典例迁移【例2】 (经典母题)已知函数f (x )=ln x ,g (x )=12ax 2+2x .(1)若函数h (x )=f (x )-g (x )存在单调递减区间,求实数a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求实数a 的取值范围. 解 h (x )=ln x -12ax 2-2x ,x >0.∴h ′(x )=1x-ax -2.(1)若函数h (x )在(0,+∞)上存在单调减区间, 则当x >0时,1x -ax -2<0有解,即a >1x 2-2x 有解.设G (x )=1x 2-2x ,所以只要a >G (x )min .又G (x )=⎝⎛⎭⎫1x -12-1,所以G (x )min =-1. 所以a >-1.即实数a 的取值范围是(-1,+∞). (2)由h (x )在[1,4]上单调递减,∴当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立,则a ≥1x 2-2x 恒成立,设G (x )=1x 2-2x ,所以a ≥G (x )max .又G (x )=⎝⎛⎭⎫1x -12-1,因为x ∈[1,4],所以1x ∈⎣⎡⎦⎤14,1, 所以G (x )max =G ⎝⎛⎭⎫14=-716(此时x =4),所以a ≥-716.又当a =-716时,h ′(x )=1x +716x -2=(7x -4)(x -4)16x ,∵x ∈[1,4],∴h ′(x )=(7x -4)(x -4)16x≤0,当且仅当x =4时等号成立. ∴h (x )在[1,4]上为减函数.故实数a 的取值范围是⎣⎡⎭⎫-716,+∞. 【迁移1】 本例(2)中,若函数h (x )=f (x )-g (x )在[1,4]上单调递增,求a 的取值范围. 解 因为h (x )在[1,4]上单调递增, 所以当x ∈[1,4]时,h ′(x )≥0恒成立, 所以当x ∈[1,4]时,a ≤1x 2-2x 恒成立,又当x ∈[1,4]时,⎝⎛⎭⎫1x 2-2x min=-1(此时x =1),所以a ≤-1,即a 的取值范围是(-∞,-1].【迁移2】 本例(2)中,若函数h (x )在区间[1,4]上不单调,求实数a 的取值范围. 解 ∵h (x )在区间[1,4]上不单调, ∴h ′(x )=0在开区间(1,4)上有解. 则a =1x 2-2x =⎝⎛⎭⎫1x -12-1在(1,4)上有解.令m (x )=⎝⎛⎭⎫1x -12-1,x ∈(1,4),易知m (x )在(1,4)上是增函数,∴-1<m (x )<-716,因此实数a 的取值范围是⎝⎛⎭⎫-1,-716. 规律方法 1.(1)已知函数的单调性,求参数的取值范围,应用条件f ′(x )≥0(或f ′(x )≤0),x ∈(a ,b )恒成立,解出参数的取值范围(一般可用不等式恒成立的理论求解),应注意参数的取值是f ′(x )不恒等于0的参数的范围.(2)如果能分离参数,则尽可能分离参数后转化为参数值与函数最值之间的关系.2.若函数y =f (x )在区间(a ,b )上不单调,则转化为f ′(x )=0在(a ,b )上有解. 【训练2】 (2020·赣州联考)已知函数f (x )=ln x ,g (x )=12ax +b .(1)若f (x )与g (x )的图象在x =1处相切,求g (x );(2)若φ(x )=m (x -1)x +1-f (x )在[1,+∞)上是减函数,求实数m 的取值范围.解 (1)由已知得f ′(x )=1x ,所以f ′(1)=1=12a ,所以a =2.又因为g (1)=12a +b =f (1)=0,所以b =-1.所以g (x )=x -1.(2)因为φ(x )=m (x -1)x +1-f (x )=m (x -1)x +1-ln x 在[1,+∞)上是减函数.所以φ′(x )=-x 2+(2m -2)x -1x (x +1)2≤0在[1,+∞)上恒成立,即x 2-(2m -2)x +1≥0在[1,+∞)上恒成立, 则2m -2≤x +1x ,x ∈[1,+∞),因为x +1x ≥2,当且仅当x =1时取等号,所以2m -2≤2,即m ≤2. 故实数m 的取值范围是(-∞,2]. 考点三 函数单调性的简单应用 多维探究角度1 比较大小【例3-1】 (1)已知函数y =f (x )对于任意的x ∈⎝⎛⎭⎫0,π2满足f ′(x )cos x +f (x )sin x =1+ln x ,其中f ′(x )是函数f (x )的导函数,则下列不等式成立的是( ) A.2f ⎝⎛⎭⎫π3<f ⎝⎛⎭⎫π4 B.2f ⎝⎛⎭⎫π3>f ⎝⎛⎭⎫π4 C.2f ⎝⎛⎭⎫π6>3f ⎝⎛⎭⎫π4 D.2f ⎝⎛⎭⎫π3>f ⎝⎛⎭⎫π6(2)(2019·东北三省四校联考)设x ∈R ,函数y =f (x )的导数存在,若f (x )+f ′(x )>0恒成立,且a >0,则下列结论正确的是( ) A.f (a )<f (0) B.f (a )>f (0) C.e a f (a )<f (0)D.e a f (a )>f (0)解析 (1)令g (x )=f (x )cos x ,则g ′(x )=f ′(x )cos x -f (x )(-sin x )cos 2x =1+ln x cos 2x.由⎩⎪⎨⎪⎧0<x <π2,g ′(x )>0,解得1e <x <π2;由⎩⎪⎨⎪⎧0<x <π2,g ′(x )<0,解得0<x <1e.所以函数g (x )在⎝⎛⎭⎫0,1e 上单调递减,在⎝⎛⎭⎫1e ,π2上单调递增,又π3>π4,所以g ⎝⎛⎭⎫π3>g ⎝⎛⎭⎫π4,所以f ⎝⎛⎭⎫π3cos π3>f ⎝⎛⎭⎫π4cosπ4,即2f ⎝⎛⎭⎫π3>f ⎝⎛⎭⎫π4. (2)设g (x )=e x f (x ),则g ′(x )=e x [f (x )+f ′(x )]>0,∴g (x )在R 上单调递增, 由a >0,得g (a )>g (0),即e a f (a )>f (0). 答案 (1)B (2)D角度2 解不等式【例3-2】 (2020·河南名校联盟调研)已知定义在(0,+∞)上的函数f (x )满足xf ′(x )-f (x )<0,其中f ′(x )是函数f (x )的导函数.若2f (m -2 019)>(m -2 019)f (2),则实数m 的取值范围为( ) A.(0,2 019) B.(2 019,+∞) C.(2 021,+∞)D.(2 019,2 021)解析 令h (x )=f (x )x ,x ∈(0,+∞),则h ′(x )=xf ′(x )-f (x )x 2.∵xf ′(x )-f (x )<0,∴h ′(x )<0,∴函数h (x )在(0,+∞)上单调递减, ∵2f (m -2 019)>(m -2 019)f (2),m -2 019>0, ∴f (m -2 019)m -2 019>f (2)2,即h (m -2 019)>h (2).∴m -2 019<2且m -2 019>0,解得2 019<m <2 021. ∴实数m 的取值范围为(2 019,2 021). 答案 D规律方法 1.利用导数比较大小,其关键在于利用题目条件构造辅助函数,把比较大小的问题转化为先利用导数研究函数的单调性,进而根据单调性比较大小.2.与抽象函数有关的不等式,要充分挖掘条件关系,恰当构造函数;题目中若存在f (x )与f ′(x )的不等关系时,常构造含f (x )与另一函数的积(或商)的函数,与题设形成解题链条,利用导数研究新函数的单调性,从而求解不等式.【训练3】 (1)(角度1)函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝⎛⎭⎫12,c =f (3),则( ) A.a <b <c B.c <b <a C.c <a <bD.b <c <a(2)(角度2)已知函数f ′(x )是函数f (x )的导函数,f (1)=1e ,对任意实数都有f (x )-f ′(x )>0,设F (x )=f (x )e x ,则不等式F (x )<1e 2的解集为( ) A.(-∞,1) B.(1,+∞) C.(1,e)D.(e ,+∞)解析 (1)由题意得,当x <1时,f ′(x )>0,f (x )在(-∞,1)上为增函数. 又f (3)=f (-1),且-1<0<12<1,因此有f (-1)<f (0)<f ⎝⎛⎭⎫12, 则有f (3)<f (0)<f ⎝⎛⎭⎫12,即c <a <b .(2)F ′(x )=f ′(x )e x -f (x )e x (e x )2=f ′(x )-f (x )e x ,又f (x )-f ′(x )>0,所以F ′(x )<0,即F (x )在定义域上单调递减, 由F (x )<1e 2=F (1),所以x >1,所以不等式F (x )<1e 2的解集为(1,+∞).答案 (1)C (2)BA 级 基础巩固一、选择题1.函数y =f (x )的图象如图所示,则y =f ′(x )的图象可能是( )解析 由函数f (x )的图象可知,f (x )在(-∞,0)上单调递增,f (x )在(0,+∞)上单调递减,所以在(-∞,0)上,f ′(x )>0;在(0,+∞)上,f ′(x )<0,选项D 满足. 答案 D2.(2020·石家庄检测)已知a 为实数,f (x )=ax 3+3x +2,若f ′(-1)=-3,则函数f (x )的单调递增区间为( ) A.(-2,2) B.⎝⎛⎭⎫-22,22 C.(0,2)D.⎝⎛⎭⎫-2,22 解析 f (x )=ax 3+3x +2,则f ′(x )=3ax 2+3, 又f ′(-1)=3a +3=-3,解得a =-2, ∴f ′(x )=-6x 2+3,由f ′(x )>0,解得-22<x <22. 故f (x )的单调递增区间为⎝⎛⎭⎫-22,22. 答案 B3.(2019·广州检测)定义在R 上的函数f (x )=-x 3+m 与函数g (x )=f (x )-kx 在[-1,1]上具有相同的单调性,则k 的取值范围是( ) A.(-∞,0]B.[0,+∞)C.(-3,+∞)D.(-∞,-3]解析 因为f ′(x )=-3x 2≤0,所以y =f (x )为减函数,即g (x )在[-1,1]上也为减函数.则g ′(x )=-3x 2-k ≤0,即k ≥-3x 2在[-1,1]上恒成立,所以k ≥0. 答案 B4.已知函数f (x )=x sin x ,x ∈R ,则f ⎝⎛⎭⎫π5,f (1),f ⎝⎛⎭⎫-π3的大小关系为( ) A.f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5 B.f (1)>f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5 C.f ⎝⎛⎭⎫π5>f (1)>f ⎝⎛⎭⎫-π3 D.f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5>f (1) 解析 因为f (x )=x sin x ,所以f (-x )=(-x )·sin(-x )=x sin x =f (x ), 所以函数f (x )是偶函数,所以f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3. 又当x ∈⎝⎛⎭⎫0,π2时,f ′(x )=sin x +x cos x >0, 所以函数f (x )在⎝⎛⎭⎫0,π2上是增函数, 所以f ⎝⎛⎭⎫π5<f (1)<f ⎝⎛⎭⎫π3,即f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5. 答案 A5.已知函数f (x )=13x 3-4x +2e x -2e -x ,其中e 为自然对数的底数,若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是( ) A.(-∞,-1] B.⎣⎡⎭⎫12,+∞ C.⎝⎛⎭⎫-1,12 D.⎣⎡⎦⎤-1,12 解析 f ′(x )=x 2-4+2e x +2e -x ≥x 2-4+24e x ·e -x =x 2≥0,∴f (x )在R 上是增函数. 又f (-x )=-13x 3+4x +2e -x -2e x =-f (x ),知f (x )为奇函数.故f (a -1)+f (2a 2)≤0⇔f (a -1)≤f (-2a 2), ∴a -1≤-2a 2,解之得-1≤a ≤12.答案 D 二、填空题6.已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间为________. 解析 f ′(x )=sin x +x cos x -sin x =x cos x .令f ′(x )=x cos x >0,则其在区间(-π,π)上的解集为⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2,即f (x )的单调递增区间为⎝⎛⎭⎫-π,-π2,⎝⎛⎭⎫0,π2.答案 ⎝⎛⎭⎫-π,-π2,⎝⎛⎭⎫0,π2 7.若f (x )=x 2-a ln x 在(1,+∞)上单调递增,则实数a 的取值范围为________.解析 由f (x )=x 2-a ln x ,得f ′(x )=2x -a x, ∵f (x )在(1,+∞)上单调递增,∴2x -a x≥0在(1,+∞)上恒成立,即a ≤2x 2在(1,+∞)上恒成立,∵当x ∈(1,+∞)时,2x 2>2,∴a ≤2.答案 (-∞,2]8.(2020·西安调研)设f (x )是定义在R 上的奇函数,f (2)=0,当x >0时,有xf ′(x )-f (x )x 2<0恒成立,则不等式x 2f (x )>0的解集是________________.解析 ∵当x >0时,⎣⎡⎦⎤f (x )x ′=x ·f ′(x )-f (x )x 2<0, ∴φ(x )=f (x )x在(0,+∞)上为减函数, 又f (2)=0,即φ(2)=0,∴在(0,+∞)上,当且仅当0<x <2时,φ(x )>0,此时x 2f (x )>0.又f (x )为奇函数,∴h (x )=x 2f (x )也为奇函数,由数形结合知x ∈(-∞,-2)时f (x )>0.故x 2f (x )>0的解集为(-∞,-2)∪(0,2).答案 (-∞,-2)∪(0,2)三、解答题9.已知函数f (x )=ln x +k e x (k 为常数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行. (1)求实数k 的值;(2)求函数f (x )的单调区间.解 (1)f ′(x )=1x -ln x -k e x(x >0). 又由题意知f ′(1)=1-k e=0,所以k =1. (2)由(1)知,f ′(x )=1x -ln x -1e x(x >0). 设h (x )=1x-ln x -1(x >0), 则h ′(x )=-1x 2-1x<0,所以h (x )在(0,+∞)上单调递减.由h (1)=0知,当0<x <1时,h (x )>0,所以f ′(x )>0;当x >1时,h (x )<0,所以f ′(x )<0.综上f (x )的单调增区间是(0,1),减区间为(1,+∞).10.设函数f (x )=ax 2-a -ln x ,g (x )=1x -e e x ,其中a ∈R ,e =2.718…为自然对数的底数. (1)讨论f (x )的单调性;(2)证明:当x >1时,g (x )>0.(1)解 由题意得f ′(x )=2ax -1x =2ax 2-1x(x >0). 当a ≤0时,f ′(x )<0,f (x )在(0,+∞)内单调递减.当a >0时,由f ′(x )=0有x =12a , 当x ∈⎝⎛⎭⎫0,12a 时,f ′(x )<0,f (x )单调递减; 当x ∈⎝⎛⎭⎫12a ,+∞时,f ′(x )>0,f (x )单调递增. (2)证明 令s (x )=e x -1-x ,则s ′(x )=e x -1-1.当x >1时,s ′(x )>0,所以s (x )>s (1),即e x -1>x ,从而g (x )=1x -e e x =e (e x -1-x )x e x>0. B 级 能力提升11.(2020·郑州调研)已知f (x )=a ln x +12x 2(a >0),若对任意两个不相等的正实数x 1,x 2,都有f (x 1)-f (x 2)x 1-x 2>2恒成立,则a 的取值范围为( ) A.(0,1]B.(1,+∞)C.(0,1)D.[1,+∞) 解析 对任意两个不相等的正实数x 1,x 2,都有f (x 1)-f (x 2)x 1-x 2>2恒成立,则当x >0时,f ′(x )≥2恒成立,f ′(x )=a x+x ≥2在(0,+∞)上恒成立,则a ≥(2x -x 2)max =1. 答案 D12.若函数e x f (x )(e =2.718 28…是自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x )具有M 性质.下列函数中具有M 性质的是( )A.f (x )=2-xB.f (x )=x 2C.f (x )=3-xD.f (x )=cos x解析 设函数g (x )=e x ·f (x ),对于A ,g (x )=e x ·2-x =⎝⎛⎭⎫e 2x,在定义域R 上为增函数,A 正确.对于B ,g (x )=e x ·x 2,则g ′(x )=x (x +2)e x ,由g ′(x )>0得x <-2或x >0,∴g (x )在定义域R 上不是增函数,B 不正确.对于C ,g (x )=e x ·3-x =⎝⎛⎭⎫e 3x在定义域R 上是减函数,C 不正确.对于D ,g (x )=e x ·cos x ,则g ′(x )=2e x cos ⎝⎛⎭⎫x +π4,g ′(x )>0在定义域R 上不恒成立,D 不正确. 答案 A13.求形如y =f (x )g (x )的函数的导数,我们常采用以下做法:先两边同取自然对数得ln y =g (x )ln f (x ),再两边同时求导得1y ·y ′=g ′(x )ln f (x )+g (x )·1f (x )·f ′(x ),于是得到y ′=f (x )g (x )⎣⎡⎦⎤g ′(x )ln f (x )+g (x )·1f (x )·f ′(x ),运用此方法求得函数y =x 1x 的单调递增区间是________. 解析 由题设,y ′=x 1x ·⎝⎛⎭⎫-1x 2·ln x +1x 2=x 1x ·1-ln x x 2(x >0). 令y ′>0,得1-ln x >0,所以0<x <e.所以函数y =x 1x的单调递增区间为(0,e).答案 (0,e)14.已知函数f (x )=12x 2-2a ln x +(a -2)x . (1)当a =-1时,求函数f (x )的单调区间;(2)是否存在实数a ,使函数g (x )=f (x )-ax 在(0,+∞)上单调递增?若存在,求出a 的取值范围;若不存在,说明理由.解 (1)当a =-1时,f (x )=12x 2+2ln x -3x , 则f ′(x )=x +2x -3=x 2-3x +2x =(x -1)(x -2)x(x >0). 当0<x <1或x >2时,f ′(x )>0,f (x )单调递增;当1<x <2时,f ′(x )<0,f (x )单调递减.所以f (x )的单调增区间为(0,1)和(2,+∞),单调减区间为(1,2).(2)假设存在实数a ,使g (x )=f (x )-ax 在(0,+∞)上是增函数,则g ′(x )=f ′(x )-a =x -2a x-2≥0在x ∈(0,+∞)上恒成立. 即x 2-2x -2a x≥0在x ∈(0,+∞)上恒成立. 所以x 2-2x -2a ≥0在x >0时恒成立,所以a ≤12(x 2-2x )=12(x -1)2-12恒成立. 令φ(x )=12(x -1)2-12,x ∈(0,+∞),则其最小值为-12. 所以当a ≤-12时,g ′(x )≥0恒成立. 又当a =-12时,g ′(x )=(x -1)2x, 当且仅当x =1时,g ′(x )=0.故当a ∈⎝⎛⎦⎤-∞,-12时,g (x )=f (x )-ax 在(0,+∞)上单调递增. C 级 创新猜想15.(多填题)已知函数f (x )=x 3+mx 2+nx -2的图象过点(-1,-6),函数g (x )=f ′(x )+6x 的图象关于y 轴对称.则m =________,f (x )的单调递减区间为________.解析 由f (x )的图象过点(-1,-6),得m -n =-3,①又g (x )=f ′(x )+6x =3x 2+(2m +6)x +n 为偶函数,∴2m +6=0,即m =-3,②代入①式,得n =0.所以f ′(x )=3x 2-6x =3x (x -2).令f ′(x )<0,得0<x <2,则单调递减区间为(0,2).答案 -3 (0,2)。
专题04 函数的单调性函数的单调性与导数的关系已知函数f (x )在区间(a ,b )上可导,(1)如果f ′(x )>0,那么函数y =f (x )在(a ,b )内单调递增;(2)如果f ′(x )<0,那么函数y =f (x )在(a ,b )内单调递减;(2)如果f ′(x )=0,那么函数y =f (x )在(a ,b )内是常数函数.注意:1.在某区间内f ′(x )>0(f ′(x )<0)是函数f (x )在此区间上为增(减)函数的充分不必要条件.2.可导函数f (x )在(a ,b )上是增(减)函数的充要条件是∀x ∈(a ,b ),都有f ′(x )≥0(f ′(x )≤0)且f ′(x )在(a ,b )上的任何子区间内都不恒为零.(1)在函数定义域内讨论导数的符号.(2)两个或多个增(减)区间之间的连接符号,不用“∪”,可用“,”或用“和”.考点一 不含参数的函数的单调性【方法总结】利用导数判断函数单调性的步骤第1步,确定函数的定义域;第2步,求出导数f ′(x )的零点;第3步,用f ′(x )的零点将f (x )的定义域划分为若干个区间,列表给出f ′(x )在各区间上的正负,由此得出函数y =f (x )在定义域内的单调性.【例题选讲】[例1](1)定义在[-2,2]上的函数f (x )与其导函数f ′(x )的图象如图所示,设O 为坐标原点,A ,B ,C ,D四点的横坐标依次为-12,-16,1,43,则函数y =f (x )e x 的单调递减区间是( )A .⎝⎛⎭⎫-16,43B .⎝⎛⎭⎫-12,1C .⎝⎛⎭⎫-12,-16 D .(1,2) 答案 B 解析 若虚线部分为函数y =f (x )的图象,则该函数只有一个极值点,但其导函数图象(实线)与x 轴有三个交点,不符合题意;若实线部分为函数y =f (x )的图象,则该函数有两个极值点,则其导函数图象(虚线)与x 轴恰好也只有两个交点,符合题意.对函数y =f (x )e x 求导得y ′=f ′(x )-f (x )e x,由y ′<0,得f ′(x )<f (x ),由图象可知,满足不等式f ′(x )<f (x )的x 的取值范围是⎝⎛⎭⎫-12,1,因此,函数y =f (x )e x 的单调递减区间为⎝⎛⎭⎫-12,1.故选B . (2)已知函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可以是( )答案 C 解析 根据导函数的正负与原函数的单调性的关系,结合导函数f ′(x )的图象可知,原函数 f (x )先单调递增,再单调递减,最后缓慢单调递增,选项C 符合题意,故选C .(3)函数f (x )=x 2+x sin x 的图象大致为( )答案 A 解析 函数f (x )=x 2+x sin x 的定义域为R ,且f (-x )=(-x )2+(-x )sin(-x )=x 2+x sin x = f (x ),即函数f (x )为偶函数.当x >0时,x +sin x >0,故f ′(x )=x (1+cos x )+(x +sin x )>0,即f (x )在(0,+∞)上单调递增,故选A .(4)函数f (x )=x +21-x 的单调递增区间是________;单调递减区间是________.答案 (-∞,0) (0,1) 解析 f (x )的定义域为{x |x ≤1},f ′(x )=1-11-x.令f ′(x )=0,得x =0.当0<x <1时,f ′(x )<0.当x <0时,f ′(x )>0.∴f (x )的单调递增区间为(-∞,0),单调递减区间为(0,1).(5)设函数f (x )=x (e x -1)-12x 2,则f (x )的单调递增区间是________,单调递减区间是________. 答案 (-∞,-1),(0,+∞) [-1,0] 解析 ∵f (x )=x (e x -1)-12x 2,∴f ′(x )=e x -1+x e x -x =(e x - 1)(x +1).令f ′(x )=0,得x =-1或x =0.当x ∈(-∞,-1)时,f ′(x )>0.当x ∈[-1,0]时,f ′(x )≤0.当x ∈(0,+∞)时,f ′(x )>0.故f (x )在(-∞,-1),(0,+∞)上单调递增,在[-1,0]上单调递减.(6)函数y =12x 2-ln x 的单调递减区间为( ) A .(-1,1) B .(0,1) C .(1,+∞) D .(0,+∞)答案 B 解析 y =12x 2-ln x ,y ′=x -1x =x 2-1x =(x -1)(x +1)x(x >0).令y ′<0,得0<x <1,∴递减区间为(0,1).(7)设函数f (x )=2(x 2-x )ln x -x 2+2x ,则函数f (x )的单调递减区间为( )A .⎝⎛⎭⎫0,12B .⎝⎛⎭⎫12,1 C .(1,+∞) D .(0,+∞) 答案 B 解析 由题意可得f (x )的定义域为(0,+∞),f ′(x )=2(2x -1)ln x +2(x 2-x )·1x-2x +2=(4x -2)ln x .由f ′(x )<0可得(4x -2)ln x <0,所以⎩⎪⎨⎪⎧4x -2>0,ln x <0或⎩⎪⎨⎪⎧4x -2<0,ln x >0,解得12<x <1,故函数f (x )的单调递减区间为⎝⎛⎭⎫12,1,选B .(8)已知定义在区间(0,π)上的函数f (x )=x +2cos x ,则f (x )的单调递增区间为 .答案 ⎝⎛⎭⎫0,π6,⎝⎛⎭⎫5π6,π 解析 f ′(x )=1-2sin x ,x ∈(0,π).令f ′(x )=0,得x =π6或x =5π6,当0<x <π6时,f ′(x )>0,当π6<x <5π6时,f ′(x )<0,当5π6<x <π时,f ′(x )>0,∴f (x )在⎝⎛⎭⎫0,π6和⎝⎛⎭⎫5π6,π上单调递增,在⎝⎛⎭⎫π6,5π6上单调递减.(9)函数f (x )=2|sin x |+cos2x 在[-π2,π2]上的单调递增区间为( ) A .[-π2,-π6]和[0,π6] B .[-π6,0]和[π6,π2] C .[-π2,-π6]和[π6,π2] D .[-π6,π6] 答案 A 解析 由题意,因为f (-x )=2|sin(-x )|+cos(-2x )=2|sin x |+cos2x =f (x ),所以f (x )为偶函数,当0≤x ≤π2时,f (x )=2sin x +cos2x ,则f ′(x )=2cos x -2sin2x ,令f ′(x )≥0,得sin x ≤12,所以0≤x ≤π6,由f (x )为偶函数,可得当-π6≤x ≤0时,f (x )单调递减,则在[-π2,-π6]上单调递增,故选A . (10)下列函数中,在(0,+∞)上为增函数的是( )A .f (x )=sin2xB .f (x )=x e xC .f (x )=x 3-xD .f (x )=-x +ln x答案 B 解析 对于A ,f (x )=sin 2x 的单调递增区间是⎣⎡⎦⎤k π-π4,k π+π4(k ∈Z);对于B ,f ′(x )=e x (x +1),当x ∈(0,+∞)时,f ′(x )>0,∴函数f (x )=x e x 在(0,+∞)上为增函数;对于C ,f ′(x )=3x 2-1,令f ′(x )>0,得x >33或x <-33,∴函数f (x )=x 3-x 在⎝⎛⎭⎫-∞,-33和⎝⎛⎭⎫33,+∞上单调递增;对于D ,f ′(x )=-1+1x =-x -1x,令f ′(x )>0,得0<x <1,∴函数f (x )=-x +ln x 在区间(0,1)上单调递增.故选B . [例2] 已知函数f (x )=ln x +k e x(k 为常数),曲线y =f (x )在点(1,f (1))处的切线与x 轴平行. (1)求实数k 的值;(2)求函数f (x )的单调区间.解析 (1)f ′(x )=1x -ln x -k e x (x >0).又由题意知f ′(1)=1-k e=0,所以k =1. (2)由(1)知,f ′(x )=1x -ln x -1e x (x >0).设h (x )=1x -ln x -1(x >0),则h ′(x )=-1x 2-1x<0, 所以h (x )在(0,+∞)上单调递减.由h (1)=0知,当0<x <1时,h (x )>0,所以f ′(x )>0;当x >1时,h (x )<0,所以f ′(x )<0.综上,f (x )的单调增区间是(0,1),单调减区间为(1,+∞).【对点训练】1.如图是函数y =f (x )的导函数y =f ′(x )的图象,则下列判断正确的是( )A .在区间(-2,1)上f (x )单调递增B .在区间(1,3)上f (x )单调递减C .在区间(4,5)上f (x )单调递增D .在区间(3,5)上f (x )单调递增1.答案 C 解析 在(4,5)上f ′(x )>0恒成立,∴f (x )在区间(4,5)上单调递增.2.函数y =f (x )的导函数y =f ′(x )的图象如图所示,则函数y =f (x )的图象可能是( )2.答案 D 解析 设导函数y =f ′(x )与x 轴交点的横坐标从左往右依次为x 1,x 2,x 3,由导函数y =f ′(x ) 的图象易得当x ∈(-∞,x 1)∪(x 2,x 3)时,f ′(x )<0;当x ∈(x 1,x 2)∪(x 3,+∞)时,f ′(x )>0(其中x 1<0<x 2<x 3),所以函数f (x )在(-∞,x 1),(x 2,x 3)上单调递减,在(x 1,x 2),(x3,+∞)上单调递增,观察各选项,只有D 选项符合.3.(多选)已知函数f (x )的导函数f ′(x )的图象如图所示,那么下列图象中不可能是函数f (x )的图象的是( )3.答案 BCD 解析 由导函数图象可得:当x <0时,f ′(x )>0,即函数f (x )在(-∞,0)上单调递增;当0<x <2 时,f ′(x )<0,即函数f (x )在(0,2)上单调递减;当x >2时,f ′(x )>0,即函数f (x )在(2,+∞)上单调递增.故选B 、C 、D .4.函数f (x )的导函数f ′(x )有下列信息:①f ′(x )>0时,-1<x <2;②f ′(x )<0时,x <-1或x >2;③f ′(x )=0时,x =-1或x =2.则函数f (x )的大致图象是( )4.答案 C 解析 由题意可知函数f (x )在(-1,2)上单调递增,在(-∞,-1)和(2,+∞)上单调递减,故 选C .5.函数y =f (x )的图象如图所示,则y =f ′(x )的图象可能是( )5.答案 D 解析 由函数f (x )的图象可知,f (x )在(-∞,0)上单调递增,f (x )在(0,+∞)上单调递减,所以 在(-∞,0)上,f ′(x )>0;在(0,+∞)上,f ′(x )<0,选项D 满足.6.已知函数f (x )=x 2+2cos x ,若f ′(x )是f (x )的导函数,则函数f ′(x )的图象大致是( )A B C D 6.答案 A 解析 设g (x )=f ′(x )=2x -2sin x ,则g ′(x )=2-2cos x ≥0.所以函数f ′(x )在R 上单调递增,故 选A .7.函数y =4x 2+1x的单调递增区间为( )A .(0,+∞)B .⎝⎛⎭⎫12,+∞C .(-∞,-1)D .⎝⎛⎭⎫-∞,-12 7.答案 B 解析 由y =4x 2+1x (x ≠0),得y ′=8x -1x 2,令y ′>0,即8x -1x 2>0,解得x >12,∴函数y =4x 2 +1x的单调递增区间为⎝⎛⎭⎫12,+∞.故选B . 8.函数f (x )=(x -2)e x 的单调递增区间为 .8.答案 (1,+∞) 解析 f (x )的定义域为R ,f ′(x )=(x -1)e x ,令f ′(x )=0,得x =1,当x ∈(1,+∞) 时,f ′(x )>0;当x ∈(-∞,1)时,f ′(x )<0,∴f (x )的单调递增区间为(1,+∞).9.函数f (x )=(x -1)e x -x 2的单调递增区间为 ,单调递减区间为 .9.答案 (-∞,0),(ln 2,+∞) (0,ln 2) 解析 f (x )的定义域为R ,f ′(x )=x e x -2x =x (e x -2),令f ′(x ) =0,得x =0或x =ln 2,当x 变化时,f ′(x ),f (x )的变化情况如下表,∴f (x )10.函数f (x )=x 2-2ln x 的单调递减区间是( )A .(0,1)B .(1,+∞)C .(-∞,1)D .(-1,1)10.答案 A 解析 ∵f ′(x )=2x -2x =2(x +1)(x -1)x(x >0),令f ′(x )=0,得x =1,∴当x ∈(0,1)时,f ′(x )<0, f (x )单调递减;当x ∈(1,+∞)时,f ′(x )>0,f (x )单调递增.11.函数y =x +3x+2ln x 的单调递减区间是( ) A .(-3,1) B .(0,1) C .(-1,3) D .(0,3)11.答案 B 解析 y ′=1-3x 2+2x =x 2+2x -3x 2(x >0),令y ′<0得⎩⎪⎨⎪⎧x 2+2x -3<0x >0,解得0<x <1,故选B . 12.函数f (x )=x ln x +x 的单调递增区间是( )A .⎝⎛⎭⎫1e 2,+∞B .⎝⎛⎭⎫0,1e 2C .⎝⎛⎭⎫e e ,+∞D .⎝⎛⎭⎫0,e e 12.答案 A 解析 因为函数f (x )=x ln x +x (x >0),所以f ′(x )=ln x +2,由f ′(x )>0,得ln x +2>0,可得x >1e2,故函数f (x )=x ln x +x 的单调递增区间是⎝⎛⎭⎫1e 2,+∞. 13.已知函数f (x )=x 2-5x +2ln x ,则函数f (x )的单调递增区间是( )A .⎝⎛⎭⎫0,12和(1,+∞)B .(0,1)和(2,+∞)C .⎝⎛⎭⎫0,12和(2,+∞) D .(1,2) 13.解析 C 答案 函数f (x )=x 2-5x +2ln x 的定义域是(0,+∞).f ′(x )=2x -5+2x =2x 2-5x +2x=(x -2)(2x -1)x ,令f ′(x )>0,解得0<x <12或x >2,故函数f (x )的单调递增区间是⎝⎛⎭⎫0,12和(2,+∞). 14.函数f (x )=x ln x的单调递减区间是________. 14.答案 (0,1)和(1,e) 解析 由f ′(x )=ln x -1ln x 2<0得⎩⎪⎨⎪⎧ln x -1<0,ln x ≠0,解得0<x <1或1<x <e .∴f (x )的单 调递减区间为(0,1)和(1,e).15.函数f (x )=e x cos x 的单调递增区间为________. 15.答案 ⎣⎡⎦⎤2k π-34π,2k π+π4(k ∈Z ) 解析 f ′(x )=e x cos x -e x sin x =e x (cos x -sin x ),令f ′(x )>0得cos x >sin x ,∴2k π-34π<x <2k π+π4,k ∈Z ,即函数f (x )的单调递增区间为⎣⎡⎦⎤2k π-34π,2k π+π4(k ∈Z ). 16.函数y =x cos x -sin x 在下面哪个区间上单调递增( )A .⎝⎛⎭⎫π2,3π2B .(π,2π)C .⎝⎛⎭⎫3π2,5π2 D .(2π,3π) 16.答案 B 解析 y ′=-x sin x ,经验证,4个选项中只有在(π,2π)内y ′>0恒成立,∴y =x cos x -sinx 在(π,2π)上单调递增.17.已知定义在区间(-π,π)上的函数f (x )=x sin x +cos x ,则f (x )的单调递增区间为________.17.答案 ⎝⎛⎭⎫-π,-π2,⎝⎛⎭⎫0,π2 解析 f ′(x )=sin x +x cos x -sin x =x cos x .令f ′(x )=x cos x >0,则其在区 间(-π,π)上的解集为⎝⎛⎭⎫-π,-π2和⎝⎛⎭⎫0,π2,即f (x )的单调递增区间为⎝⎛⎭⎫-π,-π2,⎝⎛⎭⎫0,π2. 18.(多选)若函数 g (x )=e x f (x )(e =2.718…,e 为自然对数的底数)在f (x )的定义域上单调递增,则称函数f (x ) 具有M 性质.下列函数不具有M 性质的为( )A .f (x )=1xB .f (x )=x 2+1C .f (x )=sin xD .f (x )=x 18.答案 ACD 解析 对于A ,f (x )=1x ,则g (x )=e xx ,g ′(x )=e x (x -1)x 2,当x <1且x ≠0时,g ′(x )<0,当 x >1时,g ′(x )>0,∴g (x )在(-∞,0),(0,1)上单调递减,在(1,+∞)上单调递增;对于B ,f (x )=x 2+1,则g (x )=e x f (x )=e x (x 2+1),g ′(x )=e x (x 2+1)+2x e x =e x (x +1)2>0在实数集R 上恒成立,∴g (x )=e x f (x )在定义域R 上是增函数;对于C ,f (x )=sin x ,则g (x )=e x sin x ,g ′(x )=e x (sin x +cos x )=2e x sin ⎝⎛⎭⎫x +π4,显然g (x )不单调;对于D ,f (x )=x ,则g (x )=x e x ,则g ′(x )=(x +1)e x .当x <-1时,g ′(x )<0,所以g (x )在R 上先减后增;∴具有M 性质的函数的选项为B ,不具有M 性质的函数的选项为A ,C ,D .19.已知函数f (x )=12x 3+x 2. (1)求曲线f (x )在点⎝⎛⎭⎫-43,f ⎝⎛⎭⎫-43处的切线方程; (2)讨论函数y =f (x )e x 的单调性.19.解析 (1)∵f (x )=12x 3+x 2,∴f ′(x )=32x 2+2x .∴f ′⎝⎛⎭⎫-43=0.又f ⎝⎛⎭⎫-43=1627, ∴曲线f (x )在⎝⎛⎭⎫-43,f ⎝⎛⎭⎫-43处的切线方程为y =1627. (2)令g (x )=f (x )e x =⎝⎛⎭⎫12x 3+x 2e x ,∴g ′(x )=⎝⎛⎭⎫32x 2+2x e x +⎝⎛⎭⎫12x 3+x 2e x =12x (x +1)(x +4)e x . 令g ′(x )=0,解得x =0,x =-1或x =-4,当x <-4时,g ′(x )<0,g (x )单调递减;当-4<x <-1时,g ′(x )>0,g (x )单调递增;当-1<x <0时,g ′(x )<0,g (x )单调递减;当x >0时,g ′(x )>0,g (x )单调递增.综上可知,g (x )在(-∞,-4)和(-1,0)上单调递减,在(-4,-1)和(0,+∞)上单调递增.20.设函数f (x )=x e a -x +bx ,曲线y =f (x )在点(2,f (2))处的切线方程为y =(e -1)x +4.(1)求a ,b 的值;(2)求f (x )的单调区间.20.解析 (1)∵f (x )=x e a -x +bx ,∴f ′(x )=(1-x )e a -x +b .由题意得⎩⎪⎨⎪⎧f (2)=2e +2,f ′(2)=e -1,即⎩⎪⎨⎪⎧2e a -2+2b =2e +2,-e a -2+b =e -1,解得a =2,b =e . (2)由(1)得f (x )=x e 2-x +e x ,由f ′(x )=e 2-x (1-x +e x -1)及e 2-x >0知,f ′(x )与1-x +e x-1同号.令g (x )=1-x +e x -1,则g ′(x )=-1+e x -1.当x ∈(-∞,1)时,g ′(x )<0,g (x )在(-∞,1)上递减;当x ∈(1,+∞)时,g ′(x )>0,g (x )在(1,+∞)上递增,∴g (x )≥g (1)=1在R 上恒成立,∴f ′(x )>0在R 上恒成立.∴f (x )的单调递增区间为(-∞,+∞),无单调递减区间.考点二 比较大小或解不等式【方法总结】利用导数比较大小或解不等式的常用技巧利用题目条件,构造辅助函数,把比较大小或求解不等式的问题转化为先利用导数研究函数的单调性问题,再由单调性比较大小或解不等式.【例题选讲】[例3](1)在R 上可导的函数f (x )的图象如图所示,则关于x 的不等式xf ′(x )<0的解集为( )A .(-∞,-1)∪(0,1)B .(-1,0)∪(1,+∞)C .(-2,-1)∪(1,2)D .(-∞,-2)∪(2,+∞)答案 A 解析 在(-∞,-1)和(1,+∞)上,f (x )单调递增,所以f ′(x )>0,使xf ′(x )<0的范围为(-∞,-1);在(-1,1)上,f (x )单调递减,所以f ′(x )<0,使xf ′(x )<0的范围为(0,1).综上,关于x 的不等式xf ′(x )<0的解集为(-∞,-1)∪(0,1).(2)已知函数f (x )=x sin x ,x ∈R ,则f ⎝⎛⎭⎫π5,f (1),f ⎝⎛⎭⎫-π3的大小关系为( ) A .f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5 B .f (1)>f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5 C .f ⎝⎛⎭⎫π5>f (1)>f ⎝⎛⎭⎫-π3 D .f ⎝⎛⎭⎫-π3>f ⎝⎛⎭⎫π5>f (1) 答案 A 解析 因为f (x )=x sin x ,所以f (-x )=(-x )·sin(-x )=x sin x =f (x ),所以函数f (x )是偶函数,所以f ⎝⎛⎭⎫-π3=f ⎝⎛⎭⎫π3.又当x ∈⎝⎛⎭⎫0,π2时,f ′(x )=sin x +x cos x >0,所以函数f (x )在⎝⎛⎭⎫0,π2上是增函数,所以f ⎝⎛⎭⎫π5<f (1)<f ⎝⎛⎭⎫π3,即f ⎝⎛⎭⎫-π3>f (1)>f ⎝⎛⎭⎫π5,故选A . (3)已知奇函数f (x )是R 上的增函数,g (x )=xf (x ),则( )A .g ⎝⎛⎭⎫log 314>g (2-32)>g (2-23)B .g ⎝⎛⎭⎫log 314>g (2-23)>g (2-32) C .g (2-32)>g (2-23)>g ⎝⎛⎭⎫log 314 D .g (2-23)>g (2-32)>g ⎝⎛⎭⎫log 314 答案 B 解析 由奇函数f (x )是R 上的增函数,可得f ′(x )≥0,以及当x >0时,f (x )>0,当x <0时,f (x )<0.由g (x )=xf (x ),得g (-x )=-xf (-x )=xf (x )=g (x ),即g (x )为偶函数.因为g ′(x )=f (x )+xf ′(x ),所以当x >0时,g ′(x )>0,当x <0时,g ′(x )<0.故当x >0时,函数g (x )单调递增,当x <0时,函数g (x )单调递减.因为g ⎝⎛⎭⎫log 314=g (log 34),0<2-32<2-23<20=1<log 34,所以g ⎝⎛⎭⎫log 314>g (2-23)>g (2-32).故选B . (4)对于R 上可导的任意函数f (x ),若满足1-x f ′(x )≤0,则必有( ) A .f (0)+f (2)>2f (1) B .f (0)+f (2)≤2f (1) C .f (0)+f (2)<2f (1) D .f (0)+f (2)≥2f (1) 答案 A 解析 当x <1时,f ′(x )<0,此时函数f (x )单调递减,当x >1时,f ′(x )>0,此时函数f (x )单调递增,∴当x =1时,函数f (x )取得极小值同时也取得最小值,所以f (0)>f (1),f (2)>f (1),则f (0)+f (2)>2f (1).(5)已知函数f (x )=e x -e -x -2x +1,则不等式f (2x -3)>1的解集为 .答案 ⎝⎛⎭⎫32,+∞ 解析 f (x )=e x -e -x -2x +1,定义域为R ,f ′(x )=e x +e -x -2≥2e x ·e -x -2=0,当且仅当x =0时取“=”,∴f (x )在R 上单调递增,又f (0)=1,∴原不等式可化为f (2x -3)>f (0),即2x -3>0,解得x >32,∴原不等式的解集为⎝⎛⎭⎫32,+∞. (6)设函数f (x )为奇函数,且当x ≥0时,f (x )=e x -cos x ,则不等式f (2x -1)+f (x -2)>0的解集为( )A .(-∞,1)B .⎝⎛⎭⎫-∞,13C .⎝⎛⎭⎫13,+∞ D .(1,+∞) 答案 D 解析 根据题意,当x ≥0时,f (x )=e x -cos x ,此时有f ′(x )=e x +sin x >0,则f (x )在[0,+∞)上为增函数,又f (x )为R 上的奇函数,故f (x )在R 上为增函数.f (2x -1)+f (x -2)>0⇒f (2x -1)>-f (x -2)⇒f (2x -1)>f (2-x )⇒2x -1>2-x ,解得x >1,即不等式的解集为(1,+∞).【对点训练】1.已知函数y =f (x )(x ∈R )的图象如图所示,则不等式xf ′(x )≥0的解集为 .1.答案 ⎣⎡⎦⎤0,12∪[2,+∞) 解析 由f (x )图象特征可得,在⎝⎛⎦⎤-∞,12和[2,+∞)上f ′(x )≥0, 在 ⎝⎛⎭⎫12,2上 f ′(x )<0,所以xf ′(x )≥0⇔⎩⎪⎨⎪⎧ x ≥0,f ′(x )≥0或⎩⎪⎨⎪⎧x ≤0,f ′(x )≤0⇔0≤x ≤12或x ≥2,所以xf ′(x )≥0的解集为⎣⎡⎦⎤0,12∪[2,+∞). 2.已知函数f (x )=3x +2cos x ,若a =f (32),b =f (2),c =f (log 27),则a ,b ,c 的大小关系是( )A .a <b <cB .c <a <bC .b <a <cD .b <c <a2.答案 D 解析 根据题意,函数f (x )=3x +2cos x ,f ′(x )=3-2sin x ,因为f ′(x )=3-2sin x >0在R 上恒成 立,所以f (x )在R 上为增函数.又由2=log 24<log 27<3<32,则b <c <a .故选D .3.已知函数f (x )=sin x +cos x -2x ,a =f (-π),b =f (2e ),c =f (ln2),则a ,b ,c 的大小关系是( )A .a >c >bB .a >b >cC .b >a >cD .c >b >a3.答案 A 解析 f (x )的定义域为R ,f ′(x )=cos x -sin x -2=2cos ⎝⎛⎭⎫x +π4-2<0,∴f (x )在R 上单调递 减,又2e >1,0<ln 2<1,∴-π<ln 2<2e ,故f (-π)>f (ln 2)>f (2e ),即a >c >b .4.函数f (x )在定义域R 内可导,若f (x )=f (2-x ),且当x ∈(-∞,1)时,(x -1)f ′(x )<0,设a =f (0),b =f ⎝⎛⎭⎫12,c =f (3),则a ,b ,c 的大小关系为( )A .a <b <cB .c <b <aC .c <a <bD .b <c <a4.答案 C 解析 因为当x ∈(-∞,1)时,(x -1)f ′(x )<0,所以f ′(x )>0,所以函数f (x )在(-∞,1)上是单调递增函数,所以a =f (0)<f ⎝⎛⎭⎫12=b ,又f (x )=f (2-x ),所以c =f (3)=f (-1),所以c =f (-1)<f (0)=a ,所以c <a <b ,故选C .5.已知函数f (x )=x 3-2x +e x -1e x ,其中e 是自然对数的底数.若f (a -1)+f (2a 2)≤0,则实数a 的取值范围 是 .5.答案 ⎣⎡⎦⎤-1,12 解析 f (-x )=(-x )3+2x +e -x -e x =-f (x ),所以函数f (x )为奇函数.又f ′(x )=3x 2-2 +e x +1e x ≥0-2+2=0,所以函数f (x )为单调递增函数.不等式f (a -1)+f (2a 2)≤0可化为f (2a 2)≤-f (a -1)=f (1-a ),所以2a 2≤1-a ,解得-1≤a ≤12.6.已知函数f (x )=13x 3-4x +2e x -2e -x ,其中e 为自然对数的底数,若f (a -1)+f (2a 2)≤0,则实数a 的取值范围是( )A .(-∞,-1]B .⎣⎡⎭⎫12,+∞C .⎝⎛⎭⎫-1,12D .⎣⎡⎦⎤-1,12 6.答案 D 解析 f ′(x )=x 2-4+2e x +2e -x ≥x 2-4+24e x ·e -x =x 2≥0,∴f (x )在R 上是增函数.又f (- x )=-13x 3+4x +2e -x -2e x =-f (x ),知f (x )为奇函数.故f (a -1)+f (2a 2)≤0⇔f (a -1)≤f (-2a 2),∴a -1≤-2a 2,解之得-1≤a ≤12.7.若函数f (x )=ln x +e x -sin x ,则不等式f (x -1)≤f (1)的解集为 .7.答案 (1,2] 解析 f (x )的定义域为(0,+∞),∴f ′(x )=1x +e x -cos x .∵x >0,∴e x >1,∴f ′(x )>0,∴f (x )在(0,+∞)上单调递增,又f (x -1)≤f (1),∴0<x -1≤1,即1<x ≤2,原不等式的解集为(1,2]. 8.已知函数f (x )=x sin x +cos x +x 2,则不等式f (ln x )+f ⎝⎛⎭⎫ln 1x <2f (1)的解集为 . 8.答案 ⎝⎛⎭⎫1e ,e 解析 f (x )=x sin x +cos x +x 2是偶函数,所以f ⎝⎛⎭⎫ln 1x =f (-ln x )=f (ln x ).则原不等式 可变形为f (ln x )<f (1)⇔f (|ln x |)<f (1).又f ′(x )=x cos x +2x =x (2+cos x ),由2+cos x >0,得当x >0时,f ′(x )>0.所以f (x )在(0,+∞)上单调递增.∴|ln x |<1⇔-1<ln x <1⇔1e <x <e .考点三 根据函数的单调性求参数 【方法总结】利用单调性求参数的两类热点问题的处理方法(1)函数f (x )在区间D 上存在递增(减)区间. 方法一:转化为“f ′(x )>0(<0)在区间D 上有解”;方法二:转化为“存在区间D 的一个子区间使f ′(x )>0(<0)成立”. (2)函数f (x )在区间D 上递增(减).方法一:转化为“f ′(x )≥0(≤0)在区间D 上恒成立”问题;方法二:转化为“区间D 是函数f (x )的单调递增(减)区间的子集”. 【例题选讲】[例4](1)若函数f (x )=2x 3-3mx 2+6x 在区间(1,+∞)上为增函数,则实数m 的取值范围是( ) A .(-∞,1] B .(-∞,1) C .(-∞,2] D .(-∞,2)答案 C 解析 f ′(x )=6x 2-6mx +6,由已知条件知x ∈(1,+∞)时,f ′(x )≥0恒成立,设g (x )=6x 2-6mx +6,则g (x )≥0在(1,+∞)上恒成立,解法一:若Δ=36(m 2-4)≤0,即-2≤m ≤2,满足g (x )≥0在(1,+∞)上恒成立;若Δ=36(m 2-4)>0,即m <-2或m >2,则⎩⎪⎨⎪⎧m 2<1,g (1)=12-6m ≥0,解得m <2,∴m <-2,综上得m ≤2,∴实数m 的取值范围是(-∞,2].解法二:问题转化为m ≤x +1x 在(1,+∞)上恒成立,而当x ∈(1,+∞)时,函数y =x +1x >2,故m ≤2,故选C .(2)设函数f (x )=12x 2-9ln x 在区间[a -1,a +1]上单调递减,则实数a 的取值范围是 .答案 (1,2] 解析 易知f (x )的定义域为(0,+∞),且f ′(x )=x -9x .又x >0,由f ′(x )=x -9x≤0,得0<x ≤3.因为函数f (x )在区间[a -1,a +1]上单调递减,所以⎩⎪⎨⎪⎧a -1>0,a +1≤3,解得1<a ≤2.(3)若函数f (x )=e x (sin x +a )在区间(0,π)上单调递减,则实数a 的取值范围是( ) A .[-2,+∞) B .[1,+∞) C .(-∞,-2] D .(-∞,1]答案 C 解析 由题意,知f ′(x )=e x (sin x +cos x +a )≤0在区间(0,π)内恒成立,即a ≤-2sin ⎝⎛⎭⎫x +π4在 区间(0,π)内恒成立.因为x +π4∈⎝⎛⎭⎫π4,5π4,所以sin ⎝⎛⎭⎫x +π4∈⎝⎛⎦⎤-22,1,所以-2sin ⎝⎛⎭⎫x +π4∈[-2,1),所以a ≤-2.故选C .(4)若f (x )=⎩⎪⎨⎪⎧x +4a 2x +a -4a ,0<x ≤a ,x -x ln x ,x >a 是(0,+∞)上的减函数,则实数a 的取值范围是( )A .[1,e 2]B .[e ,e 2]C .[e ,+∞)D .[e 2,+∞)答案 D 解析 由题意,当x >a 时,f ′(x )=1-(ln x +1)=-ln x ,则-ln x ≤0在x >a 时恒成立,则a ≥1;当0<x ≤a 时,f ′(x )=1-4a 2(x +a )2,则1-4a 2(x +a )2≤0在0<x ≤a 时恒成立,即-3a ≤x ≤a 在0<x ≤a 时恒成立,解得a >0,且a +4a 2a +a-4a ≥a -a ln a ,解得ln a ≥2,即a ≥e 2,故⎩⎪⎨⎪⎧a ≥1,a >0,a ≥e 2,解得a ≥e 2,故选D .(5)若函数f (x )=-13x 3+12x 2+2ax 在⎣⎡⎭⎫23,+∞上存在单调递增区间,则a 的取值范围是 . 答案 ⎝⎛⎭⎫-19,+∞ 解析 对f (x )求导,得f ′(x )=-x 2+x +2a =-⎝⎛⎭⎫x -122+14+2a .由题意知,f ′(x )>0 在⎣⎡⎭⎫23,+∞上有解,当x ∈⎣⎡⎭⎫23,+∞时,f ′(x )的最大值为f ′⎝⎛⎭⎫23=29+2a .令29+2a >0,解得a >-19,所以a 的取值范围是⎝⎛⎭⎫-19,+∞. (6)若函数f (x )=2x 2-ln x 在其定义域的一个子区间(k -1,k +1)内不是单调函数,则实数k 的取值范围是 .答案 ⎣⎡⎭⎫1,32 解析 f (x )的定义域为(0,+∞),f ′(x )=4x -1x =4x 2-1x,当x ∈⎝⎛⎭⎫0,12时,f ′(x )<0,当x ∈⎝⎛⎭⎫12,+∞时,f ′(x )>0,∴f (x )在⎝⎛⎭⎫0,12上单调递减,在⎝⎛⎭⎫12,+∞上单调递增,依题意有⎩⎪⎨⎪⎧k +1>k -1,k -1≥0,k +1>12,k -1<12,解得1≤k <32.[例5] 已知函数f (x )=ln x ,g (x )=12ax 2+2x (a ≠0).(1)若函数h (x )=f (x )-g (x )在[1,4]上单调递减,求a 的取值范围; (2)若函数h (x )=f (x )-g (x )在[1,4]上存在单调递减区间,求a 的取值范围; (3)若函数h (x )=f (x )-g (x )在[1,4]上不单调,求a 的取值范围.解析 (1)由h (x )在[1,4]上单调递减得,当x ∈[1,4]时,h ′(x )=1x -ax -2≤0恒成立,即a ≥1x 2-2x 恒成立.所以a ≥G (x )max ,而G (x )=⎝⎛⎭⎫1x -12-1, 因为x ∈[1,4],所以1x ∈⎣⎡⎦⎤14,1, 所以G (x )max =-716(此时x =4),所以a ≥-716且a ≠0,即a 的取值范围是⎣⎡⎭⎫-716,0∪(0,+∞). (2)h (x )在[1,4]上存在单调递减区间,则h ′(x )<0在[1,4]上有解, 所以当x ∈[1,4]时,a >1x 2-2x 有解,又当x ∈[1,4]时,⎝⎛⎭⎫1x 2-2x min =-1, 所以a >-1且a ≠0,即a 的取值范围是(-1,0)∪(0,+∞).(3)因为h (x )在[1,4]上不单调,所以h ′(x )=0在(1,4)上有解,即a =1x 2-2x 有解,令m (x )=1x 2-2x ,x ∈(1,4),则-1<m (x )<-716,所以实数a 的取值范围为⎝⎛⎭⎫-1,-716. [例6] 已知函数f (x )=ln x ,g (x )=12ax +b .(1)若f (x )与g (x )的图象在x =1处相切,求g (x );(2)若φ(x )=m (x -1)x +1-f (x )在[1,+∞)上是减函数,求实数m 的取值范围.解析 (1)由已知得f ′(x )=1x ,所以f ′(1)=1=12a ,所以a =2.又因为g (1)=12a +b =f (1)=0,所以b =-1.所以g (x )=x -1.(2)因为φ(x )=m (x -1)x +1-f (x )=m (x -1)x +1-ln x 在[1,+∞)上是减函数.所以φ′(x )=-x 2+(2m -2)x -1x (x +1)2≤0在[1,+∞)上恒成立,即x 2-(2m -2)x +1≥0在[1,+∞)上恒成立, 则2m -2≤x +1x ,x ∈[1,+∞),因为x +1x ≥2,当且仅当x =1时取等号,所以2m -2≤2,即m ≤2.故实数m 的取值范围是(-∞,2]. 【对点训练】1.已知函数f (x )=x 2+ax,若函数f (x )在[2,+∞)上单调递增,则实数a 的取值范围为( )A .(-∞,8)B .(-∞,16]C .(-∞,-8)∪(8,+∞)D .(-∞,-16]∪[16,+∞) 1.答案 B 解析 f ′(x )=2x -a x 2,∴当x ∈[2,+∞)时,f ′(x )=2x -ax 2≥0恒成立,即a ≤2x 3恒成立,∵x ≥2,∴(2x 3)min =16,故a ≤16.2.已知函数f (x )=13ax 3-x 2+x 在区间(0,2)上是单调增函数,则实数a 的取值范围为________.2.答案 [1,+∞) 解析f ′(x )=ax 2-2x +1≥0⇒a ≥-1x 2+2x=-⎝⎛⎭⎫1x -12+1在(0,2)上恒成立,即a ≥1.3.若y =x +a 2x(a >0)在[2,+∞)上是增函数,则a 的取值范围是 .3.答案 (0,2] 解析 由y ′=1-a 2x 2≥0,得x ≤-a 或x ≥a .∴y =x +a 2x 的单调递增区间为(-∞,-a ],[a ,+∞).∵函数在[2,+∞)上单调递增,∴[2,+∞)⊆[a ,+∞),∴a ≤2.又a >0,∴0<a ≤2. 4.若函数f (x )=x 2+1+ax 2x 在[13,+∞)上是增函数,则实数a 的取值范围是______. 4.答案 [253,+∞) 解析 由已知得,f ′(x )=2x +a -1x 2,若函数f (x )在[13,+∞)上是增函数,则当x ∈[13,+∞)时,2x +a -1x 2≥0恒成立,即a ≥1x 2-2x 恒成立,即a ≥⎝⎛⎭⎫1x 2-2x max ,设u (x )=1x 2-2x ,x ∈[13,+∞),则u ′(x )=-2x 3-2<0,即函数u (x )在[13,+∞)上单调递减,所以当x =13时,函数u (x )取得最大值u ⎝⎛⎭⎫13=253,所以a ≥253.故实数a 的取值范围是[253,+∞).5.已知函数f (x )=sin2x +4cos x -ax 在R 上单调递减,则实数a 的取值范围是( )A .[0,3]B .[3,+∞)C .(3,+∞)D .[0,+∞)5.答案 B 解析 f ′(x )=2cos 2x -4sin x -a =2(1-2sin 2x )-4sin x -a =-4sin 2x -4sin x +2-a =-(2sin x +1)2+3-a .由题设,f ′(x )≤0在R 上恒成立,因此a ≥3-(2sin x +1)2恒成立,则a ≥3. 6.若函数g (x )=ln x +12x 2-(b -1)x 存在单调递减区间,则实数b 的取值范围是( )A .[3,+∞)B .(3,+∞)C .(-∞,3)D .(-∞,3]6.答案 B 解析 函数g (x )=ln x +12x 2-(b -1)x 的定义域为(0,+∞),且其导数为g ′(x )=1x +x -(b -1).由g (x )存在单调递减区间知g ′(x )<0在(0,+∞)上有解,即x +1x +1-b <0有解.因为函数g (x )的定义域为(0,+∞),所以x +1x ≥2.要使x +1x +1-b <0有解,只需要x +1x 的最小值小于b -1,所以2<b -1,即b >3,所以实数b 的取值范围是(3,+∞).故选B .7.已知函数f (x )=ln x +(x -b )2(b ∈R )在⎣⎡⎦⎤12,2上存在单调递增区间,则实数b 的取值范围是________. 7.答案 ⎝⎛⎭⎫-∞,94 解析 由题意得f ′(x )=1x +2(x -b )=1x +2x -2b ,因为函数f (x )在⎣⎡⎦⎤12,2上存在单调递 增区间,所以f ′(x )=1x +2x -2b >0在⎣⎡⎦⎤12,2上有解,所以b <⎝⎛⎭⎫12x +x max ,x ∈⎣⎡⎦⎤12,2,由函数的性质易得当x =2时,12x +x 取得最大值,即⎝⎛⎭⎫12x +x max =12×2+2=94,所以b 的取值范围为⎝⎛⎭⎫-∞,94. 8.已知函数f (x )=-12x 2+4x -3ln x 在[t ,t +1]上不单调,则t 的取值范围是________.8.答案 (0,1)∪(2,3) 解析 由题意知f ′(x )=-x +4-3x =-x 2+4x -3x =-(x -1)(x -3)x ,由f ′(x )=0得函数f (x )的两个极值点为1,3,则只要这两个极值点有一个在区间(t ,t +1)内,函数f (x )在区间[t ,t +1]上就不单调,由t <1<t +1或t <3<t +1,得0<t <1或2<t <3.9.(多选)若函数f (x )=ax 3+3x 2-x +1恰好有三个单调区间,则实数a 的取值可以是( )A .-3B .-1C .0D .2 9.答案 BD 解析依题意知,f ′(x )=3ax 2+6x -1有两个不相等的零点,故⎩⎪⎨⎪⎧a ≠0,Δ=36+12a >0解得a >-3且a ≠0.故选BD .10.已知二次函数h (x )=ax 2+bx +2,其导函数y =h ′(x )的图象如图所示,f (x )=6ln x +h (x ).(1)求函数f (x )的解析式;(2)若函数f (x )在区间⎝⎛⎭⎫1,m +12上是单调函数,求实数m 的取值范围.10.解析 (1)由已知,h ′(x )=2ax +b ,其图象为直线,且过(0,-8),(4,0)两点,把两点坐标代入h ′(x )=2ax +b ,得⎩⎪⎨⎪⎧ b =-8,8a +b =0,解得⎩⎪⎨⎪⎧a =1,b =-8,所以h (x )=x 2-8x +2,f (x )=6ln x +x 2-8x +2. (2)由(1)得f ′(x )=6x +2x -8=2(-1)(x -3)x .因为x >0,所以f ′(x ),f (x )的变化如表所示.所以f (x )的单调递增区间为(0,1)和(3,+∞),单调递减区间为(1,3),要使函数f (x )在区间⎝⎛⎭⎫1,m +12 上是单调函数,则⎩⎨⎧1<m +12,m +12≤3,解得12<m ≤52.故实数m 的取值范围是⎝⎛⎦⎤12,52. 11.已知函数f (x )=x 2+a ln x .(1)当a =-2时,求函数f (x )的单调递减区间;(2)若函数g (x )=f (x )+2x 在[1,+∞)上单调,求实数a 的取值范围.11.解析 (1)由题意,知函数f (x )的定义域为(0,+∞),当a =-2时,f ′(x )=2x -2x =2(x +1)(x -1)x ,由f ′(x )<0得0<x <1,故f (x )的单调递减区间是(0,1). (2)由题意,得g ′(x )=2x +a x -2x2,∵函数g (x )在[1,+∞)上单调,当g (x )为[1,+∞)上的单调增函数时,则g ′(x )≥0在[1,+∞)上恒成立, 即a ≥2x -2x 2在[1,+∞)上恒成立,设φ(x )=2x-2x 2.∵φ(x )在[1,+∞)上单调递减,∴在[1,+∞)上,φ(x )max =φ(1)=0,∴a ≥0.当g (x )为[1,+∞)上的单调减函数时,则g ′(x )≤0在[1,+∞)上恒成立,易知其不可能成立. ∴实数a 的取值范围为[0,+∞). 12.已知函数f (x )=e x -ax e x -a (a ∈R ).(1)若f (x )在(0,+∞)上单调递减,求a 的取值范围;(2)求证:x 在(0,2)上任取一个值,不等式1x -1e x -1<12恒成立(注:e 为自然对数的底数).12.解析 (1)由已知得f ′(x )=e x (x +1)⎝⎛⎭⎫1x +1-a .由函数f (x )在(0,+∞)上单调递减得f ′(x )≤0恒成立. ∴11+x -a ≤0,即a ≥11+x ,又11+x∈(0,1),∴a 的取值范围为[1,+∞).(2)要证原不等式恒成立,即证e x -1-x <12x (e x -1),即(x -2)e x +x +2>0在x ∈(0,2)上恒成立.设F (x )=(x -2)e x +x +2,则F ′(x )=(x -1)e x +1.在(1)中,令a =1,则f (x )=e x -x e x -1,f (x )在(0,2)上单调递减,∴F ′(x )=-f (x )在(0,2)上单调递增, 而F ′(0)=0,∴在(0,2)上F ′(x )>0恒成立,∴F (x )在(0,2)上单调递增,∴F (x )>F (0)=0, 即当x ∈(0,2)时,1x -1e x -1<12恒成立.。
导数单调性、极值和最值1.若存在两个正实数x , y ,使得等式()()22ln ln 0x m y ex y x +--=成立,其中c 为自然对数的底数,则实数m 的取值范围是( )A. 2e ⎛⎫-∞ ⎪⎝⎭, B.30e ⎛⎫ ⎪⎝⎭, C. ()20e ⎡⎫-∞⋃+∞⎪⎢⎣⎭,, D. ()30e ⎡⎫-∞⋃+∞⎪⎢⎣⎭,, 【答案】C则条件等价为2+m (t ﹣2e )lnt=0,设g (t )=(t ﹣2e )lnt ,∴当t >e 时,g′(t )>0, 当0<t <e 时,g′(t )<0,即当t=e 时,函数g (t )取得极小值,为g (e )=(e ﹣2e )lne=﹣e , 即g (t )≥g (e )=﹣e ,故答案选:C点睛; 本题主要考查不等式恒成立问题,根据函数与方程的关系,转化为两个函数相交问题,利用构造法和导数法求出函数的极值和最值是解决本题的关键.综合性较强.对于函数的零点问题,它和方程的根的问题,和两个函数的交点问题是同一个问题,可以互相转化;在转化为两个函数交点时,如果是一个常函数一个非常函数,注意让非常函数式子尽量简单一些。
2.函数()2ln x f x x -=在区间11,42⎡⎤⎢⎥⎣⎦[]2,4⋃上的值域是( ) A. 7,08ln2⎡⎤-⎢⎥⎣⎦B. 7,0ln2⎡⎤-⎢⎥⎣⎦C. 31,2ln2ln2⎡⎤--⎢⎥⎣⎦D. 3,02ln2⎡⎤-⎢⎥⎣⎦【答案】D当x ∈[]2,4时, ()()max 2ln20g x g ==-< 所以()f x 在[]2,4递减,故选D点睛:本题考查了利用导数研究函数单调性,求函数值域问题,两部分分别求值域求并集即可得出最后结果,注意计算的准确性.3.设函数,,对,不等式()()12g x kf x ≤恒成立,则正数的取值范围为( )A. [)1,+∞B. [)2,+∞C. 1,2⎡⎫+∞⎪⎢⎣⎭D.1,e ⎡⎫+∞⎪⎢⎣⎭【答案】C∴x 1∈(0,+∞)时,函数f (x 1)有最小值2e当x >1时,g′(x )<0,则函数在(1,+∞)上单调递减 ∴x=2时,函数g (x )有最大值g (1)=e ,则有x 1、x 2∈(0,+∞),kf (x 1)min =2ke ≥g (x 2)max =e ,故答案为:C 。
函数的单调性与导数选择题1、函数f(x)=xlnx的单调递增区间是( )A(01) B(1+∞)C D【解析】选D因为f(x)=xlnx(x>0)所以f′(x)=lnx+1令f′(x)>0得lnx+1>0即x>所以函数f(x)的单调递增区间是2、下列函数中在(0+∞)内为增函数的是( )Ay=sinx By=xe2Cy=x3-x Dy=lnx-x【解析】选B对于Ay=sinx在(0+∞)内有增有减对于By′=(xe2)′=e2>0故y=xe2在(0+∞)内是增函数;对于Cy′=3x2-1=3当x∈时y′<0;故y=x3-x在上是减函数对于Dy′=-1=当x∈(1+∞)时y′<0故y=lnx-x在(1+∞)上是减函数3、(2016·临沂高二检测)已知函数y=f(x)的图象是如图四个图象之一且其导函数y=f′(x)的图象如图所示则该函数的图象是( )【解析】选B由函数y=f(x)的导函数y=f′(x)的图象知f(x)的图象是上升的且先由“平缓”变“陡峭”再由“陡峭”变“平缓”观察图象可得B正确4、若f(x)=e<a<b则( )Af(a)>f(b) Bf(a)=f(b)Cf(a)<f(b) Df(a)f(b)>1【解题指南】先判断f(x)的单调性再比较f(a)与f(b)的大小【解析】选A因为f′(x)==当x∈(e+∞)时1-lnx<0所以f′(x)<0所以f(x)在(e+∞)内为单调递减函数故f(a)>f(b)5、(2016·烟台高二检测)若a>0且f(x)=x3-ax在B(-11]C(-11) D上是单调函数求a的取值范围【解析】f′(x)=(2x-2a)e x+(x2-2ax)e x=e x令f′(x)=0即x2+2(1-a)x-2a=0解得x1=a-1-x2=a-1+其中x1<x2当x变化时f′(x)f(x)的变化情况见下表:x (-∞x1) x1(x1x2) x2(x2+∞) f′(x) + 0 - 0 +f(x) ↗↘↗因为a≥0所以x1<-1x2≥0f(x)在(x1x2)上单调递减由此可得f(x)在上是单调函数的充要条件为x2≥1即a-1+≥1解得a≥故所求a的取值范围为10(2016·青岛高二检测)已知函数y=f(x)=x3+bx2+cx+d的图象经过点P(02)且在点M(-1f(-1))处的切线方程为6x-y+7=0(1)求函数y=f(x)的解析式(2)求函数y=f(x)的单调区间【解析】(1)由y=f(x)的图象经过点P(02)知d=2所以f(x)=x3+bx2+cx+2f′(x)=3x2+2bx+c由在点M(-1f(-1))处的切线方程为6x-y+7=0知-6-f(-1)+7=0即f(-1)=1f′(-1)=6所以即解得b=c=-3故所求的解析式是y=f(x)=x3-3x2-3x+2(2)f′(x)=3x2-6x-3令f′(x)>0得x<1-或x>1+;令f′(x)<0得1-<x<1+故f(x)=x3-3x2-3x+2的单调递增区间为(-∞1-)和(1++∞)单调递减区间为(1-1+)1已知对任意实数x有f(-x)=-f(x)g(-x)=g(x)且当x>0时有f′(x)>0g′(x)>0则当x<0时有( )Af′(x)>0g′(x)>0 Bf′(x)>0g′(x)<0Cf′(x)<0g′(x)>0 Df′(x)<0g′(x)<0【解析】选B由题知f(x)是奇函数g(x)是偶函数根据奇偶函数图象特点知当x<0时f(x)的单调性与x>0时相同g(x)的单调性与x>0时恰好相反因此当x<0时有f′(x)>0g′(x)<0 2(2016·南昌高二检测)设f(x)g(x)分别是定义在R上的奇函数和偶函数当x<0时f′(x)g(x)+f(x)g′(x)>0且g(-3)=0则不等式f(x)g(x)<0的解集是( )A(-30)∪(3+∞) B(-30)∪(03)C(-∞-3)∪(3+∞) D(-∞-3)∪(03)【解析】选D因为′=f′(x)g(x)+f(x)g′(x)所以当x<0时′>0所以f(x)·g(x)在(-∞0)上是增函数又g(-3)=0所以f(-3)g(-3)=0所以当x∈(-∞-3)时f(x)g(x)<0;当x∈(-30)时f(x)g(x)>0又因为f(x)g(x)分别是定义在R上的奇函数和偶函数所以f(x)g(x)在R上是奇函数其图象关于原点对称所以当x∈(03)时f(x)g(x)<0综上选D【补偿训练】(2015·全国卷Ⅱ)设函数f′(x)是奇函数f(x)(x∈R)的导函数f(-1)=0当x>0时xf′(x)-f(x)<0则使得f(x)>0成立的x的取值范围是( )A(-∞-1)∪(01) B(-10)∪(1+∞)C(-∞-1)∪(-10) D(01)∪(1+∞)【解析】选A记函数g(x)=则g′(x)=因为当x>0时xf′(x)-f(x)<0故当x>0时g′(x)<0所以g(x)在(0+∞)上单调递减;又因为函数f(x)(x∈R)是奇函数故函数g(x)是偶函数所以g(x)在(-∞0)上单调递增且g(-1)=g(1)=0当0<x<1时g(x)>0则f(x)>0;当x<-1时g(x)<0则f(x)>0综上所述使得f(x)>0成立的x的取值范围是(-∞-1)∪ (01)二、填空题(每小题5分共10分)3(2016·泰安模拟)如果函数f(x)=2x2-lnx在定义域内的一个子区间(k-1k+1)上不是单调函数那么实数k的取值范围是【解析】显然函数f(x)的定义域为(0+∞)y′=4x-=由y′>0得函数f(x)的单调递增区间为;由y′<0得函数f(x)的单调递减区间为由于函数在区间(k-1k+1)上不是单调函数所以解得1≤k<答案:4(2016·盐城高二检测)若函数f(x)=(mx-1)e x在(0+∞)上单调递增则实数m的取值范围是【解析】因为f′(x)=(mx+m-1)e x由题意得f′(x)≥0在(0+∞)上恒成立令g(x)=mx+m-1则解得m≥1答案:令f′(x)=0得x1=1x2=a-1因为f(x)在(14)内为减函数所以当x∈(14)时f′(x)≤0;因为f(x)在(6+∞)内为增函数所以当x∈(6+∞)时f′(x)≥0所以4≤a-1≤6解得5≤a≤7所以实数a的取值范围为方法二:f′(x)=x2-ax+a-1因为f(x)在(14)内为减函数所以当x∈(14)时f′(x)≤0;因为f(x)在(6+∞)内为增函数所以当x∈(6+∞)时f′(x)≥0所以即解得5≤a≤7所以实数a的取值范围为6(2015·驻马店高二检测)已知函数f(x)=(ax2+x-1)e x其中e是自然对数的底数a∈R(1)若a=1求曲线f(x)在点(1f(1))处的切线方程(2)若a=-1求f(x)的单调区间【解析】(1)因为f(x)=(x2+x-1)e x所以f′(x)=(2x+1)e x+(x2+x-1)e x=(x2+3x)e x所以曲线f(x)在点(1f(1))处的切线斜率为k=f′(1)=4e又因为f(1)=e所以所求切线方程为y-e=4e(x-1)即4ex-y-3e=0(2)f(x)=(-x2+x-1)e x因为f′(x)=-x(x+1)e x令f′(x)<0得x<-1或x>0f′(x)>0得-1<x<0所以f(x)的减区间为(-∞-1)(0+∞)增区间为(-10)关闭Word文档返回原板块。
模块三:函数单调性第一大类题型:决定导函数正负的部分为一次函数。
乘除运算中不决定正负的部分:大于零或者大于等于零的部分。
第一部分:平方大于等于零;第二部分:指数大于零;第三部分:根号大于等于零;第四部分:对数的真数大于零。
定义域的计算:函数解析式中的限制条件有三种。
第一部分:分母不等于零;第二部分:根号下大于等于零;第三部分:对数函数的真数大于零。
题型一:无参数求单调区间。
例题一:已知:函数)12()(-=x e x f x。
求解:函数)(x f 的单调区间。
本题解析:定义域:R x ∈。
导函数:)12()212(2)12()('+=+-=+-=x e x e e x e x f xxxx。
令导函数21120120)('-≥⇒-≥⇒≥+⇒≥x x x x f 。
如下图所示:当21,(--∞∈x 时:导函数0)('<x f ,函数)(x f 单调递减;当),21[+∞-∈x 时:导函数0)('≥x f ,函数)(x f 单调递增。
例题二:已知:函数xexx f --=1)(。
求解:函数)(x f 的单调区间。
本题解析:定义域:0>-xe且⇒≠-0x e 没有限制R x ∈⇒。
导函数:x x x x x exe x e x e e xf ------=-+-=----=11)()1)(()('2。
令导函数000)('≤⇒≥-⇒≥x x x f 。
如下图所示:当]0,(-∞∈x 时:导函数0)('≥x f ,函数)(x f 单调递增;当),0(+∞∈x 时:导函数0)('<x f ,函数)(x f 单调递减。
例题三:已知:函数1ln 2)(-+-=x x x f 。
求解:函数)(x f 的单调区间。
本题解析:定义域:),0(+∞∈x 。
导函数:xx x x f 221)('+-=+-=。
令导函数22020)('≤⇒-≥-⇒≥+-⇒≥x x x x f 。
导数与函数的单调性__ry=^^ 前0肆籟• •>必过教材美函数的单调性在(a, b)内可导函数f(x), f' (x)在(a, b)任意子区间内都不恒等于O.f' (x)> 0? f(x)在(a, b)上为增函数.f' (x)w 0? f(x)在(a, b)上为减函数.[小题体验]1 .函数f(x) = e x—x的减区间为________ .答案:(—R, 0)2.已知a>0,函数f(x)= x3—ax在[1 , +m)上是增函数,则实数a的取值范围为答案:(0,3]••>必过易措关1. 求函数单调区间与函数极值时没有列表的习惯,会造成问题不能直观且有条理的解决.2. 注意两种表述"函数f(x)在(a, b)上为减函数”与"函数f(x)的减区间为(a, b)”的区别.[小题纠偏]11 .函数y=只2—In x的单调递减区间为__________ .1 x —1 x—1x+1 ”一解析:y = x—1= = * (x> 0),令y' v 0 得0 v x v 1.所以函数的单调递减区间为(0,1).答案:(0,1)1 22.已知函数f(x)=—?x + bln x在区间[2 , )上是减函数,则b的取值范围是解析:由题意得,f' (x)=—x + 0在[2,+ s )上恒成立,即b< x2在[2 ,+s)上恒成立,•••函数g(x)= x2在[2 , + s )上单调递增,••• g(x)min= g(2) = 4 ,••• b W 4.答案:(—s, 4]考点一判断函数的单调性重点保分型考点一一师生共研[典例引领]2 _(2018南京学情调研)已知函数f(x)= ax — bx + In x , a , b € R . (1) 当a = b = 1时,求曲线 y = f(x)在x = 1处的切线方程; ⑵当b = 2a + 1时,讨论函数f(x)的单调性. 解:⑴因为 a = b = 1,所以 f(x)= x 2— x + In x ,1从而 f ' (x)= 2x — 1+ . x因为 f(1) = 0, f (1) = 2,所以曲线 y = f(x)在x = 1处的切线方程为 y — 0= 2(x — 1),即2x — y — 2= 0. (2) 因为 b = 2a + 1,所以 f(x) = ax 2— (2a + 1)x + In x(x > 0),21 2ax — 2a + 1 x + 1 2ax — 1 x — 1从而 f (x)= 2ax — (2a + 1) + -= -------- ------- 1--- -- ------------ > ------ [x x x 当 a w 0 时,由 f ' (x)> 0,得 0v x v 1;由 f ' (x)v 0,得 x > 1, 所以f(x)在(0,1)上单调递增,在(1, + g )上单调递减.1 11 当 0 v a v 了时,由 f ' (x) > 0,得 0v x v 1 或 x > —;由 f ' (x)v 0,得 1 v x <丁,2 2a2a当a = *时,因为f ' (x)A 0(当且仅当x = 1时取等号),所以f(x)在(0, +^)上单调递增. 1 1 1当 a >1 时,由 f ' (x)>0,得 0v x v —或 x > 1 ;由 f ' (x)v 0 得丁v x v 1,2 2a 2a 所以f(x)在0,2a 和(1,+m)上单调递增,在2a ,1上单调递减.[由题悟法]判断函数单调性的步骤 (1) 确定函数f(x)的定义域;(2) 求导数f ' (x),并求方程f ' (x)= 0的根;⑶利用f ' (x)= 0的根将函数的定义域分成若干个子区间,在这些子区间上讨论 f ' (x)的正负,由f ' (x)的正负确定f(x)在相应子区间上的单调性.[提醒]研究含参数函数的单调性时, 需注意依据参数取值对不等式解集的影响进行分 类讨论.[即时应用]已知函数f(x)= x 3— ax — 1,讨论f(x)的单调性. 解:f(x)所以f(x)在(0,1)和 右+上单调递增,在1,2a 上单调递减.的定义域为R f' (x)= 3x2— a.①当a w 0时,f' (x)A 0恒成立,所以f(x)在R上为增函数.②当a>0 时,令3x2—a= 0,得x = ±^,3当x>—^或xv ---------3a时,f' (x)>0;3 3当一晋V x时,f' (x)v 0.3 3因此f(x)在—a,—乎,今,+ m上为增函数,在—-^,呼上为减函数.综上可知,当a w 0时,f(x)在R上为增函数;当a> 0时,f(x)在子,+ 上为增函数,在,哼上为减函数.考点二求函数的单调区间重点保分型考点一一师生共研[典例引领]已知函数f(x)= (x2+ ax+ a)e x,其中a€ R, e是自然对数的底数.(1) 当a= 1时,求曲线y= f(x)在x= 0处的切线方程;⑵求函数f(x)的单调减区间.解:(1)当a= 1 时,f(x)= (x2+ x + 1)e x,所以f(0) = 1. 因为f' (x)= (x2+ 3x + 2)e x,所以f' (0)=2.所以切线方程为y— 1 = 2(x—0),即卩2x —y+1 = 0.(2) 因为f' (x)= [x + (a+ 2)x+ 2a]e x= (x+ a)(x+ 2)e x,当a = 2时,f' (x)= (x + 2)2e x>0,所以f(x)无单调减区间. 当一a>—2,即卩a v 2时,列表如下:x (—m,—2)—2(—2,—a)—a(—a,+ a)f' (x)+ 0一0+f(x)极大值极小值所以f(x)的单调减区间是(一2, —a). 当一a v—2,即卩a>2时,列表如下:x(—a,—a)—a(—a, —2)—2(—2,+ a )f' (x)+ 0一0+f(x)极大值极小值所以f(x)的单调减区间是(一a, —2).综上,当a = 2时,f(x)无单调减区间;当a v 2时,f(x)的单调减区间是(一2,—a);当a>2时,f(x)的单调减区间是(一a, —2).[由题悟法]求函数的单调区间的2方法法一:⑴确定函数y= f(x)的定义域;(2) 求导数f' (x);(3) 解不等式f' (x) > 0,解集在定义域内的部分为单调递增区间;(4) 解不等式f' (x) V 0,解集在定义域内的部分为单调递减区间.法二:(1)确定函数y= f(x)的定义域;(2)求导数f' (x),令f' (x)= 0,解此方程,求出在定义区间内的一切实根;⑶把函数f(x)的间断点(即f(x)的无定义点)的横坐标和上面的各实数根按由小到大的顺序排列起来,然后用这些点把函数f(x)的定义区间分成若干个小区间;(4)确定f' (x)在各个区间内的符号,根据符号判定函数在每个相应区间内的单调性.[即时应用]2 21. (2018常州期中)已知函数f(x)= x - ax—ainx.(1) 求f(x)的单调区间;⑵若f(x)> 0恒成立,求实数a的取值范围.解:⑴函数f(x)的定义域为(0,+^),fx —a 'f2x+ a \ f' (x)= —由f' (x)= 0,可得x= a 或x = —a,①当a = 0时,f' (x)> 0在(0 ,+s)上恒成立,••• f(x)的单调递增区间是(0 ,+R),无单调递减区间.②当a> 0时,由f' (x)> 0,解得x> a,函数f(x)单调递增;由f' (x)v 0,解得0V x v a,函数f(x)单调递减,•f(x)的单调递减区间是(0, a),单调递增区间是(a, + m).③当a v 0时,由f' (x)> 0,解得x>—:,函数f(x)单调递增;由f' (x)v 0,解得0v x v —2,函数f(x)单调递减,•f(x)的单调递减区间是0,—;,单调递增区间是一a>+.(2) f(x) > 0恒成立等价于f(x)min > 0,由⑴知,①当a = 0时,f(x) = x2> 0,符合题意;②当a>0时,f(x)的单调递减区间是(0, a),单调递增区间是(a, + ),2 2 2…f(x)min = f(a)= a —a —a in a》0,解得0 v a< 1;2. (2019苏州十中检测)设函数f(x)= 2x 2 + e x — xe X . ⑴求f(x)的单调区间;⑵若x € [ — 2,2]时,不等式f(x)>m 恒成立,求实数 m 的取值范围.解:(1)f ' (x)= x + e x — (e x + xe x)= x(1 — e x ). 若 x v 0,贝U 1 — e x >0,所以 f ' (x)v 0; 若 x >0,贝U 1 — e x v 0,所以 f ' (x)v 0; 若 x = 0,则 f ' (x) = 0.所以f(x)在(—m ,+ m )上为减函数,即f(x)的单调减区间为(―m,+m ). ⑵因为x € [ — 2,2]时,不等式f(x)>m 恒成立,所以 m v f(x)min ; 由⑴知f(x)在[—2,2]上单调递减,所以 f(x)min = f(2) = 2— e 2. 所以当m v 2— e 2时,不等式f(x)> m 恒成立. 故实数m 的取值范围为(一m, 2— e 2). 考点三由函数的单调性求参数的取值范围重点保分型考点一一师生共研[典例引领](2019木渎高级中学模拟)已知函数f(x) = 2xln x — x 2+ ax(a € R 是常数).(1) 当a = 2时,求曲线y = f(x)在点(1, f(1))处的切线方程;_1 "| 一(2) 若f(x)在区间匚,e 内单调递增,求a 的取值范围. 解:(1)因为 a = 2时,f(x) = 2xln x — x 2 + 2x , f ' (x)= 2(ln x + 1)— 2x + 2 = 2ln x — 2x + 4, 所以 f ' (1) = 2, f(1) = 1,故切线方程是 y — 1 = 2(x — 1),即2x — y — 1 = 0.③当a v 0时,f(x)的单调递减区间是 0,单调递增区间是 -f(X )min = fa ,- + m ,2 '十,2 2—a = a_ + a_.2丿4十23解得—2e 4 < a v 0. 综上,实数a 的取值范围是 3 [—2e 4, 1].0, a 2ln(2)f ' (x) = 2ln x — 2x + a + 2,1 e 内单调递增,则 a + 2> 2(x — In x)在区间设 h(x)= x — In x , x € -, e ,贝U h ' (x) = 1 —1若f(x)在区间e ,e 内恒成立,1 x — 1 X ==,1由 h ' (x)> 0,得 1 v x < e ; 由 h ' (x)v 0,得一 w x v 1,e 故h(x)在e ,1 '内单调递减,在(1, e ]内单调递增, 而h 1 + 1 v h(e)= e - 1,3 e故 a + 2> 2e - 2,解得 a > 2e -4, 所以a 的取值范围是[2e -4,+^).[由题悟法]由函数单调性求参数的一般思路即“若函数单调递增, 则f ' (x)A 0;若函数单调递减,则f ' (x)w 0”来求解.[提醒]f(x)为增函数的充要条件是对任意的 x € (a , b)都有f ' (x)>0,且在(a , b)内的任一非空子区间上f ' (x)不恒为0.应注意此时式子中的等号不能省略,否则漏解.[即时应用]已知函数 f(x)= e x - ax — 1. (1) 求f(x)的单调递增区间;(2) 是否存在实数a ,使f(x)在(—2,3)上单调递减?若存在,求出 a 的取值范围;若不存 在,请说明理由.解:f ' (x) = e x - a.(1)若 a w 0,则 f ' (x)= e x - a > 0 恒成立, 即f(x)在R 上单调递增;若 a >0,令 e x - a > 0,解得 x > In a , 即f(x)在[In a ,+ a )上单调递增,因此当a w 0时,f(x)的单调递增区间为 R ; 当a >0时,f(x)的单调递增区间为[ln a ,+ a ). (2)存在实数a 满足条件.因为 f ' (x)= e x - a w 0 在(-2,3)上恒成立, 所以a > e x 在(—2,3)上恒成立.又因为—2v x v 3,所以e -2v e x v e 3,要使a > e x 在(—2,3)上恒成立,只需 a > e 3.故存在实数a € [e 3,+ a ),使f (x)在(-2,3)上单调递减.(1)利用集合间的包含关系处理: 的子集.y = f(x)在(a , b)上单调,则区间(a , b)是相应单调区间(2)转化为不等式的恒成立问题,0 口1=1一抓基础,多练小题做到眼疾手快1. ______________________________________ 函数f(x) = x—In x的单调减区间为.1 x 一1解析:函数的定义域是(0,+g),且f' (x)= 1 —-= ---------------- ,令f' (x) v 0,得0 v x v 1.答案:(0,1)2. (2018 •东中学检测)已知函数f(x)= x —1 —(e—1)ln x,其中e为自然对数的底数,则满足f(e x)v 0的x的取值范围为 __________ .e—1 解析:由f' (x)= 1—一 = 0(x>0),得x= e—1.当x € (0, e—1)时,f' (x) v 0,函数f(x)单调递减;当x € (e—1,+ g )时,函数f(x)单调递增.又f(1) = f(e)= 0,1 v e—1 v e,所以由f(e x)v 0得1v e x v e,解得0v x v 1.答案:(0,1)1 3 一k3. (2019盐城中学检测)若函数f(x)= 4x+ —厂+ In x在区间[1,2]上单调递增,则实数k的取值范围是 _________ .1 —一k解析:•••函数f(x) = 1x + 一;厂+ In x在区间[1,2]上单调递增,4 x1 k—— 1二f' (x) = ;+ — +1> 0 在[1,2]上恒成立,4 x x1 2k> —1x —x+ —,4••• y=—良2—x+ —在[1,2]上单调递减,4••• k> £答案:7,+g /4. ___________________ 定义在R上的可导函数f(x),已知y= e f'⑷的图象如图所示, 则y= f(x)的增区间是 .解析:由题意及题图知f' (x) > 0的区间是(一g, 2), 故函数y= f(x)的增区间是(一g, 2).答案:(—g, 2)5. (2019响水中学模拟)若函数f(x)= ax———x在区间(一1, 1)上为单调减函数,则a的取值范围是_____________ .解析:若函数f(x) = ax———x在(—1,1)上为单调减函数,则f' (x)w 0在(—1,1)上恒成立,即—ax2——< 0在(—1,1)上恒成立,即ax2< 1在(—1,1)上恒成立.若a w 0,满足条件.若a>0,则只要当x= 1或x =—1时,满足条件即可,此时a w 1,即卩0v a< 1.综上a w 1.答案:(—3 1]二保咼考,全练题型做到咼考达标1 •若幕函数f(x)的图象过点寓2,1 j则函数g(x)= e x f(x)的单调递减区间为_____________ .解析:设幕函数f(x)= x a,因为图象过点俘,2丿,所以卜密r,a=2,所以f(x)= x2,故g(x) = e x x2,令g' (x)= e x x2+ 2e x x= e x(x2+ 2x)v 0,得—2v x v0,故函数g(x)的单调递减区间为(一2,0)•答案:(—2,0)2.函数f(x) = (x —3)e x的单调递增区间为_________ •解析:函数f(x)= (x—3)e x的导数为f' (x)= [(x —3)e x]' = e x+ (x —3)e x= (x —2)e x.由函数导数与函数单调性的关系,得当f' (x)>0时,函数f(x)单调递增,此时由不等式f' (x)=(x—2)e x> 0,解得x> 2.答案:(2,+s )3•若函数f(x) = 3x3+ x2—ax+ 3a在区间[1,2]上单调递增,则实数a的取值范围是解析:因为f' (x) = x2+ 2x—a,且函数f(x)在区间[1,2]上单调递增,所以f' (x)> 0在[1,2]上恒成立,所以a w (x2+ 2x)min = 3,所以a w 3.答案:(—^, 3]4. (2018淮安期末)若函数f(x) = ^x2—aln x在其定义域内的一个子区间(a —2, a+ 2)上不单调,则实数a的取值范围是 _________ .解析:函数f(x)的定义域是(0, + ),故a— 2 > 0,解得a > 2,而f' (x)= x —a,令x—a= 0,解得x= a.x x因为f(x)在(a—2, a+ 2)上不单调,所以 a —2v a v a + 2,解得0 w a v 4.综上,a € [2,4).答案:[2,4)5. (2018姜堰中学学情调研)函数f(x)在定义域R内可导,若f(x)= f(2 —x),且当x €(— 8,1)时,(x — 1)f ' (x)v 0,设 a = f(0) ,b = f 1 ,C = f(3),则 a,b,c 的大小关系为 ______________ .解析:依题意得,当x v 1时,f ' (x)>0, f(x)在(—8, 1)上为增函数.又f(3) = f(— 1), 且一1v 0v 1v 1,因此 f( — 1)v f(0) v f 1,即 f(3) v f(0)v f 2 , c v a v b.答案:c v a v b6. ______________________________________________ (2018东台中学期末)已知f(x)是定义在R 上的函数,f ' (x)是f(x)的导函数,若f ' (x) + f(x)>0,且f(0) = 1,则不等式f(x) v e —x 的解集为 _______________________________________________________ .解析:令 g(x)= e x f(x),则 g ' (x) = e x [ f'x) + f(x)]>0, 所以g(x)在 R 上单调递增,而f(0) = 1,故g(0) = 1. f(x)v e —x 等价于 e x f(x)v 1,则 g(x)v g(0),解得 x v 0. 答案:( — 8, 0)7. _______________ 已知定义在 R 上的可导函数f(x)满足f ' (x) v 1,若f(2 — m) — f(m) v 2— 2m ,则实数 m 的取值范围是.解析:令g(x)= f(x)— x ,所以g ' (x) = f ' (x) — 1 v 0,即g(x)在R 上单调递减,由题可 知 f(2 — m)— f(m) v 2— 2m , 即卩 f(2 — m)— (2 — m)v f(m)— m ,也即 g(2 — m) v g(m),所以 2 — m > m ,即得 m v 1.答案:( — 8, 1)1 2x 218. _______ 已知函数f(x)(x € R )满足f(1) = 1,且f(x)的导数f ' (x)v 2则不等式f(x )v - + -2的 解集为 .1 1解析:设 F(x)= f(x) — 2x ,所以 F ' (x)= f ' (x)— ^,因为 1xx 1—1 v 0,即函数F(x)在R 上单调递减.因为f(x 2) v — +1F(x 2) v F(1),而函数F(x)在R 上单调递减,所以 x 2> 1,即 答案:(一8, — 1) U (1 ,+8 )9.已知函数f(x) = 4+ In x — 2其中a € R,且曲线y = f(x)在点(1, f(1))处的切线垂 直于直线 y =[.(1)求a 的值;⑵求函数f(x)的单调区间. 解:(1)对f(x)求导得f ' (x)v 1,所以 F ' (x) = f ' (x) x21所以 f(x 2)— : v f(1)—;所以x € ( — 8,— 1) u (1, + 8 ).f' (x)=41 35 由f(x)在点(1, f(1))处的切线垂直于直线y=;x 知f ' (1)=—匚一a =- 2,解得a =.2 44x 53(2)由(1)知 f(x)=4+ 4X —ln x —2,令 f ' (x)= 0,解得 x =— 1 或 x = 5.因为x =— 1不在f(x)的定义域(0,+s )内,故舍去. 当 x € (0,5)时,f ' (x)< 0, 故f(x)在(0,5)内为减函数; 当 x € (5, + g )时,f ' (x) > 0, 故f(x)在(5, + g )内为增函数.综上,f(x)的单调增区间为(5, + g ),单调减区间为(0,5).1 210. (2018前黄高级中学期末)已知函数f(x)= ^ax + 2x — ln x(a € R ). (1) 当a = 3时,求函数f(x)的单调区间;(2) 若函数存在单调增区间,求实数 a 的取值范围.解:(1)当 a = 3 时,f(x)= 3x 2 + 2x — ln x ,其定义域为(0, + g ). 1 (3x — 1 fx + 1 \••• f ' (x) = 3x + 2 —=x x 当 x € 0, 3 时,f ' (x)< 0, f(x)单调递减; 当 x € 3,+ g 时,f ' (x)> 0, f(x)单调递增. • f (x)的单调减区间为0,3,单调增区间为3,+ g . 1(2)f(x) = ?ax 2+ 2x — In x ,其定义域为(0,+g ),1(x) = ax + 2 —= x若函数存在单调增区间,则f ' (x) > 0在区间(0 ,+g )上有解,即ax 2 + 2x — 1 > 0在区间(0,+g )上有解.1 一 2x 1 — 2x分离参数得a > x 2,令g(x) = x 2 ,则依题意,只需 a > g(x)min 即可. 一 g (x)=屮 x -12-1,•- g(x)min =— 1,则 f ' (x) =2x — 4x — 54xax 2+ 2x — 1 x• f '故所求a的取值范围为(一1,+ g).三上台阶,自主选做志在冲刺名校11.已知函数f'(X)是函数f(x)的导函数,f(1)=-,对任意实数X,都有f(x)—f' (x)> 0, e则不等式f(x)v e x—2的解集为__________ .解析:设g(x) = fF,•••对任意实数X,都有f(x) —f' (x) > 0,••• g' (x) v 0, 即g(x)为R上的减函数.由不等式f(x)v e x—2,得号v e"=古,即卩g(x) v g(1).•/ g(x)为R上的减函数,• x> 1,•不等式f(x)v e x—2的解集为(1 ,+^).答案:(1 ,+^ )2.已知函数f(x)= aln x—ax—3(a€ R).(1) 求函数f(x)的单调区间;⑵若函数y= f(x)的图象在点(2, f(2))处的切线的倾斜角为45°对于任意的t€ [1,2], 函数g(x) = x3+ x2 f (x片m在区间(t,3)上总不是单调函数,求m的取值范围.解:⑴函数f(x)的定义域为(0 ,+^),且f' (x)= a 1 —x .当a>0时,f(x)的增区间为(0,1),减区间为(1,+ );当a v 0时,f(x)的增区间为(1,+ g),减区间为(0,1);当a = 0时,f(x)不是单调函数.(2) 由(1)及题意得f' (2)=—扌=1,即a =—2,2x 一2所以f(x)=—2ln x + 2x—3, f' (x)= -------- .所以g(x)= x3+ m + 2 x2—2x,所以g' (x)= 3x2+ (m+ 4)x — 2.因为g(x)在区间(t,3)上总不是单调函数,r /即g' (x)= 0在区间(t,3)上有变号零点.由于g' (0) =—2,所以卩(t v 0,当g,(t) v 0, 即3t2+ (m + 4)t—2v0 对任意t€ [1,2]恒成立,由于g' (0)< 0,故只要g,(1) v 0 且g,(2)v 0,即m v—5 且m v—9,即m v—9 ;由g,(3)>0,即m>-所以一37v m v—9.3即实数m的取值范围是373 .-37,- 9.。
规范答题示例8 函数的单调性、极值与最值问题典例8 (12分)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围. 审题路线图 求f ′(x )―――→讨论f ′(x )的符号f (x )单调性―→f (x )最大值―→解f (x )max >2a -2.评分细则 (1)函数求导正确给1分; (2)分类讨论,每种情况给2分,结论1分;(3)求出最大值给2分;(4)构造函数g (a )=ln a +a -1给2分; (5)通过分类讨论得出a 的范围,给2分.跟踪演练8 (2018·全国Ⅱ)已知函数f (x )=13x 3-a (x 2+x +1).(1)若a =3,求f (x )的单调区间; (2)证明:f (x )只有一个零点.(1)解 当a =3时,f (x )=13x 3-3x 2-3x -3,f ′(x )=x 2-6x -3.令f ′(x )=0,解得x =3-23或x =3+2 3.当x ∈(-∞,3-23)∪(3+23,+∞)时,f ′(x )>0; 当x ∈(3-23,3+23)时,f ′(x )<0.故f (x )的单调递增区间为(-∞,3-23),(3+23,+∞),单调递减区间为(3-23,3+23).(2)证明 因为x 2+x +1>0在R 上恒成立,所以f (x )=0等价于x 3x 2+x +1-3a =0.设g (x )=x 3x 2+x +1-3a ,则g ′(x )=x 2(x 2+2x +3)(x 2+x +1)2≥0在R 上恒成立,当且仅当x =0时g ′(x )=0,所以g (x )在(-∞,+∞)上单调递增.故g (x )至多有一个零点,从而f (x )至多有一个零点. 又f (3a -1)=-6a 2+2a -13=-6⎝ ⎛⎭⎪⎫a -162-16<0,f (3a +1)=13>0,故f (x )有一个零点.综上,f (x )只有一个零点.精美句子1、善思则能“从无字句处读书”。
关于高考数学答题技巧有哪些从这个意义上,数学属于形式科学,而不是自然科学。
不同的数学家和哲学家对数学的准确范围和定义有一系列的看法。
下面我为大家带来高考数学答题技巧有哪些,盼望大家喜爱!高考数学答题技巧专题一、三角变换与三角函数的性质问题1、解题路线图①不同角化同角②降幂扩角③化f(x)=Asin(ωx+φ)+h④结合性质求解。
2、构建答题模板①化简:三角函数式的化简,一般化成y=Asin(ωx+φ)+h的形式,即化为“一角、一次、一函数”的形式。
②整体代换:将ωx+φ看作一个整体,利用y=sinx,y=cosx的性质确定条件。
③求解:利用ωx+φ的范围求条件解得函数y=Asin(ωx+φ)+h 的性质,写出结果。
④(反思):反思回顾,查看关键点,易错点,对结果进行估算,检查规范性。
专题二、解三角形问题1、解题路线图(1)①化简变形;②用余弦定理转化为边的关系;③变形证明。
(2)①用余弦定理表示角;②用基本不等式求范围;③确定角的取值范围。
2、构建答题模板①定条件:即确定三角形中的已知和所求,在图形中标注出来,然后确定转化的方向。
②定工具:即依据条件和所求,合理选择转化的工具,实施边角之间的互化。
③求结果。
④再反思:在实施边角互化的时候应留意转化的方向,一般有两种思路:一是全部转化为边之间的关系;二是全部转化为角之间的关系,然后进行恒等变形。
专题三、数列的通项、求和问题1、解题路线图①先求某一项,或者找到数列的关系式。
②求通项公式。
③求数列和通式。
2、构建答题模板①找递推:依据已知条件确定数列相邻两项之间的关系,即找数列的递推公式。
②求通项:依据数列递推公式转化为等差或等比数列求通项公式,或利用累加法或累乘法求通项公式。
③定(方法):依据数列表达式的结构特征确定求和方法(如公式法、裂项相消法、错位相减法、分组法等)。
④写步骤:规范写出求和步骤。
⑤再反思:反思回顾,查看关键点、易错点及解题规范。
专题四、利用空间向量求角问题1、解题路线图①建立坐标系,并用坐标来表示向量。
高考数学《函数的单调区间》基础知识与专项练习题(含答案解析)单调性是函数的一个重要性质,对函数作图起到决定性的作用,而导数是分析函数单调区间的一个便利工具。
求一个已知函数的单调区间是每一个学生的必备本领,在求解的过程中也要学会一些方法和技巧。
一、基础知识:1、函数的单调性:设()f x 的定义域为D ,区间I D ⊆,若对于1212,,x x I x x ∀∈<,有()()12f x f x <,则称()f x 在I 上单调递增,I 称为单调递增区间。
若对于1212,,x x I x x ∀∈<,有()()12f x f x >,则称()f x 在I 上单调递减,I 称为单调递减区间。
2、导数与单调区间的联系(1)函数()f x 在(),a b 可导,那么()f x 在(),a b 上单调递增()',()0x a b f x ⇒∀∈≥,此结论可以这样理解:对于递增的函数,其图像有三种类型: ,无论是哪种图形,其上面任意一点的切线斜率均大于零。
等号成立的情况:一是单调区间分界点导数有可能为零,例如:()2f x x =的单调递增区间为[)0+∞,,而()'00f =,另一种是位于单调区间内但导数值等于零的点,典型的一个例子为()3f x x =在0x =处的导数为0,但是()0,0位于单调区间内。
(2)函数()f x 在(),a b 可导,则()f x 在(),a b 上单调递减()',()0x a b f x ⇒∀∈≤,(3)前面我们发现了函数的单调性可以决定其导数的符号,那么由()',()x a b f x ∀∈,的符号能否推出()f x 在(),a b 的单调性呢?如果()f x 不是常值函数,那么便可由导数的符号对应推出函数的单调性。
(这也是求函数单调区间的理论基础) 3、利用导数求函数单调区间的步骤 (1)确定函数的定义域(2)求出()f x 的导函数'()f x(3)令'()0f x >(或0<),求出x 的解集,即为()f x 的单调增(或减)区间(4)列出表格4、求单调区间的一些技巧(1)强调先求定义域,一方面定义域对单调区间有限制作用(单调区间为定义域的子集)。
导数与函数的单调性(word解析版) x在区间[0,2]上可导,且f(0)=0,f(2)=2,则函数f(x)在区间[0,2]上的单调递增区间为().A。
[0,1] B。
[1,2] C。
[0,2] D。
[0,1]∪[1,2]答案】B解析】根据题意,f(x)在[0,2]上可导,且f(0)=0,f(2)=2,因此可以利用导数求解其单调性.首先求导数f'(x),然后根据f'(x)的符号来判断函数f(x)的单调性.由于f'(x)=1+cosx,当x∈[0,2]时,cosx的取值范围是[-1,1],因此f'(x)的取值范围是[0,2].因此函数f(x)在[0,2]上单调递增,单调递增区间为[1,2],故选B选项.方法技巧归纳】1.求导数f'(x),然后根据f'(x)的符号来判断函数f(x)的单调性.2.对于多项式函数一般不超过三次的情况,可以直接利用导数求解其单调性和极值.3.对于含参数的函数,可以先求导数,然后根据参数的取值范围来判断函数的单调性和极值.变式1】【2018江苏高考】设函数f(x)=x3+ax2+bx+c,其中a,b,c为常数,且f(x)在[0,1]上单调递增,则().A。
a>0,b>0,c>0 B。
a>0,b0 C。
a0,c>0 D。
a0答案】C解析】根据题意,f(x)在[0,1]上单调递增,因此可以利用导数求解其单调性.首先求导数f'(x),得到f'(x)=3x2+2ax+b,然后根据f'(x)的符号来判断函数f(x)的单调性.由于f(x)在[0,1]上单调递增,因此f'(x)在[0,1]上恒大于等于0.又因为f'(x)是一个二次函数,因此其开口向上,当x∈[0,1]时,f'(x)的最小值为0,即当x=0时,f'(x)取到最小值,此时有f'(0)=b.由于f'(x)在[0,1]上恒大于等于0,因此b≥0.又因为f(x)为单调递增函数,因此其二次项系数a>0.又因为f(x)在[0,1]上单调递增,因此f(1)>f(0),即1+a+b+c>0,因此c>-(1+a+b).综上所述,可得a0,c>0,故选C选项.变式2】【2018山东高考】设函数f(x)=x3+3x2+3x+k,其中k为常数,则f(x)在区间(-∞,0)上单调递(增/减);在区间(0,+∞)上单调递(增/减).答案】单调递减,单调递增解析】根据题意,可以利用导数求解函数f(x)的单调性.首先求导数f'(x),得到f'(x)=3x2+6x,然后根据f'(x)的符号来判断函数f(x)的单调性.当x∈(-∞,0)时,f'(x)的取值范围是[0,+∞),因此f(x)在(-∞,0)上单调递减;当x∈(0,+∞)时,f'(x)的取值范围是(-∞,0],因此f(x)在(0,+∞)上单调递增,故选单调递减,单调递增.讨论函数$f(x)=1-x^2e^x$的单调性。
规范答题示例8 函数的单调性、极值与最值问题
典例8 (12分)已知函数f (x )=ln x +a (1-x ). (1)讨论f (x )的单调性;
(2)当f (x )有最大值,且最大值大于2a -2时,求a 的取值范围. 审题路线图 求f ′(x )―――→讨论f ′(x )的符号
f (x )单调性―→f (x )最大值―→解f (x )max >2a -2.
评分细则 (1)函数求导正确给1分; (2)分类讨论,每种情况给2分,结论1分; (3)求出最大值给2分;
(4)构造函数g (a )=ln a +a -1给2分; (5)通过分类讨论得出a 的范围,给2分.
跟踪演练8 (2018·全国Ⅱ)已知函数f (x )=13x 3-a (x 2
+x +1).
(1)若a =3,求f (x )的单调区间; (2)证明:f (x )只有一个零点.
(1)解 当a =3时,f (x )=13
x 3-3x 2
-3x -3,
f ′(x )=x 2-6x -3.
令f ′(x )=0,解得x =3-23或x =3+2 3.
当x ∈(-∞,3-23)∪(3+23,+∞)时,f ′(x )>0; 当x ∈(3-23,3+23)时,f ′(x )<0.
故f (x )的单调递增区间为(-∞,3-23),(3+23,+∞),单调递减区间为(3-23,3+23). (2)证明 因为x 2
+x +1>0在R 上恒成立,
所以f (x )=0等价于x 3
x 2+x +1-3a =0.
设g (x )=x 3
x 2+x +1
-3a ,
则g ′(x )=x 2(x 2+2x +3)
(x 2+x +1)
2≥0在R 上恒成立,当且仅当x =0时g ′(x )=0,
所以g (x )在(-∞,+∞)上单调递增.
故g (x )至多有一个零点,从而f (x )至多有一个零点. 又f (3a -1)=-6a 2
+2a -13=-6⎝ ⎛⎭⎪⎫a -162-16
<0,
f (3a +1)=1
3
>0,故f (x )有一个零点.
综上,f (x )只有一个零点.。