第六章 数值计算命令与例题
- 格式:ppt
- 大小:635.00 KB
- 文档页数:71
数值计算方法练习题习题一1. 下列各数都是经过四舍五入得到的近似数,试指出它们有几位有效数字以及它们的绝对误差限、相对误差限。
(1);(2);(3);(4);(5);(6);(7);2. 为使下列各数的近似值的相对误差限不超过,问各近似值分别应取几位有效数字?3. 设均为第1题所给数据,估计下列各近似数的误差限。
(1);(2);(3)4. 计算,取,利用下列等价表达式计算,哪一个的结果最好?为什么?(1);(2);(3)(4)5. 序列满足递推关系式若(三位有效数字),计算时误差有多大?这个计算过程稳定吗?6. 求方程的两个根,使其至少具有四位有效数字(要求利用。
7. 利用等式变换使下列表达式的计算结果比较精确。
(1);(2)(3);(4)8. 设,求证:(1)(2)利用(1)中的公式正向递推计算时误差增大;反向递推时误差函数减小。
9.设x>0,x*的相对误差为δ,求f(x)=ln x的误差限。
10.下列各数都是经过四舍五入得到的近似值,试指出它们有几位有效数字,并给出其误差限与相对误差限。
11.下列公式如何才比较准确?(1)(2)12.近似数x*=0.0310,是位有数数字。
13.计算取,利用式计算误差最小。
四个选项:习题二1. 已知,求的二次值多项式。
2. 令求的一次插值多项式,并估计插值误差。
3. 给出函数的数表,分别用线性插值与二次插值求的近似值,并估计截断误差。
0.4 0.5 0.6 0.7 0.80.38942 0.47943 0.56464 0.64422 0.717364. 设,试利用拉格朗日余项定理写出以为节点的三次插值多项式。
5. 已知,求及的值。
6. 根据如下函数值表求四次牛顿插值多项式,并用其计算和的近似值。
X 1.615 1.634 1.702 1.828 1.921F (x) 2.41450 2.46459 2.65271 3.03035 3.340667. 已知函数的如下函数值表,解答下列问题(1)试列出相应的差分表;(2)分别写出牛顿向前插值公式和牛顿向后插值公式。
数值计算方法试题一一、 填空题(每空1分,共17分)1、如果用二分法求方程043=-+x x 在区间]2,1[内的根精确到三位小数,需对分( )次。
2、迭代格式)2(21-+=+k k k x x x α局部收敛的充分条件是α取值在( )。
3、已知⎪⎩⎪⎨⎧≤≤+-+-+-≤≤=31)1()1()1(2110)(233x c x b x a x x x x S 是三次样条函数,则a =( ),b =( ),c =( )。
4、)(,),(),(10x l x l x l n 是以整数点n x x x ,,,10 为节点的Lagrange 插值基函数,则∑==nk kx l0)(( ),∑==nk k jk x lx 0)((),当2≥n 时=++∑=)()3(204x l x xk k n k k( )。
5、设1326)(247+++=x x x x f 和节点,,2,1,0,2/ ==k k x k 则=],,,[10n x x x f 和=∆07f 。
6、5个节点的牛顿-柯特斯求积公式的代数精度为 ,5个节点的求积公式最高代数精度为 。
7、{}∞=0)(k k x ϕ是区间]1,0[上权函数x x =)(ρ的最高项系数为1的正交多项式族,其中1)(0=x ϕ,则⎰=14)(dx x x ϕ 。
8、给定方程组⎩⎨⎧=+-=-221121b x ax b ax x ,a 为实数,当a 满足 ,且20<<ω时,SOR 迭代法收敛。
9、解初值问题00(,)()y f x y y x y '=⎧⎨=⎩的改进欧拉法⎪⎩⎪⎨⎧++=+=++++)],(),([2),(]0[111]0[1n n n n n n n n n n y x f y x f h y y y x hf y y 是阶方法。
10、设⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=11001a a a a A ,当∈a ( )时,必有分解式T LL A =,其中L为下三角阵,当其对角线元素)3,2,1(=i l ii 满足( )条件时,这种分解是唯一的。
第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
《数值计算方法》复习资料课程的性质与任务数值计算方法是一门应用性很强的基础课,在学习高等数学,线性代数和算法语言的基础上,通过本课程的学习及上机实习、使学生正确理解有关的基本概念和理论,掌握常用的基本数值方法,培养应用计算机从事科学与工程计算的能力,为以后的学习及应用打下良好基础。
第一章数值计算方法与误差分析一考核知识点误差的来源类型;绝对误差和绝对误差限,相对误差和相对误差限,有效数字;绝对误差的传播。
二复习要求1. 知道产生误差的主要来源。
2. 了解绝对误差和绝对误差限、相对误差和相对误差限和有效数字等概念以及它们之间的关系。
3. 知道四则运算中的误差传播公式。
三例题例1设x*= =3.1415926…近似值x=3.14=0.314×101,即m=1,它的绝对误差是-0.001 592 6…,有即n=3,故x=3.14有3位有效数字.x=3.14准确到小数点后第2位.又近似值x=3.1416,它的绝对误差是0.0000074…,有即m=1,n=5,x=3.1416有5位有效数字.而近似值x=3.1415,它的绝对误差是0.0000926…,有即m=1,n=4,x=3.1415有4位有效数字.这就是说某数有s位数,若末位数字是四舍五入得到的,那么该数有s位有效数字;例2 指出下列各数具有几位有效数字,及其绝对误差限和相对误差限:2.000 4 -0.002 00 9 000 9 000.00=2.000 4=0.200 04×101, 它的绝对误差限0.000 05=0.5×10 1―5,即解因为x1m=1,n=5,故x=2.000 4有5位有效数字. a=2,相对误差限1x 2=-0.002 00,绝对误差限0.000 005,因为m =-2,n=3,x 2=-0.002 00有3位有效数字. a 1=2,相对误差限εr ==0.002 5x 3=9 000,绝对误差限为0.5×100,因为m =4, n=4, x 3=9 000有4位有效数字,a =9,相对误差限εr ==0.000 056x 4=9 000.00,绝对误差限0.005,因为m =4,n=6,x 4=9 000.00有6位有效数字,相对误差限为εr ==0.000 000 56由x 3与x 4可以看到小数点之后的0,不是可有可无的,它是有实际意义的. 例3 ln2=0.69314718…,精确到10-3的近似值是多少?解 精确到10-3=0.001,意旨两个近似值x 1,x 2满足,由于近似值都是四舍五入得到的,要求满足,近似值的绝对误差限应是ε=0.0005,故至少要保留小数点后三位才可以。
第一章 引论〔习题〕2.证明 : 记 x x f =)( ,则)()(***x x x x x xx x f E r +-=-=)(21**x E x x x x x xr ≈-⋅+=.3.证明: 令: )()()(b a fl b a fl b a **-*=δ可估计: 1|)(|-≥*c b a fl β 〔c 为b a *阶码〕,故: 121||--≤c t c ββδt-=121β 于是:)1)()(δ+*=*b a b a fl .4.解 (1) )21()122x x x++.(2) )11(2x x x x x-++.(3) xx x x x x x cos 1sin )cos 1(sin cos 12+≈+=-.6.解 a 的相对误差:由于31021|)(|-⋅≤-=a x x E .x ax x E r -=)(, 221018110921)(--⋅=⨯≤x E r . 〔1Th 〕)(a f 对于)(x f 的误差和相对误差.|11||)(|a x f E ---==()25.021011321⨯⋅≤-+---ax x a =310-33104110|)(|--⨯=-≤a f E r .9.解 递推关系: 1101.100-+-=n n n y y y (1) 取初值 10=y , 01.01=y 计算 可得: 11001.10022-⨯=-y 10001.1-=410-=6310-=y , 8410-=y , 10510-=y , …(2)取初值 50101-+=y , 2110-=y ,记: n n n y y -=ε,序列 {}n ε ,满足递推关系,且 5010--=ε , 01=ε1101.100-+-=n n n εεε, 于是: 5210-=ε, 531001.100-⨯=ε,55241010)01.100(---⨯=ε,55351002.20010)01.100(--⨯-⨯=ε,可见随着 n ε 的主项5210)01.100(--⨯n 的增长,说明该递推关系式是不稳定的.第二章 多项式插值 (习 题)1.方法一. 由 Lagrange 插值公式)()()()()(332211003x l f x l f x l f x l f x L ⋅+⋅+⋅+⋅=)1)((31)2)()(1()1)(()(2123210---=-----=x x x x x x x l ,))(1(2)1)()(1()(21221211--=--+=x x x x x x l ,x x x x x x l )1()()1()1!()(2382121232--=-⋅⋅-+=,)()1(12)()1()(2121213-+=⋅⋅-+=x x x x x x x l . 可得: )21()(23-=x x x L方法二. 令:)()21()(3B Ax x x x L +-=由 23)1(3-=-L , 21)1(3=L , 定A ,B 〔称之为待定系数法〕2.证明(1) 由于 j i j i x l ,)(δ= 故: =)(x L n ∑=ni i k i x l x)( ,当 j x x = 时有: k j j n x x L =)( , n j ,,1,0 =)(x L n 也即为 k x 的插值多项式,由唯一性,有:∑==ni k i ki x x l x)( , n k ,,1,0 =证明(2):利用Newton 插值多项式)(],[)()(0100x x x x f x f x N n -+=)()(],,[100---++n n x x x x x x f)()()()()()(00101x l x x x x x x x x x f n n =----=差商表:f(x) 一阶 二阶 … n 阶差商0x 11x 0101x x -0 )()(11020x x x x --n x 00)()(1010n x x x x --代入)(*式有:)()()()()(1)(020*******n n n x x x x x x x x x x x x x x x N -----++--+=- .)(0x l 为n 次代数多项式,由插值多项式的唯一性:有 )()(0x N x l n ≡.4.解作)(x f 以b a a ,,ε+为节点的Lagrange 插值多项式,有:)()()(22x R x L x f +=, 其中:)()()()()()()()()()(2εεεεε+-+--+-----=a fb a b x a x a f b a b x a x x L)()()()()(b f a b a b a x a x εε------+, )()()(!3)()(2b x a x a x f x R ----'''=εζ , b a <<ζ令: 0→ε 有)()(6)()()(22b x a x f x R x R --'''=→ζ, 又:)()()()([)()(2a f a b ax a f a b a x x b x L εεεεε----+----= )]()()()()(a f a b a x a f a b a x -------+εεεε )()()()()(b f a b a b a x a x εε------+)()()2()(2a f ab a b x x b --+-→)()()()(a f a b a x x b '---+ )()()()(22x P b f a b a x =--+ 故当0→ε 时,成立公式: )()()(x R x P x f +=.5.解:因为34)(3'-=x x f ,2''12)(x x f =)(x f 为凹函数.又从数值表可见:当]5.0,1.0[∈x 时,)(x f 单调下降.有反函数)(1y fx -=)(y f的Newton 插值多项式:)17440.0)(10810.0)(40160.0)(70010.0(01225.0)10810.0)(40160.0)(70010.0(01531.0)40160.0)(70010.0(0096436.0)70010.0(33500.01.0)(4+---+------+--=y y y y y y y y y y y N.337.0)0(4*≈=N x7.解 1)(37++=x x x f .有:=]2,,2,2[71f !7)()7(ξf =1,!8)(]2,,2,2[)8(810ηf f = 0=.9.证明:(1) =⋅-⋅=⋅∆++i i i i i i g f g f g f 11)(i i i i i i i i g f g f g f g f ⋅-⋅+⋅-⋅++++1111i i i i f g g f ∆+∆=+1.(3) n xnn)1()1(-=∆!)()(nh x h x x hn++此题可利用数学归纳法:设 k n = 成立,证明 1+=k n 成立.又 1=n 时是成立的.10.证明: 记: 2]2/)1([)(+=n n n f ,33321)(n n g +++=有: 3)1()()1()(+=-+=∆n n f n f n f 故: ∑-=∆=10)()(n k k f n g ∑-=-+=1)]()1([n k k f k f2]2/)1([)0()(+=-=n n f n f .13.解 作重节点差商的Newton 插值公式)1(]1,1[)1()(+--+-=x f f x P 22)1(]1,0,1,1[)1(]0,1,1[+--++--+x x f x f )1()1(]1,1,0,1,1[2-+--+x x x f重节点差商表:i x i f 一阶 二阶 三阶 四阶10-=x 110-=x 1 201=x 1 0 -212=x 1 0 0 112=x 1 2 2 1 0得 22)1()1(2)1(21)(+++-++=x x x x x P 13+-=x x .17.证: 取 ,00=x 211=x , 12=x , 21=h00=f , 11=f , 12=f记: )(i i x s M ''= , 2,1,0=i有 h x x M h x x M x S 01101)(-+-=''x M x M 102)21(2+-= )21(2)1(2)(212-+-=''x M x M x S 又三弯矩方程为:(2],,[210-=x x x f )244210-=++M M M , )24(41201M M M ++-=.分段积分:⎰⎰+''=''∆121221)]([)]([dx x s dx x s ⎰''12221)]([dx x s ⎰+-+=210201)]21([4dx x M x M ⎰-+-121221)]21()1([4dx x M x M⎰⎰-+-+-+-=121121221201)]21()1([4)]1()21([4dx x M x M dx x M x M由于⎰=-1212241)21(dx x ,⎰=-1212241)1(dx x ,⎰=--121481)1()21(dx x x ,于是:⎰++++=''∆1022212110202]2[61))((M M M M M M M dx x S 又: )24(41201M M M ++-=记 =),(20M M I ⎰∆''12))((dx x S=)()24(41[6120202220M M M M M M +++-+ ])24(81220M M +++ 由00=∂∂M I , 02=∂∂M I. 得: ⎩⎨⎧=+-=-07072020M M M M 即当: 020==M M 时,),(20M M I 达最小故:⎰=⋅⋅≥''∆12212)24(8161))((dx x S ,由最小模原理: ⎰≥''1212)]([dx x f .20.解 利用三弯矩方法 )(i i x s M ''= , 2,1,0=i10=x , 22=x , 32=x⎪⎩⎪⎨⎧-=+=++=+542364622121010M M M M M M M解得: 70-=M , 201=M , 372-=M]2,1[∈x 72431729)(231-+-=x x x x s ]3,2[∈x 105229367219)(232+-+-=x x x x s .第三章 最佳逼近与其实现 (习 题)2.解(1) ⎰'⋅'=badx x g x f g f )()(),( 不是 ),(b a c '中的内积,事实上容易验证:),(),(f g g f = , ),(),(g f g f λλ=),(),(),(w g w f w g f +=+但是0),(=f f 当且仅当 0)(≡x f . 条件不满足,因为:⎰='⋅'=badx x f x f f f 0)()(),(推出0)(≡'x f ,0)(≠=const x f . 因而 ),(g f 不是 ),(b a C '中的内积.(2) ),(g f 是 =],[10b a C {}],[)(,0)(:)(b a C x f a f x f '∈'=空间的内积,这是因为:0),(=f f 推出 0)(='x f ,C x f =)(,又],[10b a C f ∈ ,故 0)(=x f .4.解:由于 0)(],,[2≠''∈x f b a c f ,则)(x f ''于],[b a 上保号,由定理5的推论2可知:)()(1x P x f -的交错点组恰有三个交错点,且 a x =1,b x =3,即: ⎪⎪⎩⎪⎪⎨⎧=-'='-=+-==+-==+-=0)()(,)()()(,)()()(,)()()(122210223103311011αρααρααρααx f x e x x f x e x x f x e x x f x e 故:ab a f b f x f --='=)()()(21α,2)()(2)()(220x a a b a f b f x f a f +⋅---+=α记 c x =2 ,即证得(1).(2) 若 x x f cos )(= ,]2,0[],[π=b a此时由 ab a f b fc f --=')()()( 得:π2sin =c , )2sin(πarc c =,πα21-=πππα2)4(2120-+=2)/2sin(2ππarc ⋅+)4(212-+=πππππ)2sin(arc +. 误差估计:)()(10b f b f E -+=-=ααρ)4(212-+=πππ1)2sin(-+ππarc5.解:选取 α ,使得:=)(αI ||max 211x x x α-≤≤ ,达到极小,即要求 x x *)(*αϕ= ,于]1,0[上一致逼近于2x ,如图 应选*α ,使得: x x x *)(2αϕ-=,于 ]1,0[ 上有两个轮流为正负偏差点,其中之一为1,另一个假设为 ζ 于是: )()1(ζϕα-=,0)(='ζϕ , 〔 ζ为)(x ϕ的极值点〕 得: αζζα+-=-2102=-αζ解得:ζα2= ,0122=-+ζζ,212,1±-=ζ取 12-=ζ , 222-=α. 又: α 是唯一的.6.证明:由最佳一致逼近的特征定理,)(*x P n 为)(x f 的最佳一致逼近多项式,则存在2+n 个点b x x x a n ≤<<<≤+110使得: )()()(*k n k k x P x f x e -==*)1(n k P f --σ.又由于 ],[)(b a C x f ∈ ,于 ),(1+i i x x 中有一个点 i η ,1+<<i i i x x η ,使得: 0)()()(*=-=i n i i P f e ηηη,n i ,,1,0 =即: )(*x P n 为)(x f 满足插值条件: )()(*i i n f P ηη= , n i ,,1,0 =的插值多项式.7.解:求C*,使得:C x f C I bx a R C -=≤≤∈)(max min *)(记 C x f x e -=)()(, 依最佳一致逼近的特征定理:应取)](min )(max [21*],[],[x f x f C b a b a +=*)()(C x f x e -=于 ],[b a 才有两个轮流正负的偏差点,〔即 )(x f 于],[b a 上的最大值点和最小值点〕1x ,2x)(max )(],[1x f x f b a = , )(min )(],[2x f x f b a =此时: *)(max )1()(],[C x f x e b a ii --=σ即 *C 为)(x f 的零次最佳逼近多项式.8.解: 436)(23+++=x x x x f2)(34)3(62031T T T T +++=014T T ++01232112112323T T T T +++= 因为 )(413x T 与零偏差最小,故:012221121123)(T T T x P ++=421132++=x x .为)(x f 的最佳一致逼近多项式.9. 证明:我们仅证明)(x f 是偶函数时,)(x P n 亦是偶函数.由于)(x P n 为)(x f的最佳一致逼近多项式,有:)()()(max ],[f E x P x f n n a a =--和: [,max ()()()]n n a af x P x E f ----=即: )()()(max ],[f E x P x f n n a a =---)(x P n -亦是)(x f 的最佳一致逼近多项式,由最佳一致逼近多项式的惟一性,有: )()(x P x P n n =-即: )(x P n 为偶函数.11.解: 设 x a a x P 10*1)(+= , 2210*2)(x b x b b x P ++=分别为)(x f 的一次、二次最佳平方逼近多项式。
《计算方法》习题答案第一章 数值计算中的误差1.什么是计算方法?(狭义解释)答:计算方法就是将所求的的数学问题简化为一系列的算术运算和逻辑运算,以便在计算机上编程上机,求出问题的数值解,并对算法的收敛性、稳定性和误差进行分析、计算。
2.一个实际问题利用计算机解决所采取的五个步骤是什么?答:一个实际问题当利用计算机来解决时,应采取以下五个步骤: 实际问题→建立数学模型→构造数值算法→编程上机→获得近似结果4.利用秦九韶算法计算多项式4)(53-+-=x x x x P 在3-=x 处的值,并编程获得解。
解:400)(2345-+⋅+-⋅+=x x x x x x P ,从而所以,多项式4)(53-+-=x x x x P 在3-=x 处的值223)3(-=-P 。
5.叙述误差的种类及来源。
答:误差的种类及来源有如下四个方面:(1)模型误差:数学模型是对实际问题进行抽象,忽略一些次要因素简化得到的,它是原始问题的近似,即使数学模型能求出准确解,也与实际问题的真解不同,我们把数学模型与实际问题之间存在的误差称为模型误差。
(2)观测误差:在建模和具体运算过程中所用的一些原始数据往往都是通过观测、实验得来的,由于仪器的精密性,实验手段的局限性,周围环境的变化以及人们的工作态度和能力等因素,而使数据必然带有误差,这种误差称为观测误差。
(3)截断误差:理论上的精确值往往要求用无限次的运算才能得到,而实际运算时只能用有限次运算的结果来近似,这样引起的误差称为截断误差(或方法误差)。
(4)舍入误差:在数值计算过程中还会用到一些无穷小数,而计算机受机器字长的限制,它所能表示的数据只能是一定的有限数位,需要把数据按四舍五入成一定位数的近似的有理数来代替。
这样引起的误差称为舍入误差。
6.掌握绝对误差(限)和相对误差(限)的定义公式。
答:设*x 是某个量的精确值,x 是其近似值,则称差x x e -=*为近似值x 的绝对误差(简称误差)。
第六章习题答案1.用二分法求方程在区间[1内的根,要求其绝对误差不超 32()330f x x x x =+−−=,2]过210.−解: 由于(1)113340,f =+−−=−<32(2)2232330,f =+−×−=>且当时,[1,2]x ∈22110()3233()033f x x x x ′=+−=+−> 所以方程在区间[1内仅有一个实根。
,2] 由2111(21)10,22k −+−≤×解得2ln10 6.64385.ln 2k ≥≥所以需要二分7次,才能得到满足精度要求的根。
取[1区间的中点将区间二等分,求得,2]1 1.5,x =(1.5) 1.8750,f =−<与(1)f 同号,因此得到下一区间[1如此继续下去,即得计算结果。
.5,2];计算结果如下表:k(())f k k a a 的符号(())x f x k k 的符号(())b f b k k 的符号0 1(-) 1.5(-) 2(+) 1 1.5(-) 1.75(+) 2(+) 2 1.5(-) 1.625(-) 1.75(+) 3 1.625(-) 1.6875(-) 1.75(+) 4 1.6875(-) 1.71875(-) 1.75(+) 5 1.71875(-) 1.734375(+) 1.75(+) 6 1.71875(-) 1.7265625(-) 1.734375(+) 7 1.7265625(-) 1.73046875(-) 1.734375(+)7()1.73046875 1.73a b x +==≈77取即满足精度要求2。
2.证明1s 在[0内有一个根,使用二分法求误差不大于in 0x x −−=,1]41102−×的根要迭代多少次?证明: 设()1sin ,f x x =−−x由于(0)10sin 010,f =−−=>(1)11sin1sin10,f =−−=−<且当时,[0,1]x ∈()1cos 0.f x x ′=−−< 因此方程在区间[0内有一个根。
习 题 一 解 答1.取3.14,3.15,227,355113作为π的近似值,求各自的绝对误差,相对误差和有效数字的位数。
分析:求绝对误差的方法是按定义直接计算。
求相对误差的一般方法是先求出绝对误差再按定义式计算。
注意,不应先求相对误差再求绝对误差。
有效数字位数可以根据定义来求,即先由绝对误差确定近似数的绝对误差不超过那一位的半个单位,再确定有效数的末位是哪一位,进一步确定有效数字和有效数位。
有了定理2后,可以根据定理2更规范地解答。
根据定理2,首先要将数值转化为科学记数形式,然后解答。
解:(1)绝对误差:e(x)=π-3.14=3.14159265…-3.14=0.00159…≈0.0016。
相对误差:3()0.0016()0.51103.14r e x e x x -==≈⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.14=0.314×10,m=1。
而π-3.14=3.14159265…-3.14=0.00159…所以│π-3.14│=0.00159…≤0.005=0.5×10-2=21311101022--⨯=⨯所以,3.14作为π的近似值有3个有效数字。
(2)绝对误差:e(x)=π-3.15=3.14159265…-3.14=-0.008407…≈-0.0085。
相对误差:2()0.0085()0.27103.15r e x e x x --==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10,3.15=0.315×10,m=1。
而π-3.15=3.14159265…-3.15=-0.008407…所以│π-3.15│=0.008407……≤0.05=0.5×10-1=11211101022--⨯=⨯所以,3.15作为π的近似值有2个有效数字。
(3)绝对误差:22() 3.141592653.1428571430.0012644930.00137e x π=-=-=-≈-相对误差:3()0.0013()0.4110227r e x e x x--==≈-⨯有效数字:因为π=3.14159265…=0.314159265…×10, 223.1428571430.3142857143107==⨯,m=1。
引论试题(11页)4 试证:对任给初值x 0,0)a >的牛顿迭代公式112(),0,1,2,......k ak k x x x k +=+= 恒成立下列关系式:2112(1)(,0,1,2,....(2)1,2,......kk k x k x x k x k +-=-=≥=证明:(1)(2211222k k k k k k k kx a x ax x x x x +-⎫⎛-+-=+==⎪ ⎝⎭(2) 取初值00>x ,显然有0>k x ,对任意0≥k ,a a x a x x a x x k k k k k ≥+⎪⎪⎭⎫ ⎝⎛-=⎪⎪⎭⎫ ⎝⎛+=+2121216 证明:若k x 有n 位有效数字,则n k x -⨯≤-110218, 而()kk k k k x x x x x 288821821-=-⎪⎪⎭⎫⎝⎛+=-+ nnk k x x 2122110215.22104185.28--+⨯=⨯⨯<-∴>≥ 1k x +∴必有2n 位有效数字。
8 解:此题的相对误差限通常有两种解法. ①根据本章中所给出的定理:(设x 的近似数*x 可表示为m n a a a x 10......021*⨯±=,如果*x 具有l 位有效数字,则其相对误差限为()11**1021--⨯≤-l a x x x ,其中1a 为*x 中第一个非零数) 则7.21=x ,有两位有效数字,相对误差限为025.010221111=⨯⨯≤--x x e 71.22=x ,有两位有效数字,相对误差限为025.010221122=⨯⨯≤--x x e 3 2.718x =,有两位有效数字,其相对误差限为:00025.010221333=⨯⨯≤--x e x ②第二种方法直接根据相对误差限的定义式求解 对于7.21=x ,0183.01<-e x∴其相对误差限为00678.07.20183.011≈<-x e x 同理对于71.22=x ,有003063.071.20083.022≈<-x e x 对于718.23=x ,有00012.0718.20003.033≈<-x e x备注:(1)两种方法均可得出相对误差限,但第一种是对于所有具有n 位有效数字的近似数都成立的正确结论,故他对误差限的估计偏大,但计算略简单些;而第二种方法给出较好的误差限估计,但计算稍复杂。
习 题 一1、下列各数都是经过四舍五入得到的近似值。
试分别指出它们的绝对误差、相对误差和有效数字的位数。
35801=x ,00476.02=x ,33101430.0⨯=x ,24102958-⨯=x ,85000.55=x 。
解:2、已知2031.1=a ,978.0=b 是经过四舍五入后得到的近似值,问b a b a ⨯+,有几位有效数字?解:321110,1022a ab b *-*--≤⨯-≤⨯,而 2.1811, 1.1766a b a b +=⨯=()()3212111101010222a b a b a a b b ****---+-+≤-+-≤⨯+⨯≤⨯故a b +至少具有2位有效数字。
()()32120.978 1.2031110100.006510222ab a b b a a a b b *****----≤-+-≤⨯+⨯=≤⨯ 故a b +至少具有2位有效数字。
3、求二次方程01162=+-x x 的较小正根,取94.763≈,要求有3位有效数字。
解:*1228887.940.06x x x ==-==,*2x 只有一位有效数字。
若改用2180.062715.94x =≈,具有三位有效数字。
4、正方形的边长约cm 100,问测量边长时误差应多大,才能保证面积的误差不超过21cm ?解:正方形的面积函数为2()A x x =(*)2*(*)A A x εε∴=.当*100x =时,若(*)1A ε≤, 则21(*)102x ε-≤⨯故测量中边长误差限不超过0.005cm 时,才能使其面积误差不超过21cm 5、改变下列表达式,使其计算结果比较精确。
(1)1,11>>--+x xx x x ; (2)1),1ln(2>>--x x x ; (3)1,1<<-x e x ; (4)xxsin cos 1-。
解:(1(2) (3)(4)22sin 1cos 2tan sin 22sin cos 22x x xx x x -==习 题 二1、已知314567.032.0sin =,333487.034.0sin =,352274.036.0sin =,用线性插值及抛物插值计算3367.0sin 的值并估计截断误差。
数值计算方法习题一(2)习题二(6)习题三(15)习题四(29)习题五(37)习题六(62)习题七(70)2009.9,9习题一1.设x >0相对误差为2%4x 的相对误差。
解:由自变量的误差对函数值引起误差的公式:(())(())'()()()()f x xf x f x x f x f x δδ∆=≈得(1)()f x =11()()*2%1%22x x δδδ≈===;(2)4()f x x =时444()()'()4()4*2%8%x x x x x xδδδ≈===2.设下面各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出他们各有几位有效数字。
(1)12.1x =;(2)12.10x =;(3)12.100x =。
解:由教材9P 关于1212.m nx a a a bb b =±型数的有效数字的结论,易得上面三个数的有效数字位数分别为:3,4,53.用十进制四位浮点数计算 (1)++; (2)+(+)哪个较精确 解:(1)++ ≈21((0.3197100.245610)0.1352)fl fl ⨯+⨯+=2(0.3443100.1352)fl ⨯+=210⨯(2)+(+)21(0.319710(0.245610))fl fl ≈⨯+⨯ = 21(0.3197100.259110)fl ⨯+⨯ =210⨯易见++=210⨯,故(2)的计算结果较精确。
4.计算正方形面积时,若要求面积的允许相对误差为1%,测量边长所允许的相对误差限为多少解:设该正方形的边长为x ,面积为2()f x x =,由(())(())'()()()()f x xf x f x x f x f x δδ∆=≈解得(())()()'()f x f x x xf x δδ≈=2(())(())22f x x f x x xδδ==%5.下面计算y 的公式哪个算得准确些为什么(1)已知1x <<,(A )11121xy x x-=-++,(B )22(12)(1)x y x x =++; (2)已知1x>>,(A )y=,(B )y = (3)已知1x <<,(A )22sin x y x =,(B )1cos2xy x-=;(4)(A)9y =-(B )y =解:当两个同(异)号相近数相减(加)时,相对误差可能很大,会严重丧失有效数字;当两个数相乘(除)时,大因子(小除数)可能使积(商)的绝对值误差增大许多。
第一章 绪论(12)1、设0>x ,x 的相对误差为δ,求x ln 的误差。
[解]设0*>x 为x 的近似值,则有相对误差为δε=)(*x r ,绝对误差为**)(x x δε=,从而x ln 的误差为δδεε=='=*****1)()(ln )(ln x x x x x , 相对误差为****ln ln )(ln )(ln x x x x rδεε==。
2、设x 的相对误差为2%,求n x 的相对误差。
[解]设*x 为x 的近似值,则有相对误差为%2)(*=x r ε,绝对误差为**%2)(x x =ε,从而nx 的误差为nn x x nxn x x n x x x **1***%2%2)()()()(ln *⋅=='=-=εε,相对误差为%2)()(ln )(ln ***n x x x nr==εε。
3、下列各数都是经过四舍五入得到的近似数,即误差不超过最后一位的半个单位,试指出它们是几位有效数字:1021.1*1=x ,031.0*2=x ,6.385*3=x ,430.56*4=x ,0.17*5⨯=x 。
[解]1021.1*1=x 有5位有效数字;0031.0*2=x 有2位有效数字;6.385*3=x 有4位有效数字;430.56*4=x 有5位有效数字;0.17*5⨯=x 有2位有效数字。
4、利用公式(3.3)求下列各近似值的误差限,其中*4*3*2*1,,,x x x x 均为第3题所给的数。
(1)*4*2*1x x x ++; [解]3334*4*2*11***4*2*1*1005.1102110211021)()()()()(----=⨯=⨯+⨯+⨯=++=⎪⎪⎭⎫ ⎝⎛∂∂=++∑x x x x x f x x x e nk k k εεεε;(2)*3*2*1x x x ;[解]52130996425.010********.2131001708255.01048488.2121059768.01021)031.01021.1(1021)6.3851021.1(1021)6.385031.0()()()()()()()()(3333334*3*2*1*2*3*1*1*3*21***3*2*1*=⨯=⨯+⨯+⨯=⨯⨯+⨯⨯+⨯⨯=++=⎪⎪⎭⎫⎝⎛∂∂=-------=∑x x x x x x x x x x x f x x x e n k k kεεεε;(3)*4*2/x x 。
习 题 六 解 答1、在区间[0,1]上用欧拉法求解下列的初值问题,取步长h=0.1。
(1)210(1)(0)2y y y '⎧=--⎨=⎩(2)sin (0)0x y x e y -'⎧=+⎨=⎩解:取h=0.1,本初值问题的欧拉公式具体形式为21(1)(0,1,2,)n n n y y y n +=--=由初值y 0=y(0)=2出发计算,所得数值结果如下: x 0=0,y 0=2;x 1=0.1,2100(1)211y y y =--=-= x 2=0.2,2211(1)101y y y =--=-=指出:可以看出,实际上求出的所有数值解都是1。
2、用欧拉法和改进的欧拉法(预测-校正法)求解初值问题,取步长h=0.1。
22(00.5)(0)1y x y x y '⎧=-≤≤⎨=⎩ 解:由预测校正公式11(,)[(,)(,)]2n n n n n n n n y hf x y hy f x y f x y ++⎧=+⎪⎨=++⎪⎩n+1n+1y y , 取h=0.1,本初值问题的预测-校正公式的具体形式为122210.1(2)0.05[(2)(2)]nn n n n n n n y x y y x y x y ++⎧=+⨯-⎪⎨=+-+-⎪⎩n+1n+1y y 由初值y 0=y(0)=1出发计算,所得数值结果如下: x 0=0,y 0=1; x 1=0.1,2000220001120.1(2)0.8,0.05[(2)(2)]10.05[(02)(0.120.8]0.82y x y y x y x y =+-==+-+-=+-+-⨯=11y y3、试导出解一阶常微分方程初值问题000(,)()()y f x y x a x b y x y '==≤≤⎧⎨=⎩的隐式欧拉格式111(,)(0,1,2,)n n n n y y hf x y n +++=+=并估计其局部截断误差。
《数值计算》课后习题汇总习题⼀解答1.取3.14,3.15,227,355113作为π的近似值,求各⾃的绝对误差,相对误差和有效数字的位数。
2、⽤四舍五⼊原则写出下列各数的具有五位有效数字的近似数。
346.7854,7.000009,0.0001324580,0.6003003、下列各数都是对准确数进⾏四舍五⼊后得到的近似数,试分别指出他们的绝对误差限和相对误差限和有效数字的位数。
4.0.1%。
5、在计算机数系F(10,4,-77,77)中,对31120.14281100.31415910x x =?=-?与,试求它们的机器浮点数()(1,2)i fl x i =及其相对误差。
6、在机器数系F(10,8,L,U)中,取三个数4220.2337125810,0.3367842910,0.3367781110x y z -=?=?=-?,试按(),()x y z x y z ++++两种算法计算x y z ++的值,并将结果与精确结果⽐较。
7、某计算机的机器数系为F(10,2,L,U),⽤浮点运算分别从左到右计算及从右到左计算10.40.30.20.040.030.020.01+++++++试⽐较所得结果。
8、对于有效数1233.105,0.001,0.100x x x =-==,估计下列算式的相对误差限21123212333,,x y x x x y x x x y x =++==9、试改变下列表达式,使其计算结果⽐较精确(其中1x 表⽰x 充分接近0,1x表⽰x 充分⼤)。
(1)1212ln ln ,x x x x -≈; (2)11,111x x x x---+;(3)1x ;(4)cot ,01x x xx-≠且。
10、⽤4位三⾓函数表,怎样算才能保证1cos 2-有较⾼的精度?11、利⽤27.982≈求⽅程25610x x -+=的两个根,使它们⾄少具有4位有效数字。
12、试给出⼀种计算积分11(0,1,2,3,...)n x n I ex e dx n -==?,近似值的稳定算法。