电力系统三相短路的实用计算
- 格式:doc
- 大小:282.00 KB
- 文档页数:46
第三章电力系统三相短路电流的实用计算�实际工程中往往只关注短路电流周期分量的起始有效值(次暂态电流)或者任意时间的周期分量有效值的计算。
�求得周期分量的起始有效值后,可选取一个冲击系数,按无限大容量电源供电情况下的三相短路计算冲击电流的方法计算冲击电流和最大有效值电流短路电流计算方法�按计算方法分为:�直接计算法�叠加原理法�按计算手段分为:�手算:简单系统直接计算,复杂系统用叠加原理法,如果计算任意时间的周期分量有效值,用运算曲线;�计算机计算:都是复杂系统,都用叠加原理法。
第一节短路电流交流分量初始值计算�一、计算的条件和近似I′′�二、简单系统的计算�三、复杂系统计算一、计算的条件和近似-电源�(1)精确:依据正常运行时节点电压、电流求电源次暂态电势(包括调相机),并设各电势相位相同。
�(2)近似:令所有发电机电势=1=1。
̇′′Ė′′E一、计算的条件和近似-电网�忽略对地电容和变压器励磁回路;�高压电网忽略电阻;�计算时用标幺制,基准电压取电网平均额定电压,变压器变比取电网平均电压比一、计算的条件和近似-综合负荷�综合负荷对短路电流的影响很难准确计及;�粗略处理:无论是短路前还是短路后,都忽略不计,但对于计算远离短路点的支路负荷有较大影响。
�精确计算:用恒定阻抗来表示,这个阻抗用故障前的潮流计算结果求得。
一、计算的条件和近似-短路点附近电动机�发电厂内部短路,发电厂的厂用电动机倒送短路电流,有称为反馈电流的现象。
�若果在电动机端点发生短路,起反馈的短路电流初始值就等于启动电流标幺值。
电弧电阻�一般设短路处为直接短路,。
实际上短路处有电弧,电弧主要消耗有功功率,其等值电阻 与电弧的长度成比例。
0==f f R z f R叫次暂态短路电流周期分量初始值 次暂态:是只在发生短路过程中计及发电机阻尼的作用。
(1)直接法(2)叠加原理二、简单系统计算I ′′I ′′(1)直接法21311x x I +=′′假设条件:(1)不及负荷对短路电流的影响;(2)故障前空载,电源电压为1;(3)直接接地。
第三章电力系统三相短路的实用计算电力系统的三相短路计算是电力系统设计和运行中非常重要的一部分,它能够帮助工程师准确地评估和保护电力系统的稳定性和安全性。
本文将重点介绍三相短路的计算方法和实用技巧。
三相短路是指电力系统中相邻的三相导线之间发生短路故障,导致电流直接从一相短路到另一相。
三相短路会导致电流异常增大,可能对电力设备造成严重的损坏,甚至引发火灾等安全事故。
因此,进行三相短路计算非常重要。
在进行三相短路计算前,需要先了解电力系统的基本参数,包括各电源、线路、变压器和负载的电流、电压、阻抗等。
这些参数可以通过测量、测试或者参考设备的技术规格书来获取。
三相短路计算的目的是确定故障点处电流的大小和方向,以及系统中的短路电流的分布情况。
主要有两种计算方法,即对称分量法和复合阻抗法。
对于小型电力系统,可以使用对称分量法进行三相短路计算。
首先,将电力系统的参数转化为正序、负序和零序等三个对称分量。
然后,根据对称分量的性质进行计算,通过求解矩阵方程来确定故障点处电流的大小和方向。
对于大型电力系统,一般使用复合阻抗法进行三相短路计算。
该方法的主要步骤如下:首先,通过电力系统的参数计算出电力系统的等效阻抗矩阵。
然后,根据故障类型(如短路在一端或两端)和故障位置(如传动线路或变电站内部)选择合适的计算方法。
最后,根据计算结果来评估系统的电压和电流的分布情况。
在进行三相短路计算时,还需要考虑一些特殊情况和因素,例如变压器的影响、电力系统的容性接地和负序接地等。
这些因素都会对电力系统的短路电流产生影响,需要进行相应的修正和调整。
此外,为了准确计算三相短路,还需要掌握一些实用技巧。
首先,需要了解不同类型故障的特点和计算的方法,如对称短路、非对称短路和接地故障等。
其次,需要熟悉电力系统的参数和特性,例如变压器的阻抗和变比、传输线的电抗和电导等。
最后,需要使用专业的软件工具或编程语言来辅助计算,以提高计算的精确性和效率。
第七章电力系统三相短路的实用计算内容要点电力系统故障计算。
可分为实用计算的“手算”和计算机算法。
大型电力系统的故障计算,一般均是采用计算机算法进行计算。
在现场实用中,以及大学本、专科学生的教学中,常采用实用的计算方法—‘手算’(通过“手算“的教学,可以加深学生对物理概念的理解)。
例题1:如图7一1所示的输电系统,当k点发生三相短路,作标么值表示的等值电路并计算三相短路电流。
各元件参数已标于图中。
图7一1系统接线图解:取基准容量Sn=100MV A,基准电压Un=Uav(即各电压级的基准电压用平均额定电压表示)。
则各元件的参数计算如下,等值电路如图7一2所示图7-2 等值电路例题7-2:已知某发电机短路前在额定条件下运行,额定电流 3.45N KA I =,NCOS ϕ=0.8、dX ''=0.125。
试求突然在机端发生三相短路时的起始超瞬态电流''I 和冲击电流有名值。
(取 1.8=i m pK)解:因为,发电机短路前是额定运行状态,取101.10U =∠︒习题:1、电力系统短路故障计算时,等值电路的参数是采用近似计算,做了哪些简化?2、电力系统短路故障的分类、危害、以及短路计算的目的是什么?3、无限大容量电源的含义是什么?由这样电源供电的系统,三相短路时,短路电流包含几种分量?有什么特点?4、何谓起始超瞬态电流(I")?计算步骤如何?在近似计算中,又做了哪些简化假设?k的大小与5、冲击电流指的是什么?它出现的条件和时刻如何?冲击系数imp什么有关?i时,什么样的情况应该将异步电动机(综合负菏)作为电源6、在计算1"和imp看待?如何计算?7、什么是短路功率(短路容量)?如何计算?什么叫短路电流最大有效值?如何计算?8、网络变换和化简主要有哪些方法?转移电抗和电流分布系数指的是什么?他们之间有何关系?9.运算由线是在什么条件下制作的?如何制作?10.应用运算曲线法计算短路电流周期分量的主要步骤如何?11、供电系统如图所示,各元件参数如下:线路L, 50km,Ω;变压X1=0.4kmS=10MV A, %k u=10.5. T K= 110/11。
电力系统三相短路电流的实用计算
电力系统中,短路电流是一种非常重要的参数,它能够反映出电力系统的安全性能。
在电力系统中,短路电流通常是指在电力系统中某一点发生短路时,通过短路点的电流大小。
在电力系统中,短路电流通常是三相短路电流,因为电力系统中的电路通常是三相电路。
三相短路电流的实用计算方法有很多种,其中比较常用的方法是采用对称分量法。
对称分量法是一种基于对称分量理论的计算方法,它能够将三相电路转化为三个对称分量电路,从而简化计算。
对称分量法的基本思想是将三相电路分解为正序、负序和零序三个对称分量电路,然后分别计算每个对称分量电路的短路电流,最后将三个对称分量电路的短路电流合成为三相短路电流。
具体的计算步骤如下:
1. 将三相电路分解为正序、负序和零序三个对称分量电路。
2. 分别计算正序、负序和零序三个对称分量电路的短路电流。
3. 将三个对称分量电路的短路电流合成为三相短路电流。
对称分量法的优点是计算简单、直观,适用于各种类型的电路。
但是,对称分量法也有一些局限性,比如只适用于对称电路,不适用于非对称电路。
除了对称分量法,还有一些其他的计算方法,比如矩阵法、有限元法等。
这些方法各有优缺点,需要根据具体情况选择合适的方法。
电力系统三相短路电流的实用计算是电力系统设计和运行中非常重要的一部分,需要掌握一定的计算方法和技巧,以确保电力系统的安全性能。
三相短路容量计算公式在电力系统中,短路是指电流在电路中产生异常大的流动,可能导致电气设备受损甚至引发事故。
因此,了解电路的短路容量是非常重要的。
三相短路容量是指在三相电路中,短路电流的最大值。
本文将介绍三相短路容量的计算公式以及相关的内容。
一、三相短路容量的定义三相短路容量是指在三相电路中,当发生短路时,电流的最大值。
它是衡量电力系统抗短路能力的重要参数之一。
通常以单位时间内,电流的最大值来表示。
二、三相短路容量计算公式三相短路容量的计算公式如下:Isc = U / (Zs × √3)其中,Isc为短路电流,U为电压,Zs为短路阻抗。
三、三相短路容量计算公式的解释在三相电路中,电压、短路阻抗和短路电流之间存在着特定的关系。
根据欧姆定律,电流等于电压除以阻抗。
而在三相电路中,短路电流的最大值是通过电压和短路阻抗计算得出的。
其中,√3是一个常数,它与三相电路中电流和电压之间的关系有关。
由上述公式可知,当电压和短路阻抗都不变时,短路电流的最大值只与这两个参数有关。
因此,我们可以通过测量电压和短路阻抗来计算三相短路容量,从而评估电力系统的抗短路能力。
四、三相短路容量的影响因素1. 电压:电压的大小直接影响到短路电流的大小,电压越高,短路电流越大。
2. 短路阻抗:短路阻抗的大小也会影响到短路电流的大小,短路阻抗越小,短路电流越大。
3. 电力系统容量:电力系统的容量越大,短路电流也会越大。
4. 电力系统的接地方式:电力系统的接地方式不同,短路电流的大小也会有所不同。
五、三相短路容量的应用1. 设计电力系统:在设计电力系统时,需要计算三相短路容量,以确保系统能够承受短路电流的影响,保证设备的正常运行和安全。
2. 选择电力设备:在选购电力设备时,需要考虑设备的额定短路容量,以满足电力系统的要求。
3. 电力系统的运行和维护:了解电力系统的短路容量,可以帮助运行人员及时发现和解决潜在的电力故障,保证系统的可靠性和稳定性。
6.4 电力系统三相短路的实用计算6.4.1 短路电流实用计算的基本假设与基本任务电力系统短路计算可分为实用的“手算”计算和计算机算法。
大型电力系统的短路计算一般均采用计算机算法进行计算。
在现场实用中为简化计算,常采用一定假设条件下的“手算”近似计算方法,短路电流实用计算所作的基本假设如下:①短路过程中发电机之间不发生摇摆,系统中所有发电机的电势同相位。
采用该假设后,计算出的短路电流值偏大。
②短路前电力系统是对称三相系统。
③不计磁路饱和。
这样,使系统各元件参数恒定,电力网络可看作线性网络,能应用叠加原理。
④忽略高压架空输电线路的电阻和对地电容,忽略变压器的励磁支路和绕组电阻,每个元件都用纯电抗表示。
采用该假设后,简化部分复数计算为代数计算。
⑤对负荷只作近似估计。
一般情况下,认为负荷电流比同一处的短路电流小得多,可以忽略不计。
计算短路电流时仅需考虑接在短路点附近的大容量电动机对短路电流的影响。
⑥短路是金属性短路,即短路点相与相或相与地间发生短接时,它们之间的阻抗是零。
在前面已介绍了在突然短路的暂态过程中,定子电流包含有同步频率周期分量、直流分量和二倍频率分量。
由于实际的同步发电机具有阻尼绕组或等效阻尼绕组,减小了、轴的不对称,使二倍频率分量的幅值很小,工程上通常可以忽略不计;定子直流分量衰减的时间常数很小,它很快按指数规律衰减到零。
因此,在工程实际问题中,主要是对短路电流同步频率周期分量进行计算,只有在某些情况下,如冲击电流和短路初期全电流有效值的计算中,才考虑直流分量的影响。
短路电流同步频率周期分量的计算,包括周期分量起始值的计算和任意时刻周期分量电流的计算。
周期分量起始值的计算并不困难,只需将各同步发电机用其次暂态电动势(或暂态电动势)和次暂态电抗(或暂态电抗)作为等值电势和电抗,短路点作为零电位,然后将网络作为稳态交流电路进行计算即可;而任意时刻周期分量电流要准确计算非常复杂,工程上常常采用的是运算曲线法,运算曲线是按照典型电路得到的的关系曲线,根据各等值电源与短路点的计算电抗和时刻t,即可由运算曲线查得。
下面分别予以讨论。
6.4.2 起始次暂态电流的计算起始次暂态电流就是短路电流周期分量的起始值,在作等值电路时,每个元件都用它的次暂态参数表示,构成次暂态网络,计算出的电流就是次暂态电流,用表示。
计算,通常按照以下步骤进行。
1.确定系统各元件的次暂态参数(1)发电机在突然短路瞬间,同步发电机的次暂态电势保持着短路前瞬间的数值,用表示,电抗用次暂态电抗,并满足以下关系在实用计算中,如果难以确定同步发电机短路前的运行参数,则可以近似地取次暂态电势为1.08或1.05(以额定电压为基准的标幺值,下同),不计负载影响时,可以近似取为1。
(2)短路点附近的大型异步(或同步)电动机电力系统负荷中包含有大量的异步电动机,在正常运行情况下,异步电动机的转差率很小(),可以近似地当作同步运行。
根据短路瞬间转子绕组磁链守恒的原理,异步电动机也可以用与转子绕组的总磁链成正比的次暂态电动势和次暂态电抗来表示。
异步电机的次暂态电抗的额定标幺值为(为异步电机的起动电流标幺值,一般为4~7),可以近似取。
在实用计算中,若短路点附近的大型异步电动机不能确定其短路前的运行参数,则可以近似地取次暂态电动势为0.9,次暂态电抗为0.2(均以电动机额定容量为基准)。
由于异步电机的次暂态电动势在短路故障后,很快就将衰减到零。
因此,只有在计算起始次暂态电流,并且机端残压小于次暂态电动势时,才将电动机作为电源考虑,向短路点提供短路电流。
否则均作为综合负荷对待。
(3)综合负荷在短路瞬间,综合负荷常常可以近似地用一个含次暂态电动势和次暂态电抗的等值支路来表示。
以额定运行参数为基准,综合负荷的电动势可取为0.8,电抗可取为0.5。
在实用计算中,对于距离短路点较远的负荷(电气距离较大)为简化计算,有时也只用一个电抗来表示。
进一步的简化计算,甚至可以略去不计(相当于负荷支路断开)。
(4)变压器、电抗器、输电线路对于这些静止元件,它们的次暂态电抗用稳态正常运行时的正序电抗来表示。
2.作短路故障后电力系统等值电路电力系统三相短路故障的计算,通常采用标幺制进行。
等值电路中的参数计算采用近似计算法,即取基准值=常数、。
在参数计算中,注意要将以自身额定容量为基准的标幺值换算为统一的基准容量。
三相短路故障点电压为零。
3.网络变换及化简由于电力系统的接线较为复杂,在实际的短路计算中,通常是将原始等值电路进行适当的网络变换及化简,以求得各电源(或等值电源)到短路点的转移电抗,进而再计算短路电流。
(1)网络变换及化简方法1)电抗的串联、并联以及星形与三角形的相互变换(略)。
2)电源的合并,如图4-17所示。
图6-17 电源点的合并(a) 多个并联电源支路;(b) 合并后的等值电源支路有(6-48)3)分裂电动势源。
分裂电动势源就是将连接在一个电源点上的各支路拆开,分开后各支路分别连接在电动势相等的电源点上,如图6-18(b)所示。
图6-18 分裂电动势源和分裂短路点(a) 原等值电路; (b) 分裂电动势源; (c) 分裂短路点4)分裂短路点。
分裂短路点就是将接于短路点的各支路在短路点处拆开,拆开后的各支路仍带有短路点,如图6-19(c)所示。
则总的短路电流等于两处短路电流之和。
(2)计算转移电抗(或电流分布系数)转移电抗是指网络中某一电源和短路点之间直接相连的电抗(在直接相连的电抗之间不应有分支),如图6-19所示。
和分别表示电源和到短路点的转移电抗。
图6-19计算转移电抗时网络的简化(a) 原等值电路;(b) 星形-三角形变换;(c) 三角形-星形变换;(d)转移电抗支路电流分布系数的定义为支路短路电流与总短路电流的比值,即。
转移电抗与电流分布系数之间有如下关系(6-49)式中,为短路点输入电抗。
4.计算起始次暂态电流() 电力系统三相短路后的等值电路经网络变换化简后,即可求得只含有(等值)电源节点和短路点的放射形网络(电源点与短路点之间用转移电抗表示),如图6-19(d)所示。
则各电源点对短路点的起始次暂态电流为(6-50)故障点总的起始次暂态电流为(6-51)若将所有电源支路合并,则总短路电流为(6-52)求得三相短路电流标幺值后,还应乘以相应电压等级的电流基准值,才能求得短路电流实际有名值。
例6-3 在图6-20 (a)所示的电力系统中,节点和分别发生了三相短路,试计算发电机提供的次暂态电流和点短路时的短路冲击电流。
冲击系数取。
图6-20例6-3(a) 电力系统;(b) 等值电路;(c)点发生三相短路时,网络化简;(d)点发生三相短路时,网络化简解取,。
等值电路如图6-20(b)所示,各元件电抗具体值如下当点发生三相短路时,经网络化简可得图6-20(c),其中则发电机提供的短路电流为发电机提供的短路电流为当点发生三相短路时,经网络化简可得图6-20(d),其中则发电机提供的短路电流为发电机提供的短路电流为短路时各发电机提供的短路冲击电流为6.4.3任意时刻三相短路电流的计算短路电流周期分量初值的计算是比较容易的,但在暂态过程中短路电流周期分量随着时间不断变化,要求它任意时刻的值就十分复杂了,在实用计算中是用查运算曲线的办法来解决的。
从前面的分析可知,影响短路电流大小的主要因素有两个:一个是时间t;一个是短路点到电源点的电气距离(用计算电抗表示)。
短路电流运算曲线就是短路电流周期分量随时间和电气距离变化的函数曲线,即。
当然,影响短路电流数值的还有其它因素,如发电机的类型,电力负荷的性质及其分布,强行励磁装置的特性等等,这些因素在制作运算曲线时都给予了应有的考虑,使制作出的运算曲线在工程中具有普遍的适用性。
1.运算曲线的制作制作运算曲线首先考虑了不同发电机类型的影响。
由于汽轮发电机和水轮发电机的参数不同,使同一短路点的短路电流周期分量初值和衰减规律都不同,因此运算曲线是按汽轮发电机和水轮发电机分别制作的。
图6-21 制作运算曲线网络图(a) 系统图;(b) 等值网络图4-21所示是制作短路电流运算曲线的等值网络。
图中是具有强行励磁装置的汽轮发电机或水轮发电机,短路前处于额定运行状态,次暂态电势和暂态电势均可通过短路前的运行参数求得;系统50%的负荷接于发电厂高压母线,50%的负荷接于短路点外侧。
发生短路后,接于发电厂高压母线的负荷将成为短路回路的并联支路,分流了发电机供给的一小部分电流。
该负荷在暂态过程中近似用恒定阻抗表示,其值为(6-53)式中,是负荷节点的电压,取是负荷的总容量,其值为发电机额定容量的50%,即=0.5,如果定义计算电抗为发电机额定容量作基准值的网络电抗标幺值与发电机纵轴次暂态电抗标幺值之和,即(6-54)对同一时间t,不断改变,就可得到一条周期分量电流随变化的曲线,对若干个值t,就可得到一组运算曲线。
对相同类型的发电机组,由于型号不同,参数就不同,同一t和下的短路电流周期分量标幺值不同。
为了使制作的曲线有很好的通用性,在调查国产发电机参数和容量配置的基础上,采集了国内及以下不同容量的种汽轮发电机和种水轮发电机的参数。
把同种类型发电机的参数输入计算机,用短路电流周期分量随时间变化的公式逐台进行计算,对计算结果取其平均值(把同一t和下计算出的各台发电机的周期分量电流标幺值看作随机变量,求其数学期望的最佳估计),并把它们作为该t、下的周期分量电流,用以制作运算曲线。
从而作出汽轮发电机和水轮发电机两组运算曲线。
该曲线也可用数字表的形式表示。
用概率统计的方法制作的运算曲线,相当于一台具有标准参数的汽轮发电机或水轮发电机的运算曲线。
所谓标准参数,就是对运算曲线用最小二乘法求得的最接近的拟合参数。
同类型的不同型号发电机的按正态分布密集在运算曲线的附近,因此当实际发电机的参数(等)与标准参数接近时,从曲线上查到的与实际值的误差是很小的。
但当发电机的参数与标准参数有较大差别时,为提高计算精确度,应对周期分量电流进行修正计算。
运算曲线只作到为止。
当时,近似认为发电机端电压在短路过程中保持不变,短路电流周期分量的幅值不随时间变化,即该支路相当于由无限大功率电源供电,短路电流周期分量为(6-55)2.运算曲线的运用实际的电力系统,是由若干台不同类型、不同容量的发电机并联运行,为了使用运算曲线计算短路电流,应把实际网络简化成对短路点的一个等值电源支路或几个等值电源支路构成的星形电路,以便对每一个支路分别使用运算曲线。
用运算曲线计算短路电流周期分量的主要步骤如下:(1)制作次暂态等值网络忽略网络中的负荷,发电机用表示,将实际网络制成次暂态等值网络,计算各元件在统一基准值()时的标幺值。
对接于短路点附近的大型异步电动机,仍要考虑它作为附加电源在短路初期的反馈电流。