图乘法(力学)
- 格式:ppt
- 大小:569.50 KB
- 文档页数:21
图乘法原理
图乘法原理是指在进行图的乘法运算时,将两个图的每个顶点对都连接起来,形成一个新的图。
这个新图的顶点由两个原始图的顶点组成,边由两个原始图的边组成。
具体而言,设图G1=(V1,E1)和图G2=(V2,E2)是两个图,其中
V1和V2分别是G1和G2的顶点集合,E1和E2分别是G1和G2的边集合。
那么图乘法原理定义了一个新的图G=(V,E),
其中V=V1×V2,即G的顶点是由G1和G2的顶点对组成的。
而E是由所有G1和G2的边连接起来的,即对于每个
(u,v)∈V1×V2,如果存在(u1,v1)∈E1和(u2,v2)∈E2满足u=u1,v=v2,那么(u,v)∈E。
通过图乘法原理,我们可以将两个图的结构进行组合,得到一个新的图。
这个新图中的顶点保留了原来两个图的顶点的属性,而边则是两个图的边的组合。
在实际应用中,图乘法原理可以用于表示两个图之间的关系,例如社交网络中的用户之间的关注关系和互动关系等。
总之,图乘法原理是一种用于将两个图进行乘法运算的方法,通过将两个图的顶点对连接起来,形成一个新的图。
它可以用于表示两个图之间的关系,在图论和网络分析领域有着广泛的应用。
§4-6 图乘法我们已经知道,计算荷载作用下结构的弹性位移时,需要求下列形式的积分⎰ds EI M M Ki 的数值。
这里,i M 、K M 是两个弯矩函数的乘积。
对于直杆或直杆的一段,若EI 是常量,且积分号内的两个弯矩图形中有一个是直线图形,则可用图乘法计算积分,极为方便。
下面说明图乘法的内容和应用图4-20所示为直杆AB 的两个弯矩图,其中图为一i M 直线。
如果该杆截面抗弯刚度E I 为一常数,则⎰⎰=dx M MEIdx EI M M K iK i 1(a)以O 为原点,以α表示图i M 直线的倾角,则图上任一i M 点标距(纵坐标)可表示为α⋅=tan x M i因此, ⎰⎰α=BAK BAK i dx xM dx M M tan (b )式中,dx M K 可看作图的K M 微分面积(图4-20中画阴影线的部分);dx M x K ⋅是这个微分面积对y 轴的面积矩。
于是就是图⎰BA K dx xM K M 的面积ω对y 轴的面积矩。
以表示图的0x K M 形心C 到y 轴的距离,则0x dx xM BAK ω=⎰将上式代人式(b ),得到00tan y x dx M M BAK i ω=ω⋅α=⎰(c)其中,0y 是在图形心K M C 对应处的i M 图标距。
利用式(c ),式(a )可写成01y EIdx EI M M BA K i ω=⎰ (4- 29) 这就是图乘法所使用的公式。
它将式(a )形式的积分运算问题简化为求图形的面积、形心和标距的问题。
应用图乘法计算时要注意两点:(1)应用条件:杆件应是等截面直杆,两个图形中应有一个是直线,标距应取自0y 直线图中。
(2)正负号规则:面积ω与标距在杆的同0y 一边时,乘积取正号0y ω;ω与在杆的0y 不同边时取负号。