5.4.3分式方程
- 格式:doc
- 大小:50.00 KB
- 文档页数:2
第五章分式与分式方程5.4.3 分式方程【教学内容】列出分式方程解决简单的应用题【教学目标】知识与技能经历将实际问题中的等量关系用分式方程表示的过程;掌握列分式方程解应用题的一般步骤;会列出分式方程解决简单的应用题,提高学生的分析问题、解决问题的能力和应用意识;过程与方法提高学生的分析问题、解决问题的能力和应用意识;对所求出的分式方程的根进行检验的思想的重视情感、态度与价值观让学生经历操作、实验、发现、确认等数学活动,体会数学观点,培养学生的数学意识。
【教学重难点】重点:列出分式方程解决简单的应用题难点:对所求出的分式方程的根进行检验的思想的重视【导学过程】【知识回顾】列方程解应用题的一般步骤【情景导入】1、列分式方程解应用题的一般步骤:(1):审清题意;(2):设未知数;(3):找出等量关系;(4):列出分式方程;(5):解这个分式方程;(6):检验,既要验证根是否是所列分式方程的根,又要检验根是否符合题意;(7):写出答案。
2、列分式方程解应用题与列一元一次方程解应用题的区别:列分式方程解应用题时要注意,既要验证求出的未知数的值是否是所列分式方程的根,又要检验根是否。
【新知探究】探究一、甲、乙两人加工同一种玩具,甲加工90个玩具所用的时间与乙加工120个玩具所用的时间相等,已知甲、乙两人每天共加工35个玩具,求甲乙两人每天各加工多少个玩具?解题方案:解:设甲每天加工x个玩具,则乙每天加工()个玩具,①甲加工90个玩具所用的时间为_______,乙加工120个玩具所用的时间为_______;②根据题意,列出相应方程__________________;③解这个方程得___________;④检验: ____________;⑤答:甲每天加工________个玩具,乙每天加工_________个玩具。
探究二、例3 某市从今年1月1日起调整居民用水价格,每立方米水费上涨31.小丽家去年12月的水费是15元,而今年7月的水费则是30元。
分式方程知识点归纳分式方程是指含有分子和分母的方程,分子和分母分别为代数式或数字,并且方程中包含有未知数的方程。
下面将分式方程的知识点进行归纳,以便更好地理解和应用分式方程。
一、基本概念:1.分式方程的定义:含有未知数、带有分式形式的等式称为分式方程。
2.分式的定义:分式是由一个或多个代数式构成的比。
二、分式方程的解的性质:1.分式方程的等价方程:分式方程可以转化为多项式方程进行求解,这样可以得到等价的方程,两者的解是相同的。
2.分式方程的根的性质:一个分式方程的解,如果使得分式方程中的分子等于0,则该解就是方程的根。
三、分数的性质:1.分式的约分:分式的分子和分母同时除以它们的公因式,可以得到分式的约分式。
2.分式的通分:将不同分母的分式通过找到它们的最小公倍数,转化为具有相同分母的等价分式。
3.分数的四则运算:分数之间可以进行加减乘除的运算,需要注意分子和分母的相应运算。
四、分式方程的解法:1.乘法解法:对分式方程的两边同乘以一个使得方程中的分母消去的数,从而化简为一个多项式方程。
2.加减消去解法:对分式方程的两边同乘以使得方程中的分母消去的数,然后将方程中的分式整理为一个多项式,并进行求解。
3.代入解法:将分式方程中的一个未知数表示成另一个未知数的代数式,再代入到分式方程中,得到一个不含有代入的未知数的分式方程,进而进行求解。
4.通分解法:对分式方程的两边同时乘以方程中所有的分母的积,将分式方程化简为一个多项式方程进行求解。
五、分式方程的解的判定:1.当方程的分式的分子为0时,方程的解为0。
2.当方程的分式的分子和分母存在着相同的因式时,方程的解为使得分式方程中的分子等于0的值。
3.当分式方程的分母的值等于0时,方程没有解。
六、应用:分式方程在实际问题中的应用非常广泛,例如在物理学和金融学中,经常需要使用分式方程来解决实际问题。
比如计算财务利润率、财务收益率、物体的运动速度等。
七、常见的分式方程:1.一次方程:分式方程的分子和分母都是一次函数的方程。
榆林市十一中学生自主学习方案班级 组号 姓名【自主学习】1.列分式方程解实际问题的一般步骤是什么?2.列分式方程解实际问题的关键是什么?3.课本中的两个问题都是将实际问题转化为数学问题,经历一个建立数学模型的过程,这体现了数学中的什么 思想?【讨论展示】讨论1:甲做90个机器零件所用的时间与乙做120个机器零件所用的时间相等,又已知平均每小时甲、乙两人一共做了35个零件,求甲、乙每小时各做多少个?讨论2::某校师生到距学校20千米的公路旁植树,甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果两班师生同时到达,已知汽车的速度是自行车速度的2.5倍,求两种车的速度各是多少?学 年2015-2016 科 目 八年级数学(下) 课题 5.4.3分式方程 授课时间 主 备人 常伟 使用人 八年级师生 课型 新授课 审核 张 慧 学案序号 39学习目标1.能将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用.2.经历“实际问题——分式方程模型——求解——解释解的合理性”的过程. 重 点 1.审清题意,寻找等量关系,将实际问题转化为分式方程的数学模型。
2.根据实际意义检验解的合理性。
难 点 将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用.教师寄语 认真阅读教材P129页,尝试完成导学案.我的课堂我做主,我的学习我主动,我的人生我努力!展示1:小明和同学一起去书店买书,他们先用15元买了一种科普书,又用15元买了一种文学书.科普书的价格比文学书高出一半,困此他们所买的科普书比所买的文学书少1本,这种科普书和这种文学书的价格各是多少?展示2:联系实际编拟一道关于分式方程22x 150150+-=xx 的实际问题,要求表述完整,条件充分并写出解答过程。
【检测小结】一、课堂达标训练:完成课本P129-130页习题二、课后作业:1. 春运期间,我国南方出现大范围冰雪灾害,导致某地电路断电.该地供电局组织电工进行抢修.供电局距离抢修工地15千米.抢修车装载着所需材料先从供电局出发,15分钟后,电工乘吉昔车从同一地点出发,结果他们同时到达抢修工地.已知吉普车速度是抢修车速度的1.5倍,求这两种车的速度.2. 某品牌瓶装饮料每箱价格26元.某商店对该瓶装饮料进行“买一送三”促销活动,若整箱购买,则买一箱送三瓶,这相当于每瓶比原价便宜了0.6元.问该品牌饮料一箱有多少瓶?教(学)后小结:。
第五章 分式与分式方程第四节 分式方程(一)【学习目标】1、能找出现实情景中的等量关系;2、会通过设适当的未知数根据等量关系列出分式方程;3、通过列出的方程归纳出它们的共同特点,得出分式方程的概念.了解分式的概念,明确分式和整式的区别;【学习方法】自主探究与小组合作交流相结合.【学习重难点】重点:理解分式方程的定义、找出问题中的等量关系列出方程;难点:如何找出等量关系,如何把等量关系转化为分式方程。
【学习过程】模块一 预习反馈一、学习准备:1、分式方程的概念: 中含有未知数的方程叫做分式方程;2、判断分式方程的条件:①方程;②分母中含有未知数;3、与整式方程的区别:分母中是否含有______________;4、列分式方程解应用题。
二、教材精读:5、进一步理解分式方程例 1 中是分式方程的有2,143,032,64,0523==-=-+==-+πx x x x x x x 在方程( )A .2个 B.3个 C.4个 D.5个6、例2 甲、乙两地相距1500km ,乘高铁列车从甲地到乙地比乘特快列车少用9h ,已知高铁列车的平均行驶速度是特快列车的2.8倍。
(1)你能找出这一问题中的所有等量关系吗?(2)如果设特快列车的平均速度为xkm/h ,那么x 满足怎样的方程?(3)如果设小明乘高铁列车从甲地到乙地需yh ,那么y 满足怎样的方程?解:模块二 合作探究6、例2 为了帮助遭受自然灾害的地区重建家园,某学校号召同学们自愿捐款。
已知七年级同学捐款总额为4900元,八年级同学捐款总额为5000元,八年级捐款人数比七年级多20人,而且两个年级人均捐款额恰好相等。
如果设七年级捐款人数为x 人,那么x 满足怎样的方程?____________________________________________________(列出方程)模块三 形成提升1、A 、; B 、 ;C 、中,( )是分式方程,( )是整352x +=302x x -=+21x π=式方程。
课题:5.4.3分式方程 课型:新授课 年级:八年级 教学目标:1.能运用列表法将实际问题中的等量关系用分式方程表示,体会分式方程的模型作用.2.经历“实际问题-分式方程模型-解分式方程-检验合理性”的过程,发展学生分析问题、解决问题的能力,培养学生的应用意识.教学重点与难点:重点:1.审明题意,寻找等量关系,将实际问题转化成分式方程的数学模型.2.根据实际意义检验解的合理性.难点:寻求实际问题中的等量关系,寻求不同的解决问题的方法.课前准备:多媒体课件.教学过程:一、温故知新,引入新课(投影问题)1.解分式方程的步骤?2.解下列分式方程:214111x x x +-=--. 3.列一元一次方程解应用题的一般步骤有哪些?处理方式:教师利用多媒体展示,学生独立思考、交流,学生小组间竞争抢答.找两名学生口述第1题和第3题过程,再找两名学生板演第2题,其他学生在下面做题,教师巡视,然后由学生纠错,并强调注意事项;教师多媒体展示结果.1.(1)能化简的先化简;(2)方程两边同乘以最简公分母,化分式方程为整式方程;(3)解整式方程;(4)验根.2.省略.3.(1)审;(2)设;(3)列;(4)解;(5)答.你能用所学过的知识和方法为下列应用题列出方程吗?做一做:(投影)某单位将沿街的一部分房屋出租.每间房屋的租金第二年比第一年多500元,所有房屋出租的租金第一年为9.6万元,第二年为10.2万元.(1)你能找出这一情境的等量关系吗?(2)根据这一情境,你能提出哪些问题?(3)这两年每间房屋的租金各是多少?处理方式:学生先独立阅读解答,然后互相交流.教师顺利引出课题.【教师板书课题——5.4 分式(3)】设计意图:回顾解分式方程的步骤、解有关分式方程及列一元一次方程解应用题的一般步骤和列分式方程解有关应用题,引出新问题.二、合作探究,获取新知做一做:(投影)某单位将沿街的一部分房屋出租.每间房屋的租金第二年比第一年多500元,所有房屋出租的租金第一年为9.6万元,第二年为10.2万元.(1)你能找出这一情境的等量关系吗?(2)根据这一情境,你能提出哪些问题?(3)这两年每间房屋的租金各是多少?处理方式:学生先独立阅读解答,然后互相交流.选代表回答,合理即可,教师投影.(1)等量关系:①第二年每间房屋的租金=第一年每间房屋的租金+500元.还有一个等量关系:②第一年租出的房屋间数=第二年租出的房屋的间数.③出租房屋间数=(所有出租房屋的租金)÷(每间房屋的租金)(2)①求出租的房屋总间数;②分别求两年每间房屋的租金.(3)方法一:解:设第一年每间房屋的租金为x元,第二年每间房屋的租金为(x+500)元.第一年租出的房间为96000x间,第二年租出的房间为102000500x+间,根据题意,得96000 x = 102000500 x+解,得x=8000经检验:x=8000是原分式方程的解,也符合题意.x+500=8500(元)所以这两年每间房屋的租金分别为8000元,8500元. 方法二:解:设每年各有x 间房屋出租,那么第一年每间房屋的租金为96000x 元,第二年每间房屋的租金为102000x元,根据题意,得 102000x =96000x+500 解这个方程,得x =12经检验x =12是原方程的解,也符合题意.所以每年各有12间房屋出租.所以,102000÷12=8500(元),96000÷12=8000(元)所以这两年每间房屋的租金分别为8000元,8500元.设计意图:引导学生从不同角度寻求等量关系,发展学生分析问题、解决问题的能力,培养学生的应用意识.学生都能找出所有房屋的总租金和每间房屋的租金以及房屋总数之间的关系式,并能提出解出房屋总数的问题,应用列方程的一般方法解决这个问题,并能多角度思考问题,提出很多不同问题.三、学以致用,解决问题例3 某市从今年1月1日起调整居民用水价格,每立方米水费上涨13,小丽家去年12月份的水费是15元,而今年7月份的水费则是30元.已知小丽家今年7月份的用水量比去年12月份的用水量多5立方米,求该市今年居民用水的价格.处理方式:审清题意,找出题中的等量关系.小丽家今年7月份的用水量-小丽家去年12月份的用水量=5水费÷用水价格=用水量.解:设去年用水的价格为x 元/m 3,则今年的水价为()+1313x 元/m , 根据题意,得()-=+30155113x x 解这个方程,得.=15x经检验.=15x 是所列方程的根..()⨯+=115123 元/m 3答:该市今年居民用水的价格为2元/m 3.列分式方程解应用题的一般步骤:(投影)处理方式:先引导学生思考这个问题,小组交流,学生回答并相互补充,教师多媒体展示:1.审:分析题意,找出数量关系和相等关系.2.设:选择恰当的未知数,注意单位和语言完整.3.列:根据数量和相等关系,正确列出代数式和方程.4.解:认真仔细.5.验:有两次检验.6.答:设计意图:老师询问学生家中的每月用水情况,要求学生能关心家庭生活,又得到了节约用水的教育,同时激发学生的学习兴趣.学生根据一个月的总水费等于每一吨水费乘以一个月的用水的总吨数,再根据“小丽家今年7月份的用水量比去年12月份的用水量多5立方米”这一条件,列出等量关系式,从而列出分式方程,有了前面的基础,学生能很快和老师一起完成上述过程.在老师的指导下,老师和学生一起完成“设未知数——分析等量关系——列代数式——列出方程——解方程到验证解的合理性”这一完整过程,并规范书写.随堂练习:1.小明和同学一起去书店买书,他们先用15元买了一种科普书,又用15元买了一种文学书.科普书的价格比文学书高出一半,困此他们所买的科普书比所买的文学书少1本,这种科普书和这种文学书的价格各是多少?处理方式:学生自主尝试完成,小组内交流成果,小组组长负责搜集本组组员出现错误情况,利用实物投影展示并及时纠正.最后教师利用课件出示正确解题过程,规范学生解题过程.题中的等量关系有两个:15元钱买的文学书的本数=15元钱买的科普书的本数+1本.科普书的价格=文学书的价格×(1+21) 解:设文学书的价格为x 元,则科普书的价格为(1+21)x 元,那么15元钱可买文学书15x 本,科普书15112x ⎛⎫+ ⎪⎝⎭本.根据题意,得, 15x =15112x ⎛⎫+ ⎪⎝⎭+1解,得x =5经检验x =5是原方程的根,也符合题意,所以(1+21)x =23×5=7.5(元) 故这种文学书和科普书的价格各为5元、7.5元.2.某化肥厂计划在x 天内生产化肥120吨,由于采用了新技术,每天多生产化肥3吨,实际生产180吨与原计划成本生产120吨的时间相等,那么适合x 的方程是( )A .1201803x x =+ B.1201803x x += C.1201803x x =+ D.1201803x x=+ 3.全民健身活动中,组委会组织了长跑队和自行车进行宣传,全程共10千米,自行车队速度是长跑队的速度的2.5倍,自行车队出发半小时后,长跑队才出发,结果长跑队比自行车车队晚到了2小时候,如果设长跑队跑步的速度为x 千米/时,那么根据题意可列方程为( ) A.101012252x .x +=+. B.101020525..x x -=- C.101020525.x .x -=- D.101020525.x .x-=+ 处理方式:学生自主完成后,选代表说出自己的答案.最后教师利用课件出示正确解题过程.设计意图:练习题密切联系学生生活实际,又关注社会热点问题,学生大部分能将实际问题转化为数学模型,并进行解答,解释解的合理性.使学生体会丰富的实例,乐于接触社会环境中的数学信息,巩固用分式方程解决实际问题的技巧.四、回顾课堂,盘点收获通过本堂课的学习,你学到了那些知识?你学会了哪些数学方法?处理方式:一名学生先进行归纳总结,其余同学进行补充,使本节课的知识真正形成系统.1.列方程解决实际情境中的具体问题,是数学实用性最直接的体现,而解决这一问题是如何将实际问题建立方程这样的数学模型,关键则在于审清题意,找出题中的等量关系,找到它就为列方程指明了方向.2.列分式方程解应用题的一般步骤:1.审:分析题意,找出数量关系和相等关系.2.设:选择恰当的未知数,注意单位和语言完整.3.列:根据数量和相等关系,正确列出代数式和方程.4.解:认真仔细.5.验:有两次检验.6.答:注意单位和语言完整.设计意图:学生都能积极参与活动,感受到数学是人们生活、劳动和学习必不可少的工具,能够帮助人们处理数据、进行计算、推理和证明,数学模型可以有效地描述自然现象和社会现象;课堂小结设计成问题的形式,是为了培养学生自主学习、自主思维的能力.给学生充分的时间相互交流,由学生用自己的语言进行表达,同时通过互相补充修正.通过师生共同总结,增强学生认识,加深学生印象,强化学生记忆.五、快乐套餐,深化提高A 组:1.老张师傅做m 个零件用了一个小时,则他做20个零件需要的小时数是( ) A.20m B.20mC.20mD.20+m 2.一项工程,甲独做需m 小时完成,若与乙合作20小时完成,则乙单独完成需要的时间是( ) A.2020m m - B.2020m m + C.2020m m - D.2020m m+ 3.甲、乙两班学生参加植树造林,已知甲班每天比乙班多植5棵树,甲班植80棵树所用的天数与乙班植70棵树所用的天数想等,若设甲班每天植树x 棵,则根据题意列出的方程是( ) A.80705x x =- B.80705x x =+ C.80705x x =+ D.80705x x =- B 组: 4.甲做90个机器零件所用的时间与乙做120个机器零件所用的时间相等,又已知平均每小时甲、乙两人一共做了35个零件,求甲、乙每小时各做多少个?5.某校师生到距学校20千米的公路旁植树,甲班师生骑自行车先走,45分钟后,乙班师生乘汽车出发,结果两班师生同时到达,已知汽车的速度是自行车速度的2.5倍,求两种车的速度各是多少?处理方式:学生做完后,教师出示答案,指导学生校对,并统计学生答题情况.学生根据答案进行纠错.设计意图:当堂检测,能全面了解学生本节课掌握情况,并最大限度地调动全体学生学习数学的积极性,以便能及时地进行查缺补漏,为下一节课的学习做好准备.六、布置作业,课堂延伸必做题:课本习题5.9 第1、2题.选做题:课本习题5.9 第3题.板书设计:。
分式方程知识点归纳总结分式方程(fractional equations)是含有一个或多个分式的方程。
解分式方程的方法与解普通方程的方法相似,但在处理分式时需要额外注意。
以下是分式方程的一些常用知识点的归纳总结。
1.分式方程的定义:分式方程是含有一个或多个分式的方程,其中分式可以是单个分式,也可以是多个分式的组合。
2.分式方程的定义域:在求解分式方程之前,首先需要确定方程的定义域。
分式方程中的分母不能为0,因此需要排除使得分母为0的数值。
3.清除分母的方法:当分式方程中存在分母时,可以通过乘以分母的公倍数来清除分母。
要注意在清除分母后所得到的方程仍然保持等价关系。
4.分式方程的乘除法原则:分式方程中的分式可以通过乘除法原则进行运算。
即可以通过乘以一个数或除以一个数来改变方程两边的比例关系。
5.分式方程的加减法原则:分式方程中的分式可以通过加减法原则进行运算。
即可以通过加上一个数或减去一个数来改变方程两边的比例关系。
6.分式方程的倒数原理:分式方程中的分式的倒数可以用来求解方程。
当一个分式与它的倒数相加时,结果为17.分式方程的转化:有时候,可以通过将分式方程转化为普通方程来求解。
这可以通过清除分母或将分式转化为分数来实现。
8.分式方程的校验:在解分式方程时,需要对所得到的解进行校验,以确定是否满足原始方程。
9.解分式方程的常见步骤:解分式方程的一般步骤是先对方程进行整理,然后通过乘法、除法、加法、减法等原则对方程进行运算,最后校验所得到的解是否满足原始方程。
10.特殊类型的分式方程:-线性分式方程:分子和分母都是一次函数的分式方程。
-二次分式方程:分子或分母含有二次函数的分式方程。
-变比分式方程:分子和分母是由未知数构成的变比或常数的乘积的分式方程。
总结:分式方程是含有一个或多个分式的方程,解分式方程的方法包括清除分母、乘除法原则、加减法原则、倒数原理、转化为普通方程、校验等。
解分式方程的一般步骤是整理方程、运用原则对方程进行运算,最后校验解答是否正确。