2015年江苏省无锡市南菁中学九年级上学期数学期中试卷与解析
- 格式:doc
- 大小:511.00 KB
- 文档页数:28
2014-2015学年第一学期初三数学期中试卷一、选择题(本大题共8小题,每小题3分,共24分)1. 有下列四个命题:①直径是弦;②经过三个点一定可以作圆;③三角形的外心到三角形各顶点的距离都相等;④半径相等的两条弧是等弧.其中正确的有 ( )A .4个B .3个C . 2个D . 1个2. 用配方法解方程2250x x --=时,原方程应变形为 ( )A .()216x -= B .()216x += C .()229x += D .()229x -=3. 三角形两边的长是3和4,第三边的长是方程212350x x -+=的根,则该三角形的周长为 ( )A .12B .14C .12或14D .以上都不对4. 在Rt△ABC 中,∠C=90°,∠B=30°,BC =4 cm ,以点C 为圆心,以2 cm 的长为半径作圆,则⊙C 与AB 的位置关系是 ( ) A .相离 B .相切 C .相交 D .相切或相交5. 如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是 ( ) A.k >14-B. 14k ≥-且0k ≠C.k <14-D. k >14-且0k ≠6.某厂一月份生产某机器300台,计划二、三月份共生产980台。
设二三月份每月的平均增长率为x ,根据题意列出的方程是 ( ) A .300(1+x )2=980 B .300(1-x )2=980C .300(1+x )+300(1+x )2=980D .300+300(1+x )+300(1+x )2=9807. 如图,将量角器按所示的方式放置在三角形纸板上,使点C 在半圆上.点A 、B 的读数分别为86°、30°,则∠ACB 的大小为 ( ) A .15︒ B .28︒ C .29︒ D .34︒8.如图,等边三角形ABC 的周长为6π,半径是1的⊙O 从与AB 相切于点D 的位置出发,在△ABC 外部按顺时针方向沿三角形滚动,又回到与AB 相切于点D 的位置,则⊙O 自转了 ( )A .2周B . 3周C .4周D .5周 二、填空题(本大题共10小题,每空2分,共26分)9.将一元二次方程x 2+1=2x 化成一般形式可得 ,它的解是 . 10.已知圆锥的母线长为4,底面半径为2,则圆锥的侧面积等于 .班级 姓名 学号 .……………………………………………………………装……………订……………线…………………………………………………………(第8题) O D AB C(第7题)11. 一元二次方程220x x +-=的两根之和是 ,两根之积是 .12. 方程x 2-6x +k =0的一根是4,则k = ,另一个根是______.13. 如图,点A 、B 、C 在⊙O 上,若∠BAC = 24°,则∠OBC = °.14. 如图,ABCD 是⊙O 的内接四边形,AD 为直径,∠C =130°,则∠ADB 的度数为 .15.如图,直角坐标系中一条圆弧经过格点A ,B ,C ,其中B 点坐标为(3,4),则该弧所在圆心的坐标是 .16.若一元二次方程ax 2=b (ab >0)的两个根分别是m +1与2m ﹣4,则ab= .17. 如图,一张圆心角为45°的扇形纸板按如图方式剪得一个正方形,正方形的边长为1,则扇形纸板的面积是 .18. 如图,⊙O 的半径为2,点O 到直线l 的距离为3,点P 是直线l 上的一个动点,PB 切⊙O 于点B ,则PB 的最小值是 .三、解答题(本大题共7小题,共50分) 19(本题满分12分,每小题3分)解下列方程: (1)042=-x x (2)x 2-8x-10=0(配方法)(3)x 2+6x -1=0 (4)2x 2+5x -3=0(第13题)OB C D A(第14题) O x y A B C(第15题)(第17题) (第18题)A BC P O 20(本题满分6分)如图,已知:⊙O 的直径AB 与弦AC 的夹角∠A=30°,AC =CP . (1) 求证:CP 是⊙O 的切线;(2) 若PC =6,AB=43求图中阴影部分的面积.21(本题满分4分)如图,AB 是⊙O 直径,弦CD 与AB 相交于点E ,∠ACD =52°,∠ADC =26°.求∠CEB 的度数.22(本题满分4分)某商店经销一批小家电,每个小家电的成本为40元。
(题7图)注意事项:1.本试卷包含选择题(第1题~第10题,共10题)、非选择题(第11题~第28题,共18题)两部分.本卷满分130分,考试时间为120分钟.2.答题前,考生务必将本人的班级、姓名、学号填写在试卷的装订线内.一、选择题(本大题共有10小题,每小题3分,共30分.)1.使x -2有意义的x 的取值范围是…………………………………………………… ( ) A .x >2 B .x <−2 C .x ≤2 D .x ≥2 2.若关于x 的方程x 2-4x +m =0没有实数根,则实数m 的取值范围是……………… ( ) A .m <−4 B .m >−4 C .m <4 D .m >43.把抛物线y =3x 2沿y 轴向上平移8个单位,所得抛物线的函数关系式为……………… ( ) A .y =3x 2+8 B .y =3x 2−8 C .y =3(x +8) 2 D .y =3(x −8) 2 4.如图,在Rt △ABC 中,∠ACB =90°,BC =1,AB =2,下列结论正确的是………… ( ) A .sinA =32 B .tanA =12 C=3tanB = 35.已知两圆的半径分别为2和4,圆心距为6,则两圆的位置关系是………………… ( ) A .相交 B .内含 C .外切 D .内切 6.若扇形的半径为4,圆心角为90°,则此扇形的弧长是……………………………… ( ) A .π B .2π C .4π D .8π7.如图,△ABC 中,AB =6,AC =8,BC =10,D 、E 分别是AC 、AB 的中点,则以DE 为直径的圆 与BC 的位置关系是…………………………………………………………………… ( ) A .相离 B .相交 C .相切 D .无法确定 8.半径为2的圆中,弦AB 、AC 的长分别2和22,则∠BAC 的度数是………… ( ) A .15° B .15°或45° C .15°或75° D .15°或105°9.如图是二次函数y =ax 2+bx +c 图像的一部分,其对称轴是直线x = −1,且过点(−3,0),下列说法: ①abc >0; ②b 2−4ac >0; ③4a +2b +c <0; ④2a -b =0;其中正确的是…………( ) A .② B .②③ C .②④ D .①②10.如图,在△ABC 中,AB =AC =10,以AB 为直径的⊙O 分别交AC 、BC 于点D 、E ,点F 在AC 的延长线上,且∠CBF =12∠A ,tan ∠CBF =13 ,则CF 的长为…………………………… ( )A .125B . 52C .123D . 5二、填空题(本大题共10空,每空2分,共20分.)11.若α、β是方程x 2+2x −2014=0的两个实数根,则α+β的值为 ,α2+3α+β的值为 .12.二次函数y = −12x 2−2x 的图象的顶点坐标为 .13.若二次函数y =x 2-6x +c 的图象过A (−1,y 1)、B (2,y 2)、C (5,y 3)三点,则y 1、y 2、y 3的大小关系是 (用“<”号连接)(题10图) A C B A (题4图)(题15图)(题18图)14.河堤横断面如图所示,堤高BC =4米,迎水坡AB 坡比为1∶ 3,则A B 长为 米. 15.如图,点A 、B 、C 是⊙O 上的三点,若∠OBC =50°,则∠A 的度数是16.若圆锥的母线为10,底面半径为6,则圆锥的侧面积为 .17.如图,在△ABC 中,AB =AC =5,BC =6,点D 为BC 边上一动点(不与点B 重合),以D 为圆心,DC 的长为半径作⊙D ;当⊙D 与AB 边相切时,BD 的长为_________.18.二次函数y = 23x 2的图象如图所示,点A 1,A 2,A 3,…,A 2014在y 轴正半轴上,B 1,B 2,B 3,…,B 2014在二次函数第一象限的图象上,若△OB 1A 1,△A 1B 2A 2,△A 2B 3A 3,…,△A 2013B 2014A 2014都为等边三角形,则△OB 1A 1的边长 ;探究△A 2013B 2014A 2014的周长为 .三、解答题:(本大题共10小题,共80分.解答时需有证明过程或演算步骤.) 19.(本题满分8分)计算:(1) (-12)−1-12+4cos 30°−||3−2 (2) 2tan 604sin 30cos 45+⋅20.(本题满分8分)解方程:① 4x 2-4x +1=0 ② x 2+2=4x21.(本题满分6分)如图,从热气球P 上测得两建筑物A 、B 的底部的俯角分别为45°和30°,如果A 、B 两建筑物的距离为60米,P 点在地面上的正投影恰好落在线段AB 上,求热气球P 的高度.(结果保留根号)AB45° 30° E F (题17图)(题14图)A BC22.(本题满分6分)如图,⊙P的圆心为P(−3,2),半径为3,直线MN过点M(5,0)且平行于y轴,点N在点M的上方.(1)在图中作出⊙P关于y轴对称的⊙P′.根据作图直接写出⊙P′与直线MN的位置关系.(2)若点N在(1)中的⊙P′上,求PN的长.23.(本题满分6分)如图,在△ABC中,∠ACB=90°,E为BC上一点,以CE为直径作⊙O,AB与⊙O相切于点D,连接CD,若BE=OE=2.(1)求证:∠A=2∠DCB;(2)求图中阴影部分的面积(结果保留π和根号).24.(本题满分8分)已知:如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,∠PBA=∠C.(1)求证:PB是⊙O的切线;(2)若OP∥BC,且OP=8,BC=2.求⊙O的半径.25.(本题满分10分)已知二次函数y=x2−2x−3的图象与x轴交于A、B两点(A在B的左侧),与y轴交于点C,顶点为D.(1)求点A、B、C、D的坐标,并在平面直角坐标系中画出该二次函数的大致图象;(2)说出抛物线y=x2−2x−3可由抛物线y=x2如何平移得到?(3)求四边形OCDB的面积.26.(本题满分10分)已知抛物线y=ax2+bx+c与x轴的一个交点A的坐标为(−1,0),对称轴为直线x=−2,点C是抛物线与y轴交点,点D是抛物线上另一点,已知以OC为一边的矩形OCDE面积为8.(1)写出点D坐标并求此抛物线的解析式;(2)若点P是抛物线在x轴上方的一个动点,且始终保持PQ⊥x轴,垂足为点Q,是否存在这样的点,使得△PQB∽△BOC ? 若存在求出点P的坐标,若不存在,请说明理由..(本题满分8分)某高科技发展公司投资500万元,成功研制出一种市场需求量较大的高科技替代产品,并投入资金1500万元作为固定投资,已知生产每件产品的成本是40元.在销售过程中发现:当销售单价定为100元时,年销售量为20万件;销售单价每增加10元,年销售量将减少1万件,设销售单价为x(元),年销售量为y(万件),年获利(年获利=年销售额一生产成本—投资)为z(万元).(1)试写出y与x之间的函数关系式(不写x的取值范围);(2)试写出z与x之间的函数关系式(不写x的取值范围);(3)公司计划,在第一年按年获利最大确定销售单价进行销售;到第二年年底获利不低于1130万元,请借助函数的大致图象说明:第二年的销售单价x(元)应确定在什么范围内?28.(本题满分10分)如图,在Rt△ABC中,∠BAC=90°,∠B=60°,BC=16cm,AD是斜边BC上的高,垂足为D,BE=1cm.点M从点B出发沿BC方向以1cm/s的速度运动,点N从点E出发,与点M 同时同方向以相同的速度运动,以MN为边在BC的上方作正方形MNGH.点M到达点D时停止运动,点N到达点C时停止运动.设运动时间为t(s).(1)当t为秒时,点G刚好落在线段AD上?(2)设正方形MNGH与Rt△ABC重叠部分的图形的面积为S,当重叠部分的图形是正方形时,求出S 关于t的函数关系式并写出自变量t的取值范围.(3)设正方形MNGH的边NG所在直线与线段AC交于点P,连接DP,当t为何值时,△CPD是等腰三角形?。
2015年九年级数学上学期期中试卷(带答案和解释)2014-2015学年江苏省苏州市吴江市青云中学九年级(上)期中数学试卷一、选择题(共10小题,每小题3分,满分30分) 1.程x2�5x=0的解是() A. x1=0,x2=�5 B. x=5 C. x1=0,x2=5 D. x=0 2.用配方法解一元二次方程x2�4x=5时,此方程可变形为() A.(x+2)2=1 B.(x�2)2=1 C.(x+2)2=9 D.(x�2)2=9 3.已知(a2+b2)2�(a2+b2)�12=0,则a2+b2的值为() A.�3 B. 4 C.�3或4 D. 3或�4 4.已知关于x的一元二次方程(k�1)x2�2x+1=0有两个不相等的实数根,则k的取值范围是() A. k<�2 B. k<2 C. k>2 D. k<2且k≠1 5.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是() A. 5个 B. 6个 C. 7个 D. 8个 6.若m是方程x2�2014x�1=0的根,则(m2�2014m+3)(m2�2014m+4)的值为() A. 16 B. 12 C. 20 D. 30 7.如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB的长是()A. B. C. D. 8.如图,在⊙O中,已知∠OAB=22.5°,则∠C 的度数为() A.135° B.122.5° C.115.5° D.112.5° 9.圆外切等腰梯形的一腰长是8,则这个等腰梯形的上底与下底长的和为() A. 4 B. 8 C. 12 D. 16 10.如图,要拧开一个边长为a=6cm的正六边形螺帽,扳手张开的开口b至少为() A. 6 cm B. 12cm C. 6 cm D. 4 cm 二、填空题(共8小题,每小题3分,满分24分) 11.已知关于x的一元二次方程x2+bx+b�1=0有两个相等的实数根,则b的值是. 12.如图,某小区规划在一个长30m、宽20m 的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成多少m?设通道的宽为xm,由题意列得方程. 13.某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为. 14.已知关于x的一元二次方程x2�x�3=0的两个实数根分别为α、β,则(α+3)(β+3)= . 15.如图,在半径分别为5cm和3cm的两个同心圆中,大圆的弦AB与小圆相切于点C,则弦AB的长为cm. 16.如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为(度). 17.已圆的半径为r=5,圆心到直线l的距离为d,当d满足时,直线l与圆有公共点. 18.已等腰三角形的腰长为10,底边长为12,则它的外接圆半径等于.三、解答题(共9小题,满分76分) 19.解方程(1)(x�3)(x+7)=�9 (2)x2�3x�10=0 (3)6x2�x�2=0.(4)(x+3)(x�3)=3. 20.若关于x的方程ax2+2(a+2)x+a=0有实数解,求实数a的取值范围. 21.若a,b,c 分别是三角形的三边,判断方程(a+b)x2+2cx+(a+b)=0的根的情况. 22.如图,以O为圆心的同心圆中,大圆的弦AB交小圆于C、D两点,求证:(1)∠AOC=∠BOD;(2)AC=BD. 23.如图,已知⊙O为△ABC的外接圆,CE是⊙O的直径,CD⊥AB,D为垂足,求证:∠ACD=∠BCE. 24.已知:▱ABCD的两边AB,AD的长是关于x的方程x2�mx+ �=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少? 25.如图,已知等边△ABC内接于⊙O,BD为内接正十二边形的一边,CD=5 cm,求⊙O的半径R. 26.楚天汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5 辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.(1)设当月该型号汽车的销售量为x辆(x≤30,且x为正整数),实际进价为y万元/辆,求y与x的函数关系式;(2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润25万元,那么该月需售出多少辆汽车?(注:销售利润=销售价�进价)27.如图,点I是△ABC的内心,AI交BC于D,交△ABC的外接圆于点E.①求证:IE=BE;②线段IE是哪两条线段的比例中项,试加以证明.2014-2015学年江苏省苏州市吴江市青云中学九年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分) 1.程x2�5x=0的解是() A. x1=0, x2=�5 B. x=5 C. x1=0,x2=5 D. x=0考点:解一元二次方程-因式分解法.专题:压轴题.分析:在方程左边两项中都含有公因式x,所以可用提公因式法.解答:解:直接因式分解得x(x�5)=0,解得x1=0,x2=5.故选:C.点评:本题考查了因式分解法解一元二次方程,当方程的左边能因式分解时,一般情况下是把左边的式子因式分解,再利用积为0的特点解出方程的根.因式分解法是解一元二次方程的一种简便方法,要会灵活运用. 2.(3分)(2012• 临沂)用配方法解一元二次方程x2�4x=5时,此方程可变形为() A.(x+2)2=1 B.(x�2)2=1 C.(x+2)2=9 D.(x�2)2=9考点:解一元二次方程-配方法.专题:配方法.分析:配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.解答:解:∵x2�4x=5,∴x2�4x+4=5+4,∴(x�2)2=9.故选D.点评:此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用. 3.已知(a2+b2)2�(a2+b2)�12=0,则a2+b2的值为() A.�3 B. 4 C.�3或4 D. 3或�4考点:换元法解一元二次方程.分析:根据换元法,可得一元二次方程,根据因式分解,可得方程的解.解答:解:设a2+b2=x,原方程为 x2�x�12=0.因式分解,得(x�4)(x+3)=0. x�4=0或x+3=0,解得x=4,x=�3(不符合题意,要舍去), a2+b2=x=4,故选:B.点评:本题考查了换元法解一元二次方程,换元是解题关键,注意不符合题意的要舍去. 4.已知关于x的一元二次方程(k�1)x2�2x+1=0有两个不相等的实数根,则k的取值范围是() A. k<�2 B. k<2 C. k>2 D. k<2且k≠1考点:根的判别式;一元二次方程的定义.专题:计算题;压轴题.分析:根据方程有两个不相等的实数根,得到根的判别式的值大于0列出关于k的不等式,求出不等式的解集即可得到k的范围.解答:解:根据题意得:△=b2�4ac=4�4(k�1)=8�4k>0,且k�1≠0,解得:k<2,且k≠1.故选:D.点评:此题考查了根的判别式,以及一元二次方程的定义,弄清题意是解本题的关键. 5.要组织一次篮球联赛,赛制为单循环形式(每两队之间都赛一场),计划安排21场比赛,则参赛球队的个数是()A. 5个 B. 6个 C. 7个 D. 8个考点:一元二次方程的应用.专题:应用题.分析:赛制为单循环形式(每两队之间都赛一场),x个球队比赛总场数= .即可列方程求解.解答:解:设有x个队,每个队都要赛(x�1)场,但两队之间只有一场比赛, x(x�1)÷2=21,解得x=7或�6(舍去).故应邀请7个球队参加比赛.故选C.点评:本题考查了一元二次方程的应用,解决本题的关键是读懂题意,得到总场数的等量关系. 6.若m是方程x2�2014x�1=0的根,则(m2�2014m+3)(m2�2014m+4)的值为() A. 16 B. 12 C. 20 D. 30 考点:一元二次方程的解.分析:首先把m代入x2�2013x�1=0,得出m2�2013m=1,再进一步整体代入求得数值即可.解答:解:∵m是方程x2�2014x�1=0的根,∴m2�2014m=1,∴(m2�2014m+3)(m2�2014m+4) =(1+3)×(1+4) =20.故选:C.点评:此题考查一元二次方程的解以及代数式求值,注意整体代入的思想. 7.如图,在⊙O中,OC⊥弦AB于点C,AB=4,OC=1,则OB 的长是() A. B. C. D.考点:垂径定理;勾股定理.分析:根据垂径定理可得AC=BC= AB,在Rt△OBC中可求出OB.解答:解:∵OC⊥弦AB于点C,∴AC=BC= AB,在Rt△OBC中,OB= = .故选B.点评:本题考查了垂径定理及勾股定理的知识,解答本题的关键是熟练掌握垂径定理的内容. 8.如图,在⊙O中,已知∠OAB=22.5°,则∠C的度数为()A.135° B.122.5° C.115.5° D.112.5°考点:圆周角定理.分析:首先利用等腰三角形的性质求得∠AOB 的度数,然后利用圆周角定理即可求解.解答:解:∵OA=OB,∴∠OAB=∠OBA=22.5°,∴∠AOB=180°�22.5°�22.5°=135°.∴∠C= (360°�135°)=112.5°.故选D.点评:本题考查了圆周角定理以及等腰三角形的性质定理,正确理解定理是关键. 9.圆外切等腰梯形的一腰长是8,则这个等腰梯形的上底与下底长的和为() A. 4 B. 8 C. 12 D. 16考点:切线长定理.分析:直接利用圆外切四边形对边和相等,进而求出即可.解答:解:∵圆外切等腰梯形的一腰长是8,∴梯形对边和为:8+8=16,则这个等腰梯形的上底与下底长的和为16.故选:D.点评:此题主要考查了切线长定理,利用圆外切四边形的性质得出是解题关键. 10.如图,要拧开一个边长为a=6cm 的正六边形螺帽,扳手张开的开口b至少为() A. 6 cm B. 12cm C. 6 cm D. 4 cm考点:正多边形和圆.分析:根据题意,即是求该正六边形的边心距的2倍.构造一个由半径、半边、边心距组成的直角三角形,且其半边所对的角是30°,再根据锐角三角函数的知识求解.解答:解:设正多边形的中心是O,其一边是AB,∴∠AOB=∠BOC=60°,∴OA=OB=AB=OC=BC,∴四边形ABCO是菱形,∵AB=6cm,∠AOB=60°,∴cos∠BAC= ,∴AM=6× =3 (cm),∵OA=OC,且∠AOB=∠BOC,∴AM=MC= AC,∴AC=2AM=6 (cm).故选C.点评:本题考查了正多边形和圆的知识.构造一个由半径、半边、边心距组成的直角三角形,运用锐角三角函数进行求解是解此题的关键.二、填空题(共8小题,每小题3分,满分24分) 11.已知关于x的一元二次方程x2+bx+b�1=0有两个相等的实数根,则b的值是 2 .考点:根的判别式.专题:计算题.分析:根据方程有两个相等的实数根,得到根的判别式的值等于0,即可求出b的值.解答:解:根据题意得:△=b2�4(b�1)=(b�2)2=0,则b的值为2.故答案为:2 点评:此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根. 12.如图,某小区规划在一个长30m、宽20m的长方形ABCD上修建三条同样宽的通道,使其中两条与AB平行,另一条与AD平行,其余部分种花草.要使每一块花草的面积都为78m2,那么通道的宽应设计成多少m?设通道的宽为xm,由题意列得方程(30�2x)(20�x)=6×78.考点:由实际问题抽象出一元二次方程.专题:几何图形问题.分析:设道路的宽为xm,将6块草地平移为一个长方形,长为(30�2x)m,宽为(20�x)m.根据长方形面积公式即可列方程(30�2x)(20�x)=6×78.解答:解:设道路的宽为xm,由题意得:(30�2x)(20�x)=6×78,故答案为:(30�2x)(20�x)=6×78.点评:此题主要考查了一元二次方程的应用,掌握长方形的面积公式,求得6块草地平移为一个长方形的长和宽是解决本题的关键. 13.某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为20% .考点:一元二次方程的应用.专题:增长率问题.分析:解答此题利用的数量关系是:商品原来价格×(1�每次降价的百分率)2=现在价格,设出未知数,列方程解答即可.解答:解:设这种商品平均每次降价的百分率为x,根据题意列方程得, 125(1�x)2=80,解得x1=0.2=20%,x2=1.8(不合题意,舍去);故答案为:20% 点评:本题考查了一元二次方程的应用,此题列方程得依据是:商品原来价格×(1�每次降价的百分率)2=现在价格. 14.已知关于x的一元二次方程x2�x�3=0的两个实数根分别为α、β,则(α+3)(β+3)= 9 .考点:根与系数的关系.分析:根据x的一元二次方程x2�x�3=0的两个实数根分别为α、β,求出α+β和αβ的值,再把要求的式子变形为αβ+3(α+β)+9,最后把α+β和αβ的值代入,计算即可.解答:解:∵x的一元二次方程x2�x�3=0的两个实数根分别为α、β,∴α+β=1,αβ=�3,∴(α+3)(β+3)=αβ+3α+3β+9=αβ+3(α+β)+9=�3+3×1+9=9;故答案为:9.点评:此题考查了一元二次方程根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法. 15.如图,在半径分别为5cm和3cm的两个同心圆中,大圆的弦AB与小圆相切于点C,则弦AB的长为8 cm.考点:切线的性质.分析:本题应根据垂径定理和勾股定理求解.解答:解:大圆的弦AB与小圆相切于点C,∴OC⊥AB,由垂径定理知,AC=BC,由勾股定理得,AC=4,∴AB=2AC=8.点评:本题利用了切线的性质,垂径定理,勾股定理求解. 16.如图,PA、PB分别切⊙O于点A、B,若∠P=70°,则∠C的大小为55 (度).考点:切线的性质.分析:首先连接OA,OB,由PA、PB分别切⊙O于点A、B,根据切线的性质可得:OA⊥PA,OB⊥PB,然后由四边形的内角和等于360°,求得∠AOB的度数,又由圆周角定理,即可求得答案.解答:解:连接OA,OB,∵PA、PB分别切⊙O于点A、B,∴OA⊥PA,OB⊥PB,即∠PAO=∠PBO=90°,∴∠AOB=360°�∠PAO�∠P�∠PBO=360°�90°�70°�90°=11 0°,∴∠C= ∠AOB=55°.故答案为:55.点评:此题考查了切线的性质以及圆周角定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用. 17.已圆的半径为r=5,圆心到直线l的距离为d,当d满足0≤d≤5时,直线l与圆有公共点.考点:直线与圆的位置关系.分析:若d<r,则直线与圆相交;若d=r,则直线于圆相切;若d>r,则直线与圆相离.直线和圆有两个公共点,则直线和圆相交;直线和圆有唯一一个公共点,则直线和圆相切;直线和圆没有公共点,则直线和圆相离.解答:解:根据题意,可知圆的半径为5.∵直线l与圆有公共点,∴直线与圆相交或相切,∴d满足0≤d≤5,故答案为:0≤d≤5.点评:主要考查了直线与圆的位置关系与数量之间的联系以及直线和圆的位置关系的概念,难度不大. 18.已等腰三角形的腰长为10,底边长为12,则它的外接圆半径等于.考点:三角形的外接圆与外心;等腰三角形的性质.专题:计算题.分析:如图,⊙O为等腰三角形ABC的外接圆,AB=AC=10,BC=12,作AD⊥BC于D,根据等腰三角形的性质得BD=CD= BC=6,则AD垂直平分BC,根据垂径定理的推论得点O在AD上;连结OB,设⊙O的半径为r,在Rt△ABD中利用勾股定理计算出AD=8,在Rt△OBD中,再利用勾股定理得到(8�r)2+62=r2,然后解方程即可得到外接圆半径.解答:解:如图,⊙O为等腰三角形ABC的外接圆,AB=AC=10,BC=12,作AD⊥BC于D,∵AB=AC,∴BD=CD= BC=6,∴AD垂直平分BC,∴点O在AD上,连结OB,设⊙O的半径为r,在Rt△ABD 中,∵AB=10,BD=6,∴AD= =8,在Rt△OB D中,OD=AD�OA=8�r,OB=r,∵OD2+BD2=OB2,∴(8�r)2+62=r2,解得r= ,即它的外接圆半径等于.故答案为.点评:本题考查了三角形的外接圆与外心:经过三角形的三个顶点的圆,叫做三角形的外接圆.三角形外接圆的圆心是三角形三条边垂直平分线的交点,叫做三角形的外心.也考查了垂径定理、勾股定理和等腰三角形的性质.三、解答题(共9小题,满分76分) 19.解方程(1)(x�3)(x+7)=�9 (2)x2�3x�10=0 (3)6x2�x�2=0.(4)(x+3)(x�3)=3.考点:解一元二次方程-因式分解法;解一元二次方程-直接开平方法.分析:(1)整理后分解因式,即可得出两个一元一次方程,求出方程的解即可;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(3)先分解因式,即可得出两个一元一次方程,求出方程的解即可;(4)整理后分解因式,即可得出两个一元一次方程,求出方程的解即可.解答:解:(1)整理得:x2+4x�12=0,(x+6)(x�2)=0, x+6=0,x�2=0, x1=�6,x2=2;(2)x2�3x�10=0,(x�5)(x+2)=0, x�5=0,x+2=0, x1=5,x2=�2;(3)6x2�x�2=0,(3x+1)(x�2)=0, 3x+1=0,x�2=0, x1=�,x2=2;(4)整理得:x2=12,x=±2 , x1=2 ,x2=�2 .点评:本题考查了解一元二次方程的应用,解此题的关键是能把一元二次方程转化成一元一次方程. 20.若关于x的方程ax2+2(a+2)x+a=0有实数解,求实数a的取值范围.考点:根的判别式;一元一次方程的解.分析:当a=0时,此方程是一元一次方程;当a≠0时,此方程是一元二次方程.根据方程有实数解可知△≥0,求出a的取值范围即可.解答:解:当a=0时,此方程是一元一次方程,故方程有解;当a≠0时,此方程是一元二次方程.∵方程有实数解,∴△=[2(a+2)]2�4a2≥0,解得a≥�1.点评:本题考查的是根的判别式,熟知一元二次方程ax2+bx+c=0(a≠0)的根与△=b2�4ac的关系是解答此题的关键. 21.若a,b,c分别是三角形的三边,判断方程(a+b)x2+2cx+(a+b)=0的根的情况.考点:根的判别式;三角形三边关系.分析:先求出△=b2�4ac 的值,再根据三角形的三边关系分别进行判断,即可得出答案.解答:解:△=(2c)2�4(a+b)(a+b)=4c2�4(a+b)2= 4(c+a+b)(c�a�b).∵a,b,c分别是三角形的三边,∴a+b>c.∴c+a+b >0,c�a�b<0,∴△<0,∴方程没有实数根.点评:本题主要考查了一元二次方程根的情况与判别式△的关系:△>0⇔方程有两个不相等的实数根;△=0⇔方程有两个相等的实数根;△<0⇔方程没有实数根. 22.如图,以O为圆心的同心圆中,大圆的弦AB交小圆于C、D两点,求证:(1)∠AOC=∠BOD;(2)AC=BD.考点:垂径定理.专题:证明题.分析:(1)过O作OE⊥AB,由等腰三角形的性质可知∠AOE=∠BOE,∠COE=∠DOE,由此可得出结论;(2)根据垂径定理得到AE=BE,CE=DE,从而得到AC=BD.解答:(1)证明:过O作OE⊥AB,∵∠OAB与△OCD均为等腰三角形,∴∠AOE=∠BOE,∠COE=∠DOE,∴∠AOE�∠COE=∠BOE�∠DOE,∠AOC�∠BOD;(2)证明:∵OE⊥AB,∴AE=BE,CE=DE,∴BE�DE=AE�CE,即AC=BD.点评:本题考查的是垂径定理,熟知平分弦的直径平分这条弦,并且平分弦所对的两条弧是解答此题的关键. 23.如图,已知⊙O为△ABC的外接圆,CE是⊙O的直径,CD⊥AB,D为垂足,求证:∠ACD=∠BCE.考点:圆周角定理.专题:证明题.分析:首先连接BE,再根据直角三角形的性质可得∠A+∠ACD=90°,根据圆周角定理可得∠E+∠ECB=90°,∠A=∠E,进而可证明∠ACD=∠BCE.解答:证明:连接EB,∵CD⊥AB,∴∠ADC=90°,∴∠A+∠ACD=90°,∵CE 是⊙O的直径,∴∠CBE=90°,∴∠E+∠ECB=90°,∵∠A=∠E,∴∠ACD=∠BCE.点评:此题主要考查了圆周角定理,关键是掌握圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.推论:半圆(或直径)所对的圆周角是直角,90°的圆周角所对的弦是直径. 24.已知:▱ABCD的两边AB,AD的长是关于x的方程x2�mx+ �=0的两个实数根.(1)当m为何值时,四边形ABCD是菱形?求出这时菱形的边长;(2)若AB的长为2,那么▱ABCD的周长是多少?考点:一元二次方程的应用;平行四边形的性质;菱形的性质.专题:应用题;压轴题.分析:(1)让根的判别式为0即可求得m,进而求得方程的根即为菱形的边长;(2)求得m的值,进而代入原方程求得另一根,即易求得平行四边形的周长.解答:解:(1)∵四边形ABCD是菱形,∴AB=AD,∴△=0,即m2�4(�)=0,整理得:(m�1)2=0,解得m=1,当m=1时,原方程为x2�x+ =0,解得:x1=x2=0.5,故当m=1时,四边形ABCD是菱形,菱形的边长是0.5;(2)把AB=2代入原方程得,m=2.5,把m=2.5代入原方程得x2�2.5x+1=0,解得x1=2,x2=0.5,∴C▱ABCD=2×(2+0.5)=5.点评:综合考查了平行四边形及菱形的有关性质;利用解一元二次方程得到两种图形的边长是解决本题的关键. 25.如图,已知等边△ABC内接于⊙O,BD为内接正十二边形的一边, CD=5 cm,求⊙O 的半径R.考点:正多边形和圆.分析:首先连接OB,OC,OD,由等边△ABC 内接于⊙O,BD为内接正十二边形的一边,可求得∠BOC,∠BOD的度数,继而证得△COD是等腰直角三角形,继而求得答案.解答:解:连接OB,OC,OD,∵等边△ABC内接于⊙O,BD为内接正十二边形的一边,∴∠BOC= ×360°=120°,∠BOD= ×360°=30°,∴∠COD=∠BOC�∠BOD=90°,∵OC=OD,∴∠OCD=45°,∴OC=CD•cos45°=5 × =5(cm).即⊙O的半径R=5cm.点评:此题考查了正多边形与圆以及等腰直角三角形性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用. 26.楚天汽车销售公司5月份销售某种型号汽车,当月该型号汽车的进价为30万元/辆,若当月销售量超过5辆时,每多售出1辆,所有售出的汽车进价均降低0.1万元/辆.根据市场调查,月销售量不会突破30台.(1)设当月该型号汽车的销售量为x辆(x≤30,且x为正整数),实际进价为y万元/辆,求y与x的函数关系式;(2)已知该型号汽车的销售价为32万元/辆,公司计划当月销售利润25万元,那么该月需售出多少辆汽车?(注:销售利润=销售价�进价)考点:一元二次方程的应用;分段函数.专题:销售问题.分析:(1)根据分段函数可以表示出当0<x≤5,5<x≤30时由销售数量与进价的关系就可以得出结论;(2)由销售利润=销售价�进价,由(1)的解析式建立方程就可以求出结论.解答:解:(1)由题意,得当0<x≤5时 y=30.当5<x≤30时, y=30�0.1(x�5)=�0.1x+30.5.∴y= ;(2)当0<x≤5时,(32�30)×5=10<25,不符合题意,当5<x≤30时, [32�(�0.1x+30.5)]x=25,解得:x1=�25(舍去),x2=10.答:该月需售出10辆汽车.点评:本题考查了分段函数的运用,一元二次方程的解法的运用,解答时求出分段函数的解析式是关键. 27.如图,点I是△ABC的内心,AI交BC于D,交△ABC 的外接圆于点E.①求证:IE=BE;②线段IE是哪两条线段的比例中项,试加以证明.考点:三角形的内切圆与内心;相似三角形的判定与性质.专题:综合题;压轴题.分析:①连接BI,证∠BIE=∠IBE即可;∠IBE=∠4+∠5,∠BIE=∠2+∠3;观察上述两个式子:I是△ABC的内心,则∠3=∠4,∠1=∠2;而∠1=∠5,由此可得∠5=∠2;即∠BIE=∠IBE,由此得证;②由①知:IE=BE,即证BE是哪两条线段的比例中项,可通过找以BE为公共边的相似三角形;由①证得∠5=∠2,易证得△BDE∽△ABE,由此可得出所求的结论.解答:①证明:连接BI.∵I是△ABC的内心,∴∠1=∠2,∠3=∠4;∵∠BIE=∠3+∠2,∠EBI=∠4+∠5,且∠5=∠ 1,∴∠BIE=∠EBI;∴IE=BE;②解:考虑有公共边公共角的相似三角形及IE=BE,知:IE是DE和AE的比例中项.证明如下:∵∠5=∠1,∠1=∠2;∴∠5=∠2;又∵∠E=∠E,∴△BED∽△AEB;∴BE:DE=AE:BE;∴BE2=AE•DE;又∵IE=BE,∴IE2=AE•DE.点评:此题主要考查了三角形内心的性质、圆周角定理及相似三角形的判定和性质.。
初中数学试卷鼎尚图文**整理制作2014~2015学年度烟林中学第一学期期中考试九年级数学试卷出卷:颜科 审核:邵云 考试时间120分钟 分值:130分一、选择题(每小题3分,共30分)1.下列方程中两根之和等于1的是 ( ) A .210x x ++= B .21x x -=- C .21000x x --= D .2103x x -+= 2.如图,⊙O 是△ABC 的外接圆,∠BOC =100°,则∠A 的度数等于 ( ) A .60° B .50° C .40° D .30°3.如图,AB 是⊙O 的直径,点C 在⊙O 上,AB=6,∠B=30°,则BC 的长为 ( )A .12B .33C .23D .123第2题 第3题 4.已知x =2是关于x 的一元二次方程x 2-x -2a =0的一个解,则a 的值为( )A .0B .-1C . 1D . 25.方程x 2+3=4x 用配方法解时,应先化成 ( )A .(x -2)2=7B .(x +2)2=1C .(x +2)2=2D .(x -2)2=16.如果一个直角三角形的两条边长分别是6和8,另一个与它相似的直角三角形边长分别是3、4及x ,那么x 的值 ( ) A .只有1个 B .可以有2个 C .可以有3个 D .有无数个7.已知关于x 的一元二次方程(a -1)x 2-4x +1=0有实数根,则a 的取值范围是( )A .a ≤5且a ≠1B .a ≤5C .a <5D .a <5且a ≠1 8.如图,⊙P 的圆心在第二象限内,且与x 轴相切于点A ,与y 轴相交于B (0,8)、C (0,2),则圆心P 的坐标是 ( ) HGOD CBA第9题PCBAOy x第8题9.如图,四边形ABCD 是菱形,对角线AC =8cm ,BD =6cm ,DH ⊥AB 于点H ,且DH 与AC 交于G ,则GH 的值是 ( )C .2815cm D .2521cmA .2825cm B .2120cm 10.如图,在平面直角坐标系中,⊙P的圆心是(2,a )(a >2),半径为2,函数y=x 的图象被⊙P 的弦AB 的长为32,则a 的值是( )A .32B .22+C .22D .32+第10题 第14题 第15题二、填空题(每小题2分,共16分)11.已知a 、b 是一元二次方程x 2-2x -5=0的两个根,则2a +2b -ab 的值为 . 12.若x 2-(m -1)x +9是完全平方式,则m 的值为 .13.某市2013年投入教育经费2500万元,预计2015年要投入教育经费3600万元,已知2013年至2015年的教育经费投入以相同的百分率逐年增长,则增长率为 . 14.如图,△ABC 中,DE ∥BC ,DE=2,AD=4,DB=6,则BC 的长是 15.如图,在□ABCD 中,E 为CD 上一点,连接AE 、BD ,且AE 、BD 交于点F ,S △DEF :S △ABF =4:25,则DE :EC=16.如图,Rt △ABC 的内切圆⊙O 与两直角边AB ,BC 分别相切与点D 、E ,过劣弧DE(不包括端点D ,E )上任一点P 作⊙O 的切线MN 与AB ,BC 分别交于点M ,N ,若⊙O 的半径为4cm ,则Rt △MBN 的周长为第16题第17题第18题17.如图,在△ABC中,AB=5cm,∠A=45°,∠C=30°,⊙O为△ABC的外接圆,P为⌒BC上任一点,则四边形OABP的周长的最大值是cm.18.如图,点D是△ABC边AB上的一点,BD=2AD,P是△ABC外接圆上一点(点P在劣弧⌒AC上),∠ADP=∠ACB,则PBPD=.三、解答题:19.(本小题满分12分)解下列方程:(1)(x-1)2=8;(2)x2-5x-6=0;(3)2m2-3m-1=0.20.(本小题满分8分)已知,关于x的方程错误!未找到引用源。
2015—2016学年度第一学期作业检查试卷九年级数学一、选择题(共10题,每题3分,共30分)1、下列关于x 的方程中,一定是一元二次方程的为 ( )A .ax 2+bx +c =0B .x 2-2=(x +3)2C .x 2+3x−5=0 D .x 2-1=0 2、△ABC 中,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,如果222a b c +=,那么下列结论正确的是( )A .csinA= aB .b cosB=cC .a tanA= bD .ctanB= b3、在Rt△ACB 中,∠C =90°,AB =10,sin A =35,则BC 的长为 ( ) A .6 B .7.5 C .8 D .12.54、如图,已知A 、B 、C 在⊙O 上,为优弧,下列选项中与∠AOB 相等的是( )A . 2∠CB . 4∠BC . 4∠AD . ∠B +∠C5、关于x 的一元二次方程x 2+kx -1=0的根的情况是 ( )A .有两个不相等的同号实数根B .有两个不相等的异号实数根C .有两个相等的实数根D .没有实数根6、如图,直线AB 与□MNPQ 的四边所在直线分别交于A 、B 、C 、D ,则图中的相似三角形有( )A .4对B .5对C .6对D .7对第4题 第6题 第7题 第8题 第10题7、如图,要在宽为22米的九州大道两边安装路灯,路灯的灯臂CD 长2米,且与灯柱BC 成120°角,路灯采用圆锥形灯罩,灯罩的轴线DO 与灯臂CD 垂直,当灯罩的轴线DO 通过公路路面的中心线时照明效果最佳,此时,路灯的灯柱BC 高度应该设计为 ( )A .(11﹣2)米B . (11﹣2)米C . (11﹣2)米D . (11﹣4)米8、如图,在Rt△ABC 中,∠ACB=90º,AC=3,BC=4,以点C 为圆心,CA 为半径的圆与AB 交于点D ,则AD 的长为 ( )A . 95B . 245C . 185D .529、关于x 的方程m (x +h )2+k =0(m 、h 、k 均为常数,m ≠0)的解是x 1=-3,x 2=2,则方程m (x +h -3)2+k =0的解是 ( )A .x 1=-6,x 2=-1B .x 1=0,x 2=5C .x 1=-3,x 2=5D .x 1=-6,x 2=210、在平面直角坐标系中,正方形ABCD 的位置如图所示,点A 的坐标为(1,0),点D 的坐标为(0,2).延长CB 交x 轴于点A 1,作正方形A 1B 1C 1C ;延长C 1B 1交x 轴于点A 2,作正方形A 2B 2C 2C 1,按这样的规律进行下去,第2011个正方形(正方形ABCD 看作第1个)的面积为 ( )A .2010235⎪⎭⎫ ⎝⎛B .2010495⎪⎭⎫ ⎝⎛C .2011495⎪⎭⎫ ⎝⎛ D .2011235⎪⎭⎫ ⎝⎛二、填空题(共8题,每空2分,共18分)11、已知m 、n 是方程x 2+3x -4=0的两个根,那么m +n = , mn = ;12、在△ABC 中,若|cosA -12|+(1-tanB )2=0,则∠C 的度数是 ;13、下列命题:①长度相等的弧是等弧;②不在同一直线上的三点确定一个圆;③相等的圆心角所对的弦相等;④外心在三角形的一条边上的三角形是直角三角形.其中正确的有 ;14、关于x 的一元二次方程012)2(2=++-x x m 有实数根,则m 的取值范围是 ;15、如图,AB 是⊙O 的弦,OH ⊥AB 于点H ,点P 是优弧上一点,AB =,OH =1,则∠APB = ;第15题 第16题 第17题 第18题16、如图,数轴上半径为1的⊙O 从原点O 开始以每秒1个单位的速度向右运动,同时,距原点右边7个单位有一点P 以每秒2个单位的速度向左运动,经过 秒,点P 在⊙O 上;17、如图,∠AOB =60°,点P 在边OA 上,OP =12,点M 、N 在OB 上,PM =PN ,若MN =2,则OM = ;18、如图,在等边△ABC 内有一点D ,AD =5,BD =6,CD =4,将△ABD 绕A 点逆时针旋转,使AB 与AC 重合,点D 旋转至点E ,则∠CDE 的正切值为 ;三、解答题(共9题,共82分)19、解方程(每题5分,共10分)(1)3(x -5)2=x (5-x ); (2)273212=+-x x ;20、(每题5分,共10分) (1)计算:﹣24﹣+|1﹣4sin 60°|+(π﹣1)º; (2)已知x 2-4x +l=0,求xx x x 64)1(2+---的值;21、(本题8分)已知方程x 2-2mx +3m =0的两实数根x 1 、x 2满足(x 1+2)(x 2+2)=22-m 2,求m 的值;22、(本题8分)如图,在平行四边形ABCD 中,过点A 作AE ⊥BC ,垂足为E ,连接DE ,F 为线段DE 上一点,且∠AFE =∠B ;(1)求证:△ADF ∽△DEC ;(2)若AB =8,AD =6,AF =4,求AE 的长;23、(本题8分)如图,⊙O 的弦AB =8,直径CD ⊥AB 于M ,OM :MD =3 :2, E 是劣弧CB 上一点,连结CE并延长交CE 的延长线于点F .F 求:(1)⊙O 的半径;(2)求CE ·CF 的值.24、(本题8分)如图所示,某数学活动小组选定测量小河对岸大树BC 的高度,他们在斜坡上D 处测得大树顶端B 的仰角是30°,朝大树方向下坡走6米到达坡底A 处,在A 处测得大树顶端B 的仰角是48°,若坡角∠FAE=30°,求大树的高度(结果保留整数,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11,3≈1.73);25、(本题8分)随着人们经济收入的不断提高及汽车产业的快速发展,汽车已越来越多的进入普通家庭,成为居民消费新的增长点。
2015-2016学年江苏省无锡市江阴市南菁中学九年级(上)期中数学试卷一.选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)1.﹣3的倒数为( )A.﹣B.C.3 D.﹣32.下面与是同类二次根式的是( )A.B. C.D.3.已知一个正多边形的每个外角等于60°,则这个正多边形是( )A.正五边形 B.正六边形 C.正七边形 D.正八边形4.下列四张扑克牌的牌面,不是中心对称图形的是( )A.B.C. D.5.一元二次方程x2﹣8x﹣1=0配方后可变形为( )A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=156.如图,四边形ABCD是圆内接四边形,E是BC延长线上一点,若∠BAD=105°,则∠DCE 的大小是( )A.115°B.l05°C.100°D.95°7.在Rt△ABC中,∠C=90°,若斜边AB是直角边BC的3倍,则tanB的值是( )A.B.3 C.D.28.关于x的一元二次方程kx2+2x+1=0有两个不相等的实数根,则k的取值范围是( ) A.k>﹣1 B.k≥﹣1 C.k≠0 D.k<1且k≠09.如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为( )A.﹣4 B.4 C.﹣2 D.210.如图,AB为半圆O的直径,OC⊥AB交⊙O于C,P为BC延长线上一动点,D为AP 中点,DE⊥PA,交半径OC于E,连CD.下列结论:①PE⊥AE;②DC=DE;③∠OEA=∠APB;④PC+CE为定值.其中正确结论的个数为( )A.l个B.2个C.3个D.4个二.填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置)11.函数y=中自变量x的取值范围是__________.12.设一元二次方程2x2﹣x﹣1=0的两个实数根分别为x1和x2,则x1+x2=__________.13.《重庆市国民经济和社会发展第十二个五年规划纲要》提出:到2015年,逐步形成西部地区的重要增长极,地区生产总值达到15000亿元.将15000亿元用科学记数法表示为__________元.14.分解因式:ax2+2ax+a=__________.15.一个三角形的两边长分别是2和3,若它的第三边长为奇数,则这个三角形的周长为__________.16.如果四边形的两条对角线相等,那么顺次连接四边形各边中点得到的四边形是__________.17.一种药品经过两次降价,药价从原来每盒60元降至现在的48.6元,则平均每次降价的百分率是__________%.18.如图,已知Rt△ABC的直角边AC=24,斜边AB=25,一个以点P为圆心、半径为1的圆在△ABC内部沿顺时针方向滚动,且运动过程中⊙P一直保持与△ABC的边相切,当点P第一次回到它的初始位置时所经过路径的长度是__________.三.解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(1)计算:6tan230°﹣sin60°﹣sin45°(2)先化简,再求值:÷(1+),其中x=﹣1.20.(1)解方程:x2﹣2x﹣3=0;(2)解不等式组:.21.已知:如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE.求证:四边形ABCD为平行四边形.22.如图,四边形ABCD是⊙O的内接四边形,∠ABC=2∠D,连接OA、OB、OC、AC,OB与AC相交于点E.(1)求∠OCA的度数;(2)若∠COB=3∠AOB,OC=2,求图中阴影部分面积(结果保留π和根号)23.“六一”儿童节前夕,薪黄县教育局准备给留守儿童赠送一批学习用品,先对浠泉镇浠泉小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6名,7名,8名,10名,12名这五种情形,并将统计结果绘制成了如图所示的两份不完整的统计图:请根据上述统计图,解答下列问题:(1)该校有多少个班级?并补充条形统计图;(2)该校平均每班有多少名留守儿童?留守儿童人数的众数是多少?(3)若该镇所有小学共有60个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.24.某大学生利用暑假社会实践参与了一家网店经营,该网店以每个20元的价格购进900个某新型商品.第一周以每个35元的价格售出300个,第二周若按每个35元的价格销售仍可售出300个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个).(1)若第二周降低价格1元售出,则第一周,第二周分别获利多少元?(2)若第二周单价降低x元销售一周后,商店对剩余商品清仓处理,以每个15元的价格全部售出,如果这批商品计划获利9500元,问第二周每个商品的单价应降低多少元?25.如图,某建筑物BC顶部有釕一旗杆AB,且点A,B,C在同一条直线上,小红在D 处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE 为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.26.“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).27.如图,在平面直角坐标系中,点M是第一象限内一点,过M的直线分别交x轴,y轴的正半轴于A,B两点,且M是AB的中点.以OM为直径的⊙P分别交x轴,y轴于C,D两点,交直线AB于点E(位于点M右下方),连结DE交OM于点K.(1)若点M的坐标为(3,4),①求A,B两点的坐标;②求ME的长.(2)若=3,求∠OBA的度数.(3)设tan∠OBA=x(0<x<1),=y,直接写出y关于x的函数解析式.28.如图,在平面直角坐标系中,O是坐标原点,点A的坐标是(﹣4,0),点B的坐标是(0,b)(b>0).P是直线AB上的一个动点,作PC⊥x轴,垂足为C.记点P关于y轴的对称点为P′(点P′不在y轴上),连接PP′,P′A,P′C.设点P的横坐标为a.(1)当b=3时,①求直线AB的解析式;②若点P′的坐标是(﹣1,m),求m的值;(2)若点P在第一象限,记直线AB与P′C的交点为D.当P′D:DC=1:3时,求a的值;(3)是否同时存在a,b,使△P′CA为等腰直角三角形?若存在,请求出所有满足要求的a,b的值;若不存在,请说明理由.2015-2016学年江苏省无锡市江阴市南菁中学九年级(上)期中数学试卷一.选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)1.﹣3的倒数为( )A.﹣B.C.3 D.﹣3【考点】倒数.【专题】存在型.【分析】根据倒数的定义进行解答即可.【解答】解:∵(﹣3)×(﹣)=1,∴﹣3的倒数是﹣.故选A.【点评】本题考查的是倒数的定义,即如果两个数的乘积等于1,那么这两个数互为倒数.2.下面与是同类二次根式的是( )A.B. C.D.【考点】同类二次根式.【专题】计算题.【分析】分别将各选项中的二次根式化为最简,然后可判断出答案.【解答】解:A、是最简二次根式与不同,故本选项错误;B、=2,故本选项错误;C、=2,故本选项正确;D、=2,故本选项错误.故选C.【点评】本题考查同类二次根式的知识,属于基础题,比较简单,注意细心将各选项分别化简后再作答.3.已知一个正多边形的每个外角等于60°,则这个正多边形是( )A.正五边形 B.正六边形 C.正七边形 D.正八边形【考点】多边形内角与外角.【分析】多边形的外角和等于360°,因为所给多边形的每个外角均相等,故又可表示成60°n,列方程可求解.【解答】解:设所求正n边形边数为n,则60°•n=360°,解得n=6.故正多边形的边数是6.故选B.【点评】本题考查根据多边形的外角和求多边形的边数,解答时要会根据公式进行正确运算、变形和数据处理.4.下列四张扑克牌的牌面,不是中心对称图形的是( )A.B.C. D.【考点】中心对称图形.【分析】根据中心对称图形的概念和扑克牌的花色特点求解.【解答】解:根据中心对称图形的概念,知A、B、C都是中心对称图形;D、旋转180°后,中间的花色发生了变化,不是中心对称图形.故选D.【点评】考查了中心对称图形的概念:如果一个图形绕某一点旋转180°后能够与自身重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心.5.一元二次方程x2﹣8x﹣1=0配方后可变形为( )A.(x+4)2=17 B.(x+4)2=15 C.(x﹣4)2=17 D.(x﹣4)2=15【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程利用配方法求出解即可.【解答】解:方程变形得:x2﹣8x=1,配方得:x2﹣8x+16=17,即(x﹣4)2=17,故选C【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.6.如图,四边形ABCD是圆内接四边形,E是BC延长线上一点,若∠BAD=105°,则∠DCE 的大小是( )A.115°B.l05°C.100°D.95°【考点】圆内接四边形的性质.【专题】计算题.【分析】根据圆内接四边形的对角互补得到∠BAD+∠BCD=180°,而∠BCD与∠DEC为邻补角,得到∠DCE=∠BAD=105°.【解答】解:∵四边形ABCD是圆内接四边形,∴∠BAD+∠BCD=180°,而∠BCD+∠DCE=180°,∴∠DCE=∠BAD,而∠BAD=105°,∴∠DCE=105°.故选B.【点评】本题考查了圆内接四边形的性质:圆内接四边形的对角互补.也考查了邻补角的定义以及等角的补角相等.7.在Rt△ABC中,∠C=90°,若斜边AB是直角边BC的3倍,则tanB的值是( )A.B.3 C.D.2【考点】锐角三角函数的定义;勾股定理.【分析】设BC=x,则AB=3x,由勾股定理求出AC,根据三角函数的概念求出tanB.【解答】解:设BC=x,则AB=3x,由勾股定理得,AC=2x,tanB===2,故选:D.【点评】本题考查的是锐角三角函数的概念和勾股定理的应用,应用勾股定理求出直角三角形的边长、正确理解锐角三角函数的概念是解题的关键.8.关于x的一元二次方程kx2+2x+1=0有两个不相等的实数根,则k的取值范围是( ) A.k>﹣1 B.k≥﹣1 C.k≠0 D.k<1且k≠0【考点】根的判别式;一元二次方程的定义.【分析】在判断一元二次方程根的情况的问题中,必须满足下列条件:(1)二次项系数不为零;(2)在有不相等的实数根时,必须满足△=b2﹣4ac>0【解答】解:依题意列方程组,解得k<1且k≠0.故选D.【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.9.如图,△AOB是直角三角形,∠AOB=90°,OB=2OA,点A在反比例函数y=的图象上.若点B在反比例函数y=的图象上,则k的值为( )A.﹣4 B.4 C.﹣2 D.2【考点】反比例函数图象上点的坐标特征;相似三角形的判定与性质.【分析】要求函数的解析式只要求出B点的坐标就可以,过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.根据条件得到△ACO∽△ODB,得到:===2,然后用待定系数法即可.【解答】解:过点A,B作AC⊥x轴,BD⊥x轴,分别于C,D.设点A的坐标是(m,n),则AC=n,OC=m,∵∠AOB=90°,∴∠AOC+∠BOD=90°,∵∠DBO+∠BOD=90°,∴∠DBO=∠AOC,∵∠BDO=∠ACO=90°,∴△BDO∽△OCA,∴==,∵OB=2OA,∴BD=2m,OD=2n,因为点A在反比例函数y=的图象上,则mn=1,∵点B在反比例函数y=的图象上,B点的坐标是(﹣2n,2m),∴k=﹣2n•2m=﹣4mn=﹣4.故选A.【点评】本题考查了反比例函数图象上点的坐标特征,相似三角形的判定和性质,求函数的解析式的问题,一般要转化为求点的坐标的问题,求出图象上点的横纵坐标的积就可以求出反比例函数的解析式.10.如图,AB为半圆O的直径,OC⊥AB交⊙O于C,P为BC延长线上一动点,D为AP 中点,DE⊥PA,交半径OC于E,连CD.下列结论:①PE⊥AE;②DC=DE;③∠OEA=∠APB;④PC+CE为定值.其中正确结论的个数为( )A.l个B.2个C.3个D.4个【考点】圆周角定理;等腰三角形的判定与性质;等腰直角三角形;三角形中位线定理.【专题】几何综合题;压轴题.【分析】①根据三角形外心的定义得到点E是△ABP的外心,然后利用同弧所对的圆周角等于所对圆心角的一半可以证明PE⊥AE.②根据直径所对的圆周角是直角以及①的结论,可以知道点C和点E在以点D为圆心的同一个圆上,得到DC=DE.③根据垂径定理得到∠AEO=∠AEB,然后用圆周角定理得到∠APB=∠AEO.④利用③的结论,结合图形,在直角三角形中用余弦进行计算得到PC+CE=OC,是圆的半径的倍,是一个定值.【解答】解:①如图:∵点D是AP的中点,且DE⊥AP,∴DE是AP的垂直平分线,又AB是半⊙O的直径,OC⊥AB,∴OC是AB的垂直平分线,∴点E是△ABP的外心,∵∠ABC=45°,∴∠AEP=90°(同弧所对的圆周角等于它所对圆心角的一半)∴PE⊥AE,故①正确.②∵AB是半⊙O的直径,∴∠ACB=90°=∠ACP=∠AEP,∴点C和点E在以点D为圆心的同一个圆上,∴DC=DE,故②正确.③由①知点E是△ABP的外心,∴∠APB=∠AEB=∠AEO,故③正确.④在直角△APC中,PC=AP•cos∠APC=AE•cos∠AE0=AE•=OE,∴PC+CE=OE+CE=(OE+CE)=OC,∴PC+CE为定值,是⊙O半径的倍.故④正确.故选D.【点评】本题考查的是圆周角定理的综合运用,结合图形,利用圆周角定理,对每个选项进行分析,作出正确的判断.二.填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置)11.函数y=中自变量x的取值范围是x≠3.【考点】函数自变量的取值范围.【分析】根据分母不等于0列式进行计算即可求解.【解答】解:根据题意得,x﹣3≠0,解得x≠3.故答案为:x≠3.【点评】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.12.设一元二次方程2x2﹣x﹣1=0的两个实数根分别为x1和x2,则x1+x2=.【考点】根与系数的关系.【分析】已知方程有实数根,根据根与系数的关系即可直接求出x1+x2的值.【解答】解:根据一元二次方程根与系数的关系,x1+x2=;故答案为:.【点评】此题考查了根与系数的关系,解答此题要熟知一元二次方程根与系数的关系:x1+x2=﹣,x1•x2=.13.《重庆市国民经济和社会发展第十二个五年规划纲要》提出:到2015年,逐步形成西部地区的重要增长极,地区生产总值达到15000亿元.将15000亿元用科学记数法表示为1.5×1012元.【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:15000亿=15000 0000 0000=1.5×1012,故答案为:1.5×1012.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.14.分解因式:ax2+2ax+a=a(x+1)2.【考点】提公因式法与公式法的综合运用.【分析】先提取公因式,再根据完全平方公式进行二次分解.完全平方公式:a2±2ab+b2=(a±b)2.【解答】解:ax2+2ax+a,=a(x2+2x+1)﹣﹣(提取公因式)=a(x+1)2.﹣﹣(完全平方公式)【点评】本题考查了提公因式法与公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意要分解彻底.15.一个三角形的两边长分别是2和3,若它的第三边长为奇数,则这个三角形的周长为8.【考点】三角形三边关系.【分析】首先设第三边长为x,根据三角形的三边关系可得3﹣2<x<3+2,然后再确定x的值,进而可得周长.【解答】解:设第三边长为x,∵两边长分别是2和3,∴3﹣2<x<3+2,即:1<x<5,∵第三边长为奇数,∴x=3,∴这个三角形的周长为2+3+3=8,故答案为:8.【点评】此题主要考查了三角形的三边关系,关键是掌握三角形两边之和大于第三边,三角形的两边差小于第三边.16.如果四边形的两条对角线相等,那么顺次连接四边形各边中点得到的四边形是菱形.【考点】菱形的判定;三角形中位线定理;平行四边形的判定.【专题】证明题.【分析】根据三角形的中位线定理求出EF∥BD,GH∥BD,EF=BD,GH=BD,EH=AC,推出EF∥GH,EF=GH,EF=EH,推出平行四边形EFGH,进一步推出答案.【解答】解:∵E、F、G、H分别是边AD、AB、BC、CD的中点,∴EF∥BD,GH∥BD,EF=BD,GH=BD,EH=AC,∴EF∥GH,EF=GH,∴四边形EFGH是平行四边形,∵AC=BD,EF=BD,EH=AC,∴EF=EH,∴平行四边形EFGH是菱形.故答案为:菱形.【点评】本题主要考查对菱形的判定,平行四边形的判定,三角形的中位线等知识点的理解和掌握,能根据性质求出平行四边形EFGH和EF=EH是解此题的关键.17.一种药品经过两次降价,药价从原来每盒60元降至现在的48.6元,则平均每次降价的百分率是10%.【考点】一元二次方程的应用.【专题】增长率问题.【分析】本题可设平均每次降价的百分率是x,则第一次降价后药价为60(1﹣x)元,第二次在60(1﹣x)元的基础之又降低x,变为60(1﹣x)(1﹣x)即60(1﹣x)2元,进而可列出方程,求出答案.【解答】解:设平均每次降价的百分率是x,则第二次降价后的价格为60(1﹣x)2元,根据题意得:60(1﹣x)2=48.6,即(1﹣x)2=0.81,解得,x1=1.9(舍去),x2=0.1.所以平均每次降价的百分率是0.1,即10%.故答案为:10【点评】此题的关键在于分析降价后的价格,要注意降价的基础,另外还要注意解的取舍.18.如图,已知Rt△ABC的直角边AC=24,斜边AB=25,一个以点P为圆心、半径为1的圆在△ABC内部沿顺时针方向滚动,且运动过程中⊙P一直保持与△ABC的边相切,当点P第一次回到它的初始位置时所经过路径的长度是.【考点】切线的性质;弧长的计算.【专题】计算题.【分析】Rt△ABC的直角边AC=24,斜边AB=25,则另一直角边为7,圆心所经过的路径是一个与三角形相似的图形,设三边分别为7a,24a,25a,则从图中我们可以看出三个梯形面积加上小三角形面积等于大三角形面积.三个梯形的高都是圆的半径1,所以可列方程,解之求得a的值,从而求得所构成的三角形的三边,求出周长,即为所求.【解答】解:设三边分别为7a,24a,25a,则:(24a+24)+(7a+7)+(25a+25)+×7a×24a=×24×7,解得:a=,故构成的三角形的三边分别是,16,,则当点P第一次回到它的初始位置时所经过路径的长度为+16+=.故答案为:【点评】此题考查了切线的性质,解题的关键是根据三个梯形面积加上小三角形面积等于大三角形面积,设出未知数,列出方程求所构成的三角形的三边长.三.解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(1)计算:6tan230°﹣sin60°﹣sin45°(2)先化简,再求值:÷(1+),其中x=﹣1.【考点】分式的化简求值;实数的运算;特殊角的三角函数值.【分析】(1)分别把各特殊角的三角函数值代入进行计算即可;(2)先根据分式混合运算的法则把原式进行化简,再求出x的值代入进行计算即可.【解答】解:(1)原式=6×()2﹣×﹣×=6×﹣3﹣1=2﹣3﹣1=﹣2;(2)原式=÷=•=.当x=﹣4时,原式==.【点评】本题考查的是分式的化简求值,熟知分式混合运算的法则是解答此题的关键.20.(1)解方程:x2﹣2x﹣3=0;(2)解不等式组:.【考点】解一元二次方程-因式分解法;解一元一次不等式组.【分析】(1)直接利用十字相乘法分解因式解方程得出答案;(2)分别解不等式进而得出不等式组的解集即可.【解答】解:(1)x2﹣2x﹣3=0(x﹣3)(x+1)=0,解得:x1=3,x2=﹣1(2),解①得:x﹣3x+6≤4,解得:x≥1;解②得:1+2x>3x﹣3,解得;x<4,故不等式组的解集为:1≤x<4.【点评】此题主要考查了一元二次方程的解法以及不等式组的解法,正确分解因式是解题关键.21.已知:如图,在四边形ABCD中,AB∥CD,E,F为对角线AC上两点,且AE=CF,DF∥BE.求证:四边形ABCD为平行四边形.【考点】平行四边形的判定;全等三角形的判定与性质.【专题】证明题.【分析】首先证明△AEB≌△CFD可得AB=CD,再由条件AB∥CD可利用一组对边平行且相等的四边形是平行四边形证明四边形ABCD为平行四边形.【解答】证明:∵AB∥CD,∴∠DCA=∠BAC,∵DF∥BE,∴∠DFA=∠BEC,∴∠AEB=∠DFC,在△AEB和△CFD中,∴△AEB≌△CFD(ASA),∴AB=CD,∵AB∥CD,∴四边形ABCD为平行四边形.【点评】此题主要考查了平行四边形的判定,关键是掌握一组对边平行且相等的四边形是平行四边形.22.如图,四边形ABCD是⊙O的内接四边形,∠ABC=2∠D,连接OA、OB、OC、AC,OB与AC相交于点E.(1)求∠OCA的度数;(2)若∠COB=3∠AOB,OC=2,求图中阴影部分面积(结果保留π和根号)【考点】扇形面积的计算;圆内接四边形的性质;解直角三角形.【分析】(1)根据四边形ABCD是⊙O的内接四边形得到∠ABC+∠D=180°,根据∠ABC=2∠D得到∠D+2∠D=180°,从而求得∠D=60°,最后根据OA=OC得到∠OAC=∠OCA=30°;(2)首先根据∠COB=3∠AOB得到∠AOB=30°,从而得到∠COB为直角,然后利用S阴影=S扇形OBC﹣S△OEC求解.【解答】解:(1)∵四边形ABCD是⊙O的内接四边形,∴∠ABC+∠D=180°,∵∠ABC=2∠D,∴∠D+2∠D=180°,∴∠D=60°,∴∠AOC=2∠D=120°,∵OA=OC,∴∠OAC=∠OCA=30°;(2)∵∠COB=3∠AOB,∴∠AOC=∠AOB+3∠AOB=120°,∴∠AOB=30°,∴∠COB=∠AOC﹣∠AOB=90°,在Rt△OCE中,OC=2,∴OE=OC•tan∠OCE=2•tan30°=2×=2,∴S△OEC=OE•OC=×2×2=2,∴S扇形OBC==3π,∴S阴影=S扇形OBC﹣S△OEC=3π﹣2.【点评】本题考查了扇形面积的计算,院内接四边形的性质,解直角三角形的知识,在求不规则的阴影部分的面积时常常转化为几个规则几何图形的面积的和或差.23.“六一”儿童节前夕,薪黄县教育局准备给留守儿童赠送一批学习用品,先对浠泉镇浠泉小学的留守儿童人数进行抽样统计,发现各班留守儿童人数分别为6名,7名,8名,10名,12名这五种情形,并将统计结果绘制成了如图所示的两份不完整的统计图:请根据上述统计图,解答下列问题:(1)该校有多少个班级?并补充条形统计图;(2)该校平均每班有多少名留守儿童?留守儿童人数的众数是多少?(3)若该镇所有小学共有60个教学班,请根据样本数据,估计该镇小学生中,共有多少名留守儿童.【考点】条形统计图;用样本估计总体;扇形统计图;加权平均数.【分析】(1)根据有7名留守儿童班级有2个,所占的百分比是12.5%,即可求得班级的总个数;(2)利用平均数的计算公式求得每班的留守儿童数,然后根据众数的定义,就是出现次数最多的数确定留守儿童的众数;(3)利用班级数60乘以(2)中求得的平均数即可.【解答】解:(1)该校的班级数是:2÷12.5%=16(个).则人数是8名的班级数是:16﹣1﹣2﹣6﹣2=5(个).;(2)每班的留守儿童的平均数是:(1×6+2×7+5×8+6×10+12×2)=9(人),众数是10名;(3)该镇小学生中,共有留守儿童60×9=540(人).答:该镇小学生中共有留守儿童540人.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.24.某大学生利用暑假社会实践参与了一家网店经营,该网店以每个20元的价格购进900个某新型商品.第一周以每个35元的价格售出300个,第二周若按每个35元的价格销售仍可售出300个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个).(1)若第二周降低价格1元售出,则第一周,第二周分别获利多少元?(2)若第二周单价降低x元销售一周后,商店对剩余商品清仓处理,以每个15元的价格全部售出,如果这批商品计划获利9500元,问第二周每个商品的单价应降低多少元?【考点】一元二次方程的应用.【专题】销售问题.【分析】(1)根据利润=每个的利润×销售量列式计算即可求解;(2)设第二周每个商品的单价应降低x元,根据这批商品计划获利9500元建立方程,解方程即可.【解答】解:(1)第一周获利:300×(35﹣20)=4500(元);第二周获利:(300+50)×(35﹣1﹣20)=4900(元);(2)根据题意,得:4500+(15﹣x)(300+50x)﹣5(900﹣300﹣300﹣50x)=9500,即:x2﹣14x+40=0,解得:x1=4,x2=10(不符合题意,舍去).答:第二周每个商品的销售价格应降价4元.【点评】本题考查了一元二次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.25.如图,某建筑物BC顶部有釕一旗杆AB,且点A,B,C在同一条直线上,小红在D 处观测旗杆顶部A的仰角为47°,观测旗杆底部B的仰角为42°已知点D到地面的距离DE 为1.56m,EC=21m,求旗杆AB的高度和建筑物BC的高度(结果保留小数后一位).参考数据:tan47°≈1.07,tan42°≈0.90.【考点】解直角三角形的应用-仰角俯角问题.【分析】根据题意分别在两个直角三角形中求得AF和BF的长后求差即可得到旗杆的高度,进而求得BC的高度.【解答】解:根据题意得DE=1.56,EC=21,∠ACE=90°,∠DEC=90°.过点D作DF⊥AC于点F.则∠DFC=90°∠ADF=47°,∠BDF=42°.∵四边形DECF是矩形.∴DF=EC=21,FC=DE=1.56,在直角△DFA中,tan∠ADF=,∴AF=DF•tan47°≈21×1.07=22.47(m).在直角△DFB中,tan∠BDF=,∴BF=DF•tan42°≈21×0.90=18.90(m),则AB=AF﹣BF=22.47﹣18.90=3.57≈3.6(m).BC=BF+FC=18.90+1.56=20.46≈20.5(m).答:旗杆A B的高度约是3.6m,建筑物BC的高度约是20.5米.【点评】此题考查的知识点是解直角三角形的应用,解题的关键是把实际问题转化为解直角三角形问题,先得到等腰直角三角形,再根据三角函数求解.26.“综合与实践”学习活动准备制作一组三角形,记这些三角形的三边分别为a,b,c,并且这些三角形三边的长度为大于1且小于5的整数个单位长度.(1)用记号(a,b,c)(a≤b≤c)表示一个满足条件的三角形,如(2,3,3)表示边长分别为2,3,3个单位长度的一个三角形.请列举出所有满足条件的三角形.(2)用直尺和圆规作出三边满足a<b<c的三角形(用给定的单位长度,不写作法,保留作图痕迹).【考点】作图—应用与设计作图;三角形三边关系.【分析】(1)应用列举法,根据三角形三边关系列举出所有满足条件的三角形.(2)首先判断满足条件的三角形只有一个:a=2,b=3,c=4,再作图:①作射线AB,且取ABAB=4;②以点AA为圆心,3为半径画弧;以点BB为圆心,2为半径画弧,两弧交于点C;③连接AC、BC.则△ABC即为满足条件的三角形.【解答】解:(1)共9种:(2,2,2),(2,2,3),(2,3,3),(2,3,4),(2,4,4),(3,3,3),(3,3,4),(3,4,4),(4,4,4).。
第一学期初三数学期中考试试卷注意事项:1.本试卷共6页,全卷满分130分,考试时间为120分钟. 2.考生答题全部答在答题卷上,答在本试卷上无效.一、选择题(本大题共10小题,每小题3分,共30分.四个选项中,只有一项是正确的)1.若等腰三角形的两边长为3、6,则它的周长为 ( ) A .12 B .15 C .12或15 D .以上都不对 2.下列说法正确的是 ( ) A .形状相同的两个三角形是全等三角形 B .面积相等的两个三角形是全等三角形 C .三个角对应相等的两个三角形是全等三角形 D .三条边对应相等的两个三角形是全等三角形3.下列四种说法:① 矩形的两条对角线相等且互相垂直;② 菱形的对角线相等且互相平分; ③ 有两边相等的平行四边形是菱形; ④ 有一组邻边相等的菱形是正方形.其中正确的有 ( ) A. 0个 B. 1个 C. 2个 D. 3个 4. 已知一组数据:15,13,16,17,14,则这组数据的极差与方差分别是 ( ) A .4,3 B .3,3C .3,2D .4,25.若1-x 有意义,则x 的取值范围是( )A .x >1B .x ≥1C .x ≤1D .1≠x6. 下列方程是一元二次方程的是 ( )A .2)1(x x x =- B .02=++c bx ax C .01122=++xx D .012=+x 7.下列一元二次方程中,有实数根的是 ( )A .x 2-x +1=0B .x 2-2x+3= 0C .x 2+x -1=0D . x 2+4=0 8.在一幅长为80cm 、宽为50cm 的矩形风景画的四周镶一条相同宽度的金色纸边,制成一幅矩 形挂图.如右图所示,如果要使整个挂图的面积是5400cm 2,设金色纸边的宽为x cm ,那么x 满足的方程是 ( )A .213014000x x +-=B .2653500x x +-=C .213014000x x --= D .2653500x x --=9.如图,在正方形ABCD 中,AB=3,点P 在BC 上,点Q 在CD 上,若∠PAQ=450,那么△PCQ 的周长为 ( ) A .8 B .7C .6D .510.如图,平行四边形ABCD 中,AB ∶BC =3∶2,∠DAB =60°,E 在AB 上,且AE ∶EB =1∶2,F 是BC 的中点,过D 分别作DP ⊥AF 于P ,DQ ⊥CE 于Q ,则DP ∶DQ 等于 ( )二、填空题(本大题共8小题,每小题2分共16分)11.若等腰三角形的一个角为1000,则其余两个角为_____________.12.如图,AD =AC ,BD =BC ,O 为AB 上一点,那么图中共有 对全等三角形.13.在平行四边形ABCD 中,对角线AC 和BD 相交于O .如果090=∠+∠ADO ABO ,那么平行四边形ABCD 一定是_____形.14.如图,菱形ABCD 中,对角线AC 交BD 于O ,AB =8, E 是CD 的中点,则OE 的长等于 .15.如图,△ABC 中,AB =AC ,DE 垂直平分AB ,BE ⊥AC ,AF ⊥BC ,则∠EFC = °. 16.若一等腰梯形的对角线互相垂直,且它的高为5,则该梯形的面积为________. 17.若关于x 的方程042=+-mx x 有两个相等的实数根,则m =________.18.已知A 、B 、C 三点的坐标分别是(0,0),(5,0),(5,3),且这3点是一个平行四边形的顶点,请写出第四点D 的坐标为 .三、解答题(本大题共10小题,共84分)19.(本题满分8分)计算:(1)21)1(320-++-π (2) 22523352-33)()(+20. (本题满分8分) 解方程:(1)0232=-+x x (用公式法) (2) 01432=-+x x (用配方法)21.(本题满分10分)如图,四边形ABCD 中,对角线AC 与BD 相交于O ,在①AB ∥CD ;②AO =CO ;③AD=BC 中任意选取两个作为条件,“四边形ABCD 是平行四边形”为结论构成命题.(1)以①②作为条件构成的命题是真命题吗?若是,请证明;若不是,请举出反例; (2)写出按题意构成的所有命题中的假命题,并举出反例加以说明.(命题请写成“如果…,那么….”的形式)OD BA22.(本题满分9分)甲、乙两支仪仗队队员的身高(单位:厘米)如下: 甲队:178,177,179,178,177,178,177,179,178,179; 乙队:178,179,176,178,180,178,176,178,177,180; (1)将下表填完整:(2)甲队队员身高的平均数为______厘米,乙队队员身高的平均数为______厘米;(3)你认为哪支仪仗队更为整齐?简要说明理由.23.(本题满分8分)如果一元二次方程ax 2+bx+c=0(a≠0)的两根是x 1、x 2,那么利用公式法写出两个根x 1、x 2,通过计算可以得出:x 1+x 2=ab -,x 1x 2=a c.由此可见,一元二次方程两个根的和与积是由方程的系数决定的.这就是一元二次方程根与系数的关系.请利用上述知识解决下列问题: (1)若方程2x 2-4x-1=0的两根是x 1、x 2,则x 1+x 2=_____,x 1x 2=______.(2)已知方程x 2-4x+c=0的一个根是32+,请求出该方程的另一个根和c 的值.24.(本题满分8分)如图,将矩形ABCD 沿着对角线BD 折叠,使点C 落在C ’,BC 交AD 于E , (1)试判断△BDE 的形状,并说明理由; (2)若AB=3,BC=5,试求△BDE 的面积.25.(本题满分6分)已知关于x 的方程0)21(4)12(2=-++-k x k x 。
2014 一2015年初三数学期中试卷一、精心选一选(本题满分24分,共有8道小题,每小题3分)1.用配方法解一元二次方程542=-x x 的过程中,配方正确的是 ( )A .(1)22=+xB .1)2(2=-xC .9)2(2=+xD .9)2(2=-x2.某厂1月份生产原料a 吨,以后每个月比前一个月增产x %,3月份生产原料的吨数是( )A .a (1+x )2B .a (1+x %)2C .a +a ·x %D .a +a ·(x %)23.如果关于x 的一元二次方程22(21)10k x k x -++=有两个不相等的实数根,那么k 的取值范围是 ( ) A.k >14-B.k >14-且0k ≠C.k <14-D.14k ≥-且0k ≠ 4.等腰三角形的底和腰是方程x 2-6x+8=0的两根,则这个三角形的周长为 ( )A 、8B 、10C 、8或10D 、无法确定5.如图,⊙O 的直径AB =10,E 在⊙O 内,且OE=4,则过E 点所有弦中,最短弦为( ) A. 4 B. 6 C .8 D. 106.下列命题:①直径是弦; ②经过三个点一定可以作圆;③三角形的内心到三角形各顶点的距离都相等;④半径相等的两个半圆是等弧;⑤菱形的四个顶点在同一个圆上;其中正确结论的个数有( )A .1个B .2个C .3个D .4个7.如图,直径为10的⊙A 经过点C 和点O ,点B 是y 轴右侧⊙A 优弧上一点,∠OBC =30°,则点C 的坐标为 ( ).(A)(0,5) (B)(0,35) (C)(0,325) (D)(0,335) 8.如图,在平面直角坐标系xOy 中,直线AB 经过点A (6,0)、B (0,6),⊙O 的半径为2(O 为坐标原点),点P 是直线AB 上的一动点,过点P 作⊙O 的一条切线PQ ,Q 为切点,则切线长PQ 的最小值为 ( ).A. 7B. 3C. 3 2D. 14第7题图第5题图第8题图班级 姓名 考试号 .二、细心填一填(本题满分22分,共有10道小题,每空2分)9.方程()03412=+--x x m 是一元二次方程,则m 满足条件 。
2014-2015学年江苏省无锡市南菁中学九年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)1.(3分)﹣2的相反数是()A.B.C.D.|﹣2|2.(3分)下列计算正确的是()A.a3+a3=a6 B.a6÷a3=a2C.(a2)3=a8D.a2•a3=a53.(3分)南菁实验学校校园进行改造,现需选用同一批地砖进行装修,以下不能镶嵌的地砖是()A.正五边形地砖B.正三角形地砖C.正六边形地砖D.正四边形地砖4.(3分)下列方程没有实数根的是()A.x2+4x=1 B.x2+x﹣3=0 C.x2﹣2x+2=0 D.(x﹣2)(x﹣3)=05.(3分)下列图形,既是轴对称图形,又是中心对称图形的是()A. B.C.D.6.(3分)在Rt△ABC中,∠C=90°,若AB=2AC,则sinA的值是()A.B.C.D.7.(3分)已知两圆的半径R,r分别为方程x2﹣3x+2=0的两根,这两圆的圆心距为3,则这两圆的位置关系是()A.外切B.内切C.相交D.外离8.(3分)关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,则m等于()A.1 B.2 C.1或2 D.09.(3分)阅读理解:如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∠MOx的度数θ与OM 的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox 上,则正六边形的顶点C的极坐标应记为()A.(60°,4)B.(45°,4)C.(60°,2)D.(50°,2)10.(3分)点P是△ABC内(不在边上)一点,连接PA、PB、PC,如果△PAB、△PBC、△PAC中存在一个三角形与原△ABC相似,那么我们把点P叫做△ABC 的内相似点.已知在Rt△ABC中,∠ACB=90°,AC=3,BC=4,若点P是△ABC的内相似点,则cos∠PAB的值为()A.B.C.D.二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置处)11.(2分)函数y=﹣1中,自变量x的取值范围是.12.(2分)若关于x的一元二次方程x2+3x+a=0有一个根是﹣1,则a=.13.(2分)据媒体报道,我国因环境污染造成的巨大经济损失,每年高达679000000元,这个数用科学记数法表示是元.14.(2分)某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为.15.(2分)如果一个正多边形的一个外角是60°,那么这个正多边形的边数是.16.(2分)如图,以△ABC的边BC为直径的⊙O分别交AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE=.17.(2分)如图,在Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD为BC边上的高.动点P从点A出发,沿A→D方向以cm/s的速度向点D运动.设△ABP 的面积为S1,矩形PDFE的面积为S2,运动时间为t秒(0<t<8),则t=秒时,S1=2S2.18.(2分)为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出个这样的停车位.(≈1.4)三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(8分)(1)化简:÷(2)计算:()﹣1﹣2cos60°+(2﹣π)0.20.(8分)(1)解方程:x2+4x﹣5=0(2)解方程:=.21.(6分)一元二次方程mx2﹣2mx+m﹣2=0.(1)若方程有两实数根,求m的范围.(2)设方程两实根为x1,x2,且|x1﹣x2|=1,求m.22.(8分)如图,点A、B、C分别是⊙O上的点,∠B=60°,CD是⊙O的直径,P是CD延长线上的点,且AP=AC.(1)求证:AP是⊙O的切线;(2)若AC=3,求PD的长.23.(6分)某校为了解2013年八年级学生课外书籍借阅情况,从中随机抽取了40名学生课外书籍借阅情况,将统计结果列出如下的表格,并绘制成如图所示的扇形统计图,其中科普类册数占这40名学生借阅总册数的40%.(1)求表格中字母m的值及扇形统计图中“教辅类”所对应的圆心角α的度数;(2)该校2013年八年级有500名学生,请你估计该年级学生共借阅教辅类书籍约多少本?24.(10分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?25.(8分)图1中的中国结挂件是由四个相同的菱形在顶点处依次串联而成,每相邻两个菱形均成30°的夹角,示意图如图2.在图2中,每个菱形的边长为10cm,锐角为60°.(1)连接CD,EB,猜想它们的位置关系并加以证明;(2)求A,B两点之间的距离(结果取整数,可以使用计算器)(参考数据:≈1.41,≈1.73,≈2.45)26.(10分)如图,△ABC中,AB=AC=4,cosC=.(1)动手操作:利用尺规作以AC为直径的⊙O,并标出⊙O与AB的交点D,与BC的交点E(保留作图痕迹,不写作法);(2)综合应用:在你所作的图中,①求证:=;②求点D到BC的距离.27.(10分)已知,A、B两市相距260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回,同时甲车以原速1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车行驶时间x(小时)之间的函数图象,结合图象回答下列问题:(1)甲车提速后的速度是千米/时,乙车的速度是千米/时,点C 的坐标为;(2)求乙车返回时y与x的函数关系式并写出自变量x的取值范围;(3)求甲车到达B市时乙车已返回A市多长时间?28.(10分)在平面直角坐标系xOy中,已知A(﹣2,0),B(2,0),AC⊥AB 于点A,AC=2,BD⊥AB于点B,BD=6,以AB为直径的半圆O上有一动点P(不与A、B两点重合),连接PD、PC,我们把由五条线段AB、BD、DP、PC、CA所组成的封闭图形ABDPC叫做点P的关联图形,如图1所示.(1)如图2,当P运动到半圆O与y轴的交点位置时,求点P的关联图形的面积.(2)如图3,连接CD、OC、OD,判断△OCD的形状,并加以证明.(3)当点P运动到什么位置时,点P的关联图形的面积最大,简要说明理由,并求面积的最大值.2014-2015学年江苏省无锡市南菁中学九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)1.(3分)﹣2的相反数是()A.B.C.D.|﹣2|【解答】解:由相反数的意义得,﹣2的相反数是2,而只有|﹣2|=2,故选:D.2.(3分)下列计算正确的是()A.a3+a3=a6 B.a6÷a3=a2C.(a2)3=a8D.a2•a3=a5【解答】解:A、a3+a3=2a3,故A选项错误;B、a6÷a3=a3,故B选项错误;C、(a2)3=a6,故C选项错误;D、a2•a3=a5,故D选项正确.故选:D.3.(3分)南菁实验学校校园进行改造,现需选用同一批地砖进行装修,以下不能镶嵌的地砖是()A.正五边形地砖B.正三角形地砖C.正六边形地砖D.正四边形地砖【解答】解:A、正五边形每个内角是180°﹣360°÷5=108°,不是360°的约数,不能镶嵌平面,符合题意;B、正三角形的一个内角度数为180﹣360÷3=60°,是360°的约数,能镶嵌平面,不符合题意;C、正六边形的一个内角度数为180﹣360÷6=120°,是360°的约数,能镶嵌平面,不符合题意;D、正四边形的一个内角度数为180﹣360÷4=90°,是360°的约数,能镶嵌平面,不符合题意.故选:A.4.(3分)下列方程没有实数根的是()A.x2+4x=1 B.x2+x﹣3=0 C.x2﹣2x+2=0 D.(x﹣2)(x﹣3)=0【解答】解:A、x2+4x﹣1=0,△=42﹣4×1×(﹣1)=20>0,则方程有两个不相等的两个实数根,所以A选项错误;B、△=12﹣4×1×(﹣3)=13>0,则方程有两个不相等的两个实数根,所以B 选项错误;C、△=22﹣4×1×2=﹣4<0,则方程没有实数根,所以C选项正确;D、解得x1=2,x2=3,所以D选项错误.故选:C.5.(3分)下列图形,既是轴对称图形,又是中心对称图形的是()A. B.C.D.【解答】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故此选项错误;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.6.(3分)在Rt△ABC中,∠C=90°,若AB=2AC,则sinA的值是()A.B.C.D.【解答】解:∵∠C=90°,AB=2AC,∴∠B=30°,∠A=60°,故可得sinA=.故选:C.7.(3分)已知两圆的半径R,r分别为方程x2﹣3x+2=0的两根,这两圆的圆心距为3,则这两圆的位置关系是()A.外切B.内切C.相交D.外离【解答】解:∵两圆半径的长分别为方程x2﹣3x+2=0的两根,∴两圆半径之和为3,又∵两圆的圆心距为3,∴两圆外切.故选:A.8.(3分)关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,则m等于()A.1 B.2 C.1或2 D.0【解答】解:根据题意,知,,解方程得:m=2.故选:B.9.(3分)阅读理解:如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∠MOx的度数θ与OM 的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox 上,则正六边形的顶点C的极坐标应记为()A.(60°,4)B.(45°,4)C.(60°,2)D.(50°,2)【解答】解:如图,设正六边形的中心为D,连接AD,∵∠ADO=360°÷6=60°,OD=AD,∴△AOD是等边三角形,∴OD=OA=2,∠AOD=60°,∴OC=2OD=2×2=4,∴正六边形的顶点C的极坐标应记为(60°,4).故选:A.10.(3分)点P是△ABC内(不在边上)一点,连接PA、PB、PC,如果△PAB、△PBC、△PAC中存在一个三角形与原△ABC相似,那么我们把点P叫做△ABC 的内相似点.已知在Rt△ABC中,∠ACB=90°,AC=3,BC=4,若点P是△ABC的内相似点,则cos∠PAB的值为()A.B.C.D.【解答】解:∵AC=3,BC=4,∴∠CAB>∠CBA,故可在∠CAB内作∠CAP=∠CBA,又∵点P为△ABC的内相似点,∴过点C作CP⊥AP,并延长CP交AB于点D,则△APC∽△BCA∴点P为△ABC的内相似点,∴∠ACP=∠CAB,∴DA=DC,∴∠DCA=∠DAC,在Rt△ABC中,∠ACB=90°,∴∠DCA+∠BCD=∠DAC+∠ABC=90°,∴∠BCD=∠ABC,∴DC=DB,∵AC=3,BC=4,∴AB=5,∴AD=AB=,∴cos∠PAB===,故选:D.二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置处)11.(2分)函数y=﹣1中,自变量x的取值范围是x≥0.【解答】解:根据题意,得x≥0.故答案为:x≥0.12.(2分)若关于x的一元二次方程x2+3x+a=0有一个根是﹣1,则a=2.【解答】解:∵关于x的一元二次方程x2+3x+a=0有一个根是﹣1,∴(﹣1)2+3×(﹣1)+a=0,解得a=2,故答案为:2.13.(2分)据媒体报道,我国因环境污染造成的巨大经济损失,每年高达679000000元,这个数用科学记数法表示是 6.79×108元.【解答】解:679 000 000=6.79×108.故答案为:6.79×108.14.(2分)某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为20%.【解答】解:设这种商品平均每次降价的百分率为x,根据题意列方程得,125(1﹣x)2=80,解得x1=0.2=20%,x2=1.8(不合题意,舍去);故答案为:20%15.(2分)如果一个正多边形的一个外角是60°,那么这个正多边形的边数是6.【解答】解:这个正多边形的边数:360°÷60°=6.故答案为:6.16.(2分)如图,以△ABC的边BC为直径的⊙O分别交AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE=50°.【解答】解:如图,连接BE.∵BC为⊙O的直径,∴∠CEB=∠AEB=90°,∵∠A=65°,∴∠ABE=25°,∴∠DOE=2∠ABE=50°,(圆周角定理)故答案为:50°.17.(2分)如图,在Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD为BC边上的高.动点P从点A出发,沿A→D方向以cm/s的速度向点D运动.设△ABP 的面积为S1,矩形PDFE的面积为S2,运动时间为t秒(0<t<8),则t=6秒时,S1=2S2.【解答】解:∵Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD为BC边上的高,∴AD=BD=CD=8cm,又∵AP=t,则S1=AP•BD=×8×t=8t,PD=8﹣t,∵PE∥BC,∴△APE∽△ADC,∴,∴PE=AP=t,∴S2=PD•PE=(8﹣t)•t,∵S1=2S2,∴8t=2(8﹣t)•t,解得:t=6.故答案是:6.18.(2分)为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出17个这样的停车位.(≈1.4)【解答】解:如图,CE=2.2÷sin45°=2.2÷≈3.1米,BC=(5﹣CE×)×≈1.98米,BE=BC+CE≈5.04,EF=2.2÷sin45°=2.2÷≈3.1米,(56﹣3.1﹣1.98)÷3.1+1=50.92÷3.1+1≈17(个).故这个路段最多可以划出17个这样的停车位.故答案为:17.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(8分)(1)化简:÷(2)计算:()﹣1﹣2cos60°+(2﹣π)0.【解答】解:(1)原式=•=;(2)原式=2﹣1+1=2.20.(8分)(1)解方程:x2+4x﹣5=0(2)解方程:=.【解答】解:(1)(x+5)(x﹣1)=0,x1=﹣5,x2=1;(2)去分母得:x+3=4x,解得:x=1.检验:当x=1时,2x(x+3)≠0,所以x=1是原方程的解.21.(6分)一元二次方程mx2﹣2mx+m﹣2=0.(1)若方程有两实数根,求m的范围.(2)设方程两实根为x1,x2,且|x1﹣x2|=1,求m.【解答】解:(1)∵关于x的一元二次方程mx2﹣2mx+m﹣2=0有两个实数根,∴m≠0且△≥0,即(﹣2m)2﹣4•m•(m﹣2)≥0,解得m≠0且m≥0,∴m的取值范围为m>0.(2)∵方程两实根为x1,x2,∴x1+x2=2,x1•x2=,∵|x1﹣x2|=1,∴(x1﹣x2)2=1,∴(x1+x2)2﹣4x1x2=1,∴22﹣4×=1,解得:m=8;经检验m=8是原方程的解.22.(8分)如图,点A、B、C分别是⊙O上的点,∠B=60°,CD是⊙O的直径,P是CD延长线上的点,且AP=AC.(1)求证:AP是⊙O的切线;(2)若AC=3,求PD的长.【解答】解:(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,∵OA=OC,∴∠ACP=∠CAO=30°,∴∠AOP=60°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=90°,即OA⊥AP,∵点A在⊙O上,∴AP是⊙O的切线.(2)解:连接AD,∵CD是⊙O的直径,∴∠CAD=90°,∴AD=AC∙tan30°=,CD=2AD=2,∴DO=AO=CD=,在Rt△PAO中,由勾股定理得:PA2+AO2=PO2,∴32+()2=(PD+)2,∵PD的值为正数,∴PD=.23.(6分)某校为了解2013年八年级学生课外书籍借阅情况,从中随机抽取了40名学生课外书籍借阅情况,将统计结果列出如下的表格,并绘制成如图所示的扇形统计图,其中科普类册数占这40名学生借阅总册数的40%.(1)求表格中字母m的值及扇形统计图中“教辅类”所对应的圆心角α的度数;(2)该校2013年八年级有500名学生,请你估计该年级学生共借阅教辅类书籍约多少本?【解答】解:(1)观察扇形统计图知:科普类有128册,占40%,∴借阅总册数为128÷40%=320本,∴m=320﹣128﹣80﹣48=64;教辅类的圆心角为:360°×=90°;(2)设全校500名学生借阅教辅类书籍x本,根据题意得:=,解得:x=1000,∴八年级500名学生中估计共借阅教辅类书籍约1000本.24.(10分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?【解答】(1)解:设每千克核桃应降价x元.…1分根据题意,得(60﹣x﹣40)(100+×20)=2240.…4分化简,得x2﹣10x+24=0 解得x1=4,x2=6.…6分答:每千克核桃应降价4元或6元.…7分(2)解:由(1)可知每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元.此时,售价为:60﹣6=54(元),设按原售价的m折出售,则有:60×=54,解得m=9答:该店应按原售价的九折出售.25.(8分)图1中的中国结挂件是由四个相同的菱形在顶点处依次串联而成,每相邻两个菱形均成30°的夹角,示意图如图2.在图2中,每个菱形的边长为10cm,锐角为60°.(1)连接CD,EB,猜想它们的位置关系并加以证明;(2)求A,B两点之间的距离(结果取整数,可以使用计算器)(参考数据:≈1.41,≈1.73,≈2.45)【解答】解:(1)猜想CD∥EB.证明:连接DE.∵中国结挂件是四个相同的菱形,每相邻两个菱形均成30°的夹角,菱形的锐角为60°∴∠CDE=60°÷2×2+30°=90°,∴∠BED=60°÷2×2+30°=90°,∴∠CDE=∠BED,∴CD∥EB.(2)如图2,连接AD、BD.由(1)知,∠BED=90°,∵BE=DE,∴∠EDB=∠EBD=45°,同理,∠ADC=45°又由(1)知,∠CDE=90°,∴∠ADC+∠CDE+∠EDB=180°,∴点A、D、B三点共线.BE=2OE=2×10×cos30°=10cm,同理可得,DE=10cm,则BD=10cm,同理可得,AD=10cm,AB=BD+AD=20≈49cm.答:A,B两点之间的距离大约为49cm.26.(10分)如图,△ABC中,AB=AC=4,cosC=.(1)动手操作:利用尺规作以AC为直径的⊙O,并标出⊙O与AB的交点D,与BC的交点E(保留作图痕迹,不写作法);(2)综合应用:在你所作的图中,①求证:=;②求点D到BC的距离.【解答】解:(1)如图所示:(2)①如图,连接AE,∵AC为直径,∴∠AEC=90°,∵AB=AC,∴∠DAE=∠CAE,∴=;②连接AE,CD,作DM⊥BC交BC于点M,∵AC为直径,∴∠AEC=90°,∵AB=AC=4,cosC=.∴EC=BE=4,∴BC=8,∵AB=AC∴∠B=∠C∴cos∠C=cos∠B=,∴BD=BC cos∠B=,∴DM=BDsin∠B=.27.(10分)已知,A、B两市相距260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回,同时甲车以原速1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车行驶时间x(小时)之间的函数图象,结合图象回答下列问题:(1)甲车提速后的速度是60千米/时,乙车的速度是96千米/时,点C 的坐标为(,80);(2)求乙车返回时y与x的函数关系式并写出自变量x的取值范围;(3)求甲车到达B市时乙车已返回A市多长时间?【解答】解:(1)甲车提速后的速度:80÷2×1.5=60千米/时,乙车的速度:80×2÷(2﹣)=96千米/时;点C的横坐标为2++=,纵坐标为80,坐标为(,80);(2)设乙车返回时y与x的函数关系式y=kx+b,代入(,80)和(4,0)得,解得,所以y与x的函数关系式y=﹣96x+384(≤x≤4);(3)(260﹣80)÷60﹣80÷96=3﹣=(小时).答:甲车到达B市时乙车已返回A市小时.28.(10分)在平面直角坐标系xOy中,已知A(﹣2,0),B(2,0),AC⊥AB 于点A,AC=2,BD⊥AB于点B,BD=6,以AB为直径的半圆O上有一动点P(不与A、B两点重合),连接PD、PC,我们把由五条线段AB、BD、DP、PC、CA所组成的封闭图形ABDPC叫做点P的关联图形,如图1所示.(1)如图2,当P运动到半圆O与y轴的交点位置时,求点P的关联图形的面积.(2)如图3,连接CD、OC、OD,判断△OCD的形状,并加以证明.(3)当点P运动到什么位置时,点P的关联图形的面积最大,简要说明理由,并求面积的最大值.【解答】解:(1)∵A(﹣2,0),∴OA=2,∵P是半圆O上的点,P在y轴上,∴OP=2,∠AOP=90°,∴AC=2,∴四边形AOPC是正方形,∴正方形的面积是4,又∵BD⊥AB,BD=6,∴梯形OPDB的面积===8,∴点P的关联图形的面积是12.(2)判断△OCD是直角三角形.证明:延长CP交BD于点F,则四边形ACFB为矩形,∴CF=DF=4,∠DCF=45°,∴∠OCD=90°,∴OC⊥CD,∴△OCD是直角三角形.(3)连接OC交半圆O于点P,则点P即为所确定的点的位置.理由如下:连接CD,梯形ACDB的面积===16为定值,要使点P的关联图形的面积最大,就要使△PCD的面积最小,∵CD为定长,∴P到CD的距离就要最小,连接OC,设交半圆O于点P,∵AC⊥OA,AC=OA,∴∠AOC=45°,过C作CF⊥BD于F,则ACFB为矩形,∴CF=DF=4,∠DCF=45°,∴OC⊥CD,OC=2,∴PC在半圆外,设在半圆O上的任意一点P′到CD的距离为P′H,则P′H+P′O>OH>OC,∵OC=PC+OP,∴P′H>PC,∴当点P运动到半圆O与OC的交点位置时,点P的关联图形的面积最大.∵CD=4,CP=2﹣2,∴△PCD的面积=CD×CP=××(2﹣2)=8﹣4,∴点P的关联图形的最大面积是梯形ACDB的面积﹣△PCD的面积=16﹣(8﹣4)=8+4.赠送:初中数学几何模型举例【模型四】几何最值模型:图形特征: PA Bl运用举例:1. △ABC 中,AB =6,AC =8,BC =10,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,M 为AP 的中点,则MF 的最小值为B2.如图,在边长为6的菱形ABCD 中,∠BAD =60°,E 为AB 的中点,F 为AC 上一动点,则EF +BF 的最小值为_________。
学校 班级 姓名 考试号………………………………………………………………………………………………………………………………………………………………(第4题图)(第5题图)(第7题图)2014~2015学年第一学期期中试卷初三数学 2014.11(考试时间:120分钟 满分:130分)一.选择题(本大题共10小题,每题3分,共30分.)1.下列方程中,一元二次方程的是…………………………………………………( )A .3x -2x =0 B .x (x -1)=1 C .x 2=(x -1)2 D .ax 2+bx +c =02.若△ABC ∽△DEF ,相似比为1:2.若BC =1,则EF 的长是…………………( )A . 12 B . 1 C . 2 D . 43.原价168元的商品连续两次降价a %后售价为128元,下列方程正确的是…( )A . 128(1+a %)2=168B . 168(1-a 2%)=128C . 168(1-2a %)=128D . 168(1-a %)2=1284.如图,⊙O 的直径CD 垂直弦AB 于点E ,且CE =2,DE =8,则AB 的长为( )A .2B .4C .6D .85.如图,在⊙O 中,AB 是直径,BC 是弦,点P 是 ⌒BC上任意一点.若AB =5,BC =3,则AP 的长不可能为………………………………………………………………( ) A . 3 B . 4 C . 4.5 D . 56.已知扇形的圆心角为45º,半径长为12,则该扇形的弧长为…………………( )A . 34π B . 2π C . 3π D . 12π7.如图,AB 是⊙O 的直径,AC 是⊙O 的切线,连接OC 交⊙O 于点D ,连接BD , ∠C =40º,则∠ABD 的度数是……………………………………………………( ) A . 25º B . 20º C .30º D .15º8.如图,边长为a 的正六边形内有两个三角形(数据如图),则S 阴影S 空白的值为……( )A . 3B . 4C . 5D . 69.如图,已知△ABC 和△ADE 均为等边三角形,D 在BC 上,DE 与AC 相交于点F ,AB =9,BD =3,则CF 等于…………………………………………………………( ) A . 1 B . 2 C . 3 D . 410.如图,Rt △ABC 中,AC ⊥BC ,AD 平分∠BAC 交BC 于点D ,DE ⊥AD 交AB 于点E ,M 为AE 的中点,BF ⊥BC 交CM 的延长线于点F ,BD =4,CD =3.下列结论:①∠AED =∠ADC ;②DEDA =12;③AC ·BE =12;④3BF =4AC .其中正确结论的个数有( )(第8题图)(第9题图)FB A CD E M(第10题图)(第15题图)(第14题图)(第16题图)(第17题图)A .1个B .2个C .3个D .4个二.填空题(本大题共10小题,每题2分,共20分.)11.方程x 2=0的解是 .12.一元二次方程(a +1)x 2-ax +a 2=1的一个根为0,则a = .13.若一元二次方程mx 2=n (mn >0)的两个根分别是k +1与2k -4,则nm = .14.如图,已知AB 是△ABC 外接圆的直径,∠A =35º,则∠B 的度数是 . 15.如图,在△ABC 中,点D 、E 分别在AB 、AC 上,DE ∥BC .若AD =4,DB =2,则DEBC的值为 .16.如图,AB 、AC 、BD 是⊙O 的切线,P 、C 、D 为切点,如果AB =5,AC =3,则BD 的长为 . 17.如图,△ABC 中,AE 交BC 于点D ,∠C =∠E ,AD :DE =3:5,AE =8,BD =4,则DC 的长等于 .18.如图,在Rt △ABC 中,∠ACB =90°,AC =BC =2,以BC 为直径的半圆交AB 于点D ,P 是 ⌒CD上的一个动点,连接AP ,则AP 的最小值是 .19.如图,A 、B 、C 、D 依次为一直线上4个点,BC =2,△BCE 为等边三角形,⊙O 过A 、D 、E 3点,且∠AOD =120º.设AB =x ,CD =y ,则y 与x 的函数关系式为 .20.如图,在矩形ABCD 中,AD =8,E 是边AB 上一点,且AE =14AB .⊙O 经过点E ,与边CD 所在直线相切于点G (∠GEB 为锐角),与边AB 所在直线交于另一点F ,且 EG :EF =5:2.当边AD 或BC 所在的直线与⊙O 相切时,AB 的长是 .三.解答题(本大题共8小题,共80分. 解答需写出必要的文字说明或演算步骤)21.(16分)解方程:(1)x 2-5x -6=0 (2)2x 2-4x -1=0(3)(x -7)2+2(x -7)=0 (4)(3x +2)2=4(x -3)2(第19题图)(第18题图) (第20题图)C B F E AD G O ·22.(8分)已知关于x 的一元二次方程x 2+2(m +1)x +m 2-1=0. (1)若方程有实数根,求实数m 的取值范围;(2)若方程两实数根分别为x 1、x 2,且满足(x 1-x 2)2=16-x 1x 2,求实数m 的值.23.(8分)如图,AB 为⊙O 的直径,PD 切⊙O 于点C ,交AB 的延长线于点D ,且∠D =2∠A .(1)求∠D 的度数;(2)若CD =2,求BD 的长.24.(10分)如图,在□ABCD 中,过点B 作BE ⊥CD 于E ,F 为AE 上一点,且∠BFE =∠C . (1)求证:△ABF ∽△EAD ;(2)若AB =4,∠BAE =30º,求AE 的长; (3)在(1)(2)的条件下,若AD =3,求BF 的长.25.(8分)某商店准备进一批季节性小家电,单价40元.经市场预测,销售定价为52元时,可售出180个,定价每增加1元,销售量净减少10个;定价每减少1元,销售量净增加10个.因受库存的影响,每批次进货个数不得超过180个,商店若将准备获利2000元,则应进货多少个?定价为多少元?ACEF DBOABCDP。
全等三角形一.选择题1.(2015·湖南岳阳·调研)下列命题中,真命题是( )A. 周长相等的锐角三角形都全等;B. 周长相等的直角三角形都全等;C. 周长相等的钝角三角形都全等;D. 周长相等的等腰直角三角形都全等; 答案:D2.(2015·江苏江阴夏港中学·期中)如图,RtΔABC 中,AB =9,BC =6,∠B =900,将ΔABC 折叠,使A 点与BC 的中点D 重合,折痕为MN ,则线段BN 的长为( )A .35 B .25C .4D .5 答案:C3.(2015·福建漳州·一模)小明不小心把一块三角形形状的玻璃打碎成了三块, 如图①②③,他想要到玻璃店去配一块大小形状完全一样的玻璃,你认为应带( )去. A . ① B . ② C . ③ D . ①和② 答案:C4.(2015·辽宁东港市黑沟学校一模,3分)如图,在菱形ABCD 中,∠BAD =2∠B ,E ,F 分别为BC ,CD 的中点,连接AE 、AC 、AF ,则图中与△ABE 全等的三角形(△ABE 除外)有( )A .1个B .2个C .3个D .4个答案:C5.(2015·山东省东营区实验学校一模)已知△A 1B 1C 1,△A 2B 2C 2的周长相等,现有两个判断:①若A 1B 1=A 2B 2,A 1C 1=A 2C 2,则△A 1B 1C 1≌△A 2B 2C 2;②若∠A 1=∠A 2,∠B 1=∠B 2,则ABCM D N第1题图ABDC△A 1B 1C 1≌△A 2B 2C 2.对于上述的两个判断,下列说法正确的是( )A .①正确,②错误B .①错误,②正确C .①②都错误D .①②都正确答案:D6.(2015•山东东营•一模)已知△A 1B 1C 1,△A 2B 2C 2的周长相等,现有两个判断:①若A 1B 1=A 2B 2,A 1C 1=A 2C 2,则△A 1B 1C 1≌△A 2B 2C 2;②若∠A 1=∠A 2,∠B 1=∠B 2,则△A 1B 1C 1≌△A 2B 2C 2.对于上述的两个判断,下列说法正确的是( ) A .①正确,②错误 B .①错误,②正确 C .①②都错误 D .①②都正确 答案:D7.(2015•山东青岛•一模)如图2所示,在Rt ABC △中,90A ∠=°,BD 平分ABC ∠,交AC 于点D ,且4,5AB BD ==,则点D 到BC 的距离是: (A)3 (B)4 (C)5 (D)6 答案:A二.填空题1.(2015·江苏南菁中学·期中)如图,将□ABCD 折叠,使点A 与C 重合,折痕为EF .若∠A =60°,AD =4,AB =6,则AE 的长为 ▲ .第1题图 答案:419三.解答题1. (2015·吉林长春·二模)答案:由旋转可知,∠DAE=90°,AD=AE.∵∠BAC=90°,∴∠BAC=∠DAE.∴∠BAC-∠DAC=∠DAE-∠DAC,即∠BAD=∠CAE.(4分)∵AB=AC,∴△ABD≌△ACE.∴BD=CE. (6分)2.(2015·江苏江阴·3月月考)如图,点A、F、C、D在同一直线上,点B和点E分别在直线AD的两侧,且AB=DE,∠A=∠D,AF=DC.求证:BC∥EF.BA F C DE答案:解:通过证△ABC≌△DEF,得∠ACB=∠DFE,说明BC∥EF.3. (2015·北京市朝阳区·一模)已知:如图,E是BC上一点,AB=EC,AB∥CD,BC=CD.求证:AC=ED.图1答案:证明:∵AB ∥CD ,∴∠B=∠DCE . …………………………………………………………………1分 在△ABC 和△ECD 中,4.(2015·广东潮州·期中)已知:如图,B 、C 、E 三点在同一条直线上,AC ∥DE ,AC =CE ,∠ACD =∠B .求证:△ABC ≌△CDE证明:∵AC ∥DE , ∴∠ACD =∠D ,∠BCA =∠E …………………2分 又∵∠ACD =∠B , ∴∠B =∠D ……………………4分 又∵AC =CE , ∴△ABC ≌△CDE ……………………7分5.(2015•山东滕州羊庄中学•4月模拟)已知:如图1,D 是△ABC 的边AB 上一点,CN ∥AB ,DN 交AC 于点M ,MA =MC . (1)求证:CD =AN ;(2)若∠AMD =2∠MCD ,试判断四边形ADCN 的形状,并说明理由. 答案:(本题满分10分)证明:①∵CN ∥AB ,∴∠DAC =∠NCA ,∵在△AMD 和△CMN 中,⎪⎩⎪⎨⎧∠=∠=∠=∠CMN AMD MC MA NCADAC ,∴△AMD ≌△CMN (ASA )……(2分)∴AD =CN , 又∵AD ∥CN , ∴四边形ADCN 是平行四边形,………(4分) ∴CD =AN ………(5分)② 四边形ADCN 是矩形.………(1分)理由如下 ∵∠AMD =2∠MCD ,∠AMD =∠MCD +∠MDC ,(第20题图)BCEADA D BEF OCM图2图3图4 ∴∠MCD =∠MDC ∴MD =MC , ………(2分)由①知四边形ADCN 是平行四边形,∴MD =MN =MA =MC , ∴AC =DN ,………(4分) ∴四边形ADCN 是矩形.………(5分)6.(2015•山东潍坊•第二学期期中)已知:如图2在正方形ABCD 中,点E 、F 分别在BC 和CD 上,AE = AF . (1)求证:BE = DF ;(2)连接AC 交EF 于点O ,延长OC 至点M ,使OM = OA , 连接EM 、FM .判断四边形AEMF 是什么特殊四边形?并证明你的结论.答案:(8分)证明:(1)∵四边形ABCD 是正方形,∴AB =AD ,∠B = ∠D = 90°. ∵AE = AF ,∴Rt Rt ABE ADF △≌△.∴BE =DF .(4分)(2)四边形AEMF 是菱形.∵四边形ABCD 是正方形,∴∠BCA = ∠DCA = 45°,BC = DC .∵BE =DF ,∴BC -BE = DC -DF . 即CE CF =.∴OE OF =.∵OM = OA ,∴四边形AEMF 是平行四边形.∵AE = AF ,∴平行四边形AEMF 是菱形.(8分)7.(2015•山东潍坊广文中学、文华国际学校•一模)如图3,现有边长为4的正方形纸片ABCD ,点P 为AD 边上的一点(不与点A 、点D 重合),将正方形纸片折叠,使点B 落在P 处,点C 落在G 处,PG 交DC 于H ,折痕为EF ,联结BP 、BH .(1)求证:∠APB =∠BPH ;(2)求证:AP +HC =PH ; (3)当AP =1时,求PH 的长.答案:(1)证明:∵ PE =BE ,∴∠EPB =∠EBP , 又∵∠EPH =∠EBC =90°,∴∠EPH -∠EPB =∠EBC -∠EBP . 即∠BPH =∠PBC .又∵四边形ABCD 为正方形 ∴AD ∥BC ,∴∠APB =∠PBC .∴∠APB =∠BPH . ----------------------4分(2)证明:如图4,过B 作BQ ⊥PH ,垂足为Q , 由(1)知,∠APB =∠BPH ,在△ABP 与△QBP 中,90A BQP APB BPH BP BP ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∴△ABP ≌△QBP (AAS ),∴AP =QP ,BA =BQ .又∵AB =BC ,∴BC =BQ .又∵∠C =∠BQH =90°,∴△BCH 和△BQH 是直角三角形,在Rt △BCH 与Rt △BQH 中,BC BQBH BH∠=⎧⎨=⎩,∴Rt △BCH ≌Rt △BQH (HL ),∴CH =QH ,∴AP +HC =PH . ---------------------------8分(3)解:由(2)知,AP =PQ =1,∴PD =3.设QH =HC =x ,则DH =4-x . 在Rt △PDH 中,PD 2+DH 2=PH 2,即32+(4-x )2=(x +1)2,解得x =2.4,∴PH =3.4. ---------------------------12分8.(2015·江西省·中等学校招生考试数学模拟)如图1,我们定义:在四边形ABCD 中,若AD BC =,且︒=∠+∠180BCA ADB ,则把四边形ABCD 叫做互补等对边四边形.(1)如图2,在等腰ABE ∆中,四边形ABCD 是互补等对边四边形,求证:12ABD BAC AEB ∠=∠=∠;(2)如图3,在非等腰ABE ∆中,若四边形ABCD 仍是互补等对边四边形,试问12ABD BAC AEB ∠=∠=∠是否仍然成立,若成立,请加以证明;若不成立,请说明理由.解:(1) ABE ∆是等腰三角形,∴BE AE =,EBA EAB ∠=∠∴, 又四边形ABCD 是互补等对边四边形,∴AD BC =,AB BA =,∴ABD ∆≌()BAC SAS ∆,∴BCA ADB ∠=∠, 又 ︒=∠+∠180BCA ADB ,∴︒=∠=∠90BCA ADB , 在ABE ∆中, AEB AEB EBA EAB ∠−︒=∠−︒=∠=∠21902180,∴119090(90)22ABD EAB AEB AEB ∠=︒−∠=︒−︒−∠=∠, 同理:12BAC AEB ∠=∠,12ABD BAC AEB ∴∠=∠=∠;图1图2图3第1题(2)如图,过点A 、B 分别作BD 的延长线与AC 的垂线于点G 、F ,四边形ABCD 是互补等对边四边形,∴AD BC =,︒=∠+∠180BCA ADB , 又︒=∠+∠180ADG ADB ,∴ADG BCA ∠=∠, 又 ,AG BD BF AC ⊥⊥,∴︒=∠=∠90BFC AGD , ∴AGD ∆≌()BFC AAS ∆, ∴AG BF =,又AB BA =∴ABG ∆≌()BAF HL ∆, ∴ABD BAC ∠=∠, ︒=∠+∠180BCA ADB ,∴︒=∠+∠180ECA EDB ,∴︒=∠+∠180DHC AEB , ︒=∠+∠180HC B DHC ,∴BHC AEB ∠=∠,又 ABD BAC BHC ∠+∠=∠,ABD BAC ∠=∠,12ABD BAC AEB ∴∠=∠=∠.命题思路:通过数学新定义考查等腰三角形的性质、三角形内角和与外角和、三角形全等等知识,增强推理论证能力,渗透特殊到一般、变中不变的数学思想.9.(2015·山东省枣庄市齐村中学二模)(满分8分)如图,在等腰Rt △ABC 中,∠C =90°,正方形DEFG 的顶点D 在边AC 上,点E ,F 在边AB 上,点G 在边BC 上. (1)求证:△ADE ≌△BGF ;(2)若正方形DEFG 的面积为16,求AC 的长.证明:略……………………………4分(2)AC=62……………………………4分10. ( 2015·呼和浩特市初三年级质量普查调研)(7分)在△ABC中,D是BC边的中点,EF 分别在AD及其延长线上,CE∥BF,连接BE、CF.(1)求证:△BDF≌△CDE(2)若DE=12BC,试判断四边形BFCE的形状,无需说明理由.答案:(1)证明:∵CE∥BF,∴∠CED=∠BFD,............2分∵D是BC边的中点,∴BD=DC,.........................3分在△BDF和△CDE中,∴△BDF≌△CDE(AAS);..................5分(2)四边形BFCE是矩形.......................7分11.(2015·山东枣庄·二模)如图,在等腰三角形ABC中,CA = CB,∠ACB = 90°,点D、E是直线BC上两点且CD = BE,过点C作CM⊥AE交AE于点M,交AB于点F,连接DF 并延长交AE于点N.(1)若AC = 2,CD = 1,求CM的值;(2)求证:∠D =∠E.答案:解:(1)∵CD=BE,CD=1 ∴BE=1 又∵AC=CB=2,∴CE=CB+BE=3 在Rt △ACE 中 13322222=+=+=EC AC AE又∵CE ⊥AE∴CM AE CE AC S VCB ⋅⋅=⋅⋅=∆2121 ∴CM ⨯⨯=⨯⨯13213221 6613==1313CM ∴ 4分 (2)B BH CB CM H ⊥过点作交的延长线于点90ABC CMA ∠=∠=∴°,90CAM ACM ∠+∠=∴°,90ACM ECM ∠+∠=∴° CAM ECM ∠=∠∴又∵BH ⊥CB ∴090=∠CBH ()CAE BCHACE CBH AC BCACE CBH ACE CBH ASA ∠=∠⎧⎪=⎨⎪∠=∠⎩∴在△和△中△≌△CE BH E H =∠=∠∴,7分又∵△ABC 为等腰直角三角形 ∴045=∠CBF又∵090=∠CBH °,45FBH ∠=∴°FBH CBF ∠=∠∴ ()DB HBDBF HBF DBF HBFBF BFDBF HBF SAS =⎧⎪∠=∠⎨⎪=⎩∴在△和△中△≌△ D H E ∠=∠=∠∴ 10分12.(2015山东·枣庄一摸)如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 是AB 的中点,点E 是AB 边上一点.直线BF 垂直于直线CE 于点F ,交CD 于点G .求证:AE =CG .答案:证明:∵点D 是AB 中点,AC =BC ,∠ACB =90°,∴CD ⊥AB ,∠ACD =∠BCD =45°, ∴∠CAD =∠CBD =45°, ∴∠CAE =∠BCG ,又∵BF ⊥CE ,∴∠CBG +∠BCF =90°, 又∵∠ACE +∠BCF =90°, ∴∠ACE =∠CBG ,在△AEC 和△CGB 中,∠CAE =∠BCG ,AC =BC ,∠ACE =∠CBG ,∴△AEC ≌△CGB (ASA ),∴AE =CG .13.(2015•山东济南•一模)如图,直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边△AOB,点C为x正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD,直线DA交y轴于点E.①△OBC与△ABD全等吗?判断并证明你的结论;②随着点C位置的变化,点E的位置是否会发生变化?若没有变化,求出点E的坐标;若有变化,请说明理由.①判断△OBC与△ABD全等,由等边△AOB和等边△CBD得到全等,△OBC≌△ABD,理由:∵△AOB和△CBD是等边三角形,∴OB=AB,∠OBA=∠OAB=60°,BC=BD,∠CBD=60°,∴∠OBA+∠ABC=∠CBD+∠ABC,即∠OBC=∠ABD,在△OBC和△ABD中,{OB=AB∠OBC=∠ABDBC=BD,∴△OBC≌△ABD(SAS)5分②根据(1)容易得到∠OAE=60°,然后在中根据直角三角形30°,所对的直角边等于斜边的一半可以得到AE=2,从而得到E的坐标是固定的∵△OBC≌△ABD,∴∠BAD=∠BOC=60°,又∵∠OAB=60°,∴∠OAE=180°-∠OAB-∠BAD=60°,∴Rt△OEA中,AE=2OA=2,∴OE=√3,∴点E的位置不会发生变化,E的坐标为E(0,√3).……7分14.(2015·江苏南菁中学·期中)(本题满分8分)如图,在所给方格纸中,每个小正方形边长都是1,标号为①,②,③的三个三角形均为格点三角形(顶点在方格顶点处).请按要求将图甲中的正方形ABCD、图乙中的平行四边形ABCD分别各自分割成三个三角形,使它们与标号为①,②,③的三个三角形分别对应全等.注:图甲、图乙在答题卡上,分割线画成实线. 答案: (本题满分8分)略(每张图各4分)。
2015~2016学年度第一学期期中考试九年级 数学试题卷 2015.11一.选择题 (本大题共8小题,每小题3分,共24分.)1.下列方程是一元二次方程的是…………………………………………………………………( ▲ ) A .x +2y =1 B .x 2+5=0 C .x 2+3x=8 D .3x +8=6x +22.若关于x 的一元二次方程kx 2-2x -1=0有两个不相等的实数根,则k 的取值范围是…( ▲ ) A .k >-1 B .k >-1且k ≠0 C .k <1 D .k <1且k ≠03.如图,∠ADE =∠ACD =∠ABC ,图中相似三角形共有……………………………………( ▲ ) A .1对 B .2对 C .3对 D .4对4.如图,△DEF 是由△ABC 经过位似变换得到的,点O 是位似中心,D 、E 、F 分别是OA 、OB 、OC 的中点,则△DEF 与△ABC 的面积比是…………………………………………………( ▲ ) A .1∶2 B .1∶4 C .1∶5 D .1∶65.如图,在Rt △ABC 中,∠C =90°,D 是AC 边上一点,AB =5,AC =4,若△ABC ∽△BDC ,则CD 的值为……………………………………………………………………………………( ▲ ) A .2 B .32 C .43 D .946.下列命题:①圆周角的度数等于圆心角度数的一半;②90°的圆周角所对的弦是直径;③三个点确定一个圆;④同圆或等圆中,同弧所对的圆周角相等.其中正确的是…………………( ▲ ) A .①② B .②③ C .②④ D .①④7.如图,AB 是⊙O 的直径,AB 垂直于弦CD ,∠BOC =70°,则∠ABD 的度数为…………( ▲ ) A .20° B .46°C .55°D .70°8.如图,⊙O 的半径为3,点O 到直线l 的距离为4,点P 是直线l 上的一个动点,PQ 切⊙O 于点Q ,则PQ 的最小值为……………………………………………………………………………( ▲ ) A .7 B . 5 C .4 D .5二.填空题 (本大题共10小题,每小题2分,共20分.) 9.若关于x 的方程x 2+3x +a =0有一个根是-1,则a = ▲ . 10.若x ∶y =2∶3,那么x ∶(x +y )= ▲ .11.若关于x 的方程(m -3)x ||m -1+2x -7=0是一元二次方程,则m = ▲ . 12.已知一个扇形的弧长为10πcm ,圆心角是150°,则它的半径长为DBC(第5题)(第3题)(第4题)(第7题)(第8题)13.如图,要得到△ABC ∽△ADE ,只需要再添加一个条件是 ▲ .14.若⊙O 的半径是方程(2x +1)(x -4)=0的一个根,圆心O 到直线l 的距离为3,则直l 与⊙O 的位置关系是 ▲ .15.如图,点O 是△ABC 的内切圆的圆心,若∠A =80°,则∠BOC 为 ▲ .16.将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长各做成一个正方形,则这两个正方形面积之和的最小值是 ▲ cm 2.17.在Rt △ABC 中,∠C =90°,AC =3,BC =4,以C 为圆心,r 为半径作⊙C .若⊙C 与斜边AB 有两个公共点,则r 的取值范围是 ▲ .18.如图,在△ABC 中,AB =AC =5,BC =2,在BC 上有100个不同的点P 1、P 2、P 3…P 100(BC 中点除外),过这100个点分别作△ABC 的内接矩形P 1E 1F 1G 1,P 2E 2F 2G 2…P 100E 100F 100G 100,设每个内接矩形的周长分别为L 1、L 2…L 100,则L 1+L 2+…+L 100= ▲ .三. 解答题 (本大题共7小题,共56分.) 19.(每小题4分,共16分)解方程:(1)(1+x )2=9; (2)2(x -1)2=(x -1) ;(3)x 2+2x -1=0; (4) x (x +2)=5x +10 ABCO(第13题)(第15题)AE 2F 2 E 1 F 1 B P 1P2G 2G 1C (第18题)20.(本题6分)已知关于x的一元二次方程(a+c)x2+2bx+(a-c)=0,其中a、b、c分别为△ABC三边的长.(1)如果x=-1是方程的根,试判断△ABC的形状,并说明理由.(2)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由.21.(本题6分)如图,AB是⊙O的直径,PB与⊙O相切于点B,C为⊙O上的点,OP∥AC.试判断PC 与⊙O的位置关系,并证明你的结论.(第21题)22.(本题6分)在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.(1)求每张门票的原定票价.(2)根据实际情况,活动组织单位决定对于个人购票也采取优惠政策,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.23.(本题6分)如图,Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,一动点P从点A出发沿边AC向点C以1cm/s的速度运动,另一动点Q同时从点C出发沿CB边向点B以2cm/s的速度运动.问:(1)运动几秒时,△CPQ的面积是8cm2?(2)运动几秒时,△CPQ与△ABC相似?24.(本题8分)如图,在△ABC 中,AD 为∠BAC 的平分线,点E 在BC 的延长线上,且∠EAC =∠B ,以DE 为直径的半圆交AD 于点F ,交AE 于点M . (1)判断AF 与DF 的数量关系,并说明理由.(2)只用无刻度的直尺........画出△ADE 的边DE 上的高AH (不要求写做法,保留作图痕迹) . (3)若EF =8,DF =6,求DH 的长.ADBC EMF (第24题)25.(本题8分)如图,半圆O的直径DE=12cm,Rt△ABC中,∠ACB=90°,∠ABC=30°,BC=12cm.半圆O以2cm/s的速度从左向右运动,在运动过程中,直径DE始终在直线BC上.设运动时间为t(s),当t =0(s)时,半圆O在△ABC的左侧,OC=8cm.(1)当t=8(s)时,试判断点C与半圆O所在的圆的位置关系.(2)当t为何值时,△ABC的一边所在直线与半圆O所在的圆相切.(3)在(2)的条件下,如果半圆O与△ABC三边围成的区域有重叠部分,求重叠部分的面积.(第25题)2015~2016学年第一学期九年级期中数学答案及评分标准一、选择题(每题3分,共24分)1.B2.B3.D4.B5.D6.C7.C8.A 二、填空题(每空2分,共20分)9. 2 10. 2∶5或25 11. -3 12. 12cm 13. 答案不唯一14. 相交 15. 130° 16. 12.5 17. 125<r ≤3 18. 400 三、解答题(共6大题,共56分) 19.解方程(1)x 1=2,x 2=-4 (2)x 1=1,x 2=32(3)x 1=-1+2,x 2=-1- 2 (4)x 1=-2,x 2=5 (每题第一步正确得2分,两个解正确各给1分)20.解:(1)当x =-1时,原方程可化为(a +c )-2b +(a -c )=0,┄┄┄(2分)整理得a =b ,则△ABC 是等腰三角形.┄┄┄┄┄┄┄┄┄┄┄(3分)(2)∵方程有两个相等的实数根 ∴△=4b 2-4(a +c )(a -c )=0┄┄┄┄(4分)整理得b 2+c 2=a 2,则△ABC 是直角三角形.┄┄┄┄┄┄┄┄┄┄(6分) 21.解:PC 与⊙O 相切.┄┄┄┄┄┄┄┄┄┄┄(1分) 连接OC .┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(2分) ∵AC ∥OP ∴∠1=∠2,∠3=∠4∵OA =OC ∴∠1=∠3 ∴∠2=∠4┄┄┄┄(3分) 在△POC 和△POB 中OC =OB ,∠2=∠4,PO =PO∴△POC ≌△POB ∴∠PCO =∠PBO ┄┄┄┄┄┄(4分)∵PB 与⊙O 相切,AB 是⊙O 的直径 ∴∠PCO =∠PBO =90°┄┄(5分) ∵OC 为⊙O 的半径 ∴PC 与⊙O 相切.┄┄┄┄┄┄┄┄┄┄┄(6分)答:每张门票的原定票价是400元.┄┄┄┄┄┄┄┄┄┄┄┄(3分) (2)设平均每次降价的百分率为y ,根据题意得 400(1-y )2=324┄┄(4分)答:平均每次降价的百分率是10%.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(6分) 23.解:(1)设运动x 秒时,此时CP =(6-x )cm ,CQ =2x cm .由题意得,12(6-x )2x =8 ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(1分)解得:x 1=2,x 2=4(经检验,两解均符合题意.)┄┄┄┄┄┄(2分) ∴运动到2秒或4秒时,△CPQ 的面积是8cm².┄┄┄┄┄┄┄(3分)(2)设运动y 秒时,△CPQ 与△ABC 相似.若△CPQ ∽△CAB ,则CP CA =CQ CB ,∴6-y 6=2y 8解得y =2.4秒┄┄┄(4分)若△CPQ ∽△CBA ,则CP CB =CQ CA ,∴6-y 8=2y 6解得y =1811秒┄┄┄(5分)综上所述,运动2.4秒或1811秒时,△CPQ 与△ABC 相似.┄┄┄(6分)24.解:(1)AF =DF .┄┄┄┄┄┄┄┄┄(1分) ∵AD 是∠BAC 的角平分线 ∴∠2=∠3 ∵∠1=∠B +∠2 ∠EAD =∠EAC +∠3∴∠EAD =∠EDA ∴AE =DE ┄┄┄┄(2分) ∵DE 是直径 ∴∠EFD =90°即EF ⊥AD ∵AE =DE ,EF ⊥AD ∴AF =DF ┄┄┄(3分)(2)如图,连结DM .DM 交EF 于G ,作射线AG 交DE 于H , 则AH 即为DE 边上的高.┄┄┄┄┄┄┄(5分)(3)在△EFD 中,EF =8,DF =6,由勾股定理得,DE =AE =10. ┄┄┄┄(6分) ∵AH 是DE 边上的高 ∴∠AHD =90° ∵∠EFD =90°∴∠AHD =∠EFD∵∠ADH =∠EDF ∴△ADH ∽△EDF ∴DH DF =ADDE ┄┄┄┄┄┄┄┄┄┄(7分)∴DH 6=1210 解得DH =365┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(8分) 25.解:(1)(图略)∵DE =12cm ∴OE =6cm ∵OC =8cm ∴EC =OC -OE =2cm 当t =8s 时,半圆O 运动了8×2=16cm , 此时点O 距离C 点8cm . ∵8>6 ∴此时点C 在半圆O 外.┄┄┄┄┄┄┄┄┄┄┄┄(2分) (2)①当半圆O 所在的圆与AC 相切且圆心O 在AC 左侧时,点O 运动了2cm ,∴t =1.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(3分) ②当半圆O 所在的圆与AC 相切且圆心O 在AC 右侧时,③当半圆O所在的圆与AB相切且圆心O在点B左侧时,点O运动了8cm,∴t=4.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(5分)④当半圆O所在的圆与AB相切且圆心O在点B右侧时,点O运动了32cm,∴t=16.┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄(6分)综上所述,当t=1、4、7、16时,半圆O所在的圆与△ABC一边所在的直线相切(3)有(2)可知,只有②③两种情况下有重叠部分,分别为9π和6π+9 3.┄┄(10分)。
2015-2016学年江苏省无锡市南长区九年级(上)期中数学试卷一、选择题(每题3分,共30分)1.(3分)方程x2﹣2x=0的根是()A.x1=0,x2=﹣2 B.x1=0,x2=2 C.x=0 D.x=22.(3分)下列一元二次方程中,有实数根的方程是()A.x2﹣x+1=0 B.x2﹣2x+3=0 C.x2+x﹣1=0 D.x2+4=03.(3分)若△ABC∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于()A.30°B.50°C.40°D.70°4.(3分)如图,等边△ABC的边长为2,DE是它的中位线,则下列三个结论:①DE=1;②△CDE∽△CAB;③△CDE与△CAB的面积之比为1:4.其中正确的有()A.0个 B.1个 C.2个 D.3个5.(3分)如图,在一幅长80cm,宽50cm的矩形树叶画四周镶一条金色的纸边,制成一幅矩形挂图,若要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,则满足的方程是()A.(80+x)(50+x)=5400 B.(80+2x)(50+2x)=5400C.(80+2x)(50+x)=5400 D.(80+x)(50+2x)=54006.(3分)已知m,n是方程x2﹣x﹣2016=0的两个实数根,则m2+n的值为于()A.1008 B.2015 C.2016 D.20177.(3分)以下命题:①直径相等的圆是等圆;②长度相等弧是等弧;③一个圆只有一条直径;④直径是圆中最长的弦.其中正确的个数是()A.1 B.2 C.3 D.48.(3分)如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AB=3,则AD的值为()A.6 B.C.5 D.9.(3分)如图,在△ABC中,AB=AC=2,∠BAC=20°.动点P、Q分别在直线BC 上运动,且始终保持∠PAQ=100°.设BP=x,CQ=y,则y与x之间的函数关系用图象大致可以表示为()A.B.C.D.10.(3分)如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F 分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:①△DFE是等腰直角三角形;②四边形CEDF不可能为正方形;③四边形CEDF的面积随点E位置的改变而发生变化;④点C、E、D、F四点在同一个圆上,且该圆的面积最小为4π;⑤DE•DF+CE•CF的值是定值为8.其中正确结论的个数是()A.1 B.2 C.3 D.4二、填空题(每空2分,共16分)11.(2分)若方程(n﹣1)x2﹣3x+1=0是关于x的一元二次方程,则n.12.(2分)已知关于x的方程x2+3x+k=0的一个根是﹣1,则k=;另一根为.13.(2分)若=,则=.14.(2分)如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为.15.(2分)如图,⊙O的弦AB=8,直径CD⊥AB于M,OM:MD=3:2,则⊙O 的半径为.16.(2分)如图,一圆外切四边形ABCD,且AB=16,CD=10,则四边形的周长为.17.(2分)如图,在△ABC中,以AC边为直径的⊙O交BC于点D,过点B作BG⊥AC交⊙O于点E、H,连AD、ED、EC.若BD=8,DC=6,则CE的长为.18.(2分)在直角坐标系中,点A1的坐标为(1,0),过点A1作x轴的垂线交直线y=2x于A2,过点A2作直线y=2x的垂线交x轴于A3,过点A3作x轴的垂线交直线y=2x于A4…,依此规律,则A2016的坐标为.三、解答题(本大题共9小题,共84分)19.(16分)解方程(1)5x2+3x=0(2)x2﹣2x﹣4=0(3)(3x﹣2)2=(2x﹣3)2(4)(x+3)(x﹣1)=12.20.(6分)关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(2)如果△ABC是等边三角形,试求这个一元二次方程的根.21.(8分)(1)如图①,请用尺规作图作出圆的一条直径EF(不写作法,保留作图痕迹);(2)如图②,A、B、C、D为圆上四点,AB∥CD,AB<CD,请只用无刻度的直尺,画出圆的一条直径EF(不写画法,保留画图痕迹).22.(6分)在矩形ABCD中,CF⊥BD分别交BD、AD于点E、F,连接BF.(1)求证:△DEC∽△FDC;(2)若DE=2,F为AD的中点,求BD的长度.23.(8分)如图,AC是⊙O的直径,PB切⊙O于点D,交AC的延长线于点B,且∠DAB=∠B.(1)求∠B的度数;(2)若BD=9,求BC的长.24.(8分)在“全民阅读”活动中,某中学社团“海伦读书社”对全校学生的人数及纸质图书阅读量(单位:本)进行了调查,2013年全校有1000名学生,2014年全校学生人数比2013年增加10%,2015年全校学生人数比2014年增加100人.(1)求2015年全校学生人数;(2)2014年全校学生人均阅读量比2013年多1本,阅读总量比2013年增加1700本(注:阅读总量=人均阅读量×人数)①求2013年全校学生人均阅读量;②2013年读书社人均阅读量是全校学生人均阅读量的2.5倍,如果2014年、2015年这两年读书社人均阅读量都比前一年增长一个相同的百分数a,2015年全校学生人均阅读量比2013年增加的百分数也是a,那么2015年读书社全部80名成员的阅读总量将达到全校学生阅读总量的25%,求a的值.25.(10分)我们新定义一种三角形:两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.(1)根据“奇异三角形”的定义,请你判断命题“等边三角形一定是奇异三角形”是真命题还是假命题,并说明理由;(2)在Rt△ABC中,∠C=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a:b:c;(3)如图,AB是⊙O的直径,C是⊙O上一点(不与点A、B重合),D是半圆弧ADB的中点,C、D在直径AB的两侧,若在⊙O内存在点E,使AE=AD,CB=CE.试说明△ACE是奇异三角形.26.(10分)在平面直角坐标系中,△ABC的边AB在x轴上,且OA>OB,以AB为直径的圆与y轴正半轴交于点C,A、B两点的横坐标x A、x B是关于x的方程x2+3x﹣4=0的两个根.(1)求点C的坐标;(2)若∠ACB的平分线所在的直线l交x轴于点D,求直线l对应的一次函数关系式;(3)过点D任作一直线l′分别交射线CA、CB(点C除外)于点M、N,则+的值是否为定值?若是,求出定值;若不是,请说明理由.27.(12分)如图1,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.(1)在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标;(2)如图2,若AE上有一动点P(不与A,E重合)自A点沿AE方向E点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t秒(0<t<5),过P 点作ED的平行线交AD于点M,过点M作AE平行线交DE于点N.求四边形PMNE 的面积S与时间t之间的函数关系式;当t取何值时,s有最大值,最大值是多少?(3)在(2)的条件下,当t为何值时,以A,M,E为顶点的三角形为等腰三角形,并求出相应的时刻点M的坐标?2015-2016学年江苏省无锡市南长区九年级(上)期中数学试卷参考答案与试题解析一、选择题(每题3分,共30分)1.(3分)方程x2﹣2x=0的根是()A.x1=0,x2=﹣2 B.x1=0,x2=2 C.x=0 D.x=2【解答】解:x(x﹣2)=0,x=0或x﹣2=0,所以x1=0,x2=2.故选:B.2.(3分)下列一元二次方程中,有实数根的方程是()A.x2﹣x+1=0 B.x2﹣2x+3=0 C.x2+x﹣1=0 D.x2+4=0【解答】解:A、△=(﹣1)2﹣4×1×1=﹣3<0,没有实数根;B、△=(﹣2)2﹣4×1×3=﹣8<0,没有实数根;C、△=12﹣2×1×(﹣1)=3>0,有实数根;D、△=0﹣4×1×4=﹣16<0,没有实数根.故选:C.3.(3分)若△ABC∽△A′B′C′,∠A=40°,∠C=110°,则∠B′等于()A.30°B.50°C.40°D.70°【解答】解:∵∠A=40°,∠C=110°,∴∠B=180°﹣∠A﹣∠C=180°﹣40°﹣110°=30°,∵△ABC∽△A′B′C′,∴∠B′=∠B=30°.故选:A.4.(3分)如图,等边△ABC的边长为2,DE是它的中位线,则下列三个结论:①DE=1;②△CDE∽△CAB;③△CDE与△CAB的面积之比为1:4.其中正确的有()A.0个 B.1个 C.2个 D.3个【解答】解:①∵△ABC中,BC=2,DE是它的中位线,∴DE=BC==1故本选项正确;②∵△ABC中,DE是它的中位线,∴DE∥BC,∴△ADE∽△ABC,故本选项正确;③∵△ADE∽△ABC,相似比为1:2,∴△ADE的面积与△ABC的面积之比为1:4.故本选项正确.故选:D.5.(3分)如图,在一幅长80cm,宽50cm的矩形树叶画四周镶一条金色的纸边,制成一幅矩形挂图,若要使整个挂图的面积是5400cm2,设金色纸边的宽为xcm,则满足的方程是()A.(80+x)(50+x)=5400 B.(80+2x)(50+2x)=5400C.(80+2x)(50+x)=5400 D.(80+x)(50+2x)=5400【解答】解:依题意,设金色纸边的宽为xcm,则(80+2x)(50+2x)=5400.故选:B.6.(3分)已知m,n是方程x2﹣x﹣2016=0的两个实数根,则m2+n的值为于()A.1008 B.2015 C.2016 D.2017【解答】解:∵m,n是方程x2﹣x﹣2016=0的两个实数根,∴m2﹣m﹣2016=0,即m2=m+2016;∵m+n=1,∴m2+n=m+n+2016=1+2016=2017.故选:D.7.(3分)以下命题:①直径相等的圆是等圆;②长度相等弧是等弧;③一个圆只有一条直径;④直径是圆中最长的弦.其中正确的个数是()A.1 B.2 C.3 D.4【解答】解:直径相等的圆是等圆,所以①正确;能完全重合的弧是等弧,所以②错误;一个圆有无数条直径,所以③错误;直径是圆中最长的弦,所以④正确.故选:B.8.(3分)如图,△ABC内接于⊙O,∠BAC=120°,AB=AC,BD为⊙O的直径,AB=3,则AD的值为()A.6 B.C.5 D.【解答】解:∵∠BAC=120°,AB=AC,∴∠ACB=30°,∴∠ACB=∠ADB=30°,∵BD是⊙O的直径,∴∠BAD=90°,∵AB=3,∴AD===3.故选:D.9.(3分)如图,在△ABC中,AB=AC=2,∠BAC=20°.动点P、Q分别在直线BC 上运动,且始终保持∠PAQ=100°.设BP=x,CQ=y,则y与x之间的函数关系用图象大致可以表示为()A.B.C.D.【解答】解:∵△ABC中,AB=AC,∠BAC=20°∴∠ACB=80°又∵∠PAQ=∠PAB+∠BAC+∠CAQ=100°∴∠PAB+∠CAQ=80°△ABC中:∠ACB=∠CAQ+∠AQC=80°∴∠AQC=∠PAB同理:∠P=∠CAQ∴△APB∽△QAC∴,即=.则函数解析式是y=.故选:A.10.(3分)如图,在△ABC中,∠C=90°,AC=BC=4,D是AB的中点,点E、F 分别在AC、BC边上运动(点E不与点A、C重合),且保持AE=CF,连接DE、DF、EF.在此运动变化的过程中,有下列结论:①△DFE是等腰直角三角形;②四边形CEDF不可能为正方形;③四边形CEDF的面积随点E位置的改变而发生变化;④点C、E、D、F四点在同一个圆上,且该圆的面积最小为4π;⑤DE•DF+CE•CF的值是定值为8.其中正确结论的个数是()A.1 B.2 C.3 D.4【解答】解:连接CD,如图1,∵∠C=90°,AC=BC=4,∵△ABC是等腰直角三角形,∴∠A=∠B=45°,∵D为AB的中点,∴CD⊥AB,CD=AD=BD,∴∠DCB=∠B=45°,∴∠A=∠DCF,在△ADE和△CDF中∴△ADE≌△CDF(SAS),∴ED=DF,∠CDF=∠ADE,∵∠ADE+∠EDC=90°,∴∠EDC+∠CDF=90°,即∠EDF=90°,∴△DFE是等腰直角三角形,所以①正确;当E、F分别为AC、BC中点时,如图2,则AE=CE=CF=BF,DE=AE=CE,∴CE=CF=DE=DF,而∠ECF=90°,∴四边形CDFE是正方形,所以②错误;∵△ADE≌△CDF,∴S=S△CDF,△ADE=S△CDE+S△CDF=S△CDE+S△ADE=S△ADC=S△ABC=××4×4=4,所以③错误;∴S四边形CEDF∵△CEF和△DEF都为直角三角形,∴点C、D在以EF为直径的圆上,即点C、E、D、F四点在同一个圆上,∵△DEF是等腰直角三角形,∴EF=DE,当DE⊥AC时,DE最短,此时DE=AC=2,∴EF的最小值为2,∴以EF为直径的圆的面积的最小值=π•(•2)2=2π,所以④错误;∵S=S△CFE+S△DEF=4,四边形CEDF∴CE•CF+DE•DF=4,∴DE•DF+CE•CF=8,所以⑤正确.故选:B.二、填空题(每空2分,共16分)11.(2分)若方程(n﹣1)x2﹣3x+1=0是关于x的一元二次方程,则n≠1.【解答】解:∵方程(n﹣1)x2﹣3x+1=0是一元二次方程,∴n﹣1≠0,即n≠1.故答案为:n≠1.12.(2分)已知关于x的方程x2+3x+k=0的一个根是﹣1,则k=2;另一根为﹣2.【解答】解:依题意,得(﹣1)2+3×(﹣1)+k=0,解得,k=2.设方程的另一根为t,则﹣1×t=2,解得t=﹣2.故答案是:2;﹣2.13.(2分)若=,则=.【解答】解:∵=,∴4(a﹣b)=3b,∴4a=7b,∴=.故答案为:.14.(2分)如图,线段AB两个端点的坐标分别为A(6,6),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为(3,3).【解答】解:∵线段AB的两个端点坐标分别为A(6,6),B(8,2),以原点O 为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的一半,∴端点C的坐标为:(3,3).故答案为:(3,3).15.(2分)如图,⊙O的弦AB=8,直径CD⊥AB于M,OM:MD=3:2,则⊙O 的半径为5.【解答】解:连接OB,∵直径CD⊥AB,AB=8,∴AM=BM=AB=4.∵OM:MD=3:2,∴设OM=3x,则MD=2x,OB=5x,在Rt△MOB中,∵OM2+BM2=OB2,即(3x)2+42=(5x)2,解得x=1,∴OB=5x=5.故答案为:5.16.(2分)如图,一圆外切四边形ABCD,且AB=16,CD=10,则四边形的周长为52.【解答】解:根据圆外切四边形的性质定理可以得出,四边形的周长是对边和的2倍,∴AB+BC+CD+AD=52故填:5217.(2分)如图,在△ABC中,以AC边为直径的⊙O交BC于点D,过点B作BG⊥AC交⊙O于点E、H,连AD、ED、EC.若BD=8,DC=6,则CE的长为2.【解答】解:∵AC为⊙O的直径,∴∠ADC=90°,∵BG⊥AC,∴∠BGC=∠ADC=90°,∵∠BCG=∠ACD,∴△ADC∽△BGC,∴=,∴CG•AC=DC•BC=6×14=84,连接AE,∵AC为⊙O的直径,∴∠AEC=90°,∴∠AEC=∠EGC=90°,∵∠ACE=∠ECG,∴△CEG∽△CAE,∴=,∴CE2=CG•AC=84,∴CE=2.故答案为2.18.(2分)在直角坐标系中,点A1的坐标为(1,0),过点A1作x轴的垂线交直线y=2x于A2,过点A2作直线y=2x的垂线交x轴于A3,过点A3作x轴的垂线交直线y=2x于A4…,依此规律,则A2016的坐标为(51007,2×51007).【解答】解:∵A1的坐标为(1,0),过点A1作x轴的垂线交直线y=2x于A2,∴y=2×1=2,∴A1A2=2,由A2A3垂直于直线y=2x,易求△OA1A2∽△A2A3A1,∴=,即=,解得A1A3=4,∴OA3=1+4=5=51,同理:A3A4=2×5=10,A3A5=2A3A4=20,∴OA5=5+20=25=52;A5A6=2×25=50,A5A7=2A5A6=2×50=100,∴OA7=25+100=125=53;同理可得,OA2015==52017,∴A2015A2016=2×52017,∴A2016的坐标为(51007,2×51007).故答案为:(51007,2×51007).三、解答题(本大题共9小题,共84分)19.(16分)解方程(1)5x2+3x=0(2)x2﹣2x﹣4=0(3)(3x﹣2)2=(2x﹣3)2(4)(x+3)(x﹣1)=12.【解答】解:(1)5x2+3x=0,x(5x+3)=0,x=0,5x+3=0,x1=0,x2=﹣;(2)x2﹣2x﹣4=0,b2﹣4ac=(﹣2)2﹣4×1×(﹣4)=20,x=,x1=+1,x2=﹣+1;(3)(3x﹣2)2=(2x﹣3)2,开方得:3x﹣2=±(2x﹣3),解得:x1=1,x2=﹣1;(4)(x+3)(x﹣1)=12,整理得:x2+2x﹣15=0,(x+5)(x﹣3)=0,x+5=0,x﹣3=0,x1=﹣5,x2=3.20.(6分)关于x的一元二次方程(a+c)x2+2bx+(a﹣c)=0,其中a、b、c分别为△ABC三边的长.(1)如果方程有两个相等的实数根,试判断△ABC的形状,并说明理由;(2)如果△ABC是等边三角形,试求这个一元二次方程的根.【解答】解:(1)∵方程有两个相等的实数根,∴(2b)2﹣4(a+c)(a﹣c)=0,∴4b2﹣4a2+4c2=0,∴a2=b2+c2,∴△ABC是直角三角形;(2)∵当△ABC是等边三角形,∴a=b=c,∵(a+c)x2+2bx+(a﹣c)=0,∴2ax2+2ax=0,∴x1=0,x2=﹣1.21.(8分)(1)如图①,请用尺规作图作出圆的一条直径EF(不写作法,保留作图痕迹);(2)如图②,A、B、C、D为圆上四点,AB∥CD,AB<CD,请只用无刻度的直尺,画出圆的一条直径EF(不写画法,保留画图痕迹).【解答】解:(1)(2)如图所示.22.(6分)在矩形ABCD中,CF⊥BD分别交BD、AD于点E、F,连接BF.(1)求证:△DEC∽△FDC;(2)若DE=2,F为AD的中点,求BD的长度.【解答】(1)证明:∵四边形ABCD为矩形,CF⊥BD,∴∠FDC=∠DEC=90°,且∠DCE=∠DCF,∴△DEC∽△FDC;(2)解:∵四边形ABCD为矩形,∴DF∥BC,且F为中点,∴==,且DE=2,∴BE=4,∴BD=BE+DE=4+2=6.23.(8分)如图,AC是⊙O的直径,PB切⊙O于点D,交AC的延长线于点B,且∠DAB=∠B.(1)求∠B的度数;(2)若BD=9,求BC的长.【解答】解:(1)连结OD,∵PB切⊙O于点D,∴OD⊥PB∵∠COD=2∠DAB,∠DAB=∠B,∴∠COD=2∠B,∴在Rt△BOD中,∠B=30°;(2)在Rt△BOD中,∵BD=9,∠B=30°,∴OD=OC=3,OB=6,∴BC=3.24.(8分)在“全民阅读”活动中,某中学社团“海伦读书社”对全校学生的人数及纸质图书阅读量(单位:本)进行了调查,2013年全校有1000名学生,2014年全校学生人数比2013年增加10%,2015年全校学生人数比2014年增加100人.(1)求2015年全校学生人数;(2)2014年全校学生人均阅读量比2013年多1本,阅读总量比2013年增加1700本(注:阅读总量=人均阅读量×人数)①求2013年全校学生人均阅读量;②2013年读书社人均阅读量是全校学生人均阅读量的2.5倍,如果2014年、2015年这两年读书社人均阅读量都比前一年增长一个相同的百分数a,2015年全校学生人均阅读量比2013年增加的百分数也是a,那么2015年读书社全部80名成员的阅读总量将达到全校学生阅读总量的25%,求a的值.【解答】解:(1)由题意,得2014年全校学生人数为:1000×(1+10%)=1100人,故2015年全校学生人数为:1100+100=1200人;(2)①设2013人均阅读量为x本,则2014年的人均阅读量为(x+1)本,由题意,得1100(x+1)=1000x+1700,解得:x=6.答:2013年全校学生人均阅读量为6本;②由题意,得2013年读书社的人均读书量为:2.5×6=15本,2015年读书社人均读书量为15(1+a)2本,2015年全校学生的人均读书量为6(1+a)本,80×15(1+a)2=1200×6(1+a)×25%2(1+a)2=3(1+a),∴a1=﹣1(舍去),a2=0.5.答:a的值为0.5.25.(10分)我们新定义一种三角形:两边平方和等于第三边平方的2倍的三角形叫做奇异三角形.(1)根据“奇异三角形”的定义,请你判断命题“等边三角形一定是奇异三角形”是真命题还是假命题,并说明理由;(2)在Rt△ABC中,∠C=90°,AB=c,AC=b,BC=a,且b>a,若Rt△ABC是奇异三角形,求a:b:c;(3)如图,AB是⊙O的直径,C是⊙O上一点(不与点A、B重合),D是半圆弧ADB的中点,C、D在直径AB的两侧,若在⊙O内存在点E,使AE=AD,CB=CE.试说明△ACE是奇异三角形.【解答】解:(1)命题“等边三角形一定是奇异三角形”是真命题,理由是:∵设等边三角形的一边为a,则a2+a2=2a2,∴符合“奇异三角形”的定义得出:命题“等边三角形一定是奇异三角形”是真命题;(2)∵∠C=90°,∴a2+b2=c2①,∵Rt△ABC是奇异三角形,且b>a,∴a2+c2=2b2②,由①②得:b=a,c=a,∴a:b:c=1::;(3)∵①AB是⊙O的直径,∴∠ACB=∠ADB=90°,在Rt△ACB中,AC2+BC2=AB2,在Rt△ADB中,AD2+BD2=AB2,∵点D是半圆弧ADB的中点,∴弧AD=弧DB,∴AD=BD,∴AB2=AD2+BD2=2AD2,∴AC2+CB2=2AD2,又∵CB=CE,AE=AD,∴AC2+CE2=2AE2,∴△ACE是奇异三角形.26.(10分)在平面直角坐标系中,△ABC的边AB在x轴上,且OA>OB,以AB为直径的圆与y轴正半轴交于点C,A、B两点的横坐标x A、x B是关于x的方程x2+3x﹣4=0的两个根.(1)求点C的坐标;(2)若∠ACB的平分线所在的直线l交x轴于点D,求直线l对应的一次函数关系式;(3)过点D任作一直线l′分别交射线CA、CB(点C除外)于点M、N,则+的值是否为定值?若是,求出定值;若不是,请说明理由.【解答】解:(1)∵x A、x B是关于x的方程x2+3x﹣4=0,OA>OB,∴x A=4,x B=1,∴OA=4,OB=1,∵以AB为直径的圆与y轴正半轴交于点C,∴∠ACB=90°,∵OC⊥AB,∴OC2=OA•OB=4,∴OC=2,∴C(0,2);(2)如图,过点D作DE⊥AC,过点D作DF⊥BC,∵CD是∠ACB的角平分线,∴DE=DF,DE∥BC,∴∠ECD=∠EDC=45°,在△ABC中,AC2=AD•AB,∴AC=2,BC2=BD•AB,∴BC=,∵DE∥BC,∴,∵DE=EC,∴,∵△AED∽△ACB,∴,∴==2,∵AB=5,设BD=x,则AD=2x,AB=BD+AD=x+2x=5,解得DB=x=,则OD=,即D(﹣,0),设直线l对应的一次函数解析式为:y=kx+b,∴,∴,∴直线l对应的一次函数解析式为:y=3x+2;(3)由(2)知:CD为∠ACB的平分线,DE=DF.∵DE∥BC,∴△MDE∽△MNC,∴=,∵DF∥AC,∴△DNF∽△MNC,∴=,∴+=+=1,∴DE(+)=1∴+==.27.(12分)如图1,OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.(1)在OC边上取一点D,将纸片沿AD翻折,使点O落在BC边上的点E处,求D,E两点的坐标;(2)如图2,若AE上有一动点P(不与A,E重合)自A点沿AE方向E点匀速运动,运动的速度为每秒1个单位长度,设运动的时间为t秒(0<t<5),过P 点作ED的平行线交AD于点M,过点M作AE平行线交DE于点N.求四边形PMNE 的面积S与时间t之间的函数关系式;当t取何值时,s有最大值,最大值是多少?(3)在(2)的条件下,当t为何值时,以A,M,E为顶点的三角形为等腰三角形,并求出相应的时刻点M的坐标?【解答】解:(1)依题意可知,折痕AD是四边形OAED的对称轴,∴在Rt△ABE中,AE=AO=5,AB=4.BE==3.∴CE=2.∴E点坐标为(2,4).在Rt△DCE中,DC2+CE2=DE2,又∵DE=OD.∴(4﹣OD)2+22=OD2.解得:OD=.∴D点坐标为(0,).(2)如图②∵PM∥ED,∴△APM∽△AED.∴,又知AP=t,ED=,AE=5,PM=×=,又∵PE=5﹣t.而显然四边形PMNE为矩形.S矩形PMNE=PM•PE=×(5﹣t)=﹣t2+t;=﹣(t﹣)2+,∴S四边形PMNE又∵0<<5.∴当t=时,S有最大值.矩形PMNE(3)(i)若以AE为等腰三角形的底,则ME=MA(如图①)在Rt△AED中,ME=MA,∵PM⊥AE,∴P为AE的中点,∴t=AP=AE=.又∵PM∥ED,∴M为AD的中点.过点M作MF⊥OA,垂足为F,则MF是△OAD的中位线,∴MF=OD=,OF=OA=,∴当t=时,(0<<5),△AME为等腰三角形.此时M点坐标为(,).(ii)若以AE为等腰三角形的腰,则AM=AE=5(如图②)在Rt△AOD中,AD===.过点M作MF⊥OA,垂足为F.∵PM∥ED,∴△APM∽△AED.∴.∴t=AP===2,∴PM=t=.∴MF=MP=,OF=OA﹣AF=OA﹣AP=5﹣2,∴当t=2时,(0<2<5),此时M点坐标为(5﹣2,).综合(i)(ii)可知,t=或t=2时,以A,M,E为顶点的三角形为等腰三角形,相应M点的坐标为(,)或(5﹣2,).。
初中数学试卷马鸣风萧萧2015~2016学年度第一学期期中考试九年级数学试题满分:150分,考试时间:120分一、精心选一选:(本大题共有8小题,每小题3分,共计24分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项前的字母填在相应的表格内......) 题号 1 2 3 4 5 6 7 8 选项1.下列事件中,是必然事件的是( )A . 抛掷一枚质地均匀的硬币,落地后正面朝上B . 东台市7月份某一天的最低气温是﹣3℃C . 通常加热到100℃时,水沸腾D . 打开电视,正在播放综艺节目《一站到底》2.甲、乙、丙、丁四人进行射箭测试,每人10次射箭成绩的平均数都是8.9环,方差分别是20.65S =甲,20.55S =乙,20.50S =丙 20.45S =丁,则射箭成绩最稳定的是( )A 甲B 乙C 丙D 丁3.如图,四边形ABCD 为⊙O 的内接四边形,若∠BCD=110°,则∠BAD为( )A . 140°B . 110°C . 90°D . 70° 4.一元二次方程x 2﹣4x+5=0的根的情况是( )A . 有两个不相等的实数根B . 有两个相等的实数根C . 只有一个实数根D . 没有实数根 5.抛物线5)3(22+--=x y 的顶点坐标是( ) A. )5,3(B. )5,3(-C. )5,3(-D. )5,2(-6.已知二次函数y =ax 2+bx +c 的图象如图所示,则下列结论:①c =2;②b 2-4ac >0;③2a +b =0; ④a +b +c <0.其中正确的为( ). A .①②③ B .①②④ C .①② D .③④ 7.抛物线y=ax 2+bx 和直线y=ax+b 在同一坐标系的图象可能是( )校___________ 班级_____________ 姓名___________ 准考证号___________………………密…………封…………线…………内…………不…………得…………答…………题………………………………xyO22(第6题)CBOADE(第17题)A .B .C .D .8.若二次函数y=(x ﹣k )2+m ,当x ≤2时,y 随x 的增大而减小,则k 的取值范围是( ) A .k=2 B .k >2 C .k ≥2 D .k ≤2 二、细心填一填:(共有10小题,每小题3分,共计30分.请把答案填写在下面相.应横线...上.) 9. ;10. ;11. ;12. ;13. ;14. ;15. ;16. ;17. ; 18. . 9.从﹣1,0,,π,3中随机任取一数,取到无理数的概率是 .10.2014年南京青奥会某项目6名礼仪小姐的身高如下(单位:cm ):168,166,168,167, 169,168,则她们身高的极差是 cm .11.已知两圆内切,圆心距为5cm ,若其中一个圆的半径是3cm ,则另一个圆的半径 是 cm12.将抛物线y=x 2先向左平移2个单位,再向下平移3个单位,所得抛物线的解析式为 .13.二次函数y=x 2﹣2x ﹣3与x 轴两交点之间的距离为 .14. 已知关于x 的一元二次方程x 2-2x +k =0有两个相等的实数根,则k 的值为 .15. 已知实数m 是关于x 的方程x 2﹣3x ﹣1=0的一根,则代数式2m 2﹣6m+2值为________.16.如图,AB 是⊙O 的弦,OC ⊥AB 于点D ,交⊙O 于点C ,若⊙O 的半径为5,CD=2,那么AB 的长为 .17. 如图,以BC 为直径的⊙O 与△ABC 的另两边分别相交于点D 、E .若∠A =70°,BC =2,则图中阴影部分面积为 .18.如图,在平面直角坐标系xOy 中,已知抛物线y=﹣x (x ﹣3)(0≤x ≤3)在x 轴上方的部分,记作C 1,它与x 轴交于点O ,A 1,将C 1绕点A 1旋转180°得C 2,C 2与x 轴交于另一点A 2.请继续操作并探究:将C 2绕点A 2旋转180°得C 3,与x 轴交于另一点A 3;将C 3绕点A 2旋转180°得C 4,与x 轴交于另一点A 4,这样依次得到x 轴上的点A 1,A 2,A 3,…,A n ,…,及抛物线C 1,C 2,…,C n ,…则C n 的顶点坐标为 (n 为正整数,用含n 的代数式表示). 三、用心做一做(本大题共有10小题,共96分.解答时应写出必要的文字说明、证明过程或演算步骤) 19.(本题8分)桌面上放有4张卡片,正面分别标有数字1,2,3,4.这些卡片除数字外完全相同,把这些卡片反面朝上洗匀后放在桌面上,甲从中任意抽出一张,记下卡片上的数字后仍反面朝上放回洗匀,乙也从中任意抽出一张,记下卡片上的数字,然后将这两数相加. (1)请用列表或画树状图的方法求两数之和为5的概率;(2)若甲与乙按上述方式做游戏,当两数之和为5时,甲胜;当两数之和不为5时,则乙胜.若甲胜一次得12分,谁先达到120分为胜.那么乙胜一次得多少分,这个游戏对双方公平?20. (本题8分)某厂为了解工人在单位时间内加工同一种零件的技能水平,随机抽取了50名工人加工的零件进行检测,统计出他们各自加工的合格品数是1﹣8这8个整数,现提供统计图的部分信息如图,请解答下列问题:(1)根据统计图,求这50名工人加工出的合格品数的中位数;(2)写出这50名工人加工出的合格品数的众数的可能取值;(3)厂方认定,工人在单位时间内加工出的合格品数不低于3件为技能合格,否则,将接受技能再培训.已知该厂有同类工人400名,请估计该厂将接受技能再培训的人数.21. (本题8分)已知关于x的一元二次方程(a+1)x2﹣x+a2﹣3a﹣3=0有一根是1.(1)求a的值;(2)求方程的另一根.22.(本题8分)为建设美丽家园,某企业逐年增加对环境保护的经费投入,2012年投入了400万元,预计到2014年将投入576万元.(1)求2012年至2014年该单位环保经费投入的年平均增长率;(2)该单位预计2015年投入环保经费不低于680万元,若继续保持前两年的年平均增长率,该目标能否实现?请通过计算说明理由.23.(本题10分)如图,二次函数的图象与x轴相交于A(﹣3,0)、B(1,0)两点,与y轴相交于点C(0,3),点C、D是二次函数图象上的一对对称点,一次函数的图象过点B、D.(1)求D点坐标;(2)求二次函数的解析式;(3)根据图象直接写出使一次函数值小于二次函数值的x的取值范围.24.(本题10分)如图,有长为24m的篱笆,一面利用墙(墙的最大可用长度a为10m),围成中间隔有一道篱笆的矩形花圃,设花圃的边AB的长为x (m ),面积为y (m 2)。
2014-2015学年江苏省无锡市南菁中学九年级(上)期中数学试卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)1.(3分)﹣2的相反数是()A.B.C.D.|﹣2|2.(3分)下列计算正确的是()A.a3+a3=a6 B.a6÷a3=a2C.(a2)3=a8D.a2•a3=a53.(3分)南菁实验学校校园进行改造,现需选用同一批地砖进行装修,以下不能镶嵌的地砖是()A.正五边形地砖B.正三角形地砖C.正六边形地砖D.正四边形地砖4.(3分)下列方程没有实数根的是()A.x2+4x=1 B.x2+x﹣3=0 C.x2﹣2x+2=0 D.(x﹣2)(x﹣3)=05.(3分)下列图形,既是轴对称图形,又是中心对称图形的是()A. B.C.D.6.(3分)在Rt△ABC中,∠C=90°,若AB=2AC,则sinA的值是()A.B.C.D.7.(3分)已知两圆的半径R,r分别为方程x2﹣3x+2=0的两根,这两圆的圆心距为3,则这两圆的位置关系是()A.外切B.内切C.相交D.外离8.(3分)关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,则m等于()A.1 B.2 C.1或2 D.09.(3分)阅读理解:如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∠MOx的度数θ与OM 的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox 上,则正六边形的顶点C的极坐标应记为()A.(60°,4)B.(45°,4)C.(60°,2)D.(50°,2)10.(3分)点P是△ABC内(不在边上)一点,连接PA、PB、PC,如果△PAB、△PBC、△PAC中存在一个三角形与原△ABC相似,那么我们把点P叫做△ABC 的内相似点.已知在Rt△ABC中,∠ACB=90°,AC=3,BC=4,若点P是△ABC的内相似点,则cos∠PAB的值为()A.B.C.D.二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置处)11.(2分)函数y=﹣1中,自变量x的取值范围是.12.(2分)若关于x的一元二次方程x2+3x+a=0有一个根是﹣1,则a=.13.(2分)据媒体报道,我国因环境污染造成的巨大经济损失,每年高达679000000元,这个数用科学记数法表示是元.14.(2分)某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为.15.(2分)如果一个正多边形的一个外角是60°,那么这个正多边形的边数是.16.(2分)如图,以△ABC的边BC为直径的⊙O分别交AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE=.17.(2分)如图,在Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD为BC边上的高.动点P从点A出发,沿A→D方向以cm/s的速度向点D运动.设△ABP 的面积为S1,矩形PDFE的面积为S2,运动时间为t秒(0<t<8),则t=秒时,S 1=2S2.18.(2分)为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出个这样的停车位.(≈1.4)三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(8分)(1)化简:÷(2)计算:()﹣1﹣2cos60°+(2﹣π)0.20.(8分)(1)解方程:x2+4x﹣5=0(2)解方程:=.21.(6分)一元二次方程mx2﹣2mx+m﹣2=0.(1)若方程有两实数根,求m的范围.(2)设方程两实根为x1,x2,且|x1﹣x2|=1,求m.22.(8分)如图,点A、B、C分别是⊙O上的点,∠B=60°,CD是⊙O的直径,P是CD延长线上的点,且AP=AC.(1)求证:AP是⊙O的切线;(2)若AC=3,求PD的长.23.(6分)某校为了解2013年八年级学生课外书籍借阅情况,从中随机抽取了40名学生课外书籍借阅情况,将统计结果列出如下的表格,并绘制成如图所示的扇形统计图,其中科普类册数占这40名学生借阅总册数的40%.(1)求表格中字母m的值及扇形统计图中“教辅类”所对应的圆心角α的度数;(2)该校2013年八年级有500名学生,请你估计该年级学生共借阅教辅类书籍约多少本?24.(10分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?25.(8分)图1中的中国结挂件是由四个相同的菱形在顶点处依次串联而成,每相邻两个菱形均成30°的夹角,示意图如图2.在图2中,每个菱形的边长为10cm,锐角为60°.(1)连接CD,EB,猜想它们的位置关系并加以证明;(2)求A,B两点之间的距离(结果取整数,可以使用计算器)(参考数据:≈1.41,≈1.73,≈2.45)26.(10分)如图,△ABC中,AB=AC=4,cosC=.(1)动手操作:利用尺规作以AC为直径的⊙O,并标出⊙O与AB的交点D,与BC的交点E(保留作图痕迹,不写作法);(2)综合应用:在你所作的图中,①求证:=;②求点D到BC的距离.27.(10分)已知,A、B两市相距260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回,同时甲车以原速1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车行驶时间x(小时)之间的函数图象,结合图象回答下列问题:(1)甲车提速后的速度是千米/时,乙车的速度是千米/时,点C 的坐标为;(2)求乙车返回时y与x的函数关系式并写出自变量x的取值范围;(3)求甲车到达B市时乙车已返回A市多长时间?28.(10分)在平面直角坐标系xOy中,已知A(﹣2,0),B(2,0),AC⊥AB 于点A,AC=2,BD⊥AB于点B,BD=6,以AB为直径的半圆O上有一动点P(不与A、B两点重合),连接PD、PC,我们把由五条线段AB、BD、DP、PC、CA所组成的封闭图形ABDPC叫做点P的关联图形,如图1所示.(1)如图2,当P运动到半圆O与y轴的交点位置时,求点P的关联图形的面积.(2)如图3,连接CD、OC、OD,判断△OCD的形状,并加以证明.(3)当点P运动到什么位置时,点P的关联图形的面积最大,简要说明理由,并求面积的最大值.2014-2015学年江苏省无锡市南菁中学九年级(上)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分.在每小题所给出的四个选项中,只有一项是正确的,请用2B铅笔把答题卡上相应的选项标号涂黑)1.(3分)﹣2的相反数是()A.B.C.D.|﹣2|【解答】解:由相反数的意义得,﹣2的相反数是2,而只有|﹣2|=2,故选:D.2.(3分)下列计算正确的是()A.a3+a3=a6 B.a6÷a3=a2C.(a2)3=a8D.a2•a3=a5【解答】解:A、a3+a3=2a3,故A选项错误;B、a6÷a3=a3,故B选项错误;C、(a2)3=a6,故C选项错误;D、a2•a3=a5,故D选项正确.故选:D.3.(3分)南菁实验学校校园进行改造,现需选用同一批地砖进行装修,以下不能镶嵌的地砖是()A.正五边形地砖B.正三角形地砖C.正六边形地砖D.正四边形地砖【解答】解:A、正五边形每个内角是180°﹣360°÷5=108°,不是360°的约数,不能镶嵌平面,符合题意;B、正三角形的一个内角度数为180﹣360÷3=60°,是360°的约数,能镶嵌平面,不符合题意;C、正六边形的一个内角度数为180﹣360÷6=120°,是360°的约数,能镶嵌平面,不符合题意;D、正四边形的一个内角度数为180﹣360÷4=90°,是360°的约数,能镶嵌平面,不符合题意.故选:A.4.(3分)下列方程没有实数根的是()A.x2+4x=1 B.x2+x﹣3=0 C.x2﹣2x+2=0 D.(x﹣2)(x﹣3)=0【解答】解:A、x2+4x﹣1=0,△=42﹣4×1×(﹣1)=20>0,则方程有两个不相等的两个实数根,所以A选项错误;B、△=12﹣4×1×(﹣3)=13>0,则方程有两个不相等的两个实数根,所以B 选项错误;C、△=22﹣4×1×2=﹣4<0,则方程没有实数根,所以C选项正确;D、解得x1=2,x2=3,所以D选项错误.故选:C.5.(3分)下列图形,既是轴对称图形,又是中心对称图形的是()A. B.C.D.【解答】解:A、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,也不是轴对称图形,故此选项错误;B、∵此图形旋转180°后不能与原图形重合,∴此图形不是中心对称图形,是轴对称图形,故此选项错误;C、此图形旋转180°后能与原图形重合,此图形是中心对称图形,不是轴对称图形,故此选项错误;D、∵此图形旋转180°后能与原图形重合,∴此图形是中心对称图形,也是轴对称图形,故此选项正确.故选:D.6.(3分)在Rt△ABC中,∠C=90°,若AB=2AC,则sinA的值是()A.B.C.D.【解答】解:∵∠C=90°,AB=2AC,∴∠B=30°,∠A=60°,故可得sinA=.故选:C.7.(3分)已知两圆的半径R,r分别为方程x2﹣3x+2=0的两根,这两圆的圆心距为3,则这两圆的位置关系是()A.外切B.内切C.相交D.外离【解答】解:∵两圆半径的长分别为方程x2﹣3x+2=0的两根,∴两圆半径之和为3,又∵两圆的圆心距为3,∴两圆外切.故选:A.8.(3分)关于x的一元二次方程(m﹣1)x2+5x+m2﹣3m+2=0的常数项为0,则m等于()A.1 B.2 C.1或2 D.0【解答】解:根据题意,知,,解方程得:m=2.故选:B.9.(3分)阅读理解:如图1,在平面内选一定点O,引一条有方向的射线Ox,再选定一个单位长度,那么平面上任一点M的位置可由∠MOx的度数θ与OM 的长度m确定,有序数对(θ,m)称为M点的“极坐标”,这样建立的坐标系称为“极坐标系”.应用:在图2的极坐标系下,如果正六边形的边长为2,有一边OA在射线Ox 上,则正六边形的顶点C的极坐标应记为()A.(60°,4)B.(45°,4)C.(60°,2)D.(50°,2)【解答】解:如图,设正六边形的中心为D,连接AD,∵∠ADO=360°÷6=60°,OD=AD,∴△AOD是等边三角形,∴OD=OA=2,∠AOD=60°,∴OC=2OD=2×2=4,∴正六边形的顶点C的极坐标应记为(60°,4).故选:A.10.(3分)点P是△ABC内(不在边上)一点,连接PA、PB、PC,如果△PAB、△PBC、△PAC中存在一个三角形与原△ABC相似,那么我们把点P叫做△ABC的内相似点.已知在Rt△ABC中,∠ACB=90°,AC=3,BC=4,若点P是△ABC的内相似点,则cos∠PAB的值为()A.B.C.D.【解答】解:∵AC=3,BC=4,∴∠CAB>∠CBA,故可在∠CAB内作∠CAP=∠CBA,又∵点P为△ABC的内相似点,∴过点C作CP⊥AP,并延长CP交AB于点D,则△APC∽△BCA∴点P为△ABC的内相似点,∴∠ACP=∠CAB,∴DA=DC,∴∠DCA=∠DAC,在Rt△ABC中,∠ACB=90°,∴∠DCA+∠BCD=∠DAC+∠ABC=90°,∴∠BCD=∠ABC,∴DC=DB,∵AC=3,BC=4,∴AB=5,∴AD=AB=,∴cos∠PAB===,故选:D.二、填空题(本大题共8小题,每小题2分,共16分.不需写出解答过程,只需把答案直接填写在答题卡上相应的位置处)11.(2分)函数y=﹣1中,自变量x的取值范围是x≥0.【解答】解:根据题意,得x≥0.故答案为:x≥0.12.(2分)若关于x的一元二次方程x2+3x+a=0有一个根是﹣1,则a=2.【解答】解:∵关于x的一元二次方程x2+3x+a=0有一个根是﹣1,∴(﹣1)2+3×(﹣1)+a=0,解得a=2,故答案为:2.13.(2分)据媒体报道,我国因环境污染造成的巨大经济损失,每年高达679000000元,这个数用科学记数法表示是 6.79×108元.【解答】解:679 000 000=6.79×108.故答案为:6.79×108.14.(2分)某商品经过连续两次降价,销售单价由原来的125元降到80元,则平均每次降价的百分率为20%.【解答】解:设这种商品平均每次降价的百分率为x,根据题意列方程得,125(1﹣x)2=80,解得x1=0.2=20%,x2=1.8(不合题意,舍去);故答案为:20%15.(2分)如果一个正多边形的一个外角是60°,那么这个正多边形的边数是6.【解答】解:这个正多边形的边数:360°÷60°=6.故答案为:6.16.(2分)如图,以△ABC的边BC为直径的⊙O分别交AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE=50°.【解答】解:如图,连接BE.∵BC为⊙O的直径,∴∠CEB=∠AEB=90°,∵∠A=65°,∴∠ABE=25°,∴∠DOE=2∠ABE=50°,(圆周角定理)故答案为:50°.17.(2分)如图,在Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD为BC边上的高.动点P从点A出发,沿A→D方向以cm/s的速度向点D运动.设△ABP 的面积为S1,矩形PDFE的面积为S2,运动时间为t秒(0<t<8),则t=6秒时,S1=2S2.【解答】解:∵Rt△ABC中,∠BAC=90°,AB=AC=16cm,AD为BC边上的高,∴AD=BD=CD=8cm,又∵AP=t,则S1=AP•BD=×8×t=8t,PD=8﹣t,∵PE∥BC,∴△APE∽△ADC,∴,∴PE=AP=t,∴S2=PD•PE=(8﹣t)•t,∵S1=2S2,∴8t=2(8﹣t)•t,解得:t=6.故答案是:6.18.(2分)为解决停车难的问题,在如图一段长56米的路段开辟停车位,每个车位是长5米宽2.2米的矩形,矩形的边与路的边缘成45°角,那么这个路段最多可以划出17个这样的停车位.(≈1.4)【解答】解:如图,CE=2.2÷sin45°=2.2÷≈3.1米,BC=(5﹣CE×)×≈1.98米,BE=BC+CE≈5.04,EF=2.2÷sin45°=2.2÷≈3.1米,(56﹣3.1﹣1.98)÷3.1+1=50.92÷3.1+1≈17(个).故这个路段最多可以划出17个这样的停车位.故答案为:17.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤)19.(8分)(1)化简:÷(2)计算:()﹣1﹣2cos60°+(2﹣π)0.【解答】解:(1)原式=•=;(2)原式=2﹣1+1=2.20.(8分)(1)解方程:x2+4x﹣5=0(2)解方程:=.【解答】解:(1)(x+5)(x﹣1)=0,x1=﹣5,x2=1;(2)去分母得:x+3=4x,解得:x=1.检验:当x=1时,2x(x+3)≠0,所以x=1是原方程的解.21.(6分)一元二次方程mx2﹣2mx+m﹣2=0.(1)若方程有两实数根,求m的范围.(2)设方程两实根为x1,x2,且|x1﹣x2|=1,求m.【解答】解:(1)∵关于x的一元二次方程mx2﹣2mx+m﹣2=0有两个实数根,∴m≠0且△≥0,即(﹣2m)2﹣4•m•(m﹣2)≥0,解得m≠0且m≥0,∴m的取值范围为m>0.(2)∵方程两实根为x1,x2,∴x1+x2=2,x1•x2=,∵|x1﹣x2|=1,∴(x 1﹣x2)2=1,∴(x1+x2)2﹣4x1x2=1,∴22﹣4×=1,解得:m=8;经检验m=8是原方程的解.22.(8分)如图,点A、B、C分别是⊙O上的点,∠B=60°,CD是⊙O的直径,P是CD延长线上的点,且AP=AC.(1)求证:AP是⊙O的切线;(2)若AC=3,求PD的长.【解答】解:(1)证明:连接OA,∵∠B=60°,∴∠AOC=2∠B=120°,∵OA=OC,∴∠ACP=∠CAO=30°,∴∠AOP=60°,又∵AP=AC,∴∠P=∠ACP=30°,∴∠OAP=90°,即OA⊥AP,∵点A在⊙O上,∴AP是⊙O的切线.(2)解:连接AD,∵CD是⊙O的直径,∴∠CAD=90°,∴AD=AC∙tan30°=,CD=2AD=2,∴DO=AO=CD=,在Rt△PAO中,由勾股定理得:PA2+AO2=PO2,∴32+()2=(PD+)2,∵PD的值为正数,∴PD=.23.(6分)某校为了解2013年八年级学生课外书籍借阅情况,从中随机抽取了40名学生课外书籍借阅情况,将统计结果列出如下的表格,并绘制成如图所示的扇形统计图,其中科普类册数占这40名学生借阅总册数的40%.(1)求表格中字母m的值及扇形统计图中“教辅类”所对应的圆心角α的度数;(2)该校2013年八年级有500名学生,请你估计该年级学生共借阅教辅类书籍约多少本?【解答】解:(1)观察扇形统计图知:科普类有128册,占40%,∴借阅总册数为128÷40%=320本,∴m=320﹣128﹣80﹣48=64;教辅类的圆心角为:360°×=90°;(2)设全校500名学生借阅教辅类书籍x本,根据题意得:=,解得:x=1000,∴八年级500名学生中估计共借阅教辅类书籍约1000本.24.(10分)山西特产专卖店销售核桃,其进价为每千克40元,按每千克60元出售,平均每天可售出100千克,后来经过市场调查发现,单价每降低2元,则平均每天的销售可增加20千克,若该专卖店销售这种核桃要想平均每天获利2240元,请回答:(1)每千克核桃应降价多少元?(2)在平均每天获利不变的情况下,为尽可能让利于顾客,赢得市场,该店应按原售价的几折出售?【解答】(1)解:设每千克核桃应降价x元.…1分根据题意,得(60﹣x﹣40)(100+×20)=2240.…4分化简,得x2﹣10x+24=0 解得x1=4,x2=6.…6分答:每千克核桃应降价4元或6元.…7分(2)解:由(1)可知每千克核桃可降价4元或6元.因为要尽可能让利于顾客,所以每千克核桃应降价6元.此时,售价为:60﹣6=54(元),设按原售价的m折出售,则有:60×=54,解得m=9答:该店应按原售价的九折出售.25.(8分)图1中的中国结挂件是由四个相同的菱形在顶点处依次串联而成,每相邻两个菱形均成30°的夹角,示意图如图2.在图2中,每个菱形的边长为10cm,锐角为60°.(1)连接CD,EB,猜想它们的位置关系并加以证明;(2)求A,B两点之间的距离(结果取整数,可以使用计算器)(参考数据:≈1.41,≈1.73,≈2.45)【解答】解:(1)猜想CD∥EB.证明:连接DE.∵中国结挂件是四个相同的菱形,每相邻两个菱形均成30°的夹角,菱形的锐角为60°∴∠CDE=60°÷2×2+30°=90°,∴∠BED=60°÷2×2+30°=90°,∴∠CDE=∠BED,∴CD∥EB.(2)如图2,连接AD、BD.由(1)知,∠BED=90°,∵BE=DE,∴∠EDB=∠EBD=45°,同理,∠ADC=45°又由(1)知,∠CDE=90°,∴∠ADC+∠CDE+∠EDB=180°,∴点A、D、B三点共线.BE=2OE=2×10×cos30°=10cm,同理可得,DE=10cm,则BD=10cm,同理可得,AD=10cm,AB=BD+AD=20≈49cm.答:A,B两点之间的距离大约为49cm.26.(10分)如图,△ABC中,AB=AC=4,cosC=.(1)动手操作:利用尺规作以AC为直径的⊙O,并标出⊙O与AB的交点D,与BC的交点E(保留作图痕迹,不写作法);(2)综合应用:在你所作的图中,①求证:=;②求点D到BC的距离.【解答】解:(1)如图所示:(2)①如图,连接AE,∵AC为直径,∴∠AEC=90°,∵AB=AC,∴∠DAE=∠CAE,∴=;②连接AE,CD,作DM⊥BC交BC于点M,∵AC为直径,∴∠AEC=90°,∵AB=AC=4,cosC=.∴EC=BE=4,∴BC=8,∵AB=AC∴∠B=∠C∴cos∠C=cos∠B=,∴BD=BC cos∠B=,∴DM=BDsin∠B=.27.(10分)已知,A、B两市相距260千米,甲车从A市前往B市运送物资,行驶2小时在M地汽车出现故障,立即通知技术人员乘乙车从A市赶来维修(通知时间忽略不计),乙车到达M地后又经过20分钟修好甲车后以原速原路返回,同时甲车以原速1.5倍的速度前往B市,如图是两车距A市的路程y(千米)与甲车行驶时间x(小时)之间的函数图象,结合图象回答下列问题:(1)甲车提速后的速度是60千米/时,乙车的速度是96千米/时,点C 的坐标为(,80);(2)求乙车返回时y与x的函数关系式并写出自变量x的取值范围;(3)求甲车到达B市时乙车已返回A市多长时间?【解答】解:(1)甲车提速后的速度:80÷2×1.5=60千米/时,乙车的速度:80×2÷(2﹣)=96千米/时;点C的横坐标为2++=,纵坐标为80,坐标为(,80);(2)设乙车返回时y与x的函数关系式y=kx+b,代入(,80)和(4,0)得,解得,所以y与x的函数关系式y=﹣96x+384(≤x≤4);(3)(260﹣80)÷60﹣80÷96=3﹣=(小时).答:甲车到达B市时乙车已返回A市小时.28.(10分)在平面直角坐标系xOy中,已知A(﹣2,0),B(2,0),AC⊥AB 于点A,AC=2,BD⊥AB于点B,BD=6,以AB为直径的半圆O上有一动点P(不与A、B两点重合),连接PD、PC,我们把由五条线段AB、BD、DP、PC、CA所组成的封闭图形ABDPC叫做点P的关联图形,如图1所示.(1)如图2,当P运动到半圆O与y轴的交点位置时,求点P的关联图形的面积.(2)如图3,连接CD、OC、OD,判断△OCD的形状,并加以证明.(3)当点P运动到什么位置时,点P的关联图形的面积最大,简要说明理由,并求面积的最大值.【解答】解:(1)∵A(﹣2,0),∴OA=2,∵P是半圆O上的点,P在y轴上,∴OP=2,∠AOP=90°,∴AC=2,∴四边形AOPC是正方形,∴正方形的面积是4,又∵BD⊥AB,BD=6,∴梯形OPDB的面积===8,∴点P的关联图形的面积是12.(2)判断△OCD是直角三角形.证明:延长CP交BD于点F,则四边形ACFB为矩形,∴CF=DF=4,∠DCF=45°,∴∠OCD=90°,∴OC⊥CD,∴△OCD是直角三角形.(3)连接OC交半圆O于点P,则点P即为所确定的点的位置.理由如下:连接CD,梯形ACDB的面积===16为定值,要使点P的关联图形的面积最大,就要使△PCD的面积最小,∵CD为定长,∴P到CD的距离就要最小,连接OC,设交半圆O于点P,∵AC⊥OA,AC=OA,∴∠AOC=45°,过C作CF⊥BD于F,则ACFB为矩形,∴CF=DF=4,∠DCF=45°,∴OC⊥CD,OC=2,∴PC在半圆外,设在半圆O上的任意一点P′到CD的距离为P′H,则P′H+P′O>OH>OC,∵OC=PC+OP,∴P′H>PC,∴当点P运动到半圆O与OC的交点位置时,点P的关联图形的面积最大.∵CD=4,CP=2﹣2,∴△PCD的面积=CD×CP=××(2﹣2)=8﹣4,∴点P的关联图形的最大面积是梯形ACDB的面积﹣△PCD的面积=16﹣(8﹣4)=8+4.赠送初中数学几何模型【模型三】双垂型:图形特征:60°运用举例:1.在Rt△ABC中,∠ACB=90°,以斜边AB为底边向外作等腰三角形PAB,连接PC. (1)如图,当∠APB=90°时,若AC=5,PC=62,求BC的长;(2)当∠APB=90°时,若AB=45APBC的面积是36,求△ACB的周长.P2.已知:如图,B、C、E三点在一条直线上,AB=AD,BC=CD.(1)若∠B=90°,AB=6,BC=23,求∠A的值;(2)若∠BAD+∠BCD=180°,cos∠DCE=35,求ABBC的值.3.如图,在四边形ABCD中,AB=AD,∠DAB=∠BCD=90°,(1)若AB=3,BC+CD=5,求四边形ABCD的面积(2)若p= BC+CD,四边形ABCD的面积为S,试探究S与p之间的关系。