振动与波动
- 格式:doc
- 大小:407.50 KB
- 文档页数:10
物理学中的波动与振动现象波动和振动是物理学中两个常见而重要的概念。
它们广泛应用于各个领域,包括声学、光学、电磁学和力学等。
本文将介绍波动和振动的基本概念、特性以及实际应用。
一、波动在物理学中,波动是指能够在介质中传播的能量或者信息的传递方式。
波动可以分为机械波和电磁波两类。
1. 机械波机械波是由介质的振动引起的波动。
在机械波中,能量由介质的粒子传递,而粒子本身并不迁移。
常见的机械波包括水波、声波和地震波等。
水波是由水面的振动引起的波动。
当我们在水池中投入一个石子,水面上就会产生波纹,并向四周扩散。
声波是空气分子的振动引起的机械波。
当我们敲打物体或者说话时,声音就会以波动的形式向外传播。
地震波是地壳内岩石的振动引起的波动。
地震波的传播会引发地震,并对建筑物和环境造成破坏。
2. 电磁波电磁波是由电场和磁场相互作用引起的波动。
电磁波是一种不需要介质即可传播的波动,它可以在真空中传播。
电磁波包括了从无线电波到γ射线的整个波长范围。
无线电波是由变化的电场和磁场引起的电磁波。
我们平常所使用的无线电、电视和手机信号都是通过无线电波传输的。
可见光是固定波长范围内的电磁波,它使我们能够看到周围的物体。
此外,紫外线、X射线和γ射线等电磁波在医学、通信和科学研究中起着至关重要的作用。
二、振动振动是物体相对于其平衡位置的周期性运动。
振动可以分为简谐振动和非简谐振动两种。
1. 简谐振动简谐振动是指物体在恢复力作用下以正弦或余弦函数形式运动的振动。
振动物体会围绕平衡位置往返运动,其周期是恒定的。
简谐振动的典型例子是弹簧振子。
当我们拉伸或压缩弹簧时,弹簧就会产生振荡。
简谐振动的特点包括振幅、频率和周期。
振幅是指物体运动离开平衡位置的最大距离,频率是振动的周期数在单位时间内的次数,周期是振动一次所需的时间。
2. 非简谐振动非简谐振动是指物体在恢复力作用下无法用正弦或余弦函数准确描述的振动。
非简谐振动的振动形式多样,与振动物体的特性相关。
第七讲 振动与波动湖南郴州市湘南中学 陈礼生一、知识点击1.简谐运动的描述和基本模型⑴简谐振动的描述:当一质点,或一物体的质心偏离其平衡位置x ,且其所受合力F 满足(0)F kx k =->,故得2ka x x m ω=-=-,ω=则该物体将在其平衡位置附近作简谐振动。
⑵简谐运动的能量:一个弹簧振子的能量由振子的动能和弹簧的弹性势能构成,即222111222E m kx kA υ=+=∑ ⑶简谐运动的周期:如果能证明一个物体受的合外力F k x =-∑,那么这个物体一定做简谐运动,而且振动的周期22T πω==m 是振动物体的质量。
⑷弹簧振子:恒力对弹簧振子的作用:只要m 和k 都相同,则弹簧振子的振动周期T 就是相同的,这就是说,一个振动方向上的恒力一般不会改变振动的周期。
多振子系统:如果在一个振动系统中有不止一个振子,那么我们一般要找振动系统的等效质量。
悬点不固定的弹簧振子:如果弹簧振子是有加速度的,那么在研究振子的运动时应加上惯性力.⑸单摆及等效摆:单摆的运动在摆角小于50时可近似地看做是一个简谐运动,振动的周期为2T =,在一些“异型单摆”中,l g 和的含义及值会发生变化。
〔6〕同方向、同频率简谐振动的合成:假设有两个同方向的简谐振动,它们的圆频率都是ω,振幅分别为A 1和A 2,初相分别为1ϕ和2ϕ,则它们的运动学方程分别为111cos()x A t ωϕ=+ 222cos()x A t ωϕ=+因振动是同方向的,所以这两个简谐振动在任一时刻的合位移x 仍应在同一直线上,而且等于这两个分振动位移的代数和,即12x x x =+由旋转矢量法,可求得合振动的运动学方程为cos()x A t ωϕ=+这说明,合振动仍是简谐振动,它的圆频率与分振动的圆频率相同,而其合振幅为A =合振动的初相满足11221122sin sin tan cos cos A A A A ϕϕϕϕϕ+=+2.机械波:〔1〕机械波的描述:如果有一列波沿x 方向传播,振源的振动方程为y=Acos ωt ,波的传播速度为υ,那么在离振源x 远处一个质点的振动方程便是cos ()x y A t ωυ⎡⎤=-⎢⎥⎣⎦,在此方程中有两个自变量:t 和x ,当t 不变时,这个方程描写某一时刻波上各点相对平衡位置的位移;当x 不变时,这个方程就是波中某一点的振动方程.〔2〕简谐波的波动方程:简谐振动在均匀、无吸收的弹性介质中传播所形成的波叫做平面简谐波。
振动与波动的基本概念在自然界中,我们可以经常发现物体或者现象会周期性的发生变化,例如钟表的走时、音乐的旋律等等。
这样的周期性变化常常被称作“振动”和“波动”,它们是物理学中非常基础和重要的概念。
一、振动的基本概念振动指的是一个物体或者物体系统在固定位置周围做周期性的来回运动。
通常我们所说的振动,不仅仅指的是单一物体自身的运动,也可能指的是物体系统集体的运动。
振动的特点包括以下几个方面:1. 振幅:指物体或者物体系统运动最大偏离平衡位置的距离,也可以理解为能量的大小;2. 周期:指振动过程中完成一次完整运动所需要的所用时间,单位是秒;3. 频率:指在单位时间内振动发生的次数,单位是赫兹(Hz);4. 相位:指某一个特定的时刻,振动的状态;5. 响度:指振动产生的声响大小;6. 谐振:指当外力频率与振动频率相等时,振动呈现最大振幅的情况。
振动在生活和实践中有着广泛的应用,例如可调节灯光的调节、交替电流的产生等等。
二、波动的基本概念波动指的是一种物质或者能量的传播现象,它会在空间中形成一种波动。
波动的特点包括以下几个方面:1. 波长:指相邻波峰之间的距离;2. 振幅:指波动的最大偏离强度;3. 周期:指两个连续的相同状态之间的时间间隔;4. 速度:波传播的速度,可以是声速、光速等等;5. 频率:波动在单位时间内经过固定点的次数;6. 相速度:指定相位点在沿波传播方向上运动的速度。
波动包含很多种不同的类型,例如声波、光波、机械波、电磁波等等,在不同的领域都有着广泛应用。
例如声波被用于声音的传输、电磁波被用于电视、通讯等等。
三、振动与波动之间的关系振动和波动虽然是两种不同的物理现象,但是它们之间也存在着密切的联系。
事实上,大多数波动都可以看做是连续不断地发生振动所产生的结果。
在简单谐振的情况下,我们可以得到一个周期性运动的单个物体产生的振动波。
此外,振动对于产生波动的介质也有着重要的影响。
当一个振动波在介质中传播时,介质受到“弹性”的影响,从而产生一系列周期性的收缩和扩张,从而形成波动。
高中物理振动与波动概括高中物理中,振动与波动是重要的概念,涉及到许多基本原理和应用。
本文将对振动与波动进行概括性介绍,包括定义、基本特征、数学描述以及相关应用等内容。
一、振动的概念与特征振动是物体在围绕某个平衡位置附近往复运动的现象。
物体在振动过程中,会围绕平衡位置发生周期性的运动。
振动的特征主要包括振幅、周期、频率和角频率。
1.1 振幅振幅是指振动过程中物体离开平衡位置的最大距离。
振幅越大,物体振动时的位移范围越大。
1.2 周期与频率周期是指完成一次完整振动所需要的时间,用T表示。
频率是指单位时间内振动次数的多少,用f表示,其倒数称为周期。
频率和周期具有倒数关系,即f=1/T。
1.3 角频率角频率是指单位时间内角度变化的快慢,用ω表示。
角频率和频率之间有一个2π的关系,即ω=2πf。
二、波动的概念与特征波动是能量以波的形式传播的现象。
波动可以分为机械波和电磁波两种。
2.1 机械波机械波是需要介质传播的波动。
机械波的特征包括波长、波速和振幅等。
- 波长是指波的传播方向上一个完整波形的长度,用λ表示。
- 波速是指波在介质中传播的速度,用v表示。
- 振幅是指波峰或波谷到达最大位移的距离。
2.2 电磁波电磁波是由电场和磁场相互作用产生的波动。
电磁波的特征包括频率、波长和光速等。
- 频率和波长与机械波类似,分别表示电磁波的振动次数和波的长度。
- 光速是指光在真空中的传播速度,用c表示,它是一个常量。
三、振动与波动的数学描述振动与波动可以通过数学工具进行描述和分析。
对于简谐振动而言,位置随时间的变化可以用正弦函数来表示。
3.1 简谐振动的数学描述简谐振动的数学描述可以用如下公式表示:x = A sin(ωt + φ)其中,x表示物体离开平衡位置的位移,A表示振幅,ω表示角频率,t表示时间,φ表示初相位。
3.2 波动的数学描述波动的数学描述可以用如下公式表示:y = A sin(kx - ωt + φ)其中,y表示波的振动位移,A表示波幅,k表示波数,x表示位置,ω表示角频率,t表示时间,φ表示初相位。
简述振动和波动
振动是一个质点的来回往复运动.
波动是有联系作用的大量质点的运动,一个质点的运动可以通过与相邻质点的作用把它的运动传播出去,这种运动在大量质点中传播.
联系:振动是波动的原因,波动是振动的结果;有波动必然有振动,有振动不一定有波动。
区别:发现历史不同;原理不同;应用不同。
振动是指一个孤立的系统(也可是介质中的一个质元)在某固定平衡位置附近所做的往复运动,波动是振动在连续介质中的传播过程,此时介质中所有质元都在各自的平衡位置附近作振动。
波动:无线电波、光波、X射线等。
振动:振动原理广泛应用于音乐、建筑、医疗、制造、建材、探测、军事等行业,有许多细小的分支,对任何分支的深入研究都能够促进科学的向前发展,推动社会进步。
物理学中的振动和波动现象物理学是关于自然界中各种现象和规律的研究。
其中,振动和波动是物理学中非常重要的两个概念。
本文将介绍物理学中振动和波动的基本概念、特征以及一些应用。
一、振动的基本概念振动是物体在某一平衡位置周围往复运动的现象。
一个典型的例子是弹簧振子。
当弹簧挂上质量后,系统会在平衡位置附近进行振动,其运动规律可以由简谐振动方程描述。
简谐振动是指物体在沿某一轴线上做往复运动,且其加速度与位移成正比,反向相反的运动。
振动的特征有以下几个方面:1. 振幅:振动的最大位移。
2. 周期:振动一个完整循环所需的时间。
3. 频率:单位时间内振动的周期数。
4. 相位:用来描述振动的状态,可以表示为角度或时间。
振动现象在自然界中广泛存在。
除了弹簧振子,还有摆钟的摆动、声波的传播等都是振动现象。
二、波动的基本概念波动是指能量以波状进行传播的现象。
波动可以分为机械波和电磁波两种。
机械波是需要介质存在才能传播的波动。
最典型的例子是水波,当在水面上扔入一个石子时,会形成波纹,这就是机械波的一种表现。
机械波具有以下特征:1. 传播介质:机械波需要介质的存在来传播,如水波需要水作为传播介质。
2. 振动方向:机械波传播的方向与振动方向垂直,即沿波的传播方向时,波的传播方向与介质振动方向垂直。
电磁波是指电磁场能量以波动方式传播的波动现象。
光波就是电磁波的一种,电磁波具有以下特征:1. 无需介质:电磁波可以在真空中传播,不需要介质的存在。
2. 振动方向:电磁波传播的方向与振动方向垂直。
三、应用领域振动和波动现象在科学、工程和日常生活中都有广泛的应用。
在科学研究中,振动和波动现象被广泛运用于实验室中的测量设备中,例如声波测距仪、光谱仪等。
振动和波动现象的研究也为科学家们提供了研究自然界的工具。
在工程领域,振动和波动现象的应用非常广泛。
例如,地震工程师利用地震波的传播特性研究地震的行为,从而提出建筑物的抗震设计;声学工程师利用声波传播的原理来设计音响系统和无线通信设备。
第3章振动和波动3.1简谐振动所谓机械振动(mechanical vibration)是指物体在某一个位置附近所作的周期性运动。
它是物质运动的一种普遍形式。
诸如钟摆的运动、琴弦的振动、气缸中活塞的运动、心脏的跳动、固体晶格点阵中原子分子的振动等,都是机械振动。
广义上讲,振动并不仅仅限制在机械运动范围内,自然界中还有很多各式各样的振动,例如交流电路中电流与电压围绕一定数值往复变化、人的体温和身高的日夜变化、血液酸碱度的变化等都属于广义的振动现象,尽管形式不同,但是都遵循一些共同的规律。
鉴于机械振动的直观性和易于理解性,在本章内容中主要讨论机械振动,从而了解振动现象的一般规律。
振动的形式是复杂多样的,任何复杂的振动都可以看成是若干个最基本、最简单的振动合成的,这种最简单、最基本的振动就叫简谐振动(simple harmonic vibration)。
图3-1简谐振动3.1.1简谐振动方程弹簧振子是研究简谐振动的理想模型。
由轻弹簧和质量为的物体m所组成的系统称为弹簧振子,将此系统置于光滑的水平面上(运动时无阻尼),如图3-2所示。
设定弹簧自由伸张时物体m的位置设为坐标原点O,即平衡位置。
用x表示物体m离开O点的位移,也可表示弹簧的伸长量。
图3-2弹簧振子的简谐振动由胡克定律,物体所受到的弹力F 与物体m 相对平衡位置的位移x 成正比,即F kx=-(3-1)式中k 为轻弹簧的劲度系数,负号表示弹性力与物体位移的方向相反。
根据牛顿第二定律F ma =,并利用22d x a dt=,式(3-1)可表示为22d x m kx dt=-即22d x k x dt m=-给定的弹簧振子劲度系数k 和振子质量m 为常数且均为正值,可令k 与m 的比值等于 ,即2220d x x dt ω+=(3-2)这就是简谐振动的运动微分方程,其解为()cos +x A t ωϕ=(3-3)式中A 和ϕ为积分常数。
可见,物体m 的位移x 是时间t 的余弦(或正弦)函数,这种运动称为简谐振动。
第八章振动与波动思考题8-1 从运动学角度看什么是简谐振动?从动力学角度看什么是简谐振动?一个物体受到一个使它返回平衡位置的力,它是否一定作简谐振动?答:从运动学角度看,物体在平衡位置附近作来回往复运动,运动变量(位移、角位移等)随时间t的变化规律可以用一个正(余)弦函数来表示,则该物体的运动就是简谐振动。
从动力学角度看,物体受到的合外力(合外力矩)与位移(角位移)的大小成正比,而且方向相反,则该物体就作简谐振动。
根据简谐振动的定义可以看出,物体所受的合外力不仅要与位移方向相反,而且大小应与位移大小成正比。
所以,一个物体受到一个使它返回平衡位置的力,不一定作简谐振动。
8-2 试说明下列运动是不是简谐振动:(1)小球在地面上作完全弹性的上下跳动;(2)小球在半径很大的光滑凹球面底部作小幅度的摆动;(3)曲柄连杆机构使活塞作往复运动;(4)小磁针在地磁的南北方向附近摆动。
答:简谐振动的运动学特征是:振动物体的位移(角位移)随时间按余弦或正弦函数规律变化;动力学特征是:振动物体所受的合力(合力矩)与物体偏离平衡位置的位移(角位移)成正比而反向;从能量角度看,物体在系统势能最小值附近小范围的运动是简谐振动,所以:(1)不是简谐振动,小球始终受重力,不满足上述线性回复力特征;(2)是简谐振动,小球只有在“小幅度”摆动时才满足上述特征;(3)不是简谐振动.活塞所受的力与位移成非线性关系,不满上述动力学特征;(4)是简谐振动,小磁针只有在“小幅度”摆动时才满足上述特征。
8-3 下列表述是否正确,为什么?(1)若物体受到一个总是指向平衡位置的合力,则物体必然作振动,但不一定是简谐振动;(2)简谐振动过程是能量守恒的过程,因此,凡是能量守恒的过程就是简谐振动。
答:(1)正确。
当该合力的方向总是指向平衡位置,并且其大小总是正比于位移的大小时,物体所作的周期运动是简谐振动;当该合力的方向总是指向平衡位置,但合力的大小并不仅仅正比于位移的大小时,物体所作的振动就不一定是简谐振动,比如阻尼振动、受迫振动等。
物理中的波动与振动波动和振动是物理学中重要的概念,它们在自然界和科学研究中有着广泛的应用和深远的影响。
本文将介绍物理中的波动与振动的基本概念、特征以及其在不同领域的应用。
一、波动的基本概念和特征波动是指物理量随时间和空间的变化而传播的现象。
波动可以分为机械波和电磁波两种类型。
1. 机械波机械波是通过物质介质传播的波动。
它需要介质的存在,比如水波、声波等。
机械波主要有以下几个特征:(1)传播方向垂直于波动的方向,即波动沿着介质传播的方向;(2)传播过程中介质中的质点做往复运动,即振动;(3)机械波的传播速度与介质的性质有关。
2. 电磁波电磁波是由电场和磁场交替变化引起的波动。
它可以在真空中传播,比如电磁辐射、无线电波等。
电磁波主要有以下几个特征:(1)电磁波是横波,其振动方向垂直于传播方向;(2)电磁波的传播速度为真空中的光速,约为3×10^8米/秒。
二、波动与振动的应用波动与振动在物理学和科学研究中有着广泛的应用。
下面将介绍一些典型的应用领域。
1. 声波与声学声波是一种机械波,对应于声音的传播。
声学研究声波的传播特性、音频设备的设计以及声音在不同介质中的传播情况。
声波的应用包括音乐、通讯、声纳等。
2. 光学与光波光是一种电磁波,包括可见光以及其他更高或更低频率的电磁辐射。
光学研究光的传播、折射、反射等现象,应用于光学仪器、光纤通信、光电子器件等领域。
3. 无线电波与通信无线电波属于电磁波的一种,主要用于通信和广播。
通过调节无线电波的频率和幅度,可以实现无线通信、卫星通信、无线电广播等。
4. 地震波与地球物理学地震波是在地壳中传播的机械波,它是地震研究和勘探的重要工具。
地震波可以提供有关地球内部结构和地震活动的信息。
5. 波动与量子力学量子力学研究微观粒子的行为,其中波动性是量子力学的基本概念之一。
波动性可以通过波函数来描述微观粒子的运动和相互作用。
三、总结波动与振动是物理学中重要的概念,它们在自然界和科学研究中起到了至关重要的作用。
振动与波动填空题3009.一弹簧振子作简谐振动,振幅为A ,周期为T ,其运动方程用余弦函数表示.若t = 0时, (1) 振子在负的最大位移处,则初相为______________________;(2) 振子在平衡位置向正方向运动,则初相为________________;(3) 振子在位移为A /2处,且向负方向运动,则初相为______.答: 1分 - /2 2分 . 2分3010.有两相同的弹簧,其劲度系数均为k .(1) 把它们串联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为___________________;(2) 把它们并联起来,下面挂一个质量为m 的重物,此系统作简谐振动的周期为___________________________________. 答: km /22π 2分k m 2/2π 2分3015.在t = 0时,周期为T 、振幅为A 的单摆分别处于图(a)、(b)、(c)三种状态.若选单摆的平衡位置为坐标的原点,坐标指向正右方,则单摆作小角度摆动的振动表达式(用余弦函数表示)分别为(a) ______________________________;(c)v 0v 0v = 0(b) ______________________________;(c) ______________________________. 答: )212cos(π-=T t A x π 2分 )212cos(π+=T t A x π 2分 )2cos(π+=TtA x π 1分3383.用40N的力拉一轻弹簧,可使其伸长20 cm .此弹簧下应挂__________kg 的物体,才能使弹簧振子作简谐振动的周期T = s .答: 3分3032.已知两个简谐振动的振动曲线如图所示.两简谐振动的最大速率之比为_________________.答: 1∶1 3分3036.已知一简谐振动曲线如图所示,由图确定振子:(1) 在_____________s 时速度为零.(2) 在____________ s 时动能最大.(3) 在____________ s 时加速度取正的最大值.答: (2n +1) n = 0,1,2,3,… 1分 n n = 0,1,2,3,… 1分 (4n +1) n = 0,1,2,3,… 1分3039.两个简谐振动曲线如图所示,则两个简谐振动x (cm)t (s)O 124 32 -1 1 to x 1x 21 -22x 1 t o xx 2AA的频率之比1∶2=__________________,加速度最大值之比a 1m ∶a 2m =__________________________,初始速率之比v 10∶v 20=____________________.答: 2∶1 1分 4∶1 1分 2∶1 1分3046.一简谐振动的旋转矢量图如图所示,振幅矢量长2cm ,则该简谐振动的初相为____________.振动方程为______________________________.答: /4 1分 )4/cos(1022π+π⨯=-t x (SI) 2分3271.一简谐振子的振动曲线如图所示,则以余弦函数表示的振动方程为______________________________________.答: )21cos(04.0π+π=t x 3分3398.一质点作简谐振动.其振动曲线如图所示.根据此图,它的周期T =___________,用余弦函数描述时初相=_________________.ω ωπt xOt =0t = t π/4x (m)t O 0.04-0.0412xt (s)O 4 22答: s 3分 -2/3 2分3029.一物块悬挂在弹簧下方作简谐振动,当这物块的位移等于振幅的一半时,其动能是总能量的______________.(设平衡位置处势能为零).当这物块在平衡位置时,弹簧的长度比原长长l ,这一振动系统的周期为________________________. 答: 3/4 2分 g l /2∆π 2分3268. 一系统作简谐振动, 周期为T ,以余弦函数表达振动时,初相为零.在 0≤t ≤T 21范围内,系统在t =________________时刻动能和势能相等. 答: T /8,3T /8 (只答一个的给2分) 4分3566.图中所示为两个简谐振动的振动曲线.若以余弦函数表示这两个振动的合成结果,则合振动的方程为=+=21x x x ________________(SI)答: )21cos(04.0π-πt (其中振幅1分,角频率1分,初相1分) 3分3837.两个同方向同频率的简谐振动 )31cos(10321π+⨯=-t x ω , )61cos(10422π-⨯=-t x ω (SI)它们的合振幅是________________.答: 5×10-2m 3分5190.一质点同时参与了三个简谐振动,它们的振动方程分别为x (m)t (s)Ox 1x 2120.08-0.04)31cos(1π+=t A x ω, )35cos(2π+=t A x ω, )cos(3π+=t A x ω其合成运动的运动方程为x = ______________.答: 0 3分3421.已知一平面简谐波的表达式为 )cos(Ex Dt A y -=,式中A 、D 、E 为正值常量,则在传播方向上相距为a 的两点的相位差为______________.答:aE 3分3425.在简谐波的一条射线上,相距 m 两点的振动相位差为 /6.又知振动周期为 s ,则波长为_________________,波速为________________.答: m 2分 m/s 2分3442.设沿弦线传播的一入射波的表达式为 ])(2cos[1φλπ+-=xT t A y , 波在x = L 处(B 点)发生反射,反射点为固定端(如图).设波在传播和反射过程中振幅不变,则反射波的表达式为y 2 = ________________________________.答:)]22()(2cos[λφλL x T t A π-π+++π 或)]22()(2cos[λφλLx T t A π-π-++π 3分3132.一平面简谐波沿Ox 轴正向传播,波动表达式为 ]4/)/(cos[π+-=u x t A y ω,则x 1 = L 1处质点的振动方程是__________________________________;x 2 = -L 2处质点的振动和x 1 = L 1处质点的振动的相位差为2-1=__________________.答: ]4/)/(cos[11π+-=u L t A y ω; 1分y xLBOuL L )(21+ω 2分3291.一平面简谐机械波在媒质中传播时,若一媒质质元在t 时刻的总机械能是10 J ,则在)(T t +(T 为波的周期)时刻该媒质质元的振动动能是___________. 答: 5 J 3分3292.在同一媒质中两列频率相同的平面简谐波的强度之比I 1 / I 2 = 16,则这两列波的振幅之比是A 1 / A 2 = ____________________.答: 4 3分3093.如图所示,波源S 1和S 2发出的波在P 点相遇,P 点距波源S 1和S 2的距离分别为 3和103 ,为两列波在介质中的波长,若P 点的合振幅总是极大值,则两波在P点的振动频率___________,波源S 1的相位比S 2的相位领先_________________.答: 相同. 1分 2/3 . 2分3106.在固定端x = 0处反射的反射波表达式是)/(2cos 2λνx t A y -π=. 设反射波无能量损失,那么入射波的表达式是y 1 = ________________________;形成的驻波的表达式是y = ________________________________________.答: ])/(2cos[π++πλνx t A 3分)212cos()21/2cos(2π+ππ+πt x A νλ 2分PS 1S 3λ10λ/33313.设入射波的表达式为 )(2cos 1λνxt A y +π=.波在x = 0处发生反射,反射点为固定端,则形成的驻波表达式为____________________________________. 答: )212cos(]212cos[2π+ππ-π=t xA y νλ 或)212cos(]212cos[2π-ππ+π=t x A y νλ或 )2cos(]212cos[2t x A y νλππ+π=. 3分3314.设反射波的表达式是 ]21)200(100cos[15.02π+-π=x t y (SI) 波在x = 0处发生反射,反射点为自由端,则形成的驻波的表达式为_______________________________________. 答: )21100cos()21cos(30.0π+ππ=t x y (SI) 3分3417.已知14℃时的空气中声速为340 m/s .人可以听到频率为20 Hz 至20000 Hz 范围内的声波.可以引起听觉的声波在空气中波长的范围约为______________________________.答: 17 m 到×10-2m 3分3421.已知一平面简谐波的表达式为 )cos(Ex Dt A y -=,式中A 、D 、E 为正值常量,则在传播方向上相距为a 的两点的相位差为______________.答:aE 3分3426.一声纳装置向海水中发出超声波,其波的表达式为 )2201014.3cos(102.153x t y -⨯⨯=- (SI)则此波的频率 = _________________ ,波长 = __________________, 海水中声速u = __________________.答: ×104Hz 1分×10-2m 2分×103m/s 2分3445.沿弦线传播的一入射波在x = L 处(B 点)发生反射,反射点为自由端(如图).设波在传播和反射过程中振幅不变,且反射波的表达式为)(2cos 2λνxt A y +π=, 则入射波的表达式为y 1 = ______________________________.答:)2(2cos λλνLxt A +-π 3分3571.一平面简谐波沿x 轴正方向传播.已知x = 0处的振动方程为 )cos(0φω+=t y ,波速为u .坐标为x 1和x 2的两点的振动初相位分别记为1和2,则相位差1-2=_________________.答: u x x /)(12-ω (x 1和x 2写反了扣1分)3分3576.已知一平面简谐波的表达式为 )cos(bx at A -,(a 、b 均为正值常量),则波沿x 轴传播的速度为___________________.答: a /b 3分3580.已知一平面简谐波的表达式为 )cos(dx bt A y -=,(b 、d 为正值常量),则此波的频率 = __________,波长 = __________.答: b / 2 2分2 / d 2分3330.图示一平面简谐波在t = 2 s 时刻的波形图,波的振幅为 m ,周期为4 s ,则图中P 点处质点的振动方程为___________________________.yxLBOx (m)传播方向OA P y (m)答: )2121cos(2.0π-π=t y P 3分3343.图示一简谐波在t = 0时刻与t = T /4时刻(T 为周期)的波形图,则x 1处质点的振动方程为___________________________.答: )22cos(1π-π=t T A y x 或写成 )/2sin(1T t A y x π= 3分3588.两相干波源S 1和S 2的振动方程分别是)cos(1φω+=t A y 和)cos(2φω+=t A y .S 1距P 点3个波长,S 2距P 点 个波长.设波传播过程中振幅不变,则两波同时传到P 点时的合振幅是________________.答:0 3分3316.设入射波的表达式为 ])/(2cos[1π++π=λνx t A y ,波在x = 0处发生反射,反射点为一固定端,则入射波和反射波合成的驻波的波腹位置所在处的坐标为______________________________________. 答: λ21)21(-=k x ,k = 1,2,3,… 3分3317.一弦上的驻波表达式为)90cos()cos(1.0t x y ππ=(SI).形成该驻波的两个反向传播的行波的波长为________________,频率为__________________.答: 2 m 2分 45 Hz 2分3487.一驻波表达式为 t x A y ππ=100cos 2cos (SI).位于x 1 = (1 /8) m 处的质元P 1与位于x 2 = (3 /8) m 处的质元P 2的振动相位差为_______________./4答: 3分3460.广播电台的发射频率为 = 640 kHz .已知电磁波在真空中传播的速率为c = 3×108 m/s ,则这种电磁波的波长为___________________.答: ×102m 3分3462.在真空中一平面电磁波的电场强度波的表达式为: )]103(102cos[100.6882⨯-⨯π⨯=-xt E y (SI) 则该平面电磁波的波长是____________________.答: 3 m 3分。