成反比例的量
- 格式:ppt
- 大小:346.50 KB
- 文档页数:12
《成反比例的量》教学设计教学内容:人教版小学数学六年级下册第三单元第六课时《成反比例的量》。
教学目标:知识与技能:理解反比例的意义,能根据反比例的意义,正确判断两种量是否成反比例,培养学生的抽象概括能力和判断推理能力。
过程与方法:经历反比例意义的探究过程,体验分析、比较、抽象、概括的学习方法。
情感态度价值观:体验探究知识的乐趣,感受数学与生活的密切联系。
教学重点:理解反比例的意义。
教学难点:利用反比例的意义,正确判断两种量是否成反比例。
前置作业:1.把下面的表格填写完整。
3.我会举例:当()一定时,()和()成反比例。
4.应用预习知识,解决下面问题。
(1)判断下面的量成什么比例关系,并说明理由。
a.六年级学生总数一定,出勤人数和缺勤人数成什么比例关系?b.被除数一定,除数和商成反比例吗?c.正方形的周长和它的边长成什么比例关系?正方形的面积和它的边长又成什么比例关系?(2)从平行四边形的底、高和面积这三个量中,你能找出哪几种比例关系?5.你还有哪些问题不明白?写下来。
6.给自己一个评价吧!()再请你的同桌评价一下:()教学过程:一、谈话引入。
师:前面我们学习了正比例关系,回忆一下判断成正比例关系的三个要点是什么?(指名说,师随着板书。
)你能举一个成正比例关系的例子吗?(生说,师给予评价。
)二、探究新知。
1.师:昨天老师让你们预习了本节课的内容,并布置了前置作业。
通过预习,你们也知道了这节课我们要研究的内容,是什么?(生齐说课题。
)现在给你两分钟时间,自己整理一下预习内容和前置作业,同桌之间可以互相交流一下,有不明白的地方也可以互相请教。
2.学生交流,老师巡视。
3.师:谁愿意说说通过预习你了解了哪些内容?(学生可能会说:什么是成反比例的量和成反比例关系?判断两种量是否成反比例关系有哪几个要点?……)你的问题是什么?(学生提问题,老师视情况灵活应对。
)同学们提的问题很多,一个一个去解答太费时间了。
这样吧,老师先帮你把这部分内容重新梳理一遍,梳理完后你再看看刚才提出的问题能不能自己解决,如果解决不了,我们再一起解决好不好?4.梳理知识。
初中数学教案:学习成反比例的量一、教学概述本课程主要介绍反比例及其应用,通过学习此课程,学生将了解反比例的概念、性质以及如何利用反比例解决实际问题。
二、知识要求1.了解反比例的概念,掌握反比例的性质。
2.了解反比例与比例的区别,能够灵活地运用比例和反比例解决实际问题。
三、教学重难点1.学生在掌握反比例的概念后,需要了解如何利用反比例解决实际问题。
2.学生在学习反比例与比例的区别时需要仔细分析题目,找出正确的思路。
四、教学方法1.教师讲解与学生互动:通过示范、演示、讲解和互动等形式,帮助学生理解概念和掌握技能。
2.探究性学习:通过组织小组讨论、自主探究等方式,激发学生的学习兴趣,增强学生的参与意识。
3.项目学习:通过设置案例、调查研究等项目学习形式,培养学生的探究能力,提高学生的综合素质。
五、教学步骤1.引入环节:从生活中的实际问题切入,介绍反比例的概念和意义。
2.概念讲解:详细讲解反比例的定义和相关概念,引导学生理解。
3.基本性质讲解:通过事例和实例,讲解反比例的基本性质并进行小测验。
4.反比例的练习:通过反比例的习题,帮助学生掌握其求解方法和运用基本性质的技巧。
5.反比例与比例的区别:通过对比例与反比例的差异性进行讲解,并引导学生在实际问题中理解这个差异。
6.综合应用:通过实际的问题讨论,引导学生掌握反比例的综合应用能力。
7.拓展练习:通过深入浅出的拓展习题,挑战学生、加强学生综合运用能力。
六、教学效果通过此课程的学习,学生可以掌握反比例的概念、性质和应用能力,训练他们的思维能力、创造力和解决问题的能力。
同时也有助于学生提高对数学知识的理解和掌握。
七、教学反思本课程通过各种形式的教学方法,注重理论与实践相结合,可以激发学生的学习兴趣,提高学生的学习效果和综合素质。
同时,根据学生需要意见及时调整教学进度和教学方式,确保教学成果的稳定性和有效性。
人教版数学六年级下册《成反比例的量》教学设计一. 教材分析人教版数学六年级下册《成反比例的量》是学生在学习了比例、正比例之后,进一步对数学知识深入理解的内容。
本节课通过具体的生活实例,让学生感受成反比例的量的关系,引导学生通过观察、分析、归纳,探索成反比例的量的特点,从而理解成反比例的量的概念。
教材中提供了丰富的素材,引导学生通过自主学习、合作交流,体会数学与生活的密切联系,提高学生的数学素养。
二. 学情分析六年级的学生已经具备了一定的数学基础,对比例、正比例有了初步的认识。
但成反比例作为较为抽象的概念,需要学生通过具体的生活实例去感知、理解。
学生在学习过程中,可能对成反比例的量的关系理解不够深入,容易与正比例混淆。
因此,在教学过程中,教师需要关注学生的学习需求,通过生动的生活实例、直观的演示、适量的练习,帮助学生巩固成反比例的概念。
三. 教学目标1.知识与技能:让学生理解成反比例的量的概念,能够判断两种相关联的量是否成反比例。
2.过程与方法:通过观察、分析、归纳,培养学生探索数学问题的能力。
3.情感态度与价值观:让学生感受数学与生活的密切联系,提高学生学习数学的兴趣。
四. 教学重难点1.成反比例的量的概念。
2.判断两种相关联的量是否成反比例。
五. 教学方法1.情境教学法:通过生活实例,引导学生感知成反比例的量的关系。
2.启发式教学法:引导学生观察、分析、归纳,自主探索成反比例的量的特点。
3.合作交流法:鼓励学生与他人合作,共同解决问题,提高学生的沟通能力。
六. 教学准备1.教学课件:制作与教学内容相关的课件,生动展示成反比例的量的关系。
2.教学素材:准备一些生活实例,用于引导学生观察、分析。
3.练习题:设计一些练习题,帮助学生巩固成反比例的概念。
七. 教学过程1.导入(5分钟)利用课件展示一些生活实例,如汽车行驶的路程与时间的关系、商场购物时的折扣等,引导学生观察这两种相关联的量之间的关系。
2.呈现(10分钟)展示成反比例的量的具体例子,如一定时间内,行驶的路程与速度的关系。
课堂教学设计方案第四单元第5课时主备人:张爱娅投放日期2018年4月1日一次备课二次备课课题:成反比例的量教学目标:通过学习,理解反比例的意义,并会初步判断两种相关联的量是不是成反比例。
教学重点与难点:使学生理解反比例的意义并会判断反比例的量。
教学过程:一、导入明标1、说说什么是成正比例的量?2、下面各题中的两种量成正比例?为什么?(1)底面积一定,圆柱的体积和高。
(2)一袋大米一定,吃了的和剩下的。
3、判定两种量成正比例的关键是什么?本节课我们的目标是:通过学习,使学生理解反比例的意义;会根据反比例的意义判断反比例。
二、自学质疑认真看课本第47-48页的内容,完成下面问题:1、把相同体积的水倒入底面积不同的杯子中,观察表格中的数据。
(1)表中有哪两种相关联的量?(2)水的高度是怎样随着杯子底面积的大小变化而变化的?(3)相对应的杯子的底面积与水的高度的乘积分别是多少?2、像圆柱的高和底面积这样,两种相关联的量,一种量变化,另一种量也随着变化,如果,这两种量就叫做成反比例的量,它们的关系叫做。
3、反比例关系可以用式子表示:三、小组交流根据表格,回答问题。
(1)表中()和()是两种相关联的量。
(2)请任意写出两个长方形长与宽相乘的式子,并求出积。
(3)这两个算式的积相等吗?(4)这个积表示的是()。
(5)由此可知:()一定时,()和()成()比例。
四、展示点拨五、训练拓展:小强用下面的图像表示从甲地到乙地,用不同的速度和所用的时间。
把图像所表示的数据填在下面的表内。
回答下面问题:(1)在这一过程中,哪个量没有变?(2)速度和时间有什么关系?(3)不计算,从图中观察,如果每小时行40千米,大约用多少小时?六、小结反思通过本节课的学习,我们如何很快判断两个相关联的量是反比例的量,它们的关系是反比例的关系呢?板书设计:表示两个相关联的量成反比例的关系的式子Yx=k(一定)教学反思:。
成反比例的量”的教学设计教学内容:义务教育课程标准实验教科书六年制小学数学第十二册第14---16页内容。
教学目标:1、理解成反比例量的含义,能够正确判断两种量之间是否具有反比例关系。
2、认识事物间的相互关系和发展变化规律。
3、感受数学与生活的联系,培养学生热爱数学的情感。
教学重点:理解成比例的量的含义。
教学难点:有条理地分析两种量之间的关系是否具有反比例关系。
教学过程:一、创设情境,引入新课。
1、昨天,咱们学习了成正比例的量,谁能说说什么叫做成正比例的量?2、相关联、相对应、比值一定是什么意思?谁来帮我解释一下!3、判断两种量是不是成正比例,关键抓什么?你能举出生活中成正比例的量的例子吗?4、这节课,我们来学习与成正比例的量相反的,在数学上称————成反比例的量。
﹙板书:成反比例的量﹚二、活动体验,感悟新知。
①换零钱。
①出示100元面值的人民币,找同学换成同样面值的整元零钱,你们会怎么给我换呢?a)随着学生回答填好下表:b)在换的过程中,你发现了什么?引导说出什么变了?怎样变的?什么没变?c)小结:面值变化,换的张数也随着变化,面值扩大,换的张数反而缩小了,面值缩小,换的张数反而扩大了,但是总钱数不变。
d)你能用式子表示它们之间的关系吗?〔板书:面值×张数=总钱数﹙一定﹚〕②出示例题。
把相同体积的水倒入底面积不同的圆柱形杯子。
1、1、你能把上面的表格填完整吗?2、请学生汇报,并说说自己的填表思路。
3、观察一下,从中你发现了什么?4、小结:底面积增加,高度反而降低,底面积减少,高度反而升高,且相对应的高度和底面积的乘积一定。
5、怎样用式子表示它们的关系呢?﹙随着学生回答板书:底面积×高=体积﹙一定﹚﹚3、概括总结。
①比较这两张表,说一说它们有什么共同的地方?﹙生:表中的两种量都是一种量变化,另一种量也随着变化,它们的变化规律是:两种量中相对应的两个数的乘积总是一定的。
﹚②师:像这样的两种量就叫做成反比例的量,谁来说说什么叫做成反比例的量?③比较一下,反比例的意义与正比例的意义有什么相同点和不同点?④和同学交流一下,成反比例的量需要具备哪些条件?⑤想一想,生活中还有哪些成反比例的量?6、你们能用一个式子表示出所有的反比例关系吗?7、师小结:数学上为了统一,规定用x和 y表示两种相关联的量,用k表示它们的乘积﹙一定﹚,反比例关系可以用下面的式子表示:X×y=k﹙一定﹚三、体验内化,应用践行。
知识点整理(1)正比例:两种相关联的量,一种量增加,另一种量也随着增加,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它y=k (k一定)们的关系叫做正比例关系.关系式是:x例如:年龄跟身体:以中年为界,幼儿到中年,身体随着岁数的增多而长大,这是正比例;y=2x中,x越大,y就越大:x越小,y就越小。
(2)反比例:两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系.关系式是:x×y=k (k一定)例如:但从中年到老年,岁数越大,身体却越小,这时候,它们成反比例了。
y=-2x中,x越大,y就越小;x越小,y就越大。
一、判断题:1、圆的面积和圆的半径成正比例。
()2、圆的面积和圆的半径的平方成正比例。
()3、圆的面积和圆的周长的平方成正比例。
()4、正方形的面积和边长成正比例。
()5、正方形的周长和边长成正比例。
()6、长方形的面积一定时,长和宽成反比例。
()7、长方形的周长一定时,长和宽成反比例。
()8、三角形的面积一定时,底和高成反比例。
()9、梯形的面积一定时,上底和下底的和与高成反比例。
()10、圆的周长和圆的半径成正比例。
()11、路程一定,速度和时间成正比例。
()12、一堆煤的总量不变,烧去的煤与剩下的煤成反比例。
()13、花生的出油率一定,花生的重量与榨出花生油的重量成正比例。
()14、平行四边形的面积不变,它的底与高成反比例。
()如果一定,那么和成()比例.。
辨识成正比例的量与成反比例的量答案典题探究(判(•常熟市)如果a和b成反比例,b和c成反比例,那么a和c也成反比例.×.例1.29.断对错)考点:辨识成正比例的量与成反比例的量.专题:比和比例.分析:判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解答:解:因为a和b成反比例,所以ab=k1(一定),则b=,因为,b和c成反比例,所以bc=k2(一定),把b=,代入式子bc=k2(一定),得出:a:c=(一定),是a和c对应的比值一定,所以a和c成正比例;故答案为:×.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.例2.分子一定,分母和分数值成反比例.正确.(判断对错)考点:辨识成正比例的量与成反比例的量.专题:比和比例.分析:判断分母与分数值是否成正比例,就看这两种量是否是对应的比值一定,如果是比值一定,就成正比例,如果不是比值一定或比值不一定,就不成正比例.解答:解:根据分数与除法的关系,知道分子相当于被除数,分母相当于除数,分数值相当于商,故被除数=商×除数,得出分数值×分母=分子(一定),所以,分子一定,分母和分数值成反比例;故答案为:正确.点评:此题属于根据正、反比例的意义,辨识两种相关联的量是否成正比例,就看这两种量是否是对应的比值一定,再做出判断.例3.圆的半径和面积成正比例×.(判断对错)考点:辨识成正比例的量与成反比例的量.专题:比和比例.分析:判定两种相关联的量是否成正、反比例,要看这两种量是对应的比值一定,还是对应的乘积一定,如果是比值一定就成正比例;如果是乘积一定就成反比例.解答:解:因为圆的面积S=πr2,所以S:r2=π(一定),即圆的面积与半径的平方的比值一定,但圆的面积与半径的比值不是一定的,不符合正比例的意义,所以圆的面积和半径不成正比例;故答案为:×.点评:此题属于根据正、反比例的意义,判断两种相关联的量是成正比例还是成反比例,就看两种量是对应的比值一定,还是对应的乘积一定,再做出解答.例4.a是b的,则a和b成正比例.√.(判断对错)考点:辨识成正比例的量与成反比例的量.专题:比和比例.分析:判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解答:解:a=b×,则a÷b=(一定),则a和b成正比例;故答案为:√.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.例5.一辆汽车行驶的路程所用的时间统计如下:行驶的路程(km)40 80 160 240时间(h) 1 2 4 6(1)汽车行驶的路程与所用的时间成正比例关系.(2)从(0,0)开始描点,画出折线统计图(行驶路程与所用时间关系的图象).(3)从图象中看出汽车行200km需要5小时.考点:辨识成正比例的量与成反比例的量;单式折线统计图.专题:压轴题.分析:(1)根据统计表中的信息,可知40:1=80:2=160:4=240:6=40(一定),是行驶路程与所用时间对应的比值一定,所以路程与所用的时间成正比例关系;(2)根据表中的数据,在方格图上找出行驶路程与所用时间相对应的点,并依次描出这些点即可;(3)从图象中可直观地看出汽车行200km需要5小时.解答:解:(1)40:1=80:2=160:4=240:6=40(一定),是行驶路程与所用时间对应的比值一定,所以路程与所用的时间成正比例关系;(2)行驶路程与所用时间关系的图象见下图:(3)从图象中可直观地看出汽车行200km需要5小时;故答案为:正比例,5.演练方阵A档(巩固专练)一.选择题(共15小题)1.(•长寿区)圆柱体的体积一定,圆柱体的高和()成反比例.A.底面周长B.底面面积C.底面半径考点:辨识成正比例的量与成反比例的量.专题:综合题.分析:判断两种相关联的量是否成反比例,就看这两种量是否是对应的乘积一定,如果是乘积一定,就成反比例,如果不是乘积一定或乘积不一定,就不成反比例.解答:解:因为圆柱的体积=底面积×高,所以底面积×高=体积(一定),符合反比例的意义,所以圆柱体的体积一定,圆柱体的高和底面积成反比例;故选:B.点评:此题属于辨识成反比例的量,就看这两种量是否是对应的乘积一定,再做出判断.2.(•济南)从甲地到乙地,汽车速度和时间成()A.正比例B.反比例C.不成比例考点:辨识成正比例的量与成反比例的量.分析:判断汽车速度和时间成不成比例,成什么比例,就看这两种量是对应的比值一定,还是对应的乘积一定,如果是比值一定,就成正比例,如果是乘积一定,就成反比例,如果是其它的量一定,就不成比例.解答:解:汽车的速度×时间=从甲地到乙地的路程(一定),是乘积一定,汽车的速度和时间成反比例.故选:B.点评:此题属于辨识两种相关联的量成不成比例,成什么比例,就看这两种量是对应的比值一定,还是对应的乘积一定,还是对应的其它量一定,再做出判断.3.(•遂昌县)学校订阅《小学生周报》的金额和份数()A.成正比例B.成反比例C.不成比例考点:辨识成正比例的量与成反比例的量.专题:压轴题.分析:根据正反比例的意义,分析数量关系,每份《小学生周报》的金额(定价)底一定的,然后看学校订阅《小学生周报》的金额和份数是比值一定还是乘积一定,从而判定成什么比例关系.解答:解:学校订阅《小学生周报》的金额和份数是两种相关联的量,它们与每份《小学生周报》的金额有下面的关系:学校订阅《小学生周报》的金额:份数=每份《小学生周报》的金额(一定);已知每份《小学生周报》的金额一定,也就是学校订阅《小学生周报》的金额和份数的比值是一定的,所以学校订阅《小学生周报》的金额和份数成正比例.故选:A.点评:此题重点考查正比例和反比例的意义.4.(•玉泉区)圆的周长与下面那种量成正比例关系()A.圆的面积B.圆的直径C.圆周率考点:辨识成正比例的量与成反比例的量.专题:压轴题.分析:依据圆的周长=πd=2πr,则圆的周长÷直径=π(定值),圆的周长÷圆的半径=2π(定值),于是可以判断圆的周长与圆的直径和半径都成正比例关系.解答:解:因为圆的周长=πd=2πr,则圆的周长÷直径=π(定值),圆的周长÷圆的半径=2π(定值),所以可以判断圆的周长是与圆的直径和半径成正比例关系,与圆的面积和圆周率不成正比例关系;故选:B.点评:此题属于根据正、反比例的意义,判断两种相关联的量是成正比例还是成反比例,就看两种量是对应的比值一定,还是对应的乘积一定,再做出解答.5.(•延边州)三角形的面积一定,它的底和高()A.成正比例B.成反比例C.不成比例D.无法确定考点:辨识成正比例的量与成反比例的量.专题:压轴题.分析:判断三角形的底和高之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解答:解:因为三角形的面积=底×高÷2,所以:底×高=2×三角形的面积(一定),符合反比例的意义,所以三角形的面积一定,它的底和高成反比例,故选:B.点评:此题属于辨识成正、反比例的量,就看这两个变量是对应的比值一定,还是对应的乘积一定,再做判断.6.(•长寿区)互为倒数的两种量是()的量.A.成正比例B.成反比例C.不成比例考点:辨识成正比例的量与成反比例的量.分析:判断互为倒数的两种量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解答:解:根据倒数的意义知道,乘积是1的两个数互为倒数,即互为倒数的两种量的乘积一定,由此判断互为倒数的两种量成反比例,故选:B.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.7.(•丰润区)下面给出的几组相关联的量中,成反比例的是()A.全班人数一定,出勤人数和缺勤人数B.圆柱的侧面积一定,它的底面周长和高C.工作效率一定,工作总量和工作时间D.平行四边形的底一定,它的面积和高考点:辨识成正比例的量与成反比例的量.专题:压轴题;比和比例.分析:判断两种相关联的量是否成反比例,就看这两种量是否是对应的乘积一定,如果是乘积一定,就成反比例,如果不是乘积一定或乘积不一定,就不成反比例.解答:解:A、出勤人数+缺勤人数=全班人数(一定),是和一定,故出勤人数和缺勤人数不成比例;B、圆柱的底面周长×高=侧面积(一定),是乘积一定,所以它的底面周长和高成反比例;C、工作总量÷工作时间=工作效率(一定)是比值一定,所以工作量和工作时间成正比例;D、因为平行四边形的面积÷高=底(一定),所以它的高和面积成正比例;故选:B.点评:此题属于辨识成反比例的量,就看这两种量是否是对应的乘积一定,再做出判断.8.(•仪征市)用地砖铺一间教室,地砖的块数和()成反比例.A.每块地砖的边长B.每块地砖的面积C.每块地砖的周长考点:辨识成正比例的量与成反比例的量.专题:压轴题;代数初步知识.分析:成反比例关系的特点是:两种相关联的量,一种量变化,另一种量也随之变化,但相对应的积一定;由此根据每块地砖的面积×所需地砖的块数=一间教室的面积(一定),即可进行推理判断.解答:解:每块地砖的面积×所需地砖的块数=一间教室的面积(一定),因为一间教室的面积一定,每块地砖的面积大,则所需地砖的块数就少,每块地砖的面积小,则所需地砖的块数就多,它们的变化方向相反;所以用地砖铺一间教室,所用地砖的块数与每块地砖的面积成反比例.故选:B.点评:此题属于辨识成反比例的量,就看哪两种量是对应的乘积一定,再做出判断.9.(•呼和浩特)关于正、反比例的判断,以下说法错误的是()A.数量一定,总价和单价成正比例B.三角形面积一定,它的底和高成反比例C.人的体重和身高不成比例D.园的直径和它的周长成反比例考点:辨识成正比例的量与成反比例的量.专题:压轴题.分析:判定两种相关联的量是否成正、反比例,要看这两种量是对应的比值一定,还是对应的乘积一定,如果是比值一定就成正比例;如果是乘积一定就成反比例.解答:解:A、总价÷单价=数量(一定),是比值一定,所以数量一定时,总价和单价成正比例;此选项正确;B、底×高=2×三角形的面积(一定),是乘积一定,所以三角形的面积一定时,它的高与底成反比例,此选项正确;C、人的体重和身高虽然是两种相关联的变化的量,但人高矮胖瘦各有不同,所以体重和身高的比值和乘积都不会是一定的,不符合任何比例的意义,所以人的体重和身高不成任何比例关系.所以此选项正确;D、圆的周长÷它的直径=π(一定),是比值一定,所以圆的周长与它的直径成正比例.所以此选项叙述错误.故选:D.点评:此题属于根据正、反比例的意义,判断两种相关联的量是成正比例还是成反比例,就看两种量是对应的比值一定,还是对应的乘积一定,再做出解答.10.(•邹平县)圆柱的体积一定,它的高和()成反比例.A.底面半径B.底面积C.底面周长D.底面直径考点:辨识成正比例的量与成反比例的量.分析:依据反比例的意义,即若两个量的乘积一定,则这两个量成反比例,于是利用圆柱的体积公式,即可进行解答,解答:解:因为圆柱的体积=底面积×高,且圆柱的体积一定,所以圆柱的高和底面积成反比例;故选:B.点评:此题主要考查反比例的意义以及圆柱的体积的计算公式.11.(•江阳区)张师傅加工零件的总个数一定,每小时加工零件的个数和加工的时间()A.成正比例B.成反比例C.不成比例考点:辨识成正比例的量与成反比例的量.专题:比和比例.分析:判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解答:解:因为每小时加工零件的个数×加工的时间=加工零件总数(一定),即每小时加工零件的个数和加工的时间的乘积一定,所以每小时加工零件的个数和加工的时间成反比例;故选:B.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.12.(•尚义县)单位时间内做的零件数相同,做零件的时间与做的零件总数()A.成正比例B.成反比例C.不成比例考点:辨识成正比例的量与成反比例的量.专题:比和比例.分析:判断两种相关联的量成不成比例,成什么比例,就看这两种量是对应的比值一定,还是对应的乘积一定,如果是比值一定,就成正比例,如果是乘积一定,就成反比例,如果是其它的量一定或乘积、比值不一定,就不成比例.据此进行判断并选择.解答:解:零件的总数÷做零件的时间=单位时间内做的零件数(一定),是商一定,所以做零件的时间与做的零件总数成正比例关系.故选:A.点评:此题属于根据正、反比例的意义,辨识两种相关联的量成不成比例,成什么比例,就看这两种量是对应的比值一定,还是对应的乘积一定,还是对应的其它量一定,再做出判断.13.(•陇川县模拟)甲数和乙数互为倒数,甲数和乙数()A.成正比例B.成反比例C.不成比例考点:辨识成正比例的量与成反比例的量.专题:比和比例.分析:判断甲数和Y乙数是否成比例,就看这两种量是否是对应的乘积(商)一定,如果是乘积(商)一定,就成反(正)比例,如果不是乘积(商)一定或乘积(商)不一定,就不成比例.解答:解:因为甲数和乙数互为倒数,所以,甲数×乙数=1(一定)也就是甲数与乙数的积一定,符合反比例的意义,所以甲数与乙数成反比例.故选:B.点评:此题考查用正反比例的意义辨识成正比例的量与成反比例的量.14.(•南安市)在路程一定的情况下,速度与时间()A.成正比例B.成反比例C.不成比例考点:辨识成正比例的量与成反比例的量.分析:判断速度与时间成不成比例,成什么比例,就看这两种量是对应的比值一定,还是对应的乘积一定,如果是比值一定,就成正比例,如果是乘积一定,就成反比例,如果是其它的量一定或乘积、比值不一定,就不成比例.解答:解:速度×时间=路程(一定),是乘积一定,速度与时间成反比例.故选:B.点评:此题考查辨识两种相关联的量成不成比例,成什么比例,就看这两种量是对应的比值一定,还是对应的乘积一定,还是对应的其它量一定,再做出判断.15.(•福田区模拟)小明跳高的成绩和他的身高()A.成正比例B.成反比例C.不成比例考点:辨识成正比例的量与成反比例的量.专题:比和比例.分析:判断小明跳高的成绩和他的身高成不成比例,成什么比例,根据判断两种量成正比例还是成反比例的方法:关键是看这两种相关联的量中相对应的两个数的比值一定还是乘积一定,如果比值一定,就成正比例关系;如果乘积一定,就成反比例关系;如果比值或乘积都不一定,就不成比例.解答:解:因为小明跳高的成绩和他的身高,既不是比值一定,也不是乘积一定,根据成正反比例的意义,所以可以判定小明跳高的成绩和他的身高不成比例;故选:C.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.二.填空题(共13小题)16.如果=1,那么a一定时,b和c成反比例;b一定时,a和c成正比例.考点:辨识成正比例的量与成反比例的量.分析:当a一定时,也就是b和c的乘积一定,b和c的乘积一定,所以b和c成反比例;当b一定时,也就是a和c的比值一定,a和c的比值一定,所以a和c成正比例.解答:解:b×c=a,a一定,b和c的乘积一定,所以b和c成反比例;a÷c=b,b一定,a和c的比值一定,所以a和c成正比例;故答案为:反,正.点评:此题考查辨识成正比例的量与成正比例的量,只要两种相关联的量比值一定,就成正比例,乘积一定,就成反比例.17.(•市中区)如果y=8x,则x和y成正比例.考点:辨识成正比例的量与成反比例的量.分析:①要想判定x和y成什么比例关系,必须根据式子,进行推导,然后判定.②两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系.解答:解:因为y=8x,所以y:x=8(一定);可以看出,y和x是两个相关联的变化的量,它们相对应的比值是8,是一定的,所以x和y成正比例关系.故答案为:正.点评:此题重点考查辨识成正比例的量与成反比例的量.18.(•威宁县)圆的半径和周长成正比例,圆的面积与半径不成比例.考点:辨识成正比例的量与成反比例的量.分析:①两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做成正比例关系②两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系.解答:解:①圆的周长公式c=2πr,从这个公式可以看出:c:r=2π(一定);2π是一定的,也就是圆,的周长与半径的比值一定,所以圆的周长与半径成正比例关系.②圆的面积公式s=πr2,从这个公式可以看出:s:r2=π(一定),也就是圆的面积只是与半径的平方成正比例关系,和半径不成比例关系.故答案为:正,不成.点评:此题重点考查辨识成正比例的量与成反比例的量、圆的周长面积和半径的关系.19.(•陆良县模拟)实验种子数一定,发芽的种子数与发芽率成正比例.正确.考点:辨识成正比例的量与成反比例的量.分析:判断发芽的种子数与发芽率是否成正比例,就看这两种量相对应的比值是否一定,如果一定,则成正比例,否则,不成正比例.解答:解:发芽的种子数÷发芽率=实验种子数(一定),是比值一定,所以发芽的种子数与发芽率成正比例.故判断为:正确.点评:此题属于辨识成正比例的量,就看这两种量是不是对应的比值一定,再做判断.20.(•华亭县模拟)速度和时间成反比例.错误.考点:辨识成正比例的量与成反比例的量.分析:判断速度和时间是否成反比例,就看这两种量是否是对应的乘积一定,如果是乘积一定,就成反比例,如果是乘积不一定,就不成反比例.解答:解:速度×时间=路程,但是路程不一定,所以速度和时间不成反比例.故判断为:错误.点评:此题属于辨识成反比例的量,这两种量必须是对应的乘积一定,如果是乘积不一定,就不成反比例.21.如果=,则x和y成反比例,如果x=3y(x、y都不为0),则x和y成正比例.考点:辨识成正比例的量与成反比例的量.专题:比和比例.分析:要想判定x和y成什么比例关系,必须根据式子,进行推导,然后根据正、反比例的意义,分析数量关系,找出一定的量,然后看那两个变量是比值一定还是乘积一定,从而判定成什么比例关系.解答:解:(1)因为,所以xy=12(一定),是x和y对应的乘积一定,符合反比例的意义,所以x和y成反比例;(2)因为x=3y,所以=3(一定),是x和y对应的比值一定,符合正比例的意义,所以x和y成正比例.故答案为:反,正.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.22.从单价、数量和总价中,总价一定,数量和单价成反比例,单价一定,总价和数量成正比例.考点:辨识成正比例的量与成反比例的量.专题:比和比例.分析:判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解答:解:因为单价×数量=总价(一定),所以单价与数量的乘积一定,符合反比例的意义,所以总价一定,数量和单价成反比例.总价:数量=单价(一定);已知单价一定,也就是总价与数量的比值一定,所以数量与总价成正比例.故答案为:总价一定,数量,单价;单价一定,总价,数量.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.23.如果=12,那么a和b成正比例;如果a×b=14,那么a和b成反比例.考点:辨识成正比例的量与成反比例的量.专题:比和比例.分析:判断两个相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解答:解:因为=12(一定),即a和b的比值一定,所以a和b成正比例;因为ab=14(一定),即a与b的乘积一定,所以a和b成反比例,故答案为:正,反.点评:此题属于辨识成正、反比例的量,就看这两个量是对应的比值一定,还是对应的乘积一定,再做判断.24.王师傅8天制造64个零件.照这样计算,要制造208个零件,需要x天,“照这样计算”就是王师傅平均每天制造零件的个数是一定的,而这个一定的量又是王师傅制造零件的总个数和制造的天数的比值,所以王师傅制造零件的总个数和制造的天数成正比例,用等式表示题中的数量关系是208:x=64:8.考点:辨识成正比例的量与成反比例的量.专题:比和比例.分析:根据题意,“照这样计算”就是王师傅平均每天制造零件的个数是一定的;而这个一定的量又是王师傅制造零件的总个数和制造的天数的比值,根据正比例的意义,可知王师傅制造零件的总个数和制造的天数成正比例关系;进而用等式表示题中的数量关系即可.解答:解:“照这样计算”就是王师傅平均每天制造零件的个数是一定的;而这个一定的量又是王师傅制造零件的总个数和制造的天数的比值,所以王师傅制造零件的总个数和制造的天数成正比例关系;用等式表示题中的数量关系是208:x=64:8.故答案为:王师傅平均每天制造零件的个数,王师傅制造零件的总个数,制造的天数,比值,王师傅制造零件的总个数,制造的天数,正,208:x=64:8.点评:判断两种相关联的量之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.25.三角形的面积一定,底和高不成比例.错误.(判断对错)考点:辨识成正比例的量与成反比例的量.分析:判断两种相关联的量成不成比例,成什么比例,就看这两种量是对应的比值一定,还是对应的乘积一定,如果是比值一定,就成正比例,如果是乘积一定,就成反比例,如果是其它的量一定或乘积、比值不一定,就不成比例.解答:解:三角形的底×高=面积×2(一定),是对应的乘积一定,所以底和高成反比例;。
《成正比例的量和成反比例的量》的教学反思1、《成正比例的量和成反比例的量》的教学反思上周二开始上成正比例和反比例的量,有很多练习是判断两个量是否成比例,成什么比例。
例如:(1)被除数一定,商和除数(2)圆柱的体积一定,圆柱的底面积和高(3)总价一定,单价和数量(4)三角形面积一定,底边和高(5)小麦每公顷产量一定,种小麦的公顷数和总产量(6)比的前项一定,后项和比值。
根据正、反比例关系的判定方法,我们首先判断两个量是不是相关联的量。
具体的说,就是两个量是否具有相乘、相除的关系,它们的结果能否通过条件知道是定值,从而判断它们成不成比例或成什么比例。
从学生的作业来看,(2)和(3)小题基本不会出错,对于圆柱的体积刚刚讲完,底面积*高=圆柱的体积(一定),可以很好的判断出来是成反比例的。
(1)和(6)很多孩子是写的成正比例,其实也是成反比例,被除数/除数=商,比的前项/比的后项=比值,可能没有注意这里谁是定值,或者说对于这三个量之间的变式掌握的'不好。
(4)他们说不成比例,原因是多了个2,三角形的面积=底*高/2,这个的变式主要是学生没有利用三角形的面积的推导,底*高=2*三角形的面积(一定),所以成反比例。
判断两个量是否成比例,成什么比例。
对学生说有点难,主要难在变形,代数式的变形在中学还要学习,现在是个初步的接触。
2、《成正比例的量》的第二学期教学反思成正比例的量教学反思在教学成正比例的量之前,学生们已经学会了一些常见的数量关系,如:速度、时间和路程的关系,单价、数量和总价的关系等,而正比例是进一步来研究这些数量关系中的一些特征。
在教学例1,自学例2时,我都鼓励学生去观察,去探索。
尤其是例1,通过学生观察,找出规律,填写表格。
通过观察,让学生自己去发现成正比例的两种量的特点,从而充分体现学生学习的自主性,在揭示成正比例的两种量的特点及性质时,让学生根据问题:1、表中有哪两种相关联的量?2、相对应的路程(总价)是怎样随着时间(数量)的变化而变化的?3、相对应的路程(总价)和时间(数量)的比分别是多少?比值是多少?比值表示的意义是什么?来组织、归纳、得出其性质和意义。
成反比例的量教学反思反比例是指两个量之间的关系是倒数关系。
在教学中,了解和应用反比例关系可以帮助学生成为更好的问题解决者,提高他们在实际生活中的思考能力和应用能力。
然而,在教学中存在一些挑战,需要我们进行反思和改进。
以下是一些可能的教学反思:1. 教学内容的组织:有时候,反比例关系可能会被给予较少的注意,教学内容可能过于注重正比例关系。
为了更好地教授反比例关系,教师可以考虑将其纳入课程计划,并提供更多的练习和应用案例。
2. 教学方法的多样性:人们的学习方式和风格各不相同。
为了使学生更好地理解和应用反比例关系,教师可以利用多种教学方法,如讲解、示范、练习和应用案例等。
这样可以帮助不同类型的学生更好地理解和掌握知识。
3. 个性化的学习:学生在学习反比例关系时可能会有不同的困难点。
教师可以利用个性化的学习方法,帮助学生克服一些具体的困难。
例如,组织小组合作学习,让学生互相帮助解决问题;给予学生个性化的指导和反馈,帮助他们纠正错误和加强理解。
4. 实际应用的学习:教师可以通过提供真实的应用案例来帮助学生更好地理解反比例关系。
例如,在数学课上,教师可以给学生带来日常生活中使用反比例关系的例子,如时间和速度的关系、价格和数量的关系等。
这样可以帮助学生将学习的知识与实际生活相结合,提高他们的兴趣和学习动力。
5. 激发学生兴趣:反比例关系可能对某些学生来说是一种抽象的概念,他们可能会觉得无聊或难以理解。
为了激发学生的学习兴趣,教师可以使用互动和趣味性的方法来教授反比例关系,例如使用游戏、实物演示和多媒体工具等,让学生更加主动地参与和探索。
总之,教学中应重视反比例关系的教学,采用多种教学方法和策略,个性化学生的学习,以提高学生对反比例关系的理解和应用能力。
同时,激发学生的学习兴趣和动力,让他们对反比例关系产生浓厚的兴趣,从而提高教学效果。
正比例和反比例甘肃甘南合作市藏族小学徐忠一、正比例两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的比值(也就是商)一定,这两种量就叫做成正比例的量,它们的关系叫做正比例关系。
如果用字母x和y表示两种相关联的量,用k表示它们y=k(一定)的比值,正比例关系可表示为:x(注意:圆的面积和半径形不成正比例关系,但圆的面积和半径的平方成正比例关系)二、反比例两种相关联的量,一种量变化,另一种量也随着变化,如果这两种量中相对应的两个数的积一定,这两种量就叫做成反比例的量,它们的关系叫做反比例关系。
如果用字母x和y表示两种相关联的的量,用k表示它们的积,反比例关系可表示为:x×y=k(一定)三、正、反比例图像的画法正、反比例图像一般都采用“描点法”来绘制。
具体画法如下:第一步列表。
根据正、反比例关系式,由x的量计算出y对应的量,列出x和y对应的数值表。
第二步建立坐标轴。
根据原点、正方向、单位长度三要素画出竖横垂直的两条数轴,建立坐标,即直角坐标系。
第三步描点。
根据数值表中x和y对应的位置点(坐标点)描出各点,尽量多描几个点。
第四步连线。
把所描出的点用平滑曲依次线连起来,就形成了所要画的图像。
一般正比例图像是过原点且处于上升趋势的直线。
反比例图像是双曲线,极限接近于x轴和y轴,但始终与x轴和y轴永不相交。
四、正比例和反比例的异同五、用正比例和反比例解决问题1.用正反比例解决问题的一般步骤:(1)确定比例关系(是正比例关系还是反比例关系)(2)设未知数,列比例方程;(一般把含未知数的写在等号前面)(3)解比例方程;(4)验证并写出答案。
2.用正比例解决问题3小时行15千米,照这样的速度,再行25千米,需要几小时?(速度不变)解:设需要x小时。
x 25=315 x=15325⨯ x=5答:需要5小时。
3.用反比例解决问题学校会议室地面用方砖铺一铺,用8dm 2的方砖铺,需要350块,改用10dm 2的方砖铺,需要多少块?(地面积不变)解:设需要x 块。