虽殊途同归,但各司其职——正弦定理的证明方法及作用
- 格式:pdf
- 大小:54.25 KB
- 文档页数:1
正弦定理的几种证明方法正弦定理是三角学中的重要定理,它可以用于求解任何三角形中的未知边和角,下面将介绍几种证明正弦定理的方法:证明方法一:三角形的面积法设三角形ABC的三边长度分别为a、b、c,对应的角度分别为A、B、C。
根据三角形面积公式,可以得到:S(三角形ABC)=0.5*a*h1=0.5*b*h2=0.5*c*h3其中h1、h2、h3分别为三角形ABC对应边的高,可以通过正弦函数关系得到:h1 = b * sinCh2 = c * sinAh3 = a * sinB代入前面的面积公式,得到:S(三角形ABC) = 0.5 * a * b * sinC = 0.5 * b * c * sinA = 0.5 * c * a * sinB移项整理后得到正弦定理:a / sinA =b / sinB =c / sinC证明方法二:向量法在平面直角坐标系中,设三角形ABC的三个顶点的坐标分别为A(x1,y1),B(x2,y2),C(x3,y3)。
根据向量的定义,可以得到:\vec{AB} = \vec{B} - \vec{A} = (x2 - x1, y2 - y1)\vec{AC} = \vec{C} - \vec{A} = (x3 - x1, y3 - y1)根据向量的数量积公式,可以得到:\vec{AB}, = \sqrt{(x2 - x1)^2 + (y2 - y1)^2} = a\vec{AC}, = \sqrt{(x3 - x1)^2 + (y3 - y1)^2} = c又根据向量的叉积公式,可以得到:而叉积的模也可以通过坐标计算得到:综上,可以得到正弦定理的向量形式:证明方法三:海伦公式法根据海伦公式,三角形ABC的面积S可以通过三角形的周长p和三条边的长度a、b、c计算得到:S = \sqrt{p \cdot (p - a) \cdot (p - b) \cdot (p - c)}其中p=(a+b+c)/2、又根据三角形面积的定义,可以得到:S = 0.5 \cdot a \cdot b \cdot \sin\angle C将前面两个公式等式右边进行等式转换,得到:\sqrt{p \cdot (p - a) \cdot (p - b) \cdot (p - c)} = 0.5\cdot a \cdot b \cdot \sin\angle C两边平方,整理得到:16p^2 \cdot (p - a) \cdot (p - b) \cdot (p - c) = a^2 \cdot b^2 \cdot \sin^2\angle C整理后得到:16(p-a)(p-b)(p-c)p = a^2 b^2 \cdot \sin^2\angle C再根据赫罗定理,可以得到:p(p-a)(p-b)(p-c)=S^2将上面两个等式联立,整理得到:16S^2 = a^2 b^2 \cdot \sin^2\angle C再开更号,得到:2S = ab \cdot \sin\angle C即得正弦定理。
正弦定理的几种证明方法1.利用三角形的高证明正弦定理 (1)当∆ABC 是锐角三角形时,设边AB 上的高是CD ,根据锐角三角函数的定义,有=sin CD a B ,sin CD b A =。
由此,得sin sin abAB =,同理可得sin sin cbCB=,故有sin sin ab=sin c=.从而这个结论在锐角三角形中成立.(2)当∆ABC 是钝角三角形时,过点C 作AB 边上的高,交AB 的延长线于点D ,根据锐角三角函数的定义,有=∠=∠sin sin CD a CBD a ABC ,sin CD b A = 。
由此,得=∠sin sin abAABC ,同理可得=∠sin sin cbCABC故有=∠sin sin abAABCsin cC =.由(1)(2)可知,在∆ABC 中,sin sin abAB=sin cC=成立.从而得到:在一个三角形中,各边和它所对角的正弦的比值相等,即sin sin ab=sin c=.1’用知识的最近生长点来证明:实际应用问题中,我们常遇到问题:已知点A ,点B 之间的距|AB|,可测量角A 与角B , 需要定位点C ,即:在如图△ABC 中,已知角A ,角B ,|AB |=c , 求边AC 的长b解:过C 作CD ⊥AB 交AB 于D ,则cos AD c A =sin sin cos sin tan sin cos BD c A c A CDC C C C C ===sin cos (sin cos sin cos )sin cos sin sin sin c A C c C A A C c Bb AC AD DCc A C C C+==+=+==推论:sin sin b c B C = 同理可证:sin sin sin a b cA B C==ab DABCAB CDba2.利用三角形面积证明正弦定理已知△ABC,设BC =a, CA =b,AB =c,作AD ⊥BC,垂足为 D. 则Rt △ADB中,ABAD B =sin , ∴AD=AB·sinB=csinB. ∴S △ABC =B ac AD a sin 2121=∙. 同理,可证 S △ABC =A bc C ab sin 21sin 21=.∴ S △ABC =B ac A bc C ab sin 21sin 21sin 21==. ∴absinc=bcsinA=acsinB, 在等式两端同除以ABC,可得b B a A c C sin sin sin ==. 即CcB b A a sin sin sin ==. 3.向量法证明正弦定理(1)△ABC 为锐角三角形,过点A 作单位向量j 垂直于,则j 与的夹角为90°-A ,j 与的夹角为90°-C . 由向量的加法原则可得 =+,为了与图中有关角的三角函数建立联系,我们在上面向量等式的两边同取与向量j 的数量积运算,得到j j ∙=+∙)( 由分配律可得j j ∙=∙+. B∴|j |Co s90°+|j Co s(90°-C )=|j Co s(90°-A ). j∴asinC=csinA. ∴CcA a sin sin =. A 另外,过点C 作与垂直的单位向量j ,则j 与的夹角为90°+C ,j 与的夹角为90°+B ,可得BbC c sin sin =. (此处应强调学生注意两向量夹角是以同起点为前提,防止误解为j 与的夹角为90°-C ,j 与的夹角为90°-B ) ∴CcB b A a sin sin sin ==.(2)△ABC 为钝角三角形,不妨设A >90°,过点A 作与垂直的单位向量j ,则j与的夹角为A -90°,j 与的夹角为90°-C .由=+,得j · +j ·=j ·, j即a·Cos(90°-C)=c·Cos(A-90°), ∴asinC=csinA. ∴CcA a sin sin =D C BA AC CBA另外,过点C 作与垂直的单位向量j ,则j 与的夹角为90°+C ,j 与夹角为 90°+B .同理,可得C cB b sin sin =. ∴ Cc B b simA a sin sin == 4.外接圆证明正弦定理在△ABC 中,已知BC=a,AC=b,AB=c,作△ABC 的外接圆,O 为圆心,连结BO 并延长交圆于B′,设BB′=2R.则根据直径所对的圆周角是直角以及同弧所对的圆周角相等可以得到∠BAB′=90°,∠C =∠B′,∴sin C =sin B′=R c B C 2sin sin ='=. ∴R Cc2sin =. 同理,可得R B b R A a 2sin ,2sin ==. ∴R CcB b A a 2sin sin sin ===. 这就是说,对于任意的三角形,我们得到等式 CcB b A a sin sin sin ==.。
正弦定理及其证明过程正弦定理是解决三角形中边长与角度之间关系的最基本的定理之一。
它表明,三角形的一个边及它对应的角的正弦比例是一个常数。
正弦定理在解决三角形的实际问题中起着重要的作用,例如测量不直接能够测量的边长或角度,计算海图和测量距离等。
正弦定理可以用以下形式表示:a/sinA = b/sinB = c/sinC其中a、b、c分别表示三角形的三边长,A、B、C分别表示三角形的三个角。
现在我们来证明正弦定理。
首先,我们将在一个平面上画一个任意三角形ABC,其中边长分别为a、b和c,角度分别为A、B和C。
然后,我们从顶点A开始,在边AB上取一个点D,并画一条垂直于边AB的线段DE。
同样,我们从顶点C开始,在边BC上取一个点F,并画一条垂直于边BC的线段FG。
现在,我们已经得到了两个直角三角形ADE和CFG。
由于AE和CG都是高度,所以它们的长度相等,且等于三角形ABC的高度h。
现在我们来计算ADE和CFG的面积。
根据三角形的面积公式,它们的面积分别为:Area(ADE) = 1/2 * AD * DE,Area(CFG)= 1/2 * CF * FG。
根据三角形的面积公式,三角形ABC的面积等于ADE和CFG的面积之和。
因此,我们有:Area(ABC) = Area(ADE) + Area(CFG)= 1/2 * AD * DE + 1/2 * CF * FG同时,我们知道ADE和CFG是直角三角形,可以使用三角函数来表示它们的边和角度之间的关系。
根据正弦函数的定义,我们有:sinA = DE / AD,sinC = FG / CF根据上述关系,我们可以将DE和FG用sinA和sinC来表示,然后代入到Area(ABC)的计算公式中,得到:Area(ABC) = 1/2 * AD * (sinA * AD) + 1/2 * CF * (sinC * CF)= 1/2 * AD^2 * sinA + 1/2 * CF^2 * sinC接着,我们回到三角形ABC,根据三角形的面积公式,我们还可以用底边和高度来计算三角形的面积。
怎么证明正弦定理正弦定理是高中数学中十分重要的命题,它与三角函数和三角形相关联。
它的表述是:在三角形ABC中,边长分别为a、b、c,若夹角A对应的边长为a,则有sin A/a=sin B/b=sin C/c。
那么,我们该如何证明正弦定理呢?首先,我们需要先了解正弦函数的基本概念。
正弦函数是一个周期为2π的周期函数,表示的是一个单位圆上相应角度处的纵坐标值。
通过观察正弦函数的图像,我们可以发现一个重要的性质:正弦函数在[0,π]上是单调递增的,这意味着当一个角度增大时,它的正弦值也随之增大。
接下来,我们需要探究三角形ABC的内角和。
内角和可以用一个简单的公式来表示:三角形内角和=180°。
因此,我们可以把三角形内角和表示成A+B+C=180°。
现在让我们来看看证明正弦定理的具体过程。
我们定义AD为角A 的高线,BD为角B的高线,CD为角C的高线。
可以看出,角A、角B 和角C分别为三角形BDC、ADC和ABD的对顶角。
接下来,我们可以利用正弦函数的性质来推导出正弦定理。
对于角A,我们可以得到三角形ADB中:sin A/a=sin(90°-C)/b。
由于正弦函数关于其补角是对称的,即sin(90°-C)=cos C,因此我们可以得到sin A/a=cos C/b。
同样地,对于角B和角C,我们可以得到sin B/b=cos A/a和sin C/c=cos B/b。
接下来,只需要将这三个式子进行组合,便可得到正弦定理sin A/a=sin B/b=sin C/c。
这个公式指出,三角形任意两角的正弦值与对应的边长成比例,这意味着我们可以通过其中两个角和两个边长来计算三角形的第三边长,这对于解决许多几何问题非常有帮助。
总的来说,正弦定理是数学学科中非常重要的工具,它能够帮助我们计算和解决许多几何问题。
同时,证明正弦定理也为我们提供了一种探究三角函数性质以及推导公式的方法,这对于提高我们的数学思维和解决问题的能力也有很大的帮助。
正弦定理:描述三角形的边角关系,并可用于测量、几何、三角函数等领域的定理正弦定理是描述三角形边角关系的一项重要定理。
它不仅可以应用于测量、几何和三角函数等领域,还具有广泛的应用价值。
本文将详细介绍正弦定理的原理和推导过程,并探讨其在实际问题中的应用。
第一章:正弦定理的基本概念1.1 三角形的边角关系三角形是由三条边及其对应的三个角组成的图形。
在三角形中,边与边之间存在一定的关系,同时边与角之间也存在一定的关系。
正弦定理就是描述三角形边角关系的一个重要定理。
1.2 正弦定理的概述正弦定理是描述三角形边角关系的一种数学表达方式。
它可以通过三角形的三个边的长度和对应的角的正弦函数之间的关系来表示。
正弦定理的数学表达式如下:a/sinA = b/sinB = c/sinC其中,a、b、c分别表示三角形的三条边的长度,A、B、C分别表示对应的三个角的大小。
第二章:正弦定理的推导过程2.1 推导正弦定理的几何方法为了推导正弦定理,我们可以利用三角形的基本几何性质。
首先,根据三角形的内角和定理可知,三角形的三个内角之和为180度。
然后,利用正弦函数的定义可以得到每个角的正弦值。
最后,通过简单的代数运算,我们可以将三角形的边和角的关系表示为正弦定理的形式。
2.2 推导正弦定理的三角函数方法除了几何方法外,我们还可以利用三角函数的性质来推导正弦定理。
首先,根据三角恒等式sin(A+B)=sinAcosB+cosAsinB,我们可以将正弦定理的分子转化为两个三角函数的乘积。
然后,通过简单的代数运算和三角函数的定义,我们可以推导出正弦定理的数学表达式。
第三章:正弦定理的应用3.1 正弦定理在测量中的应用正弦定理在测量领域中有着广泛的应用。
例如,在三角测量中,我们可以利用正弦定理来测量无法直接测量的边长或角度。
通过已知的边长和角度,我们可以利用正弦定理来计算未知的边长和角度。
3.2 正弦定理在几何中的应用正弦定理在几何中也有着重要的应用。
龙源期刊网
虽殊途同归,但各司其职
作者:韩艳莉
来源:《中学教学参考·理科版》2013年第01期
正弦定理是高中阶段一个很重要的定理,证明方法也很多.苏教版教材(必修5)是从直角三角形入手,探究出直角三角形中的边角关系是asinA=bsinB=csinC,然后提出问题:结论对任意三角形也成立吗?同时提供了证明途径,我们总结为:①三角形高法;②面积法;③外接圆法;④向量的数量积法;⑤坐标法.教材中只完整地给出了方法①和④的证明过程,而笔
者认为其他的三种方法有必要向学生介绍,因为虽然得到的定理内容是一样的,但在证明的过程中产生的“副产品”却不容忽视.下面,仅以锐角三角形为例作简要说明,钝角三角形的情形与锐角三角形类似.。
正弦定理、余弦定理知识点总结及证明方法1.掌握正弦定理、 余弦定理,并能解决一些简单的三角形胸怀问题.2.能够运用正弦定理、 余弦定理等知识和方法解决一些与丈量和几何计算相关的实质问题.主要考察相关定理的应用、三角恒等变换的能力、运算能力及转变的数学思想.解三角形经常作为解题工具用于立体几何中的计算或证明,或与三角函数联系在一同求距离、高度以及角度等问题,且多以应用题的形式出现.1. 正弦定理(1) 正弦定理:在一个三角形中, 各边和它所对角的正弦的比相等, 即 .其 中 R 是三角形外接圆的半径.(2) 正弦定理的其余形式:, c① a = R A , b =2 sin=;a②sin A =2R , sin B =,sin C = ;③a ∶b ∶c =______________________.2. 余弦定理——王彦文 青铜峡一中(1) 余弦定理:三角形中任何一边的平方等于其余两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a 2=,b 2=,c 2=.,即为勾若令 C =°,则 c 2=90股定理.(2) 余 弦 定 理 的 变 形 : cosA= , cosB = ,cosC = .若 C 为锐角,则 cosC>0,即 a 2+ b 2 ______c 2;若 C 为钝角,则 cosC<0,即 a 2+b 2______c 2. 故由 a 2 +b 2 与 c 2 值的大小比较,能够判断 C 为锐角、钝角或直角.(3) 正、余弦定理的一个重要作用是实现边角____________,余弦定理亦能够写成 sin 2A= sin 2B + sin 2C - 2sin Bsin CcosA ,近似地,sin 2B = ____________ ; sin 2C =__________________.注意式中隐含条件 A + B +C =π.3. 解斜三角形的种类(1) 已知三角形的随意两个角与一边,用____________定理.只有一解.(2) 已知三角形的随意两边与此中一边的对 角 , 用 ____________ 定 理 , 可 能 有___________________.如在△ ABC 中,已知 a , b 和 A 时,解的状况如表:A 为钝角A 为锐角或直角图 形关 a = b A aa ≥b a b 系 b A sin <b> 式 sin <解 的 ① ② ③ ④ 个 数(3) 已知三边,用 ____________定理.有1解时,只有一解.(4) 已知两边及夹角,用 ____________定理,必有一解.4. 三角形中的常用公式或变式(1) 三角形面积公式 S △= == ____________ = ____________ =____________.此中 R ,r 分别为三角形外接圆、内切圆半径.,(2) A + B + C =π,则 A =__________A= __________ , 从 而sin A =2____________,cosA = ____________ , tan A =____________;A Asin 2= __________, cos 2=__________,Atan 2 = ________.tan A + tan B + tan C =__________.(3) 若三角形三边 a ,b ,c 成等差数列,则b =____________? 2sin B =____________?2B A -C A + C A - C A2sin 2= cos2 ? 2cos 2 = cos 2 ? tan 2C 1tan 2=3.【自查自纠】. a bc R1(1)sin A = sin B =sin C = 2R BRC ② bc(2) ①2 si2 siRR2 2③ s in A ∶sin B ∶sin C2. (1) b 2+c 2-2bccosA c 2+a 2- 2cacosB a 2 +b 2-2abcosC a 2+ b 2b 2 +c 2-a 2c 2+a 2-b 2a 2 +b 2-c 2>(2)2ca2ab2bc<(3) 互化sin 2C +sin 2A -2sin Csin AcosBsin 2A + sin 2B -2sin Asin BcosC3.(1) 正弦 (2) 正弦 一解、两解或无解①一解 ②二解 ③一解 ④一解 (3) 余弦 (4) 余弦.11 1 abc(1) ab sin C bc s inA ac s in B2 22R412( a +b +c) rπ B +C(2) π- ( B + C)2 - 2sin( B +C-cos( B +C) )- tan( B + C cos B +CsinB + C) 2 21 B +Ctan 2A B C (3)a + csin A + sin C tan tan tan2在△ABC中, A B 是A B 的()>sin >sinA.充足不用要条件B.必需不充足条件C.充要条件D.既不充足也不用要条件解:因为在同一三角形中,角大则边大,边大则正弦大,反之也成立,故是充要条件.故选 C.在△ABC中,已知 b=, c=,B=°,则61030解此三角形的结果有 ()A.无解B.一解C.两解D.一解或两解解:由正弦定理知 sin C=c·sin B5b=6,又由c>b>csin B知, C有两解.也可依已知条件,画出△ ABC,由图知有两解.应选 C.( 2013·陕西 ) 设△ ABC的内角 A, B, C所对的边分别为 a, b, c,若b cos C+ c cos B=a sin A,则△ ABC的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确立C+解:由已知和正弦定理可得BC B =A· A ,即sin cos=sin sin sin sin( B +C cos A)sinA A,亦即sinA=A因为Aπ,sin sin sin.0< <π所以 sin A=1,所以 A= 2.所以三角形为直角三角形.应选.B( 2012·陕西 ) 在△ ABC中,角 A,B,C 所对的π边分别为 a,b,c. 若 a=2,B=6,c=23,则 b=________.解:由余弦定理知b2=a2+c2- 2accosB=π222 +( 23)-2×2×2 3×cos 6= 4, b= 2.在△ABC中,角A,B,C 所对的边分别为a,b,c,若 a= 2,b=2,sin B+cosB= 2,则角 A 的大小为 ________.解:∵ sin B+ cosB=2,ππ∴2sin B+4= 2,即 sin B+4=1.πππ又∵ B∈(0 ,π ) ,∴ B+4=2, B=4 .a b依据正弦定理sin A=sin B,可得sin A=asin B1=.b2ππ∵a<b,∴ A<B. ∴ A=6 . 故填6 .种类一正弦定理的应用△ABC的内角A,B,C的对边分别为a,b,c,已知 A- C=90°, a+ c= 2b,求 C.解:由 a+c= b 及正弦定理可得sinA2+s in C= 2sin B.又因为 A- C=90°, B=180°- ( A+ C) ,故 cosC+ sin C= sin A+sin C= 2sin( A+ C) =2sin(90 °+ 2C) = 2sin2(45 °+ C) .∴2 sin(45° +C=2 2 sin(45° +)C)cos(45 °+ C) ,41即 cos(45 °+ C) =2.又∵ 0°< C<90°,∴ 45°+ C=60°,C =15°.【评析】利用正弦定理将边边关系转变为角角关系,这是解本题的重点.( 2012·江西 ) 在△ ABC中,角 A,B,C 的对边分别为a, b,c已知 A=π,bsinπ+C -.44c sinπ+B =a4.π(1)求证: B-C=2;(2)若 a= 2,求△ ABC的面积.解:(1)证明:对bπ+C-sin4csin π+ B= a应用正弦定理得4B π+ C -sinCπ+B =sinA,sin sin4sin422即sin B2 sin C+2 cosC-sinC222,整理得 B C2 sin B+2 cosB =2sin cos -s in CcosB= 1,即 sin ( B-C)=1.3ππ因为 B,C∈ 0,4,∴ B-C=2 .3π,又由 (1)知 B-C(2) ∵ B+ C=π- A=4π=2,5ππ∴B=8,C=8.∵a=2,A=πb=,∴由正弦定理知4a Bπa Cπsin5sinsin A= 2sin8,c=sin A=2sin 8 .115ππ∴S△ABC=2bcsin A=2×2sin8×2sin 8×225ππππ2= 2sin8 sin 8= 2cos8 sin8=2π 1sin 4=2.种类二 余弦定理的应用1 3 3∴S △ABC =2acsin B = 4 .【评析】①依据所给等式的构造特色利用余弦定理将角化边进行变形是快速解答本题的 重点.②娴熟运用余弦定理及其推论,同时还 要注意整体思想、方程思想在解题过程中的运 用.在△ ABC 中,a ,b ,c 分别是角 A ,B ,C 的对边,cosBb且cosC =- 2a +c .(1) 求 B 的大小;(2) 若 b = 13,a +c =4,求△ ABC 的面积.a 2+ c 2-b 2, 解:(1) 由余弦定理知, cosB =ac2cosC = a 2+b 2- c 2cosB b 2ab ,将上式代入cos C =- a +c2 得a 2 +c 2-b 2 abb2=- a +c , ac·a 2+b 2-c22整理得 a 2+c 2- b 2=- ac.a 2+c 2-b 2 -ac 1 ∴cosB = ac = ac =- .22 22∵B 为三角形的内角,∴ B = 3π.(2) 将 b = 13,a +c =4,B =23π 代入 b 2=a 2+ c 2-2accosB ,得 13=42- 2ac -2accos 2 3π,解得 ac =3.若△ ABC 的内角 A ,B ,C 所对的边 a ,b ,c 知足( a +b) 2- c 2=4,且 C =60°,则 ab 的值为 ( )4A. 3B .8-4 3C . 12D.3解:由余弦定理得 c 2= a 2 +b 2-2abcosC =a 2+b 2-ab ,代入 ( a + b) 2- c 2 =4 中得 ( a + b) 24- ( a 2+b 2-ab) = 4,即 3ab = 4,∴ ab =3. 应选A.6种类三正、余弦定理的综合应用以用余弦定理化边后用不等式求最值.( 2013·全国新课标Ⅱ ) △ ABC的内角A、B、 C的对边分别为 a,b,c,已知 a=bcosC+ csin B.(1)求 B;(2)若 b=2,求△ ABC面积的最大值.解: (1) 由已知及正弦定理得 sin A=sin BcosC+ sin Csin B. ①又 A=π- ( B+ C) ,故sin A = sin( B + C) = sin BcosC +cosBsin C. ②由①,②和 C∈(0 ,π ) 得 sin B= cosB.π又 B∈(0 ,π ) ,所以 B=4 .12(2) △ ABC的面积 S=2acsin B=4 ac.由已知及余弦定理得 4 = a2+ c2-π2accos 4 .又 a2+ c2≥2ac,故 ac≤4,2- 2当且仅当 a=c 时,等号成立.所以△ ABC面积的最大值为2+1.【评析】(1) 化边为角与和角或差角公式的正向或反向多次联用是常用的技巧; (2) 已知边及其对角求三角形面积最值是高考取考过多次的问题,既可用三角函数求最值,也可( 2013·山东 ) 设△ ABC的内角 A,B,C 所对的边分别为a,b,c,且 a+ c= 6, b= 2, cosB7=9.(1)求 a,c 的值;(2)求 sin( A- B) 的值.解: (1) 由余弦定理 b2=a2+ c2-2accosB,得 b2=( a+c) 2-2ac(1 +cosB) ,又 a+ c =6,b=2,7cosB=9,所以 ac=9,解得 a=3,c=3.242(2) 在△ ABC中, sin B= 1-cos B=9 ,asin B 22由正弦定理得 sin A=b= 3 .因为 a=c,所以 A 为锐角,21所以 cosA=1-sin A=3.所以 sin( A-B) =sin AcosB- cosAsin B=10 227.种类四 判断三角形的形状后进行三角函数式的恒等变形,找出角之间的 关系;或将角都化成边,而后进行代数恒等变 形,可一题多解,多角度思虑问题,进而达到 对知识的娴熟掌握.在三角形 ABC 中,若 tan A ∶tan B =a 2∶b 2,试判断三角形 ABC 的形状.a 2 sin 2A解法一:由正弦定理,得 b 2=sin 2B , tan A sin 2 A所以 tan B =sin 2 B ,A Bsin 2AA = Bsin cos2 ,即sin2所以cosAsin B =sinB sin2 . 所以 A = B ,或2 A +B =π,所以 A =B2 22π或 A + B = 2 ,进而△ ABC 是等腰三角形或直角三角形.a2sin 2A解法二:由正弦定理,得 b 2= sin 2B ,所以tan A sin 2A cosB sin Atan B =sin 2B,所以 cosA = sin B,再由正、余弦a 2+ c 2 -b 2aca a 2- b2c 2-定理,得 2 22 2 )( b + c -a = b ,化简得 (2bca 2-b 2 )= ,即 a 2= b 2 或c 2= a 2 +b 2. 进而△ ABC 是等腰三角形或直角三角形.【评析】由已知条件,可先将切化弦,再联合正弦定理,将该恒等式的边都化为角,然( 2012·上海 ) 在 △ABC 中 , 若 sin 2A +sin 2B 2C ,则△ ABC 的形状是 ( )<sin A .锐角三角形 B .直角三角形C .钝角三角形D .不可以确立解:在△ ABC 中,∵ sin 2A +sin 2 B<sin 2C ,∴由正弦定理知 a 2 +b 2<c 2. ∴cos C = a 2+b 2-c 22ab<0,即∠ C 为钝角,△ ABC 为钝角三角形. 应选 C.种类五 解三角形应用举例某港口 O 要将一件重要物件用小艇送到一艘正在航行的轮船上.在小艇出发时,轮船位于港口 O北偏西 30°且与该港口相距20 n mile的A 处,并以 30 n mile/h的航行速度沿正东方向匀速行驶.假定该小艇沿直线方向以v n mile/h 的航行速度匀速行驶,经过 t h 与轮船相遇.(1)若希望相遇时小艇的航行距离最小,则小艇航行速度的大小应为多少?(2)假定小艇的最高航行速度只好达到 30 n mile/h ,试设计航行方案 ( 即确立航行方向和航行速度的大小 ) ,使得小艇能以最短时间与轮船相遇,并说明原因.解法一:(1) 设相遇时小艇航行的距离为 S n mile ,则S=900t 2+400-2·30t ·20·cos(90°- 30°)=t2-t +400=900600900 t -123+300,1103故当 t =3时,S min=103,此时 v=1=3 303.即小艇以 30 3 n mile/h的速度航行,相遇时小艇的航行距离最小.(2)设小艇与轮船在 B 处相遇,则v2 t 2=400+t 2-900 2·20·30t ·cos(90 °- 30°) ,2600400故 v = 900-t+t2.v≤,∴6004002-+≤,即∵0<30900t t900t3-t≤0,22解得 t ≥3. 又 t =3时,v=30. 故 v= 30 时,2t 获得最小值,且最小值等于3.此时,在△ OAB中,有 OA=OB=AB=20,故可设计航行方案以下:航行方向为北偏东30°,航行速度为 30 n mile/h ,小艇能以最短时间与轮船相遇.解法二:(1) 若相遇时小艇的航行距离最小,又轮船沿正东方向匀速行驶,则小艇航行方向为正北方向.设小艇与轮船在C处相遇.在 Rt△OAC中, OC=20cos30°= 10 3,AC=20sin30 °= 10.又 AC=30t ,OC=vt ,101103此时,轮船航行时间 t =30=3,v=1=330 3.即小艇以 30 3 n mile/h的速度航行,相遇时小艇的航行距离最小.(2)假定 v= 30 时,小艇能以最短时间与轮船在 D处相遇,此时 AD=DO=30t .又∠ OAD=60°,所以 AD= DO=OA=20,2解得 t =3.据此可设计航行方案以下:航行方向为北偏东 30°,航行速度的大小为30 n mile/h. 这样,小艇能以最短时间与轮船相遇.证明以下:如图,由 (1) 得 OC=103, AC=10,故 OC>AC,且关于线段 AC上随意点 P,有OP≥ OC>AC.而小艇的最高航行速度只好达到30 n mile/h ,故小艇与轮船不行能在 A,C 之间 ( 包括 C) 的随意地点相遇.设∠ COD=θ (0 °<θ<90°) ,则在 Rt△COD 中,103CD=103tan θ, OD=cosθ .因为从出发到相遇,轮船与小艇所需要的10+10 3tan θ和 t =103,时间分别为 t =30vcosθ10+10 3tan θ10 3所以30=vcosθ.153由此可得,v=sin (θ+30°).3又 v≤30,故 sin( θ+30°) ≥2,进而,30°≤ θ<90°.因为θ=30°时, tan θ获得最小值,且3最小值为3 .10+103tan θ于是,当θ=30°时,t =302获得最小值,且最小值为3.【评析】①这是一道相关解三角形的实质应用题,解题的重点是把实质问题抽象成纯数学识题,依据题目供给的信息,找出三角形中的数目关系,而后利用正、余弦定理求解.②解三角形的方法在实质问题中,有宽泛的应用.在物理学中,相关向量的计算也要用到解三角形的方法.最近几年的高考取我们发现以解三角形为背景的应用题开始成为热门问题之一.③不论是什么种类的三角应用问题,解决的重点都是充足理解题意,将问题中的语言表达弄理解,画出帮助剖析问题的草图,再将其归纳为属于哪种可解的三角形.④本题用几何方法求解也较简易.10( 2012·武汉 5月模拟 ) 如图,渔船甲位于岛屿A的南偏西 60°方向的 B 处,且与岛屿 A 相距 12 海里,渔船乙以 10 海里 / 小时的速度从岛屿 A 出发沿正北方向航行,若渔船甲同时从B 处出发沿北偏东α的方向追赶渔船乙,恰好用2 小时追上.(1)求渔船甲的速度;(2)求 sin α的值.解: (1)依题意,∠BAC=°,A B=,12012 AC=× =2,在△ ABC中,由余弦定理知 BC 1022022∠ BAC=2+2-=AB+ AC- AB·AC·12202cos2×12×20×cos120°= 784,BC= 28.所以渔船甲的速度为 v=28=14( 海里 / 小2时) .(2)在△ ABC中, AB=12,∠ BAC=120°,BC= 28,AB ∠BCA=α,由正弦定理得sinα=BC12=28,进而 sin α=,即sin120 °sin ∠ BAC sin α12sin120 °3328=14.1.已知两边及此中一边的对角解三角形时,要注意解的状况,提防漏解.2.在判断三角形的形状时,一般将已知条件中的边角关系利用正弦定理或余弦定理转变为角角关系 ( 注意应用 A+ B+ C=π 这个结论 ) 或边边关系,再用三角变换或代数式的恒等变形( 如因式分解、配方等 ) 求解,注意等式两边的公因式不要约掉,要移项提取公因式,不然有可能遗漏一种形状.3.要熟记一些常有结论,如三内角成等差数列,则必有一角为60°;若三内角的正弦值成等差数列,则三边也成等差数列;内角和定理与引诱公式联合产生的结论:sin A= sin( BA B+C +C) ,cosA=- cos( B+ C) ,sin 2=cos 2,sin2 A=- sin2( B+C) ,cos2A= cos2( B+C) 等.4.应用正、余弦定理解斜三角形应用题的一般步骤:(1)剖析:理解题意,分清已知与未知,画出表示图;(2)建模:依据已知条件与求解目标,把已11知量与求解量尽量集中到一个三角形中,成立一个解斜三角形的模型;(3)求解:利用正、余弦定理有序地解出三角形,求得数学模型的解;(4)查验:查验上述所求得的解能否切合实际意义,进而得出实质问题的解.5.正、余弦定理是应用极为宽泛的两个定理,它将三角形的边和角有机地联系起来,进而使三角与几何产生联系,为求与三角形相关的量( 如面积、外接圆、内切圆半径和面积等 ) 供给了理论依照,也是判断三角形形状、证明三角形中相关等式的重要依照.主要方法有:化角法,化边法,面积法,运用初等几何法.注意领会此中蕴涵的函数与方程思想、等价转变思想及分类议论思想.12。
正弦定理的几种证明方法正弦定理是三角学中的一个基本定理,它描述了三角形中边长和对应角的正弦值之间的关系。
以下是几种证明正弦定理的方法:方法一:利用三角形的面积公式第一步,根据三角形的面积公式,三角形的面积$S$可以表示为$S =\frac{1}{2}ab\sin C$。
第二步,利用正弦定理,我们可以将三角形的面积表示为$S =\frac{1}{2}a^2\sin B\sin C$。
第三步,根据三角形的面积公式,三角形的面积也可以表示为$S =\frac{1}{2}c^2\sin A\sin B$。
第四步,比较第二步和第三步的结果,可以得到正弦定理的表达式:$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$。
方法二:利用余弦定理和三角函数的性质第一步,根据余弦定理,三角形的任意一边的平方等于其他两边平方和减去两倍的这两边与它们之间的角的余弦的乘积。
即$a^2 = b^2 + c^2 -2bc\cos A$。
第二步,利用三角函数的性质,我们有$\cos A = \frac{b^2 + c^2 -a^2}{2bc}$。
第三步,将第二步的结果代入第一步的等式中,可以得到正弦定理的表达式:$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$。
方法三:利用三角形的外接圆半径第一步,根据三角形的外接圆半径的定义,三角形外接圆的半径等于三角形一边长度的一半与该边所对的角的正弦值的比值。
即$R = \frac{a}{2\sin A}$。
第二步,同理,我们可以得到$r = \frac{b}{2\sin B}$和$r = \frac{c}{2\sin C}$。
第三步,比较第一步和第二步的结果,可以得到正弦定理的表达式:$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$。
正弦定理的证明方法正弦定理是三角学中的重要定理之一,它描述了在任意三角形中,三边的长度和角度之间的关系。
正弦定理可以用于解决一些与三角形有关的问题,例如确定未知边长或角度的大小。
为了证明正弦定理,我们首先需要定义一些符号。
设在一个三角形ABC中,边长a、b、c 分别对应于角A、B、C;角度α、β、γ分别对应于边a、b、c。
我们可以利用三角形的面积来证明正弦定理。
设三角形ABC的面积为S。
根据三角形的面积公式,S可以表示为:S = 1/2 * a * b * sinγ同样,我们可以将面积表示为其他两个角的正弦函数。
设三角形ABC的面积分别与角A、B、C 对应的边的正弦函数表示为Sa、Sb、Sc,则有:Sa = 1/2 * b * c * sinαSb = 1/2 * c * a * sinβSc = 1/2 * a * b * sinγ通过对上述三个公式进行观察,我们可以发现Sa、Sb、Sc 都是相等的,因为它们都代表了同一个三角形的面积。
即:Sa = Sb = Sc = S将上述公式进行整理,我们可以得到以下等式:a *b * sinγ= b *c * sinα= c * a * sinβ= 2S为了得到正弦定理,我们将上述等式进行变换。
首先,我们将其中一对等式分子和分母进行交换:a / sinα=b / sinβ=c / sinγ此时,我们可以将上述等式的分子和分母都除以边长abc 的乘积,得到这样的等式:a / (bc) =b / (ac) =c / (ab)接下来,我们可以通过简单的代数运算来证明正弦定理。
设上述等式左半边等于k,则有:a = kbcb = kacc = kab将上述等式代入三角形ABC 的面积公式S = 1/2 * a * b * sinγ,我们可以得到以下表达式:S = 1/2 * (kbc) * (kac) * sinγ= 1/2 * (k^2 * a * b * c) * sinγ根据上述表达式,我们可以推出以下等式:k^2 * a * b * c * sinγ= 2S将上述等式转换回正弦函数的形式,我们可以得到正弦定理的表达式:sinγ= 2S / (abc)利用相似的推理,我们还可以得出其他两个角度对应的正弦定理表达式:sinα= 2S / (bca)sinβ= 2S / (cab)至此,我们通过利用三角形的面积公式进行代数推理,证明了正弦定理的正确性。
正弦定理余弦定理知识点总结及最全证明正弦定理概述:正弦定理是三角形的一个重要定理,它描述了三角形中各边与其相对的正弦值之间的关系。
正弦定理可以用于求解任意三角形的边长或角度。
正弦定理表达式:在一个三角形ABC中,有以下正弦定理的表达式:a/sin(A) = b/sin(B) = c/sin(C)其中,a、b、c分别表示三角形的边长,A、B、C表示三角形的角度。
正弦定理表明,三角形的任意一边的长度与这条边相对的角的正弦值成正比。
正弦定理的证明:可以使用数学推导来证明正弦定理。
这里给出一种较为详细的证明方法。
证明:1. 通过三角形的边长关系:a = b * sin(A) / sin(B)和c = b *sin(C) / sin(B),可得到以下关系式:a * sin(B) = b * sin(A)和c * sin(B) = b * sin(C)2.利用向量叉积原理知识,假设D为线段BC上的一点,则由向量的垂直性知:向量BD与向量AD是垂直的,向量CD与向量AD是垂直的。
3. 记向量AD为向量a,向量BD为向量b,向量CD为向量c,由向量b与向量a的垂直性可得:向量b·向量a = ,b, * ,a, *sin(∠BA) = b * AD * sin(∠BA)。
4. 同理,由向量c与向量a的垂直性可得:向量c·向量a = ,c,* ,a,* sin(∠CA) = c * AD * sin(∠CA)。
5. 因为∠C + ∠A = ∠BA,即∠CA + ∠BA = 180°,所以sin(∠BA) = sin(∠CA)。
所以有b * AD * sin(∠BA) = c * AD *sin(∠CA)。
6. 即有b * AD * sin(∠BA) = c * AD * sin(∠BA),那么b = c,所以定理得证。
余弦定理概述:余弦定理是三角形的另一个重要定理,它描述了三角形中各边与其相对的角之间的关系。