初二数学勾股定理综合难题。.doc
- 格式:doc
- 大小:113.52 KB
- 文档页数:3
勾股定理一.勾股定理证明与拓展 模型一. 图中三个正方形面积关系思考:如下图,以直角三角形a 、b 、c 为边,向外作等边三角形、半圆、等腰直角三角形和正方形,上述四种情况的面积有和关系?例1、有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上上生出两个小正方形(如图1),其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,生出了4个正方形(如图2),如果按此规律继续“生长”下去,它将变得“枝繁叶茂”;在“生长”了2017次后形成的图形中所有正方形的面积和是 .变式1:在直线l 上依次摆放着七个正方形(如图1所示).已知斜放置的三个正方形的面积分别是1,1. 21,1. 44,正放置的四个正方形的面积依次是1234S S S S ,,,,则41S S =______.变式2:如图,四边形ABCD中,AD∥BC,∠ABC+∠DCB=90°,且BC=2AD,以AB、BC、DC为边向外作正方形,其面积分别为S1、S2、S3,若S1=3,S3=9,求S2.(变式2)(变式3)变式3:如图,Rt△ABC 的面积为10cm2,在AB 的同侧,分别以AB,BC,AC 为直径作三个半圆,则阴影部分的面积为.(难题)如图,是小明为学校举办的数学文化节设计的标志,在△ABC 中,∠ACB= 90°,以△ABC 的各边为边作三个正方形,点G 落在HI 上,若AC+BC=6,空白部分面积为10.5,则阴影部分面积模型二外弦图DCBA内弦图GFEH例题2.四年一度的国际数学大会于2002年8月20日在北京召开,大会会标如图所示,它是由四个相同的直角三角形与中间的小正方形拼成的一个大正方形,若大正方形的面积为13,每个直角三角形两直角边的和是5。
求中间小正方形的面积为__________;变式1:如图,是用4个全等的直角三角形与1个小正方形镶嵌而成的正方图案,已知大正方形面积为25,小正方形面积为1,若用x 、y 表示直角三角形的两直角边(x y >),下列四个说法:①2225x y +=,②2x y -=,③2125xy +=,④9x y +=.其中说法正确的有___________(填序号).(变式1) (变式2)变式2:如图,正方形ABCD 的边长为10,AG=CH=8,BG=DH=6,连接GH ,则线段GH 的长 为变式3:我国汉代数学家赵爽为了证明勾股定理,创制了一副“弦图”,后人称为“赵爽弦图”(如图5),图6是由弦图变化得到的,他是由八个全等的直角三角形拼接而成。
CBA D EF1 如图,圆柱的高为10 cm ,底面半径为2 cm.,在下底面的A 点处有一只蚂蚁,它想吃到上底面上与A点相对的B 点处,需要爬行的最短路程是多少?2 如图,长方体的高为3 cm ,底面是边长为2 cm 的正方形. 现有一小虫从顶点A 出发,沿长方体侧面到达顶点C 处,小虫走的路程最短为多少厘米? 答案AB=5AB3、一只蚂蚁从棱长为1的正方体纸箱的B’点沿纸箱爬到D 点,那么它所行的最短路线的长是_____________。
4、如图,小红用一张长方形纸片ABCD 进行折纸,该纸片宽AB 为8cm ,•长BC•为10cm .当小红折叠时,顶点D 落在BC 边上的点F 处〔折痕为AE 〕.想一想,此时EC 有多长?•5.如图,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C 点与A 点重合,那么EB 的长是〔 〕. A .3 B .4 C D .5BCAFEDCBAB ’C ’B ′A ′C ′DC D 6.:如图,在△ABC 中,∠C=90°,∠B=30°,AB 的垂直平分线交BC 于D ,垂足为E ,BD=4cm .求AC 的长.7、如图,有一个直角三角形纸片,两直角边AC=6,BC=8,现将直角边AC 沿直线AD 折叠,使其落在斜边AB 上,且与AE 重合,那么CD 的长为8、如图,在矩形ABCD 中,,6=AB 将矩形ABCD 折叠,使点B 与点D 重合,C 落在C '处,假设21::=BE AE ,那么折痕EF 的长为 。
9、如图,:点E 是正方形ABCD 的BC 边上的点,现将△DCE 沿折痕DE 向上翻折,使DC 落在对角线DB 上,那么EB ∶CE =_________.10、如图,AD 是△ABC 的中线,∠ADC =45o ,把△ADC 沿AD 对折,点C 落在C´的位置,假设BC =2,那么BC´=_________.E题5图FBC ′ BA CD A C11.如图1,有一块直角三角形纸片,两直角边AC =6cm ,BC =8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,那么CD 等于〔 〕A.2cmB.3 cmC.4 cmD.5 cm12、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿∠CAB 的角平分线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?13、如图,在△ABC 中,∠B=90,AB=BC=6,把△ABC 进行折叠,使点A 与点D 重合,BD:DC=1:2,折痕为EF ,点E 在AB 上,点F 在AC 上,求EC 的长。
八下数学| 勾股定理与全等三角形综合大题【一】已知,如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于D,过D作DE∥AC交AB于E.(1)求证:AE=DE;【解答】证明:∵DE∥AC,∴∠CAD=∠ADE,∵AD平分∠BAC,∴∠CAD=∠EAD.∴∠EAD=∠ADE.∴AE=DE;(2)如果AC=3,,求AE的长.【解答】解:过点D作DF⊥AB于F.∵∠C=90°,AC=3,AC=2√3,在Rt△ACD中,由勾股定理得AC2+DC2=AD2.∴=√3.∵AD平分∠BAC,∴DF=DC=√3.又∵AD=AD,∠C=∠AFD=90°,∴Rt△DAC≌Rt△DAF(HL).∴AF=AC=3,∴Rt△DEF中,由勾股定理得EF2+DF2=DE2.设AE=x,则DE=x,EF=3﹣x,∴(3-x)²+(√3)²=x²,∴x=2.∴AE=2.【二】如图,在Rt△ACB中,∠ACB=90°,AB=10,AC=6.AD平分∠CAB交BC于点D.(1)求BC的长;【解答】解:在Rt△ACB中,∠ACB=90°,由勾股定理得:=∠AB²-BC²∠10²-6²=.(2)求CD的长.【解答】解:过点D作DE⊥AB于点E,如图.∴∠DEA=90°=∠C(垂直定义).∵AD平分∠CAB(已知),∴∠1=∠2(角平分线定义).在△AED和△ACD中,∠DEA=∠C,∠2=∠1,AD=AD△AED≌△ACD(AAS).∴AE=AC=6,DE=DC(全等三角形的对应边相等).∴BE=AB﹣AE=4.设CD=x,则DE=x,DB=8﹣x.在Rt△DEB中,∠DEB=90°,由勾股定理,得(8﹣x)2=x2+42.解得x=3.即CD=3.【三】如图,在△ABC中,∠ACB=90°,AB=10,BC=6,点P从点A出发,以每秒2个单位长度的速度沿折线A﹣B﹣C运动.设点P的运动时间为t秒(t>0).(1)求AC的长.【解答】解:∵在△ABC中,∠ACB=90°,AB=10,BC=6,∴AC=√AB2-BC2=√102-62=8;(2)求斜边AB上的高.【解答】解:设边AB上的高为h则S△ABC=1/2×BC=1/2AB•h,∴1/2×6×8=1/2×10×h,∴h=24/5,答:斜边AB上的高为24/5;(3)①当点P在BC上时,PC的长为16﹣2t .(用含t的代数式表示)【解答】解:当点P在BC上时,点P运动的长度为AB+BP=2t,则PC=BC﹣BP=6﹣(2t﹣10)=6﹣2t+10=16﹣2t;②若点P在∠BAC的角平分线上,则t的值为20/3 .【解答】解:当点P'在∠BAC的角平分线上时,过点P作PD⊥AB,如图:∵AP平分∠BAC,PC⊥AC,PD⊥AB,∴PD=PC,有①知,PC=16﹣2t,BP=2t﹣10,∴PD=16﹣2t,在Rt△ACP和Rt△ADP中,AP=AP,PD=PC,∴Rt△ACP≌Rt△ADP(HL),∴AD=AC=8,又∵AB=10,∴BD=2,在Rt△BDP中,由勾股定理得:22+(16﹣2t)2=(2t﹣10)2,解得:t=20/3.(4)在整个运动过程中,直接写出△PBC是等腰三角形时t的值.由图可知,当△BCP是等腰三角形时,点P必在线段AB上,①当点P在线段AB上时,若BC=BP,则点P运动的长度为AP=2t,∵AP=AB﹣BP=10﹣6=4,∴2t=4,∴t=2;②若PC=BC,如图,过点C作CH⊥AB于点H,则BP=2BH,在△ABC中,∠ACB=90°,AB=10,BC=6,AC =8,∴AB•CH=AC•BC,∴10CH=8×6,∴CH=24/5,在Rt△BCH中,由勾股定理得:BH=√BC2-CH2=√62-(24/5)2=18/5=3.6,∴BP=2BH=7.2,∴点P运动的长度为:AP=AB﹣BP=10﹣7.2=2.8,∴2t=2.8,∴t=1.4;③若PC=PB,如图所示,过点P作PQ⊥BC于点Q,则BQ=CQ=1/2×BC=3,∠PQB=90°,∴∠ACB=∠PQB=90°,∴PQ∥AC,∴PQ为△ABC的中位线,∴PQ=1/2×AC=1/2×8=4,在Rt△BPQ中,由勾股定理得:BP=√BQ2+PQ2=√32-42=5,点P运动的长度为AP=2t,AP=AB﹣BP=10﹣5=5,∴2t=5,∴t=2.5.综上,t的值为1.4或2或2.5.。
勾股定理题目初二难题
勾股定理是解决直角三角形问题的重要定理,它的应用广泛且具有实用性。
下面我向大家提出一道初二难度的勾股定理题目,希望能够展示一下大家的数学能力。
题目:
小明正在建造一个长方形花坛,他想要确定花坛两侧边的长度,以确保它是一个正方形。
他已经测量了花坛两条对角线的长度,分别为12米和16米。
请问,花坛两侧边的长度各是多少米?
解题思路:
根据勾股定理,直角三角形的斜边的平方等于两直角边的平方和。
在这个问题中,我们可以将花坛的两条对角线看作是直角三角形的两条直角边,而花坛两侧边则是斜边。
设花坛两侧边的长度分别为x米和y米。
根据勾股定理,我们可以得到以下两个方程:
x + y = 12 (方程1)
x + y = 16 (方程2)
我们可以使用这两个方程来求解x和y的值。
首先,我们可以将方程1和方程2相减,得到:
16 - 12 = x + y - (x + y)
简化后得到:
256 - 144 = 0
这个方程显然是错误的,说明我们的假设存在问题。
实际上,无法通过已知的对角线长度来确定花坛两侧边的具体长度,因为对角线长度并不能唯一地确定一个长方形。
所以,这个问题的答案是无解。
当我们只知道一个长方形的对角线长度时,无法准确地确定其两侧边的长度。
总结:
这道题目通过勾股定理展示了对角线长度不足以唯一确定长方形的两侧边长度。
勾股定理的应用需要考虑到问题的具体条件,避免出现错误的假设。
在实际问题中,我们经常会遇到需要使用勾股定理来解决的情况,因此加深对勾股定理的理解和运用是非常重要的。
CBA D EF1 如图,圆柱的高为10 cm ,底面半径为2 cm.,在下底面的A 点处有一只蚂蚁,它想吃到上底面上与A点相对的B 点处,需要爬行的最短路程是多少?2 如图,长方体的高为3 cm ,底面是边长为2 cm 的正方形. 现有一小虫从顶点A 出发,沿长方体侧面到达顶点C 处,小虫走的路程最短为多少厘米? 答案AB=5ACB3、一只蚂蚁从棱长为1的正方体纸箱的B’点沿纸箱爬到D 点,那么它所行的最短路线的长是_____________。
4、如图,小红用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB 为8cm ,•长BC•为10cm .当小红折叠时,顶点D 落在BC 边上的点F 处(折痕为AE ).想一想,此时EC 有多长?•5.如图,将一个边长分别为4、8的长方形纸片ABCD 折叠,使C 点与A 点重合,则EB 的长是( ). A .3 B .4 C 5 D .5BCAFEDCBAB ’C ’B ′A ′C ′DC A B E D6.已知:如图,在△ABC 中,∠C=90°,∠B=30°,AB 的垂直平分线交BC 于D ,垂足为E ,BD=4cm .求AC 的长.7、如图,有一个直角三角形纸片,两直角边AC=6,BC=8,现将直角边AC 沿直线AD 折叠,使其落在斜边AB 上,且与AE 重合,则CD 的长为8、如图,在矩形ABCD 中,,6=AB 将矩形ABCD 折叠,使点B 与点D 重合,C 落在C '处,若21::=BE AE ,则折痕EF 的长为 。
9、如图,已知:点E 是正方形ABCD 的BC 边上的点,现将△DCE 沿折痕DE 向上翻折,使DC 落在对角线DB 上,则EB ∶CE =_________.10、如图,AD 是△ABC 的中线,∠ADC =45o ,把△ADC 沿AD 对折,点C 落在C´的位置,若BC =2,则BC´=_________.E题5图FBC ′ BA CD A C11.如图1,有一块直角三角形纸片,两直角边AC =6cm ,BC =8cm ,现将直角边AC 沿直线AD 折叠,使它落在斜边AB 上,且与AE 重合,则CD 等于( )cm cm cm12、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC 沿∠CAB 的角平分线AD 折叠,使它落在斜边AB 上,且与AE 重合,你能求出CD 的长吗?13、如图,在△ABC 中,∠B=90,AB=BC=6,把△ABC 进行折叠,使点A 与点D 重合,BD:DC=1:2,折痕为EF ,点E 在AB 上,点F 在AC 上,求EC 的长。
勾股定理复习1、直角三角形的面积为S ,斜边上的中线长为d ,那么这个三角形周长为〔 〕〔A 〕22d S d ++ 〔B 〕2d S d -- 〔C 〕222d S d ++ 〔D 〕22d S d ++2.如图,A 、B 两个村子在河CD 的同侧,A 、B 两村到河的距离分别为AC=1km ,BD=3km ,CD=3km ,现在河边CD 上建一水厂向A 、B 两村输送自来水,铺设水管的费用为20000元/千米,请你在CD 选择水厂位置O ,使铺设水管的费用最省,并求出铺设水管的总费用F 。
3.△ABC 中,BC a =,AC b =,AB c =,假设∠C=90°,如图〔1〕,根据勾股定理,那么222c b a =+,假设△ABC 不是直角三角形,如图〔2〕和图〔3〕,请你类比勾股定理,试猜测22b a +与2c 的关系,并证明你的结论.4.如图,A 市气象站测得台风中心在A 市正东方向300千米的B 处,以107 千米/时的速度向北偏西60°的BF 方向移动,距台风中心200•千米范围内是受台风影响的区域. 〔1〕A 市是否会受到台风的影响?写出你的结论并给予说明; 〔2〕如果A 市受这次台风影响,那么受台风影响的时间有多长?课堂练习:1、将一根24cm的筷子,置于底面直径为15cm,高8cm的圆柱形水杯中,如下图,设筷子露在杯子外面的长度为hcm,那么h的取值范围是〔〕.A.h≤17cm B.h≥8cm C.15cm≤h≤16cm D.7cm≤h≤16cm2 如图,:,,于P. 求证:.3 :如图,∠B=∠D=90°,∠A=60°,AB=4,CD=2。
求:四边形ABCD的面积。
4.一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?【答案】由于厂门宽度是否足够卡车通过,只要看当卡车位于厂门正中间时其高度是否小于CH.如下图,点D在离厂门中线0.8米处,且CD⊥AB,与地面交于H.解:OC=1米(大门宽度一半),OD=0.8米〔卡车宽度一半〕在Rt△OCD中,由勾股定理得:CD===0.6米,CH=0.6+2.3=2.9〔米〕>2.5〔米〕.因此高度上有0.4米的余量,所以卡车能通过厂门.5、如图,公路MN和公路PQ在点P处交汇,且∠QPN=30°,点A处有一所中学,AP=160m。
初二勾股定理试题及答案一、选择题1. 下列选项中,哪一项是勾股定理的表达式?A. a + b = cB. a² + b² = c²C. a × b = cD. a ÷ b = c答案:B2. 如果直角三角形的两条直角边长分别为3和4,那么斜边的长度是多少?A. 5B. 7C. 8D. 9答案:A3. 一个直角三角形的斜边长为10,一条直角边长为6,那么另一条直角边的长度是多少?A. 8B. 4C. 6D. 10答案:A二、填空题1. 已知直角三角形的两条直角边长分别为6和8,根据勾股定理,斜边的长度为______。
答案:102. 如果一个直角三角形的斜边长为13,其中一条直角边长为5,那么另一条直角边的长度是______。
答案:12三、解答题1. 一个直角三角形的两条直角边长分别为9和12,求斜边的长度。
答案:根据勾股定理,斜边的长度为√(9² + 12²) = √(81 + 144) = √225 = 15。
2. 一个直角三角形的斜边长为17,其中一条直角边长为8,求另一条直角边的长度。
答案:设另一条直角边的长度为x,根据勾股定理,有x² + 8² =17²,即x² + 64 = 289,解得x² = 225,所以x = √225 = 15。
四、证明题1. 证明:如果直角三角形的两条直角边长分别为a和b,斜边长为c,那么a² + b² = c²。
答案:设直角三角形的两条直角边分别为a和b,斜边为c。
在三角形中,我们可以构造一个边长为a和b的正方形,以及一个边长为c的正方形。
在这两个正方形中,我们可以画出四个相同的直角三角形,每个三角形的直角边长分别为a和b,斜边长为c。
这样,我们可以将这四个三角形拼成一个边长为a+b的正方形,其面积为(a+b)²。
练习题1如图,圆柱的高为10,底面半径为2 •,在下底面的A 点处有一只蚂蚁,它想吃到上底面上与 A 点相对的B 点处,需要爬行的最短路程是多少 ? 2如图,长方体的高为 3,底面是边长为2的正方形.现有一小虫从顶点 A 出发,沿长方体侧面到达顶点 C 处,小虫走的路程最短为多少厘米 ? 答案53、 一只蚂蚁从棱长为1的正方体纸箱的B'点沿纸箱爬到D 点,那么它所行 的最短路线的长是。
4、 如图,小红用一张长方形纸片进行折纸, 已知该纸片宽为8, ?长?为10.当小红折叠时,顶点D 落在边上的点F 处(折痕为)?如图,将一个边长分别为 4、8的长方形纸片折叠, 使C 点与A 点重合,则的长是( A . 3 B . 4 C .56. 已知:如图,在△中,/ 90°, 30°,的垂直平分线交于D,垂足为E, 4.5. .想一想,此时有多)长?求的长.7、如图,有一个直角三角形纸片,两直角边 6, 8,现将直角边沿直线折叠,使其落在斜边上,且 与重合,则的长为9、如图,已知:点E 是正方形的边上的点,现将△沿折痕向上翻折,使落在 对角线上,贝V :=.10、如图,是△的中线,/= 45°,把△沿对折,点C 落在C 的位置,若=2, 则—痕EF 的长为11.如图1,有一块直角三角形纸片,两直角边= 6, 折叠,使它落在斜边上,且与重合,则等于(&如图,在矩形 点B 与点D 重合, C图1=8,现将直角边沿直线使它落在斜边上,且与重合,你能求出的长吗?13、如图,在△中,/ 90 , 6,把△进行折叠,使点A 与点D 重合,1:2,折痕为, 点E 在上,点F 在上,求的长。
J14.已知,如图长方形中,3,9,将此长方形折叠,使点 B^-D c 与点D 重合,折痕为,则△的面积为( )A 、62B 、82C 102D 12215. 如图,将矩形沿折叠,使点 D 与点B 重合,已知=3,= 9,求的长.B16、如图,每个小方格的边长都为 1.求图中格点四边形的面积。
第一章勾股定理(难度题)1、如图是医院、公园和超市的平面示意图,超市在医院的南偏东25°的方向,且到医院的距离为300m,公园到医院的距离为400m.若公园到超市的距离为500m,则公园在医院的(B)A.北偏东75°的方向上B.北偏东65°的方向上C.北偏东55°的方向上D.无法确定2、如图,长方体的底面边长分别为2cm和4cm,高为5cm.若一只蚂蚁从P点开始经过4个侧面爬行一圈到达Q点,则蚂蚁爬行的最短路径长为13cm.【解】∵PA=2×(4+2)=12,QA=5∴PQ=13.故答案为:13.3、(潍坊)我国古代有这样一道数学问题:“枯木一根直立地上,高二丈,周三尺,有葛藤自根缠绕而上,五周而达其顶,问葛藤之长几何?”题意是:如图所示,把枯木看作一个圆柱体,因一丈是十尺,则该圆柱的高为20尺,底面周长为3尺,有葛藤自点A处缠绕而上,绕五周后其末端恰好到达点B处,则问题中葛藤的最短长度是25尺.【解】如图,一条直角边(即枯木的高)长20尺,另一条直角边长5×3=15(尺),因此葛藤长为=25(尺).故答案为:25.4、如图Rt△ABC中,AB=BC=4,D为BC的中点,在AC边上存在一点E,连接ED,EB,则△BDE周长的最小值为()A、25B、23C、25+2D、23+25、如图,EF为正方形ABCD的对折线,将∠A沿DK折叠,使它的顶点A落在EF上的G点,则∠DKG=_______.6、在直线l 上依次摆放着七个正方形(如图所示)。
已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是S S 12、、S S S S S S 341234、,则+++=_____________7、如图,点E 在DBC ∆的边DB 上,点A 在DBC ∆内部,90DAE BAC ∠=∠=,AD AE =,AB AC =.给出下列结论:①BD CE =;②45ABD ECB ∠+∠=;③BD CE ⊥;④22222BE AD AB CD =+()﹣.其中正确的有( )A .1个B .2个C .3个D .4个8、如图,在矩形ABCD中,AB=3,BC=4,对角线AC、BD相交于点O,过A 作AE⊥BD交BD于点E,将△ABE沿AE折叠,点B恰好落在线段OD的F点处,则DF的长为(C)A.B.C.D.【解】∵四边形ABCD是矩形,∴∠BAD=90°,AD=BC=4,∴BD==5,∵AE⊥BD,∴△ABD的面积=AB•AD=BD•AE,∴AE==,∴BE==,由翻折变换的性质得:EF=BE=,∴DF=BD﹣BE﹣EF=5﹣﹣=.故选:C.9、如图,正方形ABCD的边长为6,点E在边CD上,且CD=3DE.将△ADE 沿AE对折至△AFE,延长EF交边BC于点G,连接AG、CF.则下列结论:①△ABG≌△AFG;②BG=CG;③AG∥CF;④S△EGC=S△AFE;⑤∠AGB+∠AED=135°.其中正确的个数是()A.5 B.4 C.3 D.2 【解】:由题意可求得DE=2,CE=4,AB=BC=AD=6,∵将△ADE沿AE对折至△AFE,∴∠AFE=∠ADE=∠ABG=90°,AF=AD=AB,EF=DE=2在Rt△ABG和Rt△AFG中,∴Rt△ABG≌Rt△AFG(HL),∴①正确;∴BG=GF,∠BGA=∠FGA,设BG=GF=x,若BG=CG=x,在Rt△EGC中,EG=x+2,CG=x,CE=4,由勾股定理可得(x+2)2=x2+42,解得x=3,此时BG=CG=3,BG+CG=6,满足条件,∴②正确;∵GC=GF,∴∠GFC=∠GCF,且∠BGF=∠GFC+∠GCF=2∠GCF,∴2∠AGB=2∠GCF,∴∠AGB=∠GCF,∴AG∥CF,∴③正确;∵S△EGC=GC•CE=×3×4=6,S△AFE=AF•EF=×6×2=6,∴S△EGC=S△AFE,∴④正确;在五边形ABGED中,∠BGE+∠GED=540°﹣90°﹣90°﹣90°=270°,即2∠AGB+2∠AED=270°,∴∠AGB+∠AED=135°,∴⑤正确;∴正确的有五个,故选:A.10、如图,P是矩形ABCD内一点,PA=1,PB=5,PC=7,则PD=_________. 解:过点P作MN∥AD交AB于点M,交CD于点N,则AM=DN,BM=CN∵∠PMA=∠PMB=90°, ∴PA 2-PM 2=AM 2,PB 2-PM 2=BM 2.∴PA 2-PB 2=AM 2-BM 2.同理,PD 2-PC 2=DN 2-CN 2.∴PA 2-PB 2=PD 2-PC 2.又PA=1,PB=5,PC=7, ∴PD 2=PA 2-PB 2+PC 2=12-52+72,PD=511、如图, 已知正方形ABCD 的边长为2,△ BPC 是等边三角形,则PD 的长是( D )A .347- B .32- C .23- D .348-12、如图,在△ABC 中,AD =15,AC =12,DC =9,点B 是CD 延长线上一点,连接AB .若AB =20,求△ABD 的面积.【解】:在△ADC 中,∵AD =15,AC =12,DC =9,∴AC 2+DC 2=122+92=152=AD 2,∴△ADC 是直角三角形.在Rt △ABC 中,AC 2+BC 2=AB 2,∵AB =20,∴BC =16,∴BD =BC -DC =16-9=7,∴S △ABD =12BD ×AC =12×7×12=42.13、如图,∠xoy =60°,M 是∠xoy 内的一点,它到ox 的距离MA 为2,它到oy 的距离MB 为11,求OM 的长。
初二數學勾股定理提高練習與常考難題和培優題壓軸題(含解析)一.選擇題(共8小題)1.直角三角形兩直角邊長度為5,12,則斜邊上的高()A.6 B.8 C .D .2.下列說法中正確的是()A.已知a,b,c是三角形的三邊,則a2+b2=c2B.在直角三角形中兩邊和的平方等于第三邊的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c23.如圖,是臺階的示意圖.已知每個臺階的寬度都是30cm,每個臺階的高度都是15cm,連接AB,則AB等于()A.195cm B.200cm C.205cm D.210cm4.如圖,在水池的正中央有一根蘆葦,池底長10尺,它高出水而1尺,如果把這根蘆葦拉向水池一邊,它的頂端恰好到達池邊的水面則這根蘆葦的長度是()GAGGAGAGGAFFFFAFAFA.10尺B.11尺C.12尺D.13尺5.如圖所示,在數軸上點A所表示的數為a,則a的值為()A.﹣1﹣B.1﹣C .﹣ D.﹣1+6.一架2.5米長的梯子底部距離墻腳0.7米,若梯子的頂端下滑0.4米,那么梯子的底部在水平方向滑動了()A.1.5米B.0.9米C.0.8米D.0.5米7.在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,則MN的長為()GAGGAGAGGAFFFFAFAFA.2 B.2.6 C.3 D.48.如圖,是2002年北京第24屆國際數學家大會會徽,由4個全等的直角三角形拼合而成,如果大正方形的面積是13,小正方形的面積是1,直角三角形的短直角邊為a,較長直角邊為b,那么(a+b)2的值為()A.13 B.19 C.25 D.169二.填空題(共5小題)9.將一根24cm的筷子,置于底面直徑為15cm,高8cm的圓柱形水杯中,如圖所示,設筷子露在杯子外面的長度為hcm,則h的取值范圍是.GAGGAGAGGAFFFFAFAF10.如圖,一場暴雨過后,垂直于地面的一棵樹在距地面1米的點C處折斷,樹尖B恰好碰到地面,經測量AB=2米,則樹高為米.11.已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,則Rt △ABC的面積等于.12.觀察下列勾股數第一組:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1第二組:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1第三組:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1第四組:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1GAGGAGAGGAFFFFAFAF…觀察以上各組勾股數組成特點,第7組勾股數是(只填數,不填等式)13.觀察下列一組數:列舉:3、4、5,猜想:32=4+5;列舉:5、12、13,猜想:52=12+13;列舉:7、24、25,猜想:72=24+25;…列舉:13、b、c,猜想:132=b+c;請你分析上述數據的規律,結合相關知識求得b= ,c= .三.解答題(共27小題)14.a,b,c為三角形ABC的三邊,且滿足a2+b2+c2+338=10a+24b+26c,試判別這個三角形的形狀.15.如圖:四邊形ABCD中,AB=CB=,CD=,DA=1,且AB ⊥CB于B.試求:(1)∠BAD的度數;(2)四邊形ABCD的面積.GAGGAGAGGAFFFFAFAF16.如圖,小華準備在邊長為1的正方形網格中,作一個三邊長分別為4,5,的三角形,請你幫助小華作出來.17.如圖所示,在一次夏令營活動中,小明坐車從營地A點出發,沿北偏東60°方向走了100km到達B點,然后再沿北偏西30°方向走了100km到達目的地C點,求出A、C兩點之間的距離.18.如圖,在氣象站臺A的正西方向320km的B處有一臺風中心,該臺風中心以每小時20km的速度沿北偏東60°的BDGAGGAGAGGAFFFFAFAF方向移動,在距離臺風中心200km內的地方都要受到其影響.(1)臺風中心在移動過程中,與氣象臺A的最短距離是多少?(2)臺風中心在移動過程中,氣象臺將受臺風的影響,求臺風影響氣象臺的時間會持續多長?19.如圖,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分別為AB、BC邊上的動點,點P從點A開始沿A?B方向運動,且速度為每秒1cm,點Q從點B開始B→C方向運動,且速度為每秒2cm,它們同時出發;設出發的時間為t秒.(1)出發2秒后,求PQ的長;(2)從出發幾秒鐘后,△PQB能形成等腰三角形?(3)在運動過程中,直線PQ能否把原三角形周長分成相等的兩部分?若能夠,請求出運動時間;若不能夠,請說明理由.GAGGAGAGGAFFFFAFAF20.在△ABC中,AB、BC、AC 三邊的長分別為、、,求這個三角形的面積.小華同學在解答這道題時,先畫一個正方形網格(每個小正方形的邊長為1),再在網格中畫出格點△ABC(即△ABC三個頂點都在小正方形的頂點處),如圖1所示.這樣不需求△ABC的高,而借用網格就能計算出它的面積.這種方法叫做構圖法.(1)△ABC的面積為:.(2)若△DEF三邊的長分別為、、,請在圖2的正方形網格中畫出相應的△DEF,并利用構圖法求出它的面積為.(3)如圖3,△ABC中,AG⊥BC于點G,以A為直角頂點,分別以AB、AC為直角邊,向△ABC外作等腰Rt△ABE和等腰Rt△ACF,過點E、F作射線GA的垂線,垂足分別為P、Q.試探究EP與FQ之間的數量關系,并證明你的結論.(4)如圖4,一個六邊形的花壇被分割成7個部分,其中正GAGGAGAGGAFFFFAFAF方形PRBA,RQDC,QPFE的面積分別為13m2、25m2、36m2,則的面積是m2.六邊形花壇ABCDEF如圖1,某同學在解答這道題時,先建立一個每個小正方形的邊長都是1的網格,再在網格中畫出邊長符合要求的格點三角形ABC(即△ABC三個頂點都在小正方形的頂點處),這樣不需要求△ABC的高,而借用網格就能就算出它的面積.請你將△ABC的面積直接填寫在橫線上.思維拓展:(2)已知△ABC三邊的長分別為a(a>0),求這個三角形的面積.我們把上述求△ABC面積的方法叫做構圖法.如圖2,網格GAGGAGAGGAFFFFAFAF中每個小正方形的邊長都是a,請在網格中畫出相應的△ABC,并求出它的面積.類比創新:(3)若△ABC 三邊的長分別為(m >0,n>0,且m≠n),求出這個三角形的面積.如圖3,網格中每個小長方形長、寬都是m,n,請在網格中畫出相應的△ABC,用網格計算這個三角形的面積.22.有一只喜鵲在一棵3m高的小樹上覓食,它的巢筑在距離該樹24m的一棵大樹上,大樹高14m,且巢離樹頂部1m.當它聽到巢中幼鳥的叫聲,立即趕過去,如果它飛行的速度為5m/s,那它至少需要多少時間才能趕回巢中?23.(拓展創新)在教材中,我們通過數格子的方法發現了GAGGAGAGGAFFFFAFAF直角三角形的三邊關系,利用完全相同的四個直角三角形采用拼圖的方式驗證了勾股定理的正確性.問題1:以直角三角形的三邊為邊向形外作等邊三角形,探究S′+S″與S的關系(如圖1).問題2:以直角三角形的三邊為斜邊向形外作等腰直角三角形,探究S′+S″與S的關系(如圖2).問題3:以直角三角形的三邊為直徑向形外作半圓,探究S′+S″與S的關系(如圖3).24.如圖,在平面坐標系中,點A、點B分別在x軸、y軸的正半軸上,且OA=OB,另有兩點C(a,b)和D(b,﹣a)(a、b均大于0);(1)連接OD、CD,求證:∠ODC=45°;(2)連接CO、CB、CA,若CB=1,C0=2,CA=3,求∠OCB的度數;GAGGAGAGGAFFFFAFAF(3)若a=b,在線段OA上有一點E,且AE=3,CE=5,AC=7,求△OCA的面積.25.11世紀的一位阿拉伯數學家曾提出一個“鳥兒捉魚”的問題“小溪邊長著兩棵棕櫚樹,恰好隔岸相望.一棵樹高是30肘尺(肘尺是古代的長度單位),另外一棵高20肘尺;兩棵棕櫚樹的樹干間的距離是50肘尺.每棵樹的樹頂上都停著一只鳥.忽然,兩只鳥同時看見棕櫚樹間的水面上游出一條魚,它們立刻飛去抓魚,并且同時到達目標.問這條魚出現的地方離開比較高的棕櫚樹的樹根有多遠?26.(1)先化簡,再求值:x(x﹣2)﹣(x+1)(x﹣1),其中x=10.(2)已知,求代數式(x+1)2﹣4(x+1)+4的值.(3)如圖,正方形網格中的每個小正方形邊長都是1,每個GAGGAGAGGAFFFFAFAF小格的頂點叫格點,請在給定的網格中按要求畫圖:①從點A出發在圖中畫一條線段AB,使得AB=;②畫出一個以(1)中的AB為斜邊的等腰直角三角形,使三角形的三個頂點都在格點上,并根據所畫圖形求出等腰直角三角形的腰長.27.[問題情境]勾股定理是一條古老的數學定理,它有很多種證明方法.我國漢代數學家趙爽根據弦圖,利用面積法進行證明,著名數學家華羅庚曾提出把“數學關系”(勾股定理)帶到其它星球,作為地球人與其他星球“人”進行第一次“談話”的語言;[定理表述]請你根據圖1中的直角三角形敘述勾股定理;[嘗試證明]以圖1中的直角三角形為基礎,將兩個直角邊長為a,b,斜邊長為c的三角形按如圖所示的方式放置,連接GAGGAGAGGAFFFFAFAF兩個之間三角形的另外一對銳角的頂點(如圖2),請你利用圖2,驗證勾股定理;[知識擴展]利用圖2中的直角梯形,我們可以證明<,其證明步驟如下:∵BC=a+b,AD=又∵在直角梯形ABCD中,有BCAD(填大小關系),即∴.28.觀察、思考與驗證(1)如圖1是一個重要公式的幾何解釋,請你寫出這個公式;(2)如圖2所示,∠B=∠D=90°,且B,C,D在同一直線上.試說明:∠ACE=90°;(3)伽菲爾德(1881年任美國第20屆總統)利用(1)中的公式和圖2證明了勾股定理(發表在1876年4月1日的《新英格蘭教育日志》上),請你寫出驗證過程.GAGGAGAGGAFFFFAFAF29.超速行駛容易引發交通事故.如圖,某觀測點設在到公路l的距離為100米的點P處,一輛汽車由西向東勻速駛來,測得此車從A處行駛到B處所用的時間為3秒,并測得∠APO=60°,∠BPO=45°,是判斷此車是否超過了每小時80千米的限制速度?(參考數據:=1.41,=1.73)30.中日釣魚島爭端持續,我海監船加大釣魚島海域的巡航維權力度.如圖,OA⊥OB,OA=45海里,OB=15海里,釣魚島位于O點,我國海監船在點B處發現有一不明國籍的漁船,自A點出發沿著AO方向勻速駛向釣魚島所在地點O,我國海監船立即從B處出發以相同的速度沿某直線去攔截這艘漁船,結果在點C處截住了漁船.GAGGAGAGGAFFFFAFAF(1)請用直尺和圓規作出C處的位置;(2)求我國海監船行駛的航程BC的長.31.在一次“構造勾股數”的探究性學習中,老師給出了下表:m 2 3 3 4…n 1 1 2 3…a22+1232+12 32+2242+32…b 4 6 1224 …c22﹣1232﹣1232﹣22 42﹣32…其中m、n為正整數,且m>n.(1)觀察表格,當m=2,n=1時,此時對應的a、b、c的值能否為直角三角形三邊的長?說明你的理由.(2)探究a,b,c與m、n之間的關系并用含m、n的代數式表示:a= ,b= ,c= .(3)以a,b,c為邊長的三角形是否一定為直角三角形?如果是,請說明理由;如果不是,請舉出反例.GAGGAGAGGAFFFFAFAF32.如圖1,在4×8的網格紙中,每個小正方形的邊長都為1,動點P、Q分別從點D、A同時出發向右移動,點P的運動速度為每秒1個單位,點Q的運動速度為每秒0.5個單位,當點P運動到點C時,兩個點都停止運動,設運動時間為t (0<t<8).(1)請在4×8的網格紙圖2中畫出t為6秒時的線段PQ.并求其長度;(2)當t為多少時.△PQB是以BP為底的等腰三角形.33.閱讀下面的情景對話,然后解答問題:(1)理解:GAGGAGAGGAFFFFAFAF①根據“奇異三角形”的定義,請你判斷:“等邊三角形一定是奇異三角形”嗎?(填是或不是)②若某三角形的三邊長分別為1、、2,則該三角形(是或不是)奇異三角形.(2)探究:若Rt△ABC是奇異三角形,且其兩邊長分別為2、2,則第三邊的長為,且這個直角三角形的三邊之比為(從小到大排列,不得含有分母).(3)設問:請提出一個和奇異三角形有關的問題.(不用解答)34.觀察下列各式,你有什么發現?32=4+5,52=12+13,72=24+25,92=40+41,…用你的發現解決下列問題:(1)填空:112= + ;(2)請用含字母n(n為正整數)的關系式表示出你發現的規律:;(3)結合勾股定理有關知識,說明你的結論的正確性.35.小明爸爸給小明出了一道題:如圖,修公路AB遇到一GAGGAGAGGAFFFFAFAF座山,于是要修一條隧道BC.已知A,B,C在同一條直線上,為了在小山的兩側B,C同時施工.過點B作一直線m(在山的旁邊經過),過點C作一直線l與m相交于D點,經測量∠ABD=130°,∠D=40°,BD=1000米,CD=800米.若施工隊每天挖100米,求施工隊幾天能挖完?36.如圖,把一塊等腰直角三角形零件(△ABC,其中∠ACB=90°),放置在一凹槽內,三個頂點A,B,C分別落在凹槽內壁上,已知∠ADE=∠BED=90°,測得AD=5cm,BE=7cm,求該三角形零件的面積.37.如圖,四邊形ABCD的三邊(AB、BC、CD)和BD的長度都為5厘米,動點P從A出發(A→B→D)到D,速度為2厘GAGGAGAGGAFFFFAFAF米/秒,動點Q從點D出發(D→C→B→A)到A,速度為2.8厘米/秒.5秒后P、Q相距3厘米,試確定5秒時△APQ的形狀.38.一艘輪船以20海里/時的速度由西向東航行,在途中接到臺風警報,臺風中心正以40海里/時的速度由南向北移動,距臺風中心20海里的圓形區域(包括邊界)都屬于臺風區域,當輪船到A處時測得臺風中心移到位于點A正南方的B 處,且AB=100海里.若這艘輪船自A處按原速度繼續航行,在途中是否會遇到臺風?若會,則求出輪船最初遇到臺風的時間;若不會,請說明理由.GAGGAGAGGAFFFFAFAF39.明朝數學家程大位在他的著作《算法統宗》中寫了一首計算秋千繩索長度的詞《西江月》:“平地秋千未起,踏板一尺離地°送行二步恰竿齊,五尺板高離地…”翻譯成現代文為:如圖,秋千OA靜止的時候,踏板離地高一尺(AC=1尺),將它往前推進兩步(EB=10尺),此時踏板升高離地五尺(BD=5尺),求秋千繩索(OA或OB)的長度.40.如圖,∠AOB=90°,OA=45cm,OB=15cm,一機器人在點B處看見一個小球從點A出發沿著AO方向勻速滾向點O,機器人立即從點B出發,沿直線勻速前進攔截小球,恰好在點GAGGAGAGGAFFFFAFAFC處截住了小球.如果小球滾動的速度與機器人行走的速度相等,那么機器人行走的路程BC是多少?1.已知直角三角形兩邊的長為3和4,則此三角形的周長為()A.12 B.7+ C.12或7+D.以上都不對2.圖中字母所代表的正方形的面積為144的選項為()A .B . C .D .3.如圖,數軸上的點A所表示的數為x,則x的值為()A .B .﹣ C.2 D.﹣2GAGGAGAGGAFFFFAFAF4.如圖,帶陰影的正方形面積是.5.如圖,在Rt△ABC中,∠BCA=90°,點D是BC上一點,AD=BD,若AB=8,BD=5,則CD= .6.正方形網格中的每個小正方形的邊長都是1,每個小格的頂點叫做格點,以格點為頂點,(1)在圖①中,畫一個面積為10的正方形;(2)在圖②、圖③中,分別畫兩個不全等的直角三角形,使它們的三邊長都是無理數.GAGGAGAGGAFFFFAFAFGAGGAGAGGAFFFFAFAF初二數學勾股定理提高練習與常考難題和培優題壓軸題(含解析)參考答案與試題解析一.選擇題(共8小題)1.(2016秋?吳江區期中)直角三角形兩直角邊長度為5,12,則斜邊上的高()A.6 B.8 C .D .【分析】首先根據勾股定理,得:斜邊==13.再根據直角三角形的面積公式,求出斜邊上的高.【解答】解:由題意得,斜邊為=13.所以斜邊上的高=12×5÷13=.故選D.【點評】運用了勾股定理.注意:直角三角形斜邊上的高等于兩條直角邊的乘積除以斜邊.2.(2016春?撫順縣期中)下列說法中正確的是()A.已知a,b,c是三角形的三邊,則a2+b2=c2GAGGAGAGGAFFFFAFAFB.在直角三角形中兩邊和的平方等于第三邊的平方C.在Rt△ABC中,∠C=90°,所以a2+b2=c2D.在Rt△ABC中,∠B=90°,所以a2+b2=c2【分析】在直角三角形中只有斜邊的平方等于其他兩邊的平方的和,且斜邊對角為直角,根據此就可以直接判斷A、B、C、D選項.【解答】解:在直角三角形中只有斜邊的平方等于其他兩邊的平方的和,且斜邊對角為直角.A、不確定c是斜邊,故本命題錯誤,即A選項錯誤;B、不確定第三邊是否是斜邊,故本命題錯誤,即B選項錯誤;C、∠C=90°,所以其對邊為斜邊,故本命題正確,即C選項正確;D、∠B=90°,所以斜邊為b,所以a2+c2=b2,故本命題錯誤,即D選項錯誤;故選 C.【點評】本題考查了勾股定理的正確運用,只有斜邊的平方才等于其他兩邊的平方和.GAGGAGAGGAFFFFAFAF3.(2016春?臨沭縣期中)如圖,是臺階的示意圖.已知每個臺階的寬度都是30cm,每個臺階的高度都是15cm,連接AB,則AB等于()A.195cm B.200cm C.205cm D.210cm【分析】作出直角三角形后分別求得直角三角形的兩直角邊的長后即可利用勾股定理求得斜邊AB的長.【解答】解:如圖,由題意得:AC=15×5=75cm,BC=30×6=180cm,故AB===195cm.故選A.【點評】本題考查了勾股定理的應用,解題的關鍵是從實際問題中抽象出直角三角形,難度不大.4.(2015春?青山區期中)如圖,在水池的正中央有一根蘆GAGGAGAGGAFFFFAFAF葦,池底長10尺,它高出水而1尺,如果把這根蘆葦拉向水池一邊,它的頂端恰好到達池邊的水面則這根蘆葦的長度是()A.10尺B.11尺C.12尺D.13尺【分析】找到題中的直角三角形,設水深為x尺,根據勾股定理解答.【解答】解:設水深為x尺,則蘆葦長為(x+1)尺,根據勾股定理得:x2+()2=(x+1)2,解得:x=12,蘆葦的長度=x+1=12+1=13(尺),故選D.【點評】本題考查正確運用勾股定理.善于觀察題目的信息是解題以及學好數學的關鍵.5.(2016春?南陵縣期中)如圖所示,在數軸上點A所表示GAGGAGAGGAFFFFAFAF的數為a,則a的值為()A.﹣1﹣B.1﹣C .﹣ D.﹣1+【分析】點A在以O為圓心,OB長為半徑的圓上,所以在直角△BOC中,根據勾股定理求得圓O的半徑OA=OB=,然后由實數與數軸的關系可以求得a的值.【解答】解:如圖,點A在以O為圓心,OB長為半徑的圓上.∵在直角△BOC中,OC=2,BC=1,則根據勾股定理知OB===,∴OA=OB=,∴a=﹣1﹣.故選A.【點評】本題考查了勾股定理、實數與數軸.找出OA=OB是解題的關鍵.GAGGAGAGGAFFFFAFAF6.(2015春?薊縣期中)一架2.5米長的梯子底部距離墻腳0.7米,若梯子的頂端下滑0.4米,那么梯子的底部在水平方向滑動了()A.1.5米B.0.9米C.0.8米D.0.5米【分析】先根據梯子的頂端下滑了0.4米求出A′C 的長,再根據勾股定理求出B′C 的長,進而可得出結論.【解答】解:(1)∵在Rt△ABC中,AB=2.5m,BC=0.7m,∴AC===2.4(m).∵梯子的頂端下滑了0.4米,∴A′C=2m,∵在Rt△A′B′C中,A′B′=2.5m,A′C=2m,∴B′C==1.5m,∴BB′=B′C﹣BC=1.5﹣0.7=0.8m.故選C.GAGGAGAGGAFFFFAFAF【點評】此題主要考查了勾股定理的應用,關鍵是掌握勾股定理:在任何一個直角三角形中,兩條直角邊長的平方之和一定等于斜邊長的平方.7.(2015春?羅田縣期中)在△ABC中,∠ACB=90°,AC=12,BC=5,AM=AC,BN=BC,則MN的長為()A.2 B.2.6 C.3 D.4【分析】根據勾股定理求出AB的長即可解答.【解答】解:在Rt△ABC中,根據勾股定理,AB==13,又∵AC=12,BC=5,AM=AC,BN=BC,∴AM=12,BN=5,∴MN=AM+BN﹣AB=12+5﹣13=4.GAGGAGAGGAFFFFAFAF故選D.【點評】本題綜合考查了勾股定理的應用,找到關系MN=AM+BN﹣AB是關鍵.8.(2016春?重慶校級期中)如圖,是2002年北京第24屆國際數學家大會會徽,由4個全等的直角三角形拼合而成,如果大正方形的面積是13,小正方形的面積是1,直角三角形的短直角邊為a,較長直角邊為b,那么(a+b)2的值為()A.13 B.19 C.25 D.169【分析】根據勾股定理,知兩條直角邊的平方等于斜邊的平方,此題中斜邊的平方即為大正方形的面積13,2ab即四個直角三角形的面積和,從而不難求得(a+b)2的值.【解答】解:(a+b)2=a2+b2+2abGAGGAGAGGAFFFFAFAF=大正方形的面積+四個直角三角形的面積和=13+(13﹣1)=25.故選C.【點評】考查了勾股定理的證明,注意完全平方公式的展開:(a+b)2=a2+b2+2ab,還要注意圖形的面積和a,b之間的關系.二.填空題(共5小題)9.(2016春?固始縣期中)將一根24cm的筷子,置于底面直徑為15cm,高8cm的圓柱形水杯中,如圖所示,設筷子露在杯子外面的長度為hcm,則h的取值范圍是7cm≤h≤16cm .【分析】如圖,當筷子的底端在A點時,筷子露在杯子外面的長度最短;當筷子的底端在D點時,筷子露在杯子外面的GAGGAGAGGAFFFFAFAF長度最長.然后分別利用已知條件根據勾股定理即可求出h 的取值范圍.【解答】解:如圖,當筷子的底端在D點時,筷子露在杯子外面的長度最長,∴h=24﹣8=16cm;當筷子的底端在A點時,筷子露在杯子外面的長度最短,在Rt△ABD中,AD=15,BD=8,∴AB==17,∴此時h=24﹣17=7cm,所以h的取值范圍是7cm≤h≤16cm.故答案為:7cm≤h≤16cm.【點評】本題考查了勾股定理的應用,求出h的值最大值與最小值是解題關鍵.10.(2015春?汕頭校級期中)如圖,一場暴雨過后,垂直于GAGGAGAGGAFFFFAFAF地面的一棵樹在距地面1米的點C處折斷,樹尖B恰好碰到米,則樹高為(1+)米.地面,經測量AB=2【解答】解:由題意得:在直角△ABC中,AC2+AB2=BC2,則12+22=BC2,∴BC=,∴則樹高為:(1+)m.故答案為:(1+).【點評】此題主要考查了勾股定理的應用,熟練利用勾股定理得出BC的長是解題關鍵.11.(2016春?高安市期中)已知Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,則Rt△ABC的面積等于24cm2.【分析】利用勾股定理列出關系式,再利用完全平方公式變GAGGAGAGGAFFFFAFAF形,將a+b與c的值代入求出ab的值,即可確定出直角三角形的面積.【解答】解:∵Rt△ABC中,∠C=90°,a+b=14cm,c=10cm,∴由勾股定理得:a2+b2=c2,即(a+b)2﹣2ab=c2=100,∴196﹣2ab=100,即ab=48,則Rt△ABC 的面積為ab=24(cm2).故答案為:24cm2.【點評】此題考查了勾股定理,熟練掌握勾股定理是解本題的關鍵.12.(2016春?嘉祥縣期中)觀察下列勾股數第一組:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1第二組:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1第三組:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1第四組:9=2×4+1,40=2×4×(4+1),41=2×4×(4+1)+1GAGGAGAGGAFFFFAFAF…觀察以上各組勾股數組成特點,第7組勾股數是15,112,113 (只填數,不填等式)【分析】通過觀察,得出規律:這類勾股數分別為2n+1,2n (n+1),2n(n+1)+1,由此可寫出第7組勾股數.【解答】解:∵第1組:3=2×1+1,4=2×1×(1+1),5=2×1×(1+1)+1,第2組:5=2×2+1,12=2×2×(2+1),13=2×2×(2+1)+1,第3組:7=2×3+1,24=2×3×(3+1),25=2×3×(3+1)+1,第4組:9=2×4+1,40=2×4×(4+1)41=2×4×(4+1)+1,∴第7組勾股數是2×7+1=15,2×7×(7+1)=112,2×7×(7+1)+1=113,即15,112,113.故答案為:15,112,113.【點評】此題考查的知識點是勾股數,屬于規律性題目,關鍵是通過觀察找出規律求解.13.(2009春?武昌區期中)觀察下列一組數:GAGGAGAGGAFFFFAFAF列舉:3、4、5,猜想:32=4+5;列舉:5、12、13,猜想:52=12+13;列舉:7、24、25,猜想:72=24+25;…列舉:13、b、c,猜想:132=b+c;請你分析上述數據的規律,結合相關知識求得b= 84 ,c= 85 .【分析】認真觀察三個數之間的關系:首先發現每一組的三個數為勾股數,第一個數為從3開始連續的奇數,第二、三個數為連續的自然數;進一步發現第一個數的平方是第二、三個數的和;最后得出第n組數為(2n+1),(),(),由此規律解決問題.【解答】解:在32=4+5中,4=,5=;在52=12+13中,12=,13=;…則在13、b、c中,b==84,c==85.【點評】認真觀察各式的特點,總結規律是解題的關鍵.GAGGAGAGGAFFFFAFAF三.解答題(共27小題)14.(2016春?黃岡期中)a,b,c為三角形ABC的三邊,且滿足a2+b2+c2+338=10a+24b+26c,試判別這個三角形的形狀.【分析】現對已知的式子變形,出現三個非負數的平方和等于0的形式,求出a、b、c,再驗證兩小邊的平方和是否等于最長邊的平方即可.【解答】解:由a2+b2+c2+338=10a+24b+26c,得:(a2﹣10a+25)+(b2﹣24b+144)+(c2﹣26c+169)=0,即:(a﹣5)2+(b﹣12)2+(c﹣13)2=0,由非負數的性質可得:,解得,∵52+122=169=132,即a2+b2=c2,∴∠C=90°,即三角形ABC為直角三角形.【點評】本題考查勾股定理的逆定理的應用、完全平方公式、非負數的性質.判斷三角形是否為直角三角形,已知三角形三邊的長,只要利用勾股定理的逆定理加以判斷即可.GAGGAGAGGAFFFFAFAF15.(2016秋?永登縣期中)如圖:四邊形ABCD中,AB=CB=,CD=,DA=1,且AB⊥CB于B.試求:(1)∠BAD的度數;(2)四邊形ABCD的面積.【分析】連接AC,則在直角△ABC中,已知AB,BC可以求AC,根據AC,AD,CD的長可以判定△ACD為直角三角形,(1)根據∠BAD=∠CAD+∠BAC,可以求解;(2)根據四邊形ABCD的面積為△ABC和△ACD的面積之和可以解題.【解答】解:(1)連接AC,∵AB⊥CB于B,∴∠B=90°,在△ABC中,∵∠B=90°,∴AB2+BC2=AC2,GAGGAGAGGAFFFFAFAF又∵AB=CB=,∴AC=2,∠BAC=∠BCA=45°,∵CD=,DA=1,∴CD2=5,DA2=1,AC2=4.∴AC2+DA2=CD2,由勾股定理的逆定理得:∠DAC=90°,∴∠BAD=∠BAC+∠DAC=45°+90°=135°;(2)∵∠DAC=90°,AB⊥CB于B,∴S△ABC =,S△DAC =,∵AB=CB=,DA=1,AC=2,∴S△ABC=1,S△DAC=1而S四邊形ABCD=S△ABC+S△DAC,∴S四邊形ABCD=2.【點評】本題考查了勾股定理在直角三角形中的運用,考查GAGGAGAGGAFFFFAFAF了根據勾股定理逆定理判定直角三角形,考查了直角三角形面積的計算,本題中求證△ACD是直角三角形是解題的關鍵.16.(2016春?鄒城市校級期中)如圖,小華準備在邊長為1的正方形網格中,作一個三邊長分別為4,5,的三角形,請你幫助小華作出來.【分析】直接利用網格結合勾股定理求出答案.【解答】解:如圖所示:△ABC即為所求.【點評】此題主要考查了勾股定理,正確借助網格求出是解題關鍵.17.(2015春?平南縣期中)如圖所示,在一次夏令營活動中,GAGGAGAGGAFFFFAFAF小明坐車從營地A點出發,沿北偏東60°方向走了100km 到達B點,然后再沿北偏西30°方向走了100km到達目的地C點,求出A、C兩點之間的距離.【分析】根據所走的方向可判斷出△ABC是直角三角形,根據勾股定理可求出解.【解答】解:∵AD∥BE∴∠ABE=∠DAB=60°∵∠CBE=30°∴∠ABC=180°﹣∠ABE﹣∠CBE=180°﹣60°﹣30°=90°,在Rt△ABC 中,∴==200,∴A、C兩點之間的距離為200km.【點評】本題考查勾股定理的應用,先確定是直角三角形后,根據各邊長,用勾股定理可求出AC的長,且求出∠DAC的度GAGGAGAGGAFFFFAFAF數,進而可求出點C在點A的什么方向上.18.(2015秋?新泰市期中)如圖,在氣象站臺A的正西方向320km的B處有一臺風中心,該臺風中心以每小時20km的速度沿北偏東60°的BD方向移動,在距離臺風中心200km內的地方都要受到其影響.(1)臺風中心在移動過程中,與氣象臺A的最短距離是多少?(2)臺風中心在移動過程中,氣象臺將受臺風的影響,求臺風影響氣象臺的時間會持續多長?【分析】(1)過A作AE⊥BD于E,線段AE的長即為臺風中心與氣象臺A的最短距離,由含30°角的直角三角形的性質即可得出結果;(2)根據題意得出線段CD就是氣象臺A受到臺風影響的路GAGGAGAGGAFFFFAFAF程,求出CD的長,即可得出結果.【解答】解:(1)過A作AE⊥BD于E,如圖1所示:∵臺風中心在BD上移動,∴AE的長即為氣象臺距離臺風中心的最短距離,在Rt△ABE中,∠ABE=90°﹣60°=30°,∴AE=AB=160,即臺風中心在移動過程中,與氣象臺A的最短距離是160km.(2)∵臺風中心以每小時20km的速度沿北偏東60°的BD 方向移動,在距離臺風中心200km內的地方都要受到其影響,∴線段CD就是氣象臺A受到臺風影響的路程,連接AC,如圖2所示:在Rt△ACE中,AC=200km,AE=160km,∴CE==120km,∵AC=AD,AE⊥CD,∴CE=ED=120km,∴CD=240km.∴臺風影響氣象臺的時間會持續240÷20=12(小時).GAGGAGAGGAFFFFAFAF【點評】本題考查了勾股定理在實際生活中的應用、垂徑定理、含30°角的直角三角形的性質等知識;熟練掌握垂徑定理和勾股定理,求出CD是解決問題(2)的關鍵.19.(2015春?陽東縣期中)如圖,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分別為AB、BC邊上的動點,點P從點A開始沿A?B方向運動,且速度為每秒1cm,點Q從點B 開始B→C方向運動,且速度為每秒2cm,它們同時出發;設出發的時間為t秒.GAGGAGAGGAFFFFAFAF(1)出發2秒后,求PQ的長;(2)從出發幾秒鐘后,△PQB能形成等腰三角形?(3)在運動過程中,直線PQ能否把原三角形周長分成相等的兩部分?若能夠,請求出運動時間;若不能夠,請說明理由.【分析】(1)我們求出BP、BQ的長,用勾股定理解決即可.(2)△PQB形成等腰三角形,即BP=BQ,我們可設時間為t,列出方程2t=8﹣1×t,解方程即得結果.(3)直線PQ把原三角形周長分成相等的兩部分,根據勾股定理可知AC=10cm,即三角形的周長為24cm,則有BP+BQ=12,即2t+(8﹣1×t)=12,解方程即可.【解答】解:(1)出發2秒后,AP=2,BQ=4,∴BP=8﹣2=6,PQ==2;(3分)(2)設時間為t,列方程得GAGGAGAGGAFFFFAFAF。
CBAD E F1、已知,如图:在平面直角坐标系中,O 为坐标原点,四边形OABC 是矩形,点A 、C 的坐标分别为A (10,0)、C (0,4),点D 是OA 的中点,点P 在BC 边上运动,当△ODP 是腰长为5的等腰三角形时,点P 的坐标为 ____________.2.如图,小红用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB 为8cm ,•长BC •为10cm .当小红折叠时,顶点D 落在BC 边上的点F 处(折痕为AE ).想一想,此时EC 有多长?•3、如图,EF 为正方形ABCD 的对角线,将∠A 沿DK 折叠,使它的顶点A 落在EF 上的G 点,则∠DKG=_______.4、以边长为2厘米的正三角形的高为边长作第二个正三角形,以第二个正三角形的高为边长作第三个正三角形,以此类推,则第十个正三角形的高是( )厘米A 、2×(22)10B 、2×(21)9 C 、2×(23)10 D 、2×(23)95.在△ABC 中,AB 边上的中线CD=3,AB=6,BC+AC=8,则△ABC 的面积为_____________.6.如图,直线l 上有三个正方形a ,b ,c ,若a ,c 的面积分别为5和11,则b 的面积为___________.7.如图所示,在边长为2的正三角形ABC 中,已知点P 是三角形内任意一点,则点P 到三角形的三边距离之和PD+PE+PF 等于多少?8.如图Rt△ABC中,AB=BC=4,D为BC的中点,在AC边上存在一点E,连接ED,EB,则△BDE周长的最小值为多少?9、如图所示,在一次夏令营活动中,小明从营地A点出发,沿北偏东60°方向走了到达B点,然后再沿北偏西30°方向走了500m到达目的地C点。
(1)求A、C两点之间的距离。
(2)确定目的地C在营地A的什么方向。
10.一辆装满货物的卡车,其外形高2.5米,宽1.6米,要开进厂门形状如图的某工厂,问这辆卡车能否通过该工厂的厂门?11.国家电力总公司为了改善农村用电电费过高的现状,目前正在全国各地农村进行电网改造,某地有四个村庄A、B、C、D,且正好位于一个正方形的四个顶点,现计划在四个村庄联合架设一条线路,他们设计了四种架设方案,如图实线部分.请你帮助计算一下,哪种架设方案最省电线.13、若直角三角形两直角边的比是3:4,斜边长是20,求此直角三角形的面积。
勾股定理难题作为中学数学中常见的工具定理之一,勾股定理在几何分析和数学证明中都发挥了重要的作用。
然而,虽然该定理简单易懂,但也存在一些难题需要深入思考和探究。
难题一:勾股定理证明勾股定理是一个重要的几何定理,其基本内容在高中数学教学中被广泛的传授,它表达的是一个直角三角形斜边的平方等于两个直角边的平方之和。
但是,在实际应用问题中,我们对勾股定理的理解往往仅仅满足于表面层次,而对于定理的证明,我们往往感到十分困难。
在数学中,证明是一项非常重要的任务。
如果可以证明某个定理,那么可以证明这个定理是真实有效的。
在勾股定理的证明中,我们需要运用的基本知识有数学分析,三角函数,纯数学运算等,其中还包括几何知识和直观图像等。
难题二:勾股定理的正确应用除了勾股定理本身的证明难题,正确应用勾股定理也是一个难题。
由于勾股定理的广泛应用,我们应该了解何时应该使用它,以及如何正确应用该定理。
在实际问题中,如果错误地应用勾股定理,将会导致问题解决的错误结果。
以一个典型例子来说,如果我们需要求一个飞机飞行的航迹,经常会遇到需要求解三角形的三个角度以及长度的问题,此时勾股定理就能够发挥作用,但是,如果我们将三角形直接代入公式计算,而没有首先检查它是否确实是一个具有直角的三角形,就会发生计算错误。
这就需要我们在应用时要仔细思考,避免使用不恰当的的定理和方法。
难题三:勾股定理的综合运用勾股定理的应用不仅仅局限于计算直角三角形的三个边长和三个角度等问题,还可以应用到平面分析、建筑设计和机械制造等范畴中。
在实际的工作中,我们需要将勾股定理与其他的工程和技术原理相结合使用,以便更好地解决问题。
例如,在建筑设计中,我们需要计算一个建筑物的倾斜角度,就需要有一定的勾股定理知识,以便能够应用该定理进行计算。
此外,还有汽车设计与制造、航空工程、电子科技等领域均需要使用勾股定理。
勾股定理虽然看似简单,但在实际运用中却有着诸多的难题。
我们希望大家能够在学习中注重探究定理的原理,深刻理解其本质;在实际应用中,注重思考,确保定理的正确应用,以达到最优的解决问题的效果。
1 如图:圆柱的高为10 cm,底面半径为
2 cm.在下底面的 A 点处有一只蚂蚁,它想吃到上底面上与 A 点相对的 B 点处,需要爬行的最短路程是多少
2 如图:长方体的高为
3 cm,底面是边长为 2 cm 的正方形 . 现有一小虫从顶点 A 出发,沿长方体侧面到达顶点 C 处,小虫走的路程最短为多少厘米
3、一只蚂蚁从棱长为 1 的正方体纸箱的 B’点沿纸箱爬到 D 点,那么它所行的最短路线的长是。
_____________
4、如图:小红用一张长方形纸片ABCD 进行折纸,已知该纸片宽AB 为 8cm ,长BC 为 10cm,当小红折叠时,顶点 D 落在 BC 边上的点 F 处,折痕为AE,想一想,此时EC有多长
5、如图:将一个边长分别为4、8 的长方形纸片ABCD折叠,使
点
C 与A 点重合,则EB的长是()。
A3 。
C√5 。
4 B 。
5 D
6、已知:如图,在△ABC中,∠C=90°,∠B=30°,AB的垂直平分线交BC于D,垂足为E,
BD=4cm
,求 AC 的长。
7、如图,有一个直角三角形纸片,两直角边AC=6, BC=8,现将直角边AC 沿直线AD 折叠,使其落在斜边AB 上,且与AE 重合,则CD 的长为。
8、如图,在矩形ABCD中,AB=6,将矩形ABCD折叠,使点 B 与点 D 重合,C落在 C’处,若 AE:BE=1:2,则折痕 EF的长为。
9、如图,已知,点 E 是正方形ABCD 的 BC 边上的点,现将△ DCE沿折痕DE 向上翻折,使DC 落在对角线DB 上,则 EB:CE是多少
10、如图, AD 是△ ABC的中线,角 ADC=45o,把△
ADC沿 AD 对折,点 C 落在 C’的位置,若 BC=2,则 BC’=_________。
′。