圆中的分类讨论
- 格式:ppt
- 大小:134.00 KB
- 文档页数:7
小专题(十六) 圆中的分类讨论(多解问题)一、由于点与圆的位置关系的多样性引起的不唯一性方法归纳:点与圆有三种位置关系:点在圆内、点在圆上、点在圆外,但圆上的点具有唯一性.所以,只考虑点在圆内和点在圆外两种情况.【例1】 已知点A 到⊙O 的最近距离和最远距离分别是3 cm 和9 cm ,求⊙O 的半径.1.点A 到圆的最近距离是a ,最远距离是b ,则该圆的直径是__________.二、由于圆的对称性引起的不唯一性方法归纳:平行弦位于圆心O 的同侧时,平行弦之间的距离等于弦心距之差;平行弦位于圆心O 的异侧时,平行弦之间的距离等于弦心距之和.【例2】 已知,⊙O 的直径是10 cm ,弦AB ∥CD ,AB =6 cm ,CD =8 cm ,求AB 与CD 之间的距离.2.如图,⊙O 的半径为17 cm ,弦AB ∥CD ,AB =30 cm ,CD =16 cm ,圆心O 位于AB ,CD 的上方,则AB 和CD 的距离为________.3.在半径为5 cm 的⊙O 中,如果弦CD =8 cm ,直径AB ⊥CD ,垂足为E ,那么AE 的长为________.4.如图,已知PA ,PB 是⊙O 的切线,A ,B 分别为切点,C 为⊙O 上不与A ,B 重合的另一点,若∠ACB =120°,则∠APB =________.5.在半径为1的⊙O 中,弦AB =2,AC =3,那么∠BAC =________.三、由于一弦对二弧而引起的不唯一性方法归纳:一弧对一圆心角和一圆周角,但一弦却对一圆心角和二圆周角,且同弦所对两圆周角互补.【例3】 弦AB 的长等于半径,则AB 所对的圆周角等于多少度?6.⊙O 为△ABC 的外接圆,∠BOC =100°,则∠A =________.四、由于动点问题而引发的直线与圆位置关系的不唯一性方法归纳:由于动点的移动而导致的图形整体运动,要抓住在图形变化时几种特殊静态位置的关键要素.从而分类型以静态位置的条件达到解题的目的.【例4】 如图,P 为正比例函数y =32x 图象上的一个动点,⊙P 的半径为3,设点P 的坐标为(x ,y).求⊙P 与直线x =2相切时点P 的坐标.7.(无锡期中)如图,已知直角梯形ABCD 中,AD ∥BC ,∠B =90°,AB =8 cm ,AD =24 cm ,BC =26 cm ,AB 为⊙O 的直径,动点P 从点A 开始沿AD 边向点D 以1 cm/s 的速度运动,动点Q 从点C 开始沿CB 边向点B 以3 cm/s 的速度运动.P ,Q 分别从点A ,C 同时出发,当其中一点到达终点时,另一点也随之停止运动,设运动时间为t s ,问:(1)t 为何值时,P ,Q 两点之间的距离为10 cm?(2)t 分别为何值时,直线PQ 与⊙O 相切?相离?相交?参考答案【例1】(1)如图1,当点A 在⊙O 内时,R =3+9=12(cm),所以⊙O 的半径是6 cm.(2)如图2,当点A 在⊙O 外时,R =9-3=6(cm),所以⊙O 的半径是3 cm.综上所述,⊙O 的半径是6 cm 或3 cm. 1.b -a 或b +a【例2】图1 图2如图1,当平行两弦位于圆心O 的同侧时.连接OB ,OD ,过点O 作OE ⊥CD ,OE 的延长线交AB 于F. ∵AB ∥CD ,OE ⊥CD ,∴OF ⊥AB.∵OE ⊥CD ,∴DE =12CD =4 cm.在Rt △OED 中,OE =OD 2-ED 2=52-42=3.同理在△OFB 中,OF =4. ∴EF =OF -OE =4-3=1;如图2,当平行两弦位于圆心O 的异侧时,EF =OE +OF =7.综上所述,AB 与CD 之间的距离是7 cm 或1 cm.2.7 cm3.2 cm 或8 cm4.60°5.75°或15°【例3】(1)当圆周角所对的弧是劣弧时,如图所示:连接OA ,OB ,AC ,BC ,得到△AOB 是等边三角形∴∠AOB =60°.∴∠ACB =12∠AOB =30°. (2)当圆周角所对的弧是优弧时,如图所示:易得∠AC′B =150°.综上所述,弦AB 所对的圆周角等于30°或150°. 6.50°或130°【例4】 过P 作直线x =2的垂线,垂足为A ,当点P 在直线x =2右侧时,AP =x -2=3,∴x =5.∴P(5,152).当点P 在x =2的左侧时,PA =2-x =3,x =-1, ∴P(-1,-32).∴当⊙P 与直线x =2相切时,P 点坐标为(5,152)或(-1,-32). 7.(1)AP =t ,BQ =26-3t.如图1:作PE ⊥BC 于E ,QE =26-4t.由勾股定理,得(26-4t)2+64=100,解得t =5或8.(2)当PQ 与⊙O 相切时,如图2,由相切,得PQ =AP +BQ =26-2t ,BE =26-4t ,PE =8,(26-4t)2+64=(26-2t)2,解得t =8或23.即t =8或23时,直线PQ 与⊙O 相切;当26÷3=263,当t =263时运动停止,0≤t <23或8<t ≤263,直线PQ 与⊙O 相交;23<t <8,直线PQ 与⊙O 相离.。
第8课时分类讨论题在数学中,我们常常需要根据研究对象性质的差异,分各种不同情况予以考查.这种分类思考的方法是一种重要的数学思想方法,同时也是一种解题策略.分类是按照数学对象的相同点和差异点,将数学对象区分为不同种类的思想方法,掌握分类的方法,领会其实质,对于加深基础知识的理解、提高分析问题、解决问题的能力是十分重要的.分类的原则:(1)分类中的每一部分是相互独立的;(2)一次分类按一个标准;(3)分类讨论应逐级进行.类型之一直线型中的分类讨论直线型中的分类讨论问题主要是对线段、三角形等问题的讨论,特别是等腰三角形问题和三角形高的问题尤为重要.1.(沈阳市)若等腰三角形中有一个角等于50°,则这个等腰三角形的顶角的度数为()A.50°B.80°C.65°或50° D.50°或80°2.(•乌鲁木齐)某等腰三角形的两条边长分别为3cm和6cm,则它的周长为()A.9cm B.12cm C.15cm D.12cm或15cm3. (江西省)如图,把矩形纸片ABCD沿EF折叠,使点B落在边AD上的点B′处,点A落在点A′处,(1)求证:B′E=BF;(2)设AE=a,AB=b, BF=c,试猜想a、b、c之间有何等量关系,并给予证明.类型之二 圆中的分类讨论圆既是轴对称图形,又是中心对称图形,在解决圆的有关问题时,特别是无图的情况下,有时会以偏盖全、造成漏解,其主要原因是对问题思考不周、思维定势、忽视了分类讨论等.4.(湖北罗田)在Rt △ABC 中,∠C =900,AC =3,BC =4.若以C 点为圆心, r 为半径 所作的圆与斜边AB 只有一个公共点,则r 的取值范围是___ __.5.(上海市)在△ABC 中,AB=AC=5,3cos 5B .如果圆O 的半径为10,且经过点B 、C ,那么线段AO 的长等于 .6.(•威海市)如图,点A ,B 在直线MN 上,AB =11厘米,⊙A ,⊙B 的半径均为1厘米.⊙A 以每秒2厘米的速度自左向右运动,与此同时,⊙B 的半径也不断增大,其半径r (厘米)与时间t (秒)之间的关系式为r =1+t (t≥0).(1)试写出点A ,B 之间的距离d (厘米)与时间t (秒)之间的函数表达式; (2)问点A 出发后多少秒两圆相切?类型之三方程、函数中的分类讨论方程、函数的分类讨论主要是通过变量之间的关系建立函数关系式,然后根据实际情况进行分类讨论或在有实际意义的情况下的讨论,在讨论问题的时候要注意特殊点的情况.7.(上海市)已知AB=2,AD=4,∠DAB=90°,AD∥BC(如图).E是射线BC上的动点(点E与点B不重合),M是线段DE的中点.(1)设BE=x,△ABM的面积为y,求y关于x的函数解析式,并写出函数的定义域;(2)如果以线段AB为直径的圆与以线段DE为直径的圆外切,求线段BE的长;(3)联结BD,交线段AM于点N,如果以A、N、D为顶点的三角形与△BME相似,求线段BE的长.8.(福州市)如图,以矩形OABC的顶点O为原点,OA所在的直线为x轴,OC所在的直线为y轴,建立平面直角坐标系.已知OA=3,OC=2,点E是AB的中点,在OA上取一点D,将△BDA沿BD翻折,使点A落在BC边上的点F处.(1)直接写出点E、F的坐标;(2)设顶点为F的抛物线交y轴正半轴...于点P,且以点E、F、P为顶点的三角形是等腰三角形,求该抛物线的解析式;(3)在x轴、y轴上是否分别存在点M、N,使得四边形MNFE的周长最小?如果存在,求出周长的最小值;如果不存在,请说明理由.参考答案1.【解析】由于已知角未指明是顶角还是底角,所以要分类讨论:(1)当50°角是顶角时,则(180°-50°)÷2=65°,所以另两角是65°、65°;(2)当50°角是底角时,则180°-50°×2=80°,所以顶角为80°。
课题:圆中的分类讨论问题一、明确目标:1、完整解决圆中一题两解的问题;2、掌握分类讨论问题解答的基本方法二、自主学习,认真准备:1、已知点P到。
0的最近距离为3cm,最远距离为13cm,则。
的半径为cm .2、A、B是。
0上的两点,旦匕A0B=136。
,C是。
0上不与A、B重合的任意一点,则ZACB的度数是.3、半径为1的圆中有一条弦,如果它的长为刀,那么这条弦所对的圆周角的度数等于o4、©0的半径r=5,直线1上有一点P,旦0P=5,则直线1与。
0的位置关系是o5、若相切两圆的半径为3和5,则圆心距d=三、展示交流:1、上述题目考查了那些知识点?2、在解答中应该注意什么问题?四、例题分析:思路指导:先独立思考,画出符合题意的图形,再进行解答1、已知横截面直径为100cm的圆形下水道,如果水面宽AB为80cin,求下水道中水的最大深度.点拨:由于的不确定而分类讨论2.已知半径为4和2龙的两圆相交,公共弦长为4,则两圆的圆心距为点拨:由于相交两圆圆心与公共弦的位置的不确定而分类讨论3、已知。
的直径AB = 2,过点A有两条弦AC=0, AD=/,求匕CAD的度数.O A MBA点拨:由于两弦与直径位置关系的不确定而分类讨论4、关于直线与圆的关系分类讨论:(1)如图,在平而直角坐标系中,OC 的直径AB=12,圆 心C 点的坐标为(-8, 0), OC 以每秒2个单位长度的速度从C 沿x 轴正半轴方向运动.当t 为何值时,CDC 与y 轴相切? v5、如图,点A, B 在直线MN 上,AB=11厘米,OA, (DB 的半径均为1厘米.OA 以每秒2厘米的速度自左向右运动,与此同时,OB 的半径也不断增大,其半径r (厘米)与时间t (秒)之间的关系式为r = l + t (tNO ).(1)试写出点A, B 之间的距离d (厘米)与时间t (秒)之间的函数表达式;(2)问点A 出发后多少秒两圆四、 课堂小结:五、 达标检测:1、 若两圆内切,一圆半径为8,圆心距d 二3,则另一圆的半径r=2、 A ABC 是。
专题14 圆中的两解及多解问题(分类讨论思想)归类集训(解析版)类型一讨论弦上某点或端点的位置1.在半径为10的⊙O中,弦AB的长为16,点P在弦AB上,且OP的长为8,AP长为 .思路引领:作OC⊥AB于点C,根据垂径定理求出OC的长,根据勾股定理求出PC的长,分当点P在线段AC上和当点P在线段BC上两种情况计算即可.解:作OC⊥AB于点C,∴AC=12AB=8,由勾股定理得,OC=OA2―AC2=6,∴PC=OP2―OC2=27,当点P在线段AC上时,AP=AC﹣PC=8﹣27,当点P在线段BC上时,AP=8+27,故答案为:8﹣27或8+27.总结提升:本题考查的是垂径定理的应用和勾股定理的应用,正确作出辅助线构造直角三角形、运用分情况讨论思想是解题的关键.2.(2021•无棣县模拟)已知⊙O的直径CD=10cm,AB是⊙O的弦,AB⊥CD,垂足为M,且AB=8cm,则AC的长为( )A.25cm B.43cm C.25cm或45cm D.23cm或43cm思路引领:分两种情况,根据题意画出图形,先根据垂径定理求出AM的长,连接OA,由勾股定理求出OM的长,进而可得出结论.解:连接AC,AO,∵⊙O的直径CD=10cm,AB⊥CD,AB=8cm,∴AM=12AB=12×8=4(cm),OD=OC=5(cm),当C点位置如图1所示时,∵OA=5cm,AM=4cm,CD⊥AB,∴OM=OA2―AM2=52―42=3(cm),∴CM=OC+OM=5+3=8(cm),∴AC=AM2+CM2=42+82=45(cm);当C点位置如图2所示时,同理可得:OM=3cm,∵OC=5cm,∴MC=5﹣3=2(cm),在Rt△AMC中,AC=AM2+CM2=42+22=25(cm);综上所述,AC的长为45cm或25cm,故选:C.总结提升:本题考查的是垂径定理和勾股定理等知识,根据题意画出图形,利用垂径定理和勾股定理求解是解答此题的关键.3.(2020•黑龙江)在半径为5的⊙O中,弦AB垂直于弦CD,垂足为P,AB=CD=4,则S△ACP = .思路引领:如图1,作OE⊥AB于E,OF⊥CD于F,连接OD、OB,如图,根据垂径定理得到AE=BE=12AB=2,DF=CF=12CD=2,根据勾股定理在Rt△OBE中计算出OE=1,同理可得OF=1,接着证明四边形OEPF为正方形,于是得到PA=PC=1,根据三角形面积公式求得即可.解:作OE⊥AB于E,OF⊥CD于F,连接OD、OB,则AE=BE=12AB=2,DF=CF=12CD=2,如图1,在Rt△OBE中,∵OB=5,BE=2,∴OE=OB2―BE2=1,同理可得OF=1,∵AB⊥CD,∴四边形OEPF为矩形,∴PE=PF=1,∴PA=PC=1,∴S△APC=12×1×1=12;如图2,同理:S△APC=12×3×3=92;如图3,同理:S△APC=12×1×3=32;故答案为:12或32或92.总结提升:本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.类型二圆心在两弦之间或者两弦之外4.(2021•商河县校级模拟)一下水管道的截面如图所示.已知排水管的直径为100cm,下雨前水面宽为60cm.一场大雨过后,水面宽为80cm,求水面上升多少?思路引领:分两种情形分别求解即可解决问题.解:作半径OD⊥AB交AB于C,连接OB,如图所示,由垂径定理得:BC=12AB=30cm,在Rt△OBC中,OC=502―302=40cm,当水位上升到圆心以下,水面宽80cm时,则OC′=502―402=30cm,水面上升的高度为:40﹣30=10cm;当水位上升到圆心以上时,水面上升的高度为:40+30=70cm,综上可得,水面上升的高度为10cm或70cm.总结提升:本题考查的是垂径定理的应用,掌握垂径定理、灵活运用分情况讨论思想是解题的关键.5.(1)半径为1的圆中有一条弦,如果它的长为3,那么这条弦所对的圆周角的度数等于 ;(2)在半径为1的⊙O中,弦AB,AC的长分别为3和2,则∠BAC的度数是 ;(3)已知圆内接△ABC中.AB=AC,圆心O到BC的距离为3cm,圆的半径为7cm,求腰长AB.思路引领:(1)根据垂径定理求得AD的长,再根据三角形函数可得到∠AOD的度数,再根据圆周角定理得到∠ACB的度数,根据圆内接四边形的对角互补即可求得∠AEB的度数;(2)连接OA,过O作OE⊥AB于E,OF⊥AC于F,根据垂径定理求出AE、FA值,根据解直角三角形的知识求出∠OAB和∠OAC,然后分两种情况求出∠BAC即可;(3)可根据勾股定理先求得BD的值,再根据勾股定理可求得AB的值.注意:圆心在内接三角形内时,AD=10cm;圆心在内接三角形外时,AD=4cm.解:(1)如图1,过O作OD⊥AB,则AD=12AB=12×3=32.∵OA=1,∴sin∠AOD=ADOA=32,∠AOD=60°.∵∠AOD=12∠AOB=60°,∠ACB=12∠AOB,∴∠ACB=∠AOD=60°.又∵四边形AEBC是圆内接四边形,∴∠AEB=180°﹣∠ACB=180°﹣60°=120°.故这条弦所对的圆周角的度数等于60°或120度.故答案为:60°或120度.(2)解:有两种情况:①如图2所示:连接OA,过O作OE⊥AB于E,OF⊥AC于F,∴∠OEA=∠OFA=90°,由垂径定理得:AE=BE=32,AF=CF=32,cos∠OAE=AEOA=32,cos∠OAF=AFOA=22,∴∠OAE=30°,∠OAF=45°,∴∠BAC=30°+45°=75°;②如图3所示:连接OA,过O作OE⊥AB于E,OF⊥AC于F,∴∠OEA=∠OFA=90°,由垂径定理得:AE=BE=32,AF=CF=22,cos∠OAE=AEOA=32,cos∠OAF=AFOA=22,∴∠OAE=30°,∠OAF=45°,∴∠BAC=45°﹣30°=15°,故答案为:75°或15°;(3)分圆心在内接三角形内和在内接三角形外两种情况讨论,如图4,假若∠A是锐角,△ABC是锐角三角形,连接OB,作AD⊥BC于D,连接OD,∵AB=AC,∴AD是BC的中垂线,∴OD也是BC的中垂线,∴A、O、D三点共线,∵OD=3cm,OB=7cm,∴AD=10cm,∴BD=OB2―OD2=210cm,∵OD⊥BC,∴BD=CD,∵AB=AC,∴AD⊥BC,∴AB=AD2+BD2=235cm;如图5,若∠A是钝角,则△ABC是钝角三角形,和图4解法一样,只是AD=7﹣3=4cm,∴AB=AD2+BD2=214cm,综上可得腰长AB=235cm或214cm.总结提升:本题主要考查了垂径定理和勾股定理,注意分圆心在内接三角形内和在内接三角形外两种情况讨论,解题的关键是根据题意作出图形,求出符合条件的所有情况.类型三讨论点在优弧上或劣弧上6.(2022秋•双城区期末)已知⊙O的半径为2,弦AB的长为23,则弦AB的中点到这条弦所对的弧的中点的距离为 .思路引领:由垂径定理得出AC,再由勾股定理得出OC,从而得出CD和CE的长.解:如图,∵C是弦AB的中点,AB=23,∴OC⊥AB,AC=12AB=3,∴AD=BD,AE=BE,在Rt△AOC中,OC=22―(3)2=1,∴CD=2﹣1=1cm,CE=2+1=3.故答案为:1或3.总结提升:本题考查了垂径定理和勾股定理,熟练掌握垂径定理和勾股定理是解题的关键.8.(2021秋•凉州区校级期末)如图,AB、AC分别与⊙O相切于点B、C,∠A=50°,点P是圆上异于B、C的一动点,则∠BPC的度数是 .思路引领:此题分为两种情况,如图p点的位置有两个,所以∠BPC可能是锐角,也有可能是钝角,分别连接O、C;O、B;B、P1;B、P2;C、P1;C、P2各点.(1)当∠BPC为锐角,也就是∠BP1C时,根据AB,AC与⊙O相切,结合已知条件,在△ABC中,即可得出圆心角∠COB的度数,根据同弧所对的圆周角为圆心角的一半,即可得出∠BP1C的度数;(2)如果当∠BPC为钝角,也就是∠BP2C时,根据⊙O的内接四边形的性质,即可得出∠BP2C的度数.解:分别连接O、C;O、B;B、P1;B、P2;C、P1;C、P2各点,(1)当∠BPC为锐角,也就是∠BP1C时:∵AB,AC与⊙O相切于点B,C两点∴OC⊥AC,OB⊥AB,∵∠A=50°,∴在△ABC中,∠COB=130°,∵在⊙O中,∠BP1C为圆周角,∴∠BP1C=65°,(2)如果当∠BPC为钝角,也就是∠BP2C时∵四边形BP1CP2为⊙O的内接四边形,∵∠BP1C=65°,∴∠BP2C=115°故答案为:65°或115°.总结提升:本题考查圆的切线性质,在解题过程中还要注意对圆的内接四边形、圆周角、圆心角的有关性质的综合应用.类型四弦所对的圆周角7.(2018秋•泗阳县期中)若圆的一条弦把圆分成度数的比为1:3的两条弧,则该弦所对的圆周角等于 .思路引领:圆的一条弦把圆分成度数之比为1:3的两条弧,则所分的劣弧的度数是90°,当圆周角的顶点在优弧上时,这条弦所对的圆周角等于45°,当这条弦所对的圆周角的顶点在劣弧上时,这条弦所对的圆周角等于135°.解:如图,弦AB将⊙O分成了度数比为1:3两条弧.连接OA、OB;则∠AOB=90°;①当所求的圆周角顶点位于D点时,这条弦所对的圆周角∠ADB=12∠AOB=45°;②当所求的圆周角顶点位于C点时,这条弦所对的圆周角∠ACB=180°﹣∠ADB=135°.故答案为:45°,135°.总结提升:本题考查的是圆心角、弧、弦的关系及圆周角定理,在解答此类问题时要注意是在“同圆或等圆中”才适用,这是此类问题的易错点.9.(2020秋•溧阳市期末)已知△ABC是半径为2的圆内接三角形,若BC=23,则∠A的度数为( )A.30°B.60°C.120°D.60°或120°思路引领:首先根据题意画出图形,然后由圆周角定理与含30°角的直角三角形的性质,求得答案.解:如图,作直径BD,连接CD,则∠BCD=90°,∵△ABC是半径为2的圆内接三角形,BC=23,∴BD=4,∴CD=BD2―BC2=2,∴CD=12 BD,∴∠CBD=30°,∴∠A=∠D=60°,∴∠A′=180°﹣∠A=120°,∴∠A的度数为:60°或120°.故选:D.总结提升:此题考查了圆周角定理与含30°角的直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.类型五讨论圆内接三角形的形状10.(2019•绥化)半径为5的⊙O是锐角三角形ABC的外接圆,AB=AC,连接OB、OC,延长CO交弦AB 于点D.若△OBD是直角三角形,则弦BC的长为 .思路引领:如图1,当∠ODB=90°时,推出△ABC是等边三角形,解直角三角形得到BC=AB=53,如图2,当∠DOB=90°,推出△BOC是等腰直角三角形,于是得到BC=2OB=52.解:如图1,当∠ODB=90°时,即CD⊥AB,∴AD=BD,∴AC=BC,∵AB=AC,∴△ABC是等边三角形,∴∠DBO=30°,∵OB=5,∴BD =32OB =532,∴BC =AB =53,如图2,当∠DOB =90°,∴∠BOC =90°,∴△BOC 是等腰直角三角形,∴BC =2OB =52,综上所述:若△OBD 是直角三角形,则弦BC 的长为53或52,故答案为:53或52.点睛:本题考查了三角形的外接圆与外心,等边三角形的判定和性质,等腰直角三角形的性质,正确的作出图形是解题的关键.101.已知等腰△ABC 的三个顶点都在半径为5的⊙O 上,如果底边BC 的长为8,求BC 边上的高.思路引领:从圆心向BC 引垂线,交点为D ,则根据垂径定理和勾股定理可求出,OD 的长,再根据圆心在三角形内部和外部两种情况讨论.解:连接AO 并延长交BC 于D 点,∵AB =AC ,∴AB =AC ,根据垂径定理得AD ⊥BC ,则BD =4,根据勾股定理得OD =3①圆心在三角形内部时,三角形底边BC 上的高=5+3=8;②圆心在三角形外部时,三角形底边BC 上的高=5﹣3=2.所以BC 边上的高是8或2.总结提升:本题综合考查了垂径定理和勾股定理在圆中的应用,因三角形与圆心的位置不明确,注意分情况讨论.类型六讨论点与圆的位置关系12.(2020•南通模拟)若⊙O所在平面内一点P到⊙O上的点的最大距离为a,最小距离为b(a>b),则此圆的半径为 .思路引领:点P可能在圆内,也可能在圆外;当点P在圆内时,直径为最大距离与最小距离的和;当点P在圆外时,直径为最大距离与最小距离的差;再分别计算半径.解:若⊙O所在平面内一点P到⊙O上的点的最大距离为a,最小距离为b,若这个点在圆的内部或在圆上时,圆的直径为a+b,因而半径为a+b 2;当此点在圆外时,圆的直径是a﹣b,因而半径是a―b 2;故答案为:a+b2或a―b2.总结提升:本题考查了点与圆的位置关系,培养学生分类的思想及对点P到圆上最大距离、最小距离的认识.13.已知点P到⊙O的最长距离为6cm,最短距离为2cm.试求⊙O的半径长.思路引领:分两种情况进行讨论:①点P在圆内;②点P在圆外,进行计算即可解:①当P在⊙O外时,如图,∵P当⊙O的最长距离是为6cm,最短距离为2cm,∴PB=6cm,PA=2cm,∴AB=4cm,∴⊙O的半径为2cm';当P在⊙O内时,,此时AB=8cm,⊙O的半径为4cm.即⊙O的半径长为2cm或4cm.解题秘籍:本题考查了点和圆的位置关系,分类讨论是解此题的关键.类型七讨论直线与圆的位置关系14.(2021•崇明区二模)已知同一平面内有⊙O和点A与点B,如果⊙O的半径为3cm,线段OA=5cm,线段OB=3cm,那么直线AB与⊙O的位置关系为( )A.相离B.相交C.相切D.相交或相切思路引领:根据点与圆的位置关系的判定方法进行判断.解:∵⊙O的半径为3cm,线段OA=5cm,线段OB=3cm,即点A到圆心O的距离大于圆的半径,点B到圆心O的距离等于圆的半径,∴点A在⊙O外.点B在⊙O上,∴直线AB与⊙O的位置关系为相交或相切,故选:D.总结提升:本题考查了直线与圆的位置关系,正确的理解题意是解题的关键.15.(2021秋•信都区校级月考)在Rt△ABC中,∠ACB=90°,AC=6,BC=8,若以点C为圆心,r为半径的圆与边AB所在直线相离,则r的取值范围为 ;若⊙C与AB边只有一个公共点,则r的取值范围为 .思路引领:如图,作CH⊥AB于H.利用勾股定理求出AB,再利用面积法求出CH即可判断.解:如图,作CH⊥AB于H.在Rt△ABC中,∵∠ACB=90°,BC=8,AC=6,∴AB=AC2+BC2=62+82=10,∵S△ABC=12•AC•BC=12•AB•CH,∴CH=24 5,∵以点C为圆心,r为半径的圆与边AB所在直线相离,∴r的取值范围为r<24 5,∵⊙C与AB边只有一个公共点,∴r的取值范围为6<r≤8或r=24 5,故答案为:r<245,6<r≤8或r=245.总结提升:本题考查直线与圆的位置关系,解直角三角形等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16.(衢州中考)如图,已知直线l的解析式是y=43x﹣4,并且与x轴、y轴分别交于A、B两点.一个半径为1.5的⊙C,圆心C从点(0,1.5)开始以每秒0.5个单位的速度沿着y轴向下运动,当⊙C与直线l 相切时,则该圆运动的时间为( )A.3秒或6秒B.6秒C.3秒D.6秒或16秒思路引领:由y=43x﹣4可以求出与x轴、y轴的交点A(3,0)、B(0,﹣4)坐标,再根据勾股定理可得AB=5,当C在B上方,根据直线与圆相切时知道C到AB的距离等于1.5,然后利用三角函数可得到CB,最后即可得到C运动的距离和运动的时间;同理当C在B下方,利用题意的方法也可以求出C 运动的距离和运动的时间.解:如图,∵x=0时,y=﹣4,y=0时,x=3,∴A(3,0)、B(0,﹣4),∴AB=5,当C在B上方,直线与圆相切时,连接CD,则C到AB的距离等于1.5,∴CB=1.5÷sin∠ABC=1.5×53=2.5;∴C运动的距离为:1.5+(4﹣2.5)=3,运动的时间为:3÷0.5=6;同理当C在B下方,直线与圆相切时,连接CD,则C运动的距离为:1.5+(4+2.5)=8,运动的时间为:8÷0.5=16.故选:D.总结提升:此题首先注意分类讨论,利用了切线的性质和三角函数等知识解决问题.17.(2018•浦东新区二模)已知l1∥l2,l1、l2之间的距离是3cm,圆心O到直线l1的距离是1cm,如果圆O 与直线l1、l2有三个公共点,那么圆O的半径为 cm.思路引领:根据题意可以画出相应的图形,从而可以解答本题.解:如下图所示,设圆的半径为r如图一所示,r﹣1=3,得r=4,如图二所示,r+1=3,得r=2,故答案为:2或4.总结提升:本题考查直线和圆的位置关系,解答本题的关键是明确题意,画出相应的图形,利用数形结合的思想解答.18.(2021秋•新荣区月考)综合与实践问题情境:数学活动课上,老师出示了一个直角三角板和量角器,把量角器的中心O 点放置在AC 的中点上,DE 与直角边AC 重合,如图1所示,∠C =90°,BC =6,AC =8,OD =3,量角器交AB 于点G ,F ,现将量角器DE 绕点C 旋转,如图2所示.(1)点C 到边AB 的距离为 245 .(2)在旋转过程中,求点O 到AB 距离的最小值.(3)若半圆O 与Rt △ABC 的直角边相切,设切点为K ,求BK 的长.思路引领:(1)如图1,过点C 作CH ⊥AB 于点H ,利用勾股定理求得AB ,再利用AB •CH =AC •BC ,即可求得答案.(2)当CD ⊥AB 时,点O 到AB 的距离最小,再由OH =CH ﹣OC ,即可求得答案.(3)分两种情况:①当半圆O 与BC 相切时,如图2,设切点为K ,连接OK ,运用勾股定理即可求得答案;②当半圆O 与AC 相切时,如图3,设切点为K ,连接OK ,运用勾股定理求得CK ,再利用勾股定理即可求得BK .解:(1)如图1,过点C 作CH ⊥AB 于点H ,∵∠ACB =90°,BC =6,AC =8,∴AB =AC 2+BC 2=62+82=10,∵CH ⊥AB ,∴AB •CH =AC •BC ,∴CH =AC ⋅BC AB=6×810=245,即点C 到边AB 的距离为245,故答案为:245.(2)∵O 为AC 的中点,∴OC =12AC =12×8=4,当CD ⊥AB 时,点O 到AB 的距离最小,∴OH =CH ﹣OC =245―4=45,∴点O 到AB 距离的最小值为45.(3)①当半圆O 与BC 相切时,如图2,设切点为K ,连接OK ,∴∠OKC =90°,在Rt △OCK 中,OK =3,OC =4,∴CK =OC 2―OK 2=42―32=7,∴BK =BC ﹣CK =6―7;②当半圆O 与AC 相切时,如图3,设切点为K ,连接OK ,∴∠OKC =90°,在Rt △OCK 中,OK =3,OC =4,∴CK =OC 2―OK 2=42―32=7,在Rt △BCK 中,BK =BC 2+CK 2=62+(7)2=43;综上所述,BK 的长为7或43.解题秘籍:本题是几何综合题,考查了圆的性质,切线的性质,旋转变换的性质,勾股定理,三角形面积,解题关键是熟练掌握旋转变换的性质等相关知识,运用分类讨论思想解决问题.。
圆中的分类讨论由于圆中的点、线在圆中的位置分布可能有多种情况,经常会导致其答案的不唯一性。
如:点与圆的位置关系,点可能在圆内,也可能在圆外;两条弦的位置关系,可能在某一条直径的同侧,也可能在直径的异侧;圆与圆相切,可能外切,也可能内切,等等。
因此,求解圆的有关问题时,要注意分类讨论思想。
一、点与圆的位置关系不唯一性例1.若所在⊙O所在平面内一点P到⊙O上的点的最大距离为a,最小距离为b(a>b),则此圆的半径为()。
(A)(B)(C)或(D)a+b或a-b 分析:P可能在圆内,也可能在圆外。
图1—1 图1—2⑴P在圆内时。
如图1—1。
连接O、P所在的直线交⊙O于A、B。
则PA=a,PB=b 直径AB=PA+PB=a+b,半径OA=OB=AB=(a+b)⑵P在圆外时。
如图1—2。
此时直径AB=PA-PB=a-b,半径OA=OB=AB=(a-b)由⑴⑵可知,应选(C)。
二、弦与弦的位置关系不唯一性例2.⊙O的半径为5cm,弦AB∥CD,AB=6cm,CD=8cm,则AB与CD之间的距离是()。
(A)7cm (B)8cm (C)7cm或1cm (D1cm分析:弦AB与CD可能在圆心的同侧,也可能在圆心的异侧。
图2—1 图2—2⑴弦AB与CD在圆心的同侧。
如图2—1。
过O作弦AB的垂线,交AB于M,交CD于N。
连接OB,OD。
∵AB∥CD,OM⊥AB,ON⊥CD由垂径定理,BM=AB=3cm,DN=CD=4cm,又OB=OD=5cm 在Rt△BMO中,OM==4cm,同理ON=3cm∴MN= OM-ON=4-3=1 cm⑵弦AB与CD在圆心的异侧。
如图2—2。
此时,MN=OM+ON=4+3=7cm 故选(C)。
例3.如图,已知AB是⊙O的直径,AC是⊙O的弦,AB=2,AC=,在图中画出弦AD,使AD等于1,并求出∠CAD的度数。
分析:弦AC与弦AD可能在直径AB的同侧,可能在直径AB的异侧。
⑴弦AC与弦AD在直径AB的同侧。
龙源期刊网
例析与圆有关的分类讨论
作者:曹经富
来源:《数理化学习·初中版》2013年第09期
在近几年的各类考试中,分类讨论思想方法深受命题者的青睐与关注.分类讨论是根据数
学对象本质属性的相同点与不同点,将其分成几个不同种类的一种数学思想.它能训练人的思
维条理性和严密性.实质上,分类讨论是“化整为零,各个击破,再积零为整”的数学策略,而圆作为初中阶段最核心最重要的内容,越来越被作为呈现知识、能力和思想的载体.为此,让我
们结合有关试题,一同的感受圆中的分类讨论思想,体验它的魅力.
一、与圆有关的点
点评:解决动态问题的关键是动中化静,整体地把握两圆之间的位置与相关数量之间关系相互转化,寻找出变量关系式,抓住运动变化过程中暂时静止的某一瞬间,运用数学分类讨论思想进行操作与分析,便会发现解题的思路、方法.
[江西省安福县城关中学(343200)]。
例析分类讨论思想在圆中的应用由于圆既是轴对称图形,又是中心对称图形;既具有对称任意性,又具有旋转不变性,因此往往给解题带来一定的复杂性.为了避免在求解与圆有关的问题时出现漏解,本文将分类讨论思想在圆中的应用作相关归纳与分析,供同学们学习时参考.一、点与圆的位置关系不唯一性例1 已知点P 是⊙O 外一点,PA ,PB 是⊙O 的两条切线,切点分别为A ,B ,点C 是⊙O 上的任意一点(不与A ,B 重合).若∠APB=50°,求∠ACB 的度数.分析 解题时若对点C 位置理解不透,容易出现漏解的情况,须注意针对分点C 在优 弧与劣弧两种情况分类讨论.解析 如图1,连结OA 、OB ,∵P A ,PB 是⊙O 的两条切线,∴∠PAO=∠PBO=90°.∵∠APB=50°。
∴在四边形PA OB 中,∠AOB=360°一∠PA O 一∠APB 一∠PBO=130°.①若点C 在优弧AB 上,则∠ACB=12∠ AOB=65°; ②若点C 在劣弧AB 上,则∠ACB=12×(360°-130 °)=115°. ∴∠ACB 的度数为65°或115°.变式 已知点P 是⊙O 外一点,PA ,PB 是⊙O 的两条切线,切点分别为A ,B ,点C 是⊙O 上的任意一点(不与A ,B 重合).若∠APB=n °,求∠A CB 的度数.二、弦与弦的位置关系不唯一性例2 在半径为1的⊙O 中,弦BAC 的度数.分析 此题主要考查的是垂径定理和勾股定理,初学者多数只会做出一个解,要么求得15°,要么求得75°.实际上应全面考虑两弦与圆心的位置,分弦AB 与CD 在圆心O 的两侧与同侧两种情况讨论.解析 如图2,分别作O D ⊥AB ,O E ⊥A C ,垂足分别是D 、E .∵OD ⊥AB ,OE ⊥A C ,∴AD=BD=2,AE=BE ,∴cos ∠DAO=AD AOcos ∠AEO = AE AO =2,∴∠DA O=45°,∠AEO=30°.当AB 与CD 在圆心O 的两侧时,∠BA C=∠BAO+∠CAO=75°;当AB 与CD 在圆心O 的同侧时,∠BA C=∠BAO-∠CAO=15°,∴∠BAC 的度数为15°或75°.变式 如图3,已知AB 是⊙O 的直径,AB=2,弦在图中画出弦AD ,使AD=1,并求∠CAD 的度数.三、弦与它所对圆周角的不唯一性例3 圆的一条弦长等于它的半径,求这条弦所对的圆周角的度数.分析 多数学生只是求出30。
分类讨论思想在圆中的应用分类讨论思想是解决数学问题时经常用到的一种数学思想.圆中有大量的问题要进行分类讨论,解决这类问题时要先根据点和圆、直线和圆、圆和圆的位置关系,巧妙地做出符合题意的各种图形,然后对各种图形逐一讨论.现举例说明解决圆中问题的分类方法.一、点和圆的位置关系例1 点P 到⊙O 的最大距离为acm,最小距离为bcm (a >b ),则⊙O 的半径为 cm. 析解:在这里点P 与⊙O 的位置关系有两种情形:①点P 在⊙O 外,如图1,半径r=);(2)(21cm ba PA PB -=- ②点P 在⊙O 内,如图2,半径r=).(2)(21cm ba PB PA +=+ 图2图1例2已知O 是△ABC 的外心,若∠C=α,则∠AOB 的度数为 .析解:这里点C 在⊙O 上的位置分为两种情形:①点C 在优弧上,如图3,此时 ∠AOB=2α;②点C 在劣弧上,如图4,此时∠AOB=3600-2α.图4图3二、直线(线段)和圆的位置关系例3 已知⊙O 的直径为6cm ,P 为直线l 上一点,OP=3cm ,则直线l 与⊙O 的位置关系是 .图6图5LP析解:大部分同学填的答案是相切.这里应注意,OP 指的是两点间的距离,而不是点到直线的距离,所以应考虑两种情况:如图5,是相交.如图6是相切.所以正确答案应是相交或相切.例4 已知OA 、OB 是⊙O 的半径且互相垂直,延长OB 到点C ,使BC=OB ,CD 是⊙O 的切线,D 为切点,则∠OAD 的度数是 .图8图7AOBCDABC DO析解:从圆外一点可以引圆的两条切线,如图7,因为在R t △OCD 中,OD =OC 21,所以∠C=300,∠COD=600.又因为OA=OD ,所以∠OAD=.75)30180(21000=-⨯如图8,∠AOD=900+600=1500,又因为OA=OD ,所以∠OAD=.15)150180(21000=-⨯ 三、圆和圆的位置关系例5 已知⊙O 1与⊙O 2相切,且⊙O 1的半径为6cm ,两圆的圆心距为8cm ,则⊙O 2的半径为 cm.析解:两圆相切分为内切和外切.①当⊙O 1与⊙O 2外切时,如图9,⊙O 2的半径为r 2=8-6=2(cm);②当⊙O 1与⊙O 2内切时,如图10,⊙O 2的半径为r 2=8+6=14(cm).图10图9A例6如图,点A ,B 在直线MN 上,AB =11厘米,⊙A ,⊙B 的半径均为1厘米.⊙A 以每秒2厘米的速度自左向右运动,与此同时,⊙B 的半径也不断增大,其半径r (厘米)与时间t (秒)之间的关系式为r =1+t (t ≥0).(1)试写出点A ,B 之间的距离d与时间t (秒)之间的函数表达式;(2)问点A 出发后多少秒两圆相切?解析:(1)当0≤t ≤5.5时,函数表达式为d =11-2t ;当t >5.5时,函数表达式为d =2t -11. (2)两圆相切可分为如下四种情况:①当两圆第一次外切,由题意,可得11-2t =1+1+t ,t =3; ②当两圆第一次内切,由题意,可得11-2t =1+t -1,t =311; ③当两圆第二次内切,由题意,可得2t -11=1+t -1,t =11; ④当两圆第二次外切,由题意,可得2t -11=1+t +1,t =13. 所以,点A 出发后3秒、311秒、11秒、13秒两圆相切.N。