10-4-1第一讲 数字图像处理技术
- 格式:ppt
- 大小:2.86 MB
- 文档页数:18
第四章数字图像处理第一节数字图像技术理论基础1、像素、分辨率、图像大小与文件格式像素简单来说,“像素”(pixel)是构成数字图像的最小单位。
我们近距离观察一面玻璃马赛克拼图(图4-1-1),会发现拼图是由一块块单一颜色的玻璃马赛克组成,图案似乎显得比较粗糙;但是当我们离开一段距离再观察,会发现原本粗糙的图案变得细密,组成了精美的画面。
图4-1-1 玻璃马赛克拼图数字图像中的每一个像素就像拼图中的一块玻璃马赛克,数字图像就是由这样的大量像素所组成的。
通常数字图像中每一个像素都很小,距离很近,每厘米长度上排列着几十个甚至上百个像素,超过了我们眼睛的分辨能力,以至于我们看不出这是分立的色块,而认为是连续的图像。
时至今日,“像素”仍然是衡量数码图像质量最重要的标准之一,尤其是在我们选购数码相机时,目前,主流的数码相机已经超过了一千万像素。
分辨率谈到分辨率,往往是和输出设备联系到一起的。
图像的分辨率(resolution)指的是数码图像每单位长度内所含的“像素”(pixel)数量,像素越多,图像就越细腻;输出设备的分辨率,是指每单位长度内所能表现的“点”(dots)数,点数越高,表现的图像就越清晰。
这个领域内仍习惯上使用“英寸”(inch)作为长度单位,因此分辨率的单位一般用每英寸所拥有的像素数量(pixel per inch, ppi或者dots per inch, dpi)。
图像的分辨率需要和设备的输出分辨率相匹配。
当图像的分辨率低于设备的输出分辨率时,输出的图像较为粗糙。
而当图像的分辨率高于设备的最高输出分辨率时,就需要将多余的像素进行合并输出,并不会提高输出效果,甚至会出现“摩尔纹”影响效果。
不同应用对分辨率的需求也不相同,高质量的照片、精美杂志要求图像分辨率高于300ppi,而海报使用72ppi甚至更低就可以满足要求。
如果我们印刷一张6英寸*4英寸的图像,按每英尺300个像素(300ppi)来制作,那么它包含的像素数为:300*6*300*4=2160000像素。
数字图像处理技术简介数字图像处理技术是指利用数字计算机技术对数字图像进行各种操作和处理的过程,它将数字图像视为信号,对其进行各种分析和处理,以达到改善图像质量、提取有用信息、识别和恢复失真等目的。
目前,数字图像处理技术已广泛应用于医学、遥感、地质勘察、环境监测、安全监控等众多领域。
一、数字图像的表示方式数字图像是以点阵形式存储在计算机中的,每个点称为像素(Pixel),每个像素有一个灰度值或彩色值。
灰度图像每个像素仅有一个数值,代表图像的亮度;彩色图像每个像素有三个数值,代表图像的红、绿、蓝三个通道的值。
数字图像的表示方式主要有以下两种:1.二值图像:每个像素只有两种取值,分别为黑和白。
二值图像常用于文字、边缘提取等领域。
2.灰度图像/彩色图像:每个像素有多种取值,分别表示亮度或颜色的不同程度。
灰度图像和彩色图像常用于人脸识别、医学图像等领域。
二、数字图像处理的基本步骤数字图像处理主要包括以下四个基本步骤:1.图像获取:通过传感器、摄像机等设备采集图像。
2.预处理:对获取的图像进行预处理,包括图像去噪、增强、几何校正等。
3.图像分析与处理:对预处理后的图像进行各种分析和处理,包括图像分割、特征提取、模式识别等。
4.后处理:对处理后的图像进行后处理,可根据具体需求进行目标检测、修改、输出等处理。
三、常用的数字图像处理技术1.图像增强:图像增强是指改善图像质量,使其更符合人眼视觉要求的一系列操作。
包括直方图均衡化、各种滤波、彩色平衡等。
2.图像分割:图像分割是将图像分成多个互不重叠的区域,每个区域内的像素具有类似的特征。
常用的分割方法包括阈值分割、区域增长、边缘检测等。
3.特征提取:特征提取是指从图像中识别出各种特征,用于图像分类、目标检测等。
常用的特征提取方法包括形状特征、纹理特征、颜色特征等。
4.模式识别:模式识别是通过对已知图像的学习,准确地识别新图像所属的类别。
常用的模式识别方法包括神经网络、最近邻算法等。
数字图像处理技术解析第一章:数字图像处理基础知识数字图像处理是一门研究如何处理和操作数字图像的学科。
数字图像是离散的表示了光的强度和颜色分布的连续图像。
数字图像处理技术可以应用于许多领域,如医学影像、机器视觉、遥感图像等。
1.1 数字图像表示与存储数字图像可以使用像素(pixel)来表示,每个像素包含一定数量的位元(bit),用于表示图像的灰度值或颜色信息。
常见的像素表示方法有灰度图像和彩色图像。
在计算机中,数字图像可以以不同的方式进行存储,如位图存储、压缩存储等。
1.2 数字图像处理的基本操作数字图像处理的基本操作包括图像增强、图像恢复、图像压缩和图像分割等。
图像增强可以改善图像的质量,使其更适于人眼观察或用于其他应用。
图像恢复是指通过去除图像中的噪声、模糊等不良因素,使图像恢复到原始清晰状态。
图像压缩可以减少图像的存储空间和传输带宽。
图像分割是将图像分成几个具有独立特征的区域,用于目标检测、目标跟踪等应用。
第二章:数字图像增强技术数字图像增强技术可以提高图像的质量和信息内容,使其更适合进行后续处理或人眼观察。
常用的图像增强方法包括灰度变换、直方图均衡化和空域滤波等。
2.1 灰度变换灰度变换是通过对图像的灰度值进行变换,来改变图像的对比度和亮度。
常见的灰度变换方法包括线性变换、非线性变换和直方图匹配等。
线性变换通过对灰度值进行线性和平移变换,可改变图像的对比度和亮度。
非线性变换使用非线性函数对灰度值进行变换,如对数变换、反转变换等。
直方图匹配是将图像的直方图变换为期望直方图,以达到对比度和亮度的调整。
2.2 直方图均衡化直方图均衡化是一种常用的图像增强方法,可以通过对图像的直方图进行变换,使得图像的灰度分布更加均匀。
直方图均衡化可以增加图像的对比度,使得图像细节更加清晰。
该方法适用于灰度图像和彩色图像。
2.3 空域滤波空域滤波是一种基于像素的图像处理方法,通过对图像的局部像素进行加权平均或非线性操作,来改变图像的特征。
数字图像处理概述数字图像处理是一项广泛应用于图像处理和计算机视觉领域的技术。
它涉及对数字图像进行获取、处理、分析和解释的过程。
数字图像处理可以帮助我们从图像中提取有用的信息,并对图像进行增强、复原、压缩和编码等操作。
本文将介绍数字图像处理的基本概念、常见的处理方法和应用领域。
数字图像处理的基本概念图像的表示图像是由像素组成的二维数组,每个像素表示图像上的一个点。
在数字图像处理中,我们通常使用灰度图像和彩色图像。
•灰度图像:每个像素仅包含一个灰度值,表示图像的亮度。
灰度图像通常表示黑白图像。
•彩色图像:每个像素包含多个颜色通道的值,通常是红、绿、蓝三个通道。
彩色图像可以表示图像中的颜色信息。
图像处理的基本步骤数字图像处理的基本步骤包括图像获取、前处理、主要处理和后处理。
1.图像获取:通过摄像机、扫描仪等设备获取图像,并将图像转换为数字形式。
2.前处理:对图像进行预处理,包括去噪、增强、平滑等操作,以提高图像质量。
3.主要处理:应用各种算法和方法对图像进行分析、处理和解释。
常见的处理包括滤波、边缘检测、图像变换等。
4.后处理:对处理后的图像进行后处理,包括去隐私、压缩、编码等操作。
常见的图像处理方法滤波滤波是数字图像处理中常用的方法之一,用于去除图像中的噪声或平滑图像。
常见的滤波方法包括均值滤波、中值滤波、高斯滤波等。
•均值滤波:用一个模板覆盖当前像素周围的像素,计算平均灰度值或颜色值作为当前像素的值。
•中值滤波:将模板中的像素按照灰度值或颜色值大小进行排序,取中值作为当前像素的值。
•高斯滤波:通过对当前像素周围像素的加权平均值来平滑图像,权重由高斯函数确定。
边缘检测边缘检测是用于寻找图像中物体边缘的方法。
常用的边缘检测算法包括Sobel 算子、Prewitt算子、Canny算子等。
•Sobel算子:通过对图像进行卷积运算,提取图像中的边缘信息。
•Prewitt算子:类似于Sobel算子,也是通过卷积运算提取边缘信息,但采用了不同的卷积核。