安徽省合肥2016-2017学年七年级下期中数学试卷及答案解析
- 格式:doc
- 大小:217.23 KB
- 文档页数:14
一、选择题1.无理数23的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.在平面直角坐标系中,将点P 先向左平移5个单位,再向上平移3个单位得到点()2,1,Q -则点P 的坐标是( )A .(32)-,B .()3,4C .()7,4-D .(72)--,3.如图,直线a b ∥,三角板的直角顶点放在直线b 上,两直角边与直线a 相交,如果160∠=︒,那么2∠等于( )A .30B .︒40C .50︒D .60︒ 4.下列语句中,假命题的是( ) A .对顶角相等B .若直线a 、b 、c 满足b ∥a ,c ∥a ,那么b ∥cC .两直线平行,同旁内角互补D .互补的角是邻补角5.已知x 、y 满足方程组2827x y x y +=⎧⎨+=⎩,则x +y 的值是( ) A .3 B .5C .7D .9 6.已知∠A 、∠B 互余,∠A 比∠B 大30°,设∠A 、∠B 的度数分别为x°、y°,下列方程组中符合题意的是( )A .18030x y x y +=⎧⎨=-⎩B .180+30x y x y +=⎧⎨=⎩C .9030x y x y +=⎧⎨=-⎩D .90+30x y x y +=⎧⎨=⎩7.解方程组229229232x y y z z x +=⎧⎪+=⎨⎪+=⎩得x 等于( )A .18B .11C .10D .98.若a <b <0,则在ab <1、1a >b 1、ab >0、b a >1、-a >-b 中正确的有( ) A .2个B .3个C .4个D .5个 9.一辆汽车在笔直的公路上行驶,两次拐弯后,仍在原来的方向上平行前进,那么两次拐弯的度数是( ) A .第一次右拐50°,第二次左拐130°B .第一次左拐50°,第二次右拐50°C .第一次左拐50°,第二次左拐130°D .第一次右拐50°,第二次右拐50°10.如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为()A.30°B.35°C.40°D.45°11.如图,AB∥CD,EF平分∠GED,∠1=50°,则∠2=()A.50°B.60°C.65°D.70°12.过一点画已知直线的垂线,可画垂线的条数是()A.0B.1C.2D.无数13.下列调查方式,你认为最合适的是()A.调查市场上某种白酒的塑化剂的含量,采用普查方式B.调查鞋厂生产的鞋底能承受的弯折次数,采用普查方式C.旅客上飞机前的安检,采用抽样调查方式D.了解我市每天的流动人口数,采用抽样调查方式14.下列图中∠1和∠2是同位角的是( )A.(1)、(2)、(3)B.(2)、(3)、(4)C.(3)、(4)、(5)D.(1)、(2)、(5)15.点P为直线m外一点,点A,B,C为直线m上三点,PA=4cm,PB=5cm,PC=2cm,则点P 到直线m的距离为( )A.4cm B.2cm;C.小于2cm D.不大于2cm 二、填空题16.在平面直角坐标系中,点A,B的坐标分别为(1,0),(0,2),若将线段AB平移到A1B1,点A1,B1的坐标分别为(2,a),(b,3),则a2-2b的值为______.17.已知12xy=⎧⎨=⎩是关于x、y的二元一次方程3210mx y--=的解,则m=__________.18.如果∠A与∠B的两边分别平行,∠A比∠B的3倍少36°,则∠A的度数是________.19.已知△ABC 中,AB =AC ,求证:∠B <90°.用反证法证明,第一步是假设_________.20.如图,直线a 和b 被直线c 所截,∠1=110°,当∠2=_____时,直线a ∥b 成立21.10的整数部分是_____.22.如图,已知AB ∥CD ,F 为CD 上一点,∠EFD=60°,∠AEC=2∠CEF ,若6°<∠BAE <15°,∠C 的度数为整数,则∠C 的度数为_____.23.根据不等式的基本性质,可将“mx <2”化为“x >2m”,则m 的取值范围是_____. 24.如图,直径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点由原点到达O '点,那么O '点对应的数是______.你的理由是______.25.如果一个正数的两个平方根为a+1和2a-7,则这个正数为_____________.三、解答题26.如图,ABC 的三个顶点的坐标分别是()()()2,33,1,5,2A B C ---,,将ABC 先向右平移6个单位长度,再向下平移3个单位长度得到111A B C △.(1)在平面直角坐标系中,画出平移后的111A B C △;(2)求出111A B C △的面积;(3)点P 是x 轴上的一点,若11PA C 的面积等于111A B C △的面积,求点P 的坐标.27.如图,直线AB 、CD 相交于O 点,AOC ∠与AOD ∠的度数比为4:5,OE AB ⊥,OF 平分DOB ∠,求EOF ∠的度数.28.1x +2y -z 是64的方根,求x y z -+的平方根29.探索与应用.先填写下表,通过观察后再回答问题: a … 0.0001 0.01 1 100 10000 … a … 0.01 x 1 y 100 … (1)表格中x= ;y= ;(2)从表格中探究a a 10≈3.161000≈ ;②已知 3.24a =180,则a= ; (3312 2.289≈3b 0.2289=,则b= .30.观察下列关于自然数的等式:① 223415-⨯=;② 225429-⨯=;③ 2274313-⨯=;…根据上述规律解决下列问题:(1)请仿照①、②、③,直接写出第4个等式: ;(2)请写出你猜想的第n 个等式(用含n 的式子表示),并证明该等式成立.【参考答案】2016-2017年度第*次考试试卷参考答案**科目模拟测试一、选择题1.B2.A3.A4.D5.B6.D7.C8.B9.B10.B11.C12.B13.D14.D15.D二、填空题16.-1【解析】【分析】根据点A和点B的坐标以及对应点的坐标确定出平移的方法从而求出ab的值再代入代数式进行计算即可【详解】解:∵A(10)A1(2a)B(02)B1(b3)∴平移方法为向右平移1个单位17.【解析】【分析】把与的值代入方程计算即可求出的值【详解】解:把代入二元一次方程得:解得:故答案为:【点睛】此题考查了二元一次方程的解方程的解即为能使方程左右两边相等的未知数的值18.18°或126°【解析】【分析】根据题意可知∠A+∠B=180°∠A=3∠B-36°或∠A=∠B∠A=3∠B-36°将其组成方程组即可求得【详解】根据题意得:当∠A+∠B=180°∠A=3∠B-3619.∠B≥90°【解析】【分析】熟记反证法的步骤直接填空即可【详解】解:用反证法证明:第一步是:假设∠B≥90°故答案是:∠B≥90°【点睛】考查反证法解题关键要懂得反证法的意义及步骤反证法的步骤是:(20.70°【解析】【分析】根据平行的判定要使直线a∥b成立则∠2=∠3再根据∠1=110°即可把∠2的度数求解出来【详解】解:要使直线a∥b成立则∠2=∠3(同位角相等两直线平行)∵∠1=110°∴∠321.3【解析】【分析】根据实数的估算由平方数估算出的近似值可得到整数部分【详解】∵3<<4∴的整数部分是3故答案为:3【点睛】此题考查实数的估算熟记常见的平方数22.36°或37°【解析】分析:先过E作EG∥AB根据平行线的性质可得∠AEF=∠BAE+∠DFE再设∠CEF=x则∠AEC=2x根据6°<∠BAE<15°即可得到6°<3x-60°<15°解得22°<23.m<0【解析】因为mx<2化为x>根据不等式的基本性质3得:m<0故答案为:m<024.π圆的周长=π•d=1×π=π【解析】【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周说明OO′之间的距离为圆的周长=π由此即可确定O′点对应的数【详解】因为圆的周长为π•d=1×π=π所以圆25.9【解析】【分析】根据一个正数的平方根有2个且互为相反数求出a的值即可确定出这个正数【详解】解:根据一个正数的两个平方根为a+1和2a-7得:解得:则这个正数是故答案为:9【点睛】本题主要考查了平方三、解答题26.27.28.29.30.2016-2017年度第*次考试试卷 参考解析【参考解析】**科目模拟测试一、选择题1.B解析:B【解析】【分析】.【详解】∵1.52=2.25,22=4,2.25<3<4,∴1.52<,∴34<<,故选B.【点睛】本题考查了无理数的估算,熟练掌握和灵活运用相关知识是解题的关键.2.A解析:A【解析】【分析】根据向左平移横坐标减,向上平移纵坐标加即可求解,注意始点和终点的区别.【详解】解:由题意可知点P 的坐标为()25,13-+-,即P ()3,2-;故选:A .【点睛】本题考查了平移,熟记平移中点的变化规律:横坐标右移加,坐移减;纵坐标上移加,下移减是解题的关键.3.A解析:A【解析】【分析】先由直线a∥b,根据平行线的性质,得出∠3=∠1=60°,再由已知直角三角板得∠4=90°,然后由∠2+∠3+∠4=180°求出∠2.【详解】已知直线a∥b,∴∠3=∠1=60°(两直线平行,同位角相等),∠4=90°(已知),∠2+∠3+∠4=180°(已知直线),∴∠2=180°-60°-90°=30°.故选:A.【点睛】此题考查平行线性质的应用,解题关键是由平行线性质:两直线平行,同位角相等,求出∠3.4.D解析:D【解析】分析:分别判断是否是假命题.详解:选项A. 对顶角相等 ,正确.选项B. 若直线a、b、c满足b∥a,c∥a,那么b∥c,正确.选项C. 两直线平行,同旁内角互补,正确.选项D. 互补的角是邻补角,错误,不相邻的两个补角不是邻补角.故选D.点睛:(1)真命题就是正确的命题,即如果命题的题设成立,那么结论一定成立.简单来说就是成立的、对的就是真命题.比如太阳是圆的...就是真命题.(2)条件和结果相矛盾的命题是假命题,即不成立的、错的就是假命题.比如太阳是方的...就是假命题5.B解析:B【解析】【分析】把两个方程相加可得3x+3y=15,进而可得答案.【详解】两个方程相加,得3x+3y=15,∴x+y=5,故选B.【点睛】本题主要考查解二元一次方程组,灵活运用整体思想是解题关键.6.D解析:D【解析】试题解析:∠A 比∠B 大30°,则有x=y+30,∠A ,∠B 互余,则有x+y=90.故选D .7.C解析:C【解析】【分析】利用加减消元法解方程组即可.【详解】229229232x y y z z x +=⎧⎪+=⎨⎪+=⎩①②③,①+②+③得:3x+3y+3z=90.∴x+y+z=30 ④②-①得:y+z-2x=0 ⑤④-⑤得:3x=30∴x=10故答案选:C .【点睛】本题考查的是三元一次方程组的解法,掌握加减消元法是解题的关键.8.B解析:B【解析】【分析】根据不等式的性质即可求出答案.【详解】解:①∵a<b<0,∴ab不一定小于1,故①错误;②∵a<b<0,∴1a>b1,故②正确;③∵a<b<0,ab>0,故③正确;④∵a<b<0,ba<1,故④错误;⑤∵a<b<0,-a>-b,故⑤正确,故选B.【点睛】此题考查不等式的性质,解题的关键是熟练运用不等式的性质,本题属于基础题型.9.B解析:B【解析】【分析】根据两条直线平行的性质:两条直线平行,同位角相等.再根据题意得:两次拐的方向不相同,但角度相等.【详解】解:如图,第一次拐的角是∠1,第二次拐的角是∠2,由于平行前进,可以得到∠1=∠2.因此,第一次与第二次拐的方向不相同,角度要相同,故只有B选项符合,故选B.【点睛】此题主要考查了平行线的性质,注意要想两次拐弯后,仍在原来的方向上平行前进,则拐的方向应相反,角度应相等.10.B解析:B分析:根据平行线的性质和三角形的外角性质解答即可.详解:如图,∵AB∥CD,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3-∠4=80°-45°=35°,故选B.点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答.11.C解析:C【解析】【分析】由平行线性质和角平分线定理即可求.【详解】∵AB∥CD∴∠GEC=∠1=50°∵EF平分∠GED∴∠2=∠GEF= 12∠GED=12(180°-∠GEC)=65°故答案为C.【点睛】本题考查的知识点是平行线性质和角平分线定理,解题关键是熟记角平分线定理. 12.B解析:B【解析】【分析】根据垂直的性质:过直线外或直线上一点画已知直线的垂线,可以画一条,据此解答.【详解】在平面内,过一点有且只有一条直线与已知直线垂直,故选:B【点睛】此题考查了直线的垂直的性质,注意基础知识的识记和理解.解析:D【解析】【分析】一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.据此对各项进行判断即可.【详解】解:A、调查市场上某种白酒的塑化剂的含量,采用抽样调查比较合适,故此选项错误;B、调查鞋厂生产的鞋底能承受的弯折次数,采用抽样调查比较合适,故此选项错误;C、旅客上飞机前的安检,必须进行普查,故此选项错误;D、了解我市每天的流动人口数,采用抽样调查方式,比较合适,故此选项正确.故选D.【点睛】此题主要考查了全面调查与抽样调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.14.D解析:D【解析】【分析】根据同位角的定义,对每个图进行判断即可.【详解】(1)图中∠1和∠2是同位角;故本项符合题意;(2)图中∠1和∠2是同位角;故本项符合题意;(3)图中∠1和∠2不是同位角;故本项不符合题意;(4)图中∠1和∠2不是同位角;故本项不符合题意;(5)图中∠1和∠2是同位角;故本项符合题意.图中是同位角的是(1)、(2)、(5).故选D.【点睛】本题考查了同位角,两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.15.D解析:D【解析】【分析】根据点到直线的距离是直线外的点与直线上垂足间的线段的长,再根据垂线段最短,可得答案.【详解】当PC⊥l时,PC是点P到直线l的距离,即点P到直线l的距离2cm,当PC不垂直直线l时,点P到直线l的距离小于PC的长,即点P到直线l的距离小于2cm,综上所述:点P到直线l的距离不大于2cm,故选:D.【点睛】考查了点到直线的距离,利用了垂线段最短的性质.二、填空题16.-1【解析】【分析】根据点A和点B的坐标以及对应点的坐标确定出平移的方法从而求出ab的值再代入代数式进行计算即可【详解】解:∵A(10)A1(2a)B(02)B1(b3)∴平移方法为向右平移1个单位解析:-1【解析】【分析】根据点A和点B的坐标以及对应点的坐标确定出平移的方法,从而求出a、b的值,再代入代数式进行计算即可.【详解】解:∵A(1,0),A1(2,a),B(0,2),B1(b,3),∴平移方法为向右平移1个单位,向上平移1个单位,∴a=0+1=1,b=0+1=1,∴a2-2b=1²-2×1=-1;故答案为:-1.【点睛】本题考查了坐标与图形变化,注意到平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.17.【解析】【分析】把与的值代入方程计算即可求出的值【详解】解:把代入二元一次方程得:解得:故答案为:【点睛】此题考查了二元一次方程的解方程的解即为能使方程左右两边相等的未知数的值解析:5 3【解析】【分析】把x与y的值代入方程计算即可求出m的值.【详解】解:把12xy=⎧⎨=⎩代入二元一次方程3210mx y--=,得:32210m,解得:53 m=.故答案为:5 3【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.18.18°或126°【解析】【分析】根据题意可知∠A+∠B=180°∠A=3∠B-36°或∠A=∠B∠A=3∠B-36°将其组成方程组即可求得【详解】根据题意得:当∠A+∠B=180°∠A=3∠B-36解析:18°或126°【解析】【分析】根据题意可知,∠A+∠B=180°,∠A=3∠B-36°,或∠A=∠B,∠A=3∠B-36°,将其组成方程组即可求得.【详解】根据题意得:当∠A+∠B=180°,∠A=3∠B-36°,解得:∠A=126°;当∠A=∠B,∠A=3∠B-36°,解得:∠A=18°;∴∠A=18°或∠A=126°.故答案为18°或126°.【点睛】本题考查了平行线的性质,如果两角的两边分别平行,则这两个角相等或互补,本题还考查了方程组的解法.19.∠B≥90°【解析】【分析】熟记反证法的步骤直接填空即可【详解】解:用反证法证明:第一步是:假设∠B≥90°故答案是:∠B≥90°【点睛】考查反证法解题关键要懂得反证法的意义及步骤反证法的步骤是:(解析:∠B≥90°【解析】【分析】熟记反证法的步骤,直接填空即可.【详解】解:用反证法证明:第一步是:假设∠B≥90°.故答案是:∠B≥90°.【点睛】考查反证法,解题关键要懂得反证法的意义及步骤.反证法的步骤是:(1)假设结论不成立;(2)从假设出发推出矛盾;(3)假设不成立,则结论成立.在假设结论不成立时要注意考虑结论的反面所有可能的情况,如果只有一种,那么否定一种就可以了,如果有多种情况,则必须一一否定.20.70°【解析】【分析】根据平行的判定要使直线a∥b成立则∠2=∠3再根据∠1=110°即可把∠2的度数求解出来【详解】解:要使直线a∥b成立则∠2=∠3(同位角相等两直线平行)∵∠1=110°∴∠3解析:70°【解析】【分析】根据平行的判定,要使直线a∥b成立,则∠2=∠3,再根据∠1=110°,即可把∠2的度数求解出来.【详解】解:要使直线a∥b成立,则∠2=∠3(同位角相等,两直线平行),∵∠1=110°,∴∠3=180°-∠1=180°-110°=70°,∴∠2=∠3=70°,故答案为:70°.【点睛】本题主要考查了平行的判定(同位角相等,两直线平行),掌握直线平行的判定方法是解题的关键.21.3【解析】【分析】根据实数的估算由平方数估算出的近似值可得到整数部分【详解】∵3<<4∴的整数部分是3故答案为:3【点睛】此题考查实数的估算熟记常见的平方数解析:3【解析】【分析】的近似值可得到整数部分【详解】∵3<4,3.故答案为:3.【点睛】此题考查实数的估算,熟记常见的平方数22.36°或37°【解析】分析:先过E作EG∥AB根据平行线的性质可得∠AEF=∠BAE+∠DFE再设∠CEF=x则∠AEC=2x根据6°<∠BAE<15°即可得到6°<3x-60°<15°解得22°<解析:36°或37°.【解析】分析:先过E作EG∥AB,根据平行线的性质可得∠AEF=∠BAE+∠DFE,再设∠CEF=x,则∠AEC=2x,根据6°<∠BAE<15°,即可得到6°<3x-60°<15°,解得22°<x<25°,进而得到∠C的度数.详解:如图,过E作EG∥AB,∵AB∥CD,∴GE∥CD,∴∠BAE=∠AEG,∠DFE=∠GEF,∴∠AEF=∠BAE+∠DFE,设∠CEF=x,则∠AEC=2x,∴x+2x=∠BAE+60°,∴∠BAE=3x-60°,又∵6°<∠BAE<15°,∴6°<3x-60°<15°,解得22°<x<25°,又∵∠DFE是△CEF的外角,∠C的度数为整数,∴∠C=60°-23°=37°或∠C=60°-24°=36°,故答案为:36°或37°.点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解决问题的关键是作平行线,解题时注意:两直线平行,内错角相等.23.m<0【解析】因为mx<2化为x>根据不等式的基本性质3得:m<0故答案为:m<0解析:m<0【解析】因为mx<2化为x>2m,根据不等式的基本性质3得:m<0,故答案为:m<0.24.π圆的周长=π•d=1×π=π【解析】【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周说明OO′之间的距离为圆的周长=π由此即可确定O′点对应的数【详解】因为圆的周长为π•d=1×π=π所以圆解析:π圆的周长=π•d=1×π=π【解析】【分析】直径为1个单位长度的圆从原点沿数轴向右滚动一周,说明OO′之间的距离为圆的周长=π,由此即可确定O′点对应的数.【详解】因为圆的周长为π•d=1×π=π,所以圆从原点沿数轴向右滚动一周OO'=π.故答案为:π,圆的周长=π•d=1×π=π.【点睛】此题考查实数与数轴,解题关键在于注意:确定点O′的符号后,点O′所表示的数是距离原点的距离.25.9【解析】【分析】根据一个正数的平方根有2个且互为相反数求出a 的值即可确定出这个正数【详解】解:根据一个正数的两个平方根为a+1和2a-7得:解得:则这个正数是故答案为:9【点睛】本题主要考查了平方解析:9【解析】【分析】根据一个正数的平方根有2个,且互为相反数求出a 的值,即可确定出这个正数.【详解】解:根据一个正数的两个平方根为a+1和2a-7得: 1270a a ++-=,解得:2a =,则这个正数是2(21)9+=.故答案为:9.【点睛】本题主要考查了平方根,熟练掌握平方根的定义是解本题的关键.三、解答题26.(1)详见解析;(2)52;(3)()-1,0P 或()90,. 【解析】【分析】(1)根据点的平移规律确定平移后点的坐标,再将所得点顺次连接即可解答; (2)用割补法求解可得答案;(3)由(2)可知111A B C △的面积是52,所以11PA C 的面积也是52,因为1P A 、都在x 轴上,所以直接以1PA 为底可得1PA 的长为5,再分P 在A 1的左侧和右侧两种情况讨论即可求出P 的坐标.【详解】解:∵()()()2,33,1,5,2A B C ---,向右平移6个单位长度,再向下平移3个单位长度, ()()()1114,0,3,2,1,1A B C ∴--,将这三个点描出并依次连接得到答案如图:;(2)用割补法可得:1111115231312122222△S =⨯-⨯⨯-⨯⨯-⨯⨯=A B C ; (3)由(2)可知111A B C △的面积是52, ∴11PA C 的面积也是52, ∵1P A 、都在x 轴上,1151=22PA ∴⨯, 解得1=5PA ,∵()140A ,, ()-1,0P ∴或()90,.【点睛】本题考查的是作图中的平移变换,熟知图形平移不变性的性质是解答此题的关键. 27.50∠=EOF .【解析】【分析】根据AOC ∠与AOD ∠互补且度数比为4:5,求得80AOC ∠=,由OE AB ⊥得到90BOE =∠,根据对顶角相等得80AOC BOD ∠=∠=,则可求得DOE ∠的度数,根据角平分线的定义可求得∠DOF 的度数,进而得到答案.【详解】解:4AOC x ∠=,则5AOD x ∠=, ∵180AOC AOD ∠+∠=, ∴45180x x +=,解得:20x =, ∴480AOC x ∠==,∵OE AB ⊥,∴90BOE =∠,∵80AOC BOD ∠=∠=,∴10DOE BOE BOD ∠=∠-∠=,又∵OF 平分DOB ∠, ∴1402DOF BOD ∠=∠=, ∴104050EOF EOD DOF ∠=∠+∠=+=.【点睛】本题主要考查角平分线的定义,角的计算,解此题的关键在于准确掌握题图中各角的位置关系.28.【解析】【分析】根据互为相反数的两个数的和等于0列出方程,再根据非负数的性质列方程求出x 、y 的值,然后求出z 的值,再根据平方根的定义解答.【详解】,∴x+1=0,2-y=0,解得x=-1,y=2,∵z 是64的方根,∴z=8所以,x y z -+=-1-2+8=5,所以,x y z -+的平方根是【点睛】此题考查非负数的性质,相反数,平方根的定义,解题关键在于掌握几个非负数的和为0时,这几个非负数都为0.29.(1)0.1,10;(2)31.6,32400;(3)0.012.【解析】【分析】(1)由表格得出规律,求出x 与y 的值即可;(2)根据算术平方根的被开方数扩大100倍,算术平方根扩大10倍,可得答案; (3)根据立方根的被开方数缩小1000倍,立方根缩小10倍,可得答案.【详解】(1)x=0.1,y=10,故答案为:0.1,10;(2,, ② 3.24=1.8,∴a=32400,故答案为:31.6,32400;(4 2.289≈,∴b=0.012,故答案为:0.012.【点睛】考查了算术平方根和立方根,注意被开方数扩大100(1000)倍,算术平方根(立方根)扩大10倍.30.(1)2294417-⨯=;(2)22(21)441n n n +-=+;证明见解析.【解析】【分析】(1)由①②③三个等式可得,被减数是从3开始连续奇数的平方,减数是从1开始连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可;(2)根据前面的式子得出一般性的式子,然后根据多项式的乘法计算法则进行证明.【详解】解:(1)故答案为:2294417-⨯=;(2)猜想第n 个等式为:()2221441n n n +-=+,证明如下:∵左式=22441441n n n n ++-=+,右式=41n =+,∴左式=右式,∴该等式成立.【点睛】本题主要考查的就是规律的发现与证明,属于中等难度题型.解答这个问题的时候,关键就是找出各数之间存在的联系,然后得出答案.。
1安徽省合肥市2017-2018学年七年级数学下学期期中试卷选择题(本大题共10小题,共30.0 分)F 列各图中,与 是对顶角的是A. 2B. 在下列所给出坐标的点中,在第二象限的是A.B.在实数一,-, ,0, ,", ,中,无理数有A. 2个B. 3个C. 4个D. 5个如图所示,点 E 在AC 的延长线上, 下列条件中不能判断亠 /AC EA.B.C.如图,表示一的点在数轴上表示时,所在哪两个字母之间I I I4耳G 玖0 11.5 22.5 3A. C 与 DB. A 与 BC. A 与 CD. B 与 C那么点P 的坐标是在平面直角坐标系中,线段CF 是由线段AB 平移得到的;点的对应点为则点的对应点F 的坐标为1.2. 3.4.5.6.7.8. 9.10._ 、 11. 12.C. C.D. D.D.下列命题是假命题的是A.对顶角相等C.平行于同一条直线的两直线平行B. 两直线平行,同旁内角相等 D.同位角相等,两直线平行点P 位于x 轴下方,y 轴左侧,距离 x 轴4个单位长度,距离y 轴2个单位长度, A. B.C.D.A.B. C.如图所示,将含有角的三角板的直角顶点放在相互平行的两条直线其中一条上,若,则 的度数A.填空题(本大题共 若整数x 满足B.C.4小题,共20.0分),则使一为整数的x 的值是 ______________如图,直线 AB CD EF 交于点 O OG 平分,且一的平方根是,则17.如图,直线 ,点B 在直线b 上,, 度数.13. 把9的平方根和立方根按从小到大的顺序排列为 ______________ .14. 如图,在平面直角坐标系中,一动点从原点 0出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点 ,,,,那么点 为自然数的坐标为 ______________ 用n 表示.三、解答题(本大题共 9小题,共50.0 分)15. 计算:16. 求下列各式中x 的值:;业 冬 禺的Bb18. 完成下面的证明如图,点E在直线DF上,点B在直线AC上,若求证:证明:_______对顶角相等19.已知的立方根是3, 的算术平方根是4, c是—的整数部分.求a,b, c的值;求的平方根.20.如图,直线AB是某天然气公司的主输气管道,点 C D是在AB异侧的两个小区,现在主输气管道上寻找支管道连接点,向两个小区铺设管道有以下两个方案:方案一:只取一个连接点P,使得像两个小区铺设的支管道总长度最短,在图中标出点P的位置,保留画图痕迹;方案二:取两个连接点M和N,使得点M到C小区铺设的支管道最短,使得点N到D小区铺设的管道最短在途中标出M N的位置,保留画图痕迹;设方案一中铺设的支管道总长度为,方案二中铺设的支管道总长度为,则与的大小关系为: _________ 填“ ”、“ ”或“ ”理由是 ________________ .322.如图,长方形OAB(中, O为直角坐标系的原点,A、C两点的坐标分别为,,点B在第一象限内.写出点B的坐标,并求长方形OABC勺周长;若有过点C的直线CD把长方形OABC勺周长分成3:5两部分,D为直线CD与长方形的边的交点,求点D的坐标.23.如图1,已知射线求证:如图2, E、F在CB上,且满足,0E平分 .当时,求的度数.若平行移动AB那么:的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.图】5答案和解析【答案】I. B 2. D 3. B 4. A 5. B 6. B 8. B9. D10. BII. 一答案不唯一12. 13. -14.14. 解:原式;原式 ■15. 解:;解得:_;解得:18. ;同位角相等,两直线平行;C;两直线平行,同位角相等;两直线平行;两直线平行,内错角相等19. 解:的立方根是3,的算术平方根是 4,是—的整数部分,将, , 代入得:的平方根是•20. ; 垂线段最短 21. ;22.解:17.解: 7. AAC 内错角相等,四边形OABC长方形,点B的坐标为长方形OAB(的周长为:.把长方形OABC勺周长分为3: 5两部分, 被分成的两部分的长分别为12和20.当点D在AB上时,所以点D的坐标为当点D在OA上时,所以点D的坐标为23. 证明:,OE平分的值不发生变化:2【解析】1. 解:A、与不是对顶角,故A选项错误;B、与是对顶角,故B选项正确;C 与不是对顶角,故C选项错误;D 与不是对顶角,故D选项错误.故选:B.根据对顶角的定义对各选项分析判断后利用排除法求解. 本题主要考查了对顶角的定义,熟记对顶角的图形是解题的关键.2. 解:一,一的平方根是".故选:D.先化简一,然后再根据平方根的定义求解即可.本题考查了平方根的定义以及算术平方根,先把—正确化简是解题的关键,本题比较容易出错.3. 解:根据每个象限内点的坐标符号可得在第二象限内的点是,故选:B.根据第二象限内点的坐标符号进行判断即可.本题考查了各象限内点的坐标的符号,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限74. 解:无理数有:一,共2个,故选:A利用无理数的定义判断即可.此题考查了无理数,算术平方根,以及立方根,弄清无理数的定义是解本题的关键.5. 解:A,,故本选项错误;B、根据不能推出,故本选项正确;C、,,故本选项错误;D ,,故本选项错误;故选:B.根据平行线的判定逐个判断即可.本题考查了平行线的判定的应用,能熟记平行线的判定定理是解此题的关键,注意:平行线的判定有:同位角相等,两直线平行,内错角相等,两直线平行,同旁内角互补,两直线平行.6. 解:A、对顶角相等是真命题;B、两直线平行,同旁内角互补,B是假命题;C平行于同一条直线的两直线平行是真命题;D同位角相等,两直线平行是真命题;故选:B.根据对顶角的性质、平行线的判定和性质判断即可.本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题判断命题的真假关键是要熟悉课本中的性质定理.7. 解:,则表示一的点在数轴上表示时,所在C和D两个字母之间.故选:A确定出7的范围,利用算术平方根求出—的范围,即可得到结果.此题考查了估算无理数的大小,以及实数与数轴,解题关键是确定无理数的整数部分即可解决问题.8. 解:点P位于x轴下方,y轴左侧,点P在第三象限;距离y轴2个单位长度,点P的横坐标为;距离x轴4个单位长度,点P的纵坐标为;点P的坐标为,故选:B.位于x轴下方,y轴左侧,那么所求点在第三象限;距离x轴4个单位长度,可得点P 的纵坐标;距离y轴2个单位长度,可得点P的横坐标.用到的知识点为:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值;易错点的判断出所求点所在的象限.9. 解:线段CF是由线段AB平移得到的;点的对应点为,点的对应点F的坐标为:故选:D.直接利用平移的性质得出对应点坐标的变化规律进而得出答案. 此题主要考查了平移变换,正确得出坐标变化规律是解题关键.10.解:如图,延长AB交CF于E,故选:B.延长AB交CF于E,求出,根据三角形外角性质求出,根据平行线性质得出代入求出即可.本题考查了三角形的内角和定理,三角形外角性质,平行线性质的应用,解题时注意: 两直线平行,内错角相等.11. 解:,则使-为整数的x的值是:.等故答案为:一答案不唯一.直接得出x的取值范围,进而得出符合题意的答案.此题主要考查了估算无理数的大小,正确得出x的取值范围是解题关键.12. 解:,平分,故答案为:首先根据对顶角相等可得,再根据角平分线的性质可得,然后再算出,进而可以根据角的和差关系算出的度数.此题主要考查了角的计算,关键是掌握对顶角相等,垂直定义,角平分线的性质.13. 解:的平方根为,3,9的立方根为_,把9的平方根和立方根按从小到大的顺序排列为一 .故答案为:一 .先分别得到3的平方根和立方根,然后比较大小.本题考查了平方根、立方根、有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.14. 解:由图可知,时,,点,时,,点,时,,点,9所以,点故答案为:11 根据图形分别求出 、2、3时对应的点 的坐标,然后根据变化规律写出即可.本题考查了点的坐标的变化规律,仔细观察图形,分别求出 、2、3时对应的点的 对应的坐标是解题的关键. 15. 直接利用算术平方根以及立方根的性质分别化简得出答案;直接利用绝对值以及二次根式的性质化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.16. 直接利用平方根的定义计算得出答案;直接利用立方根的定义计算得出答案.此题主要考查了平方根和立方根,正确把握相关定义是解题关键.17. 根据垂直定义和邻补角求出,根据平行线的性质得出 ,代入求出即可. 本题考查了垂直定义,平行线的性质的应用,注意:两直线平行,同位角相等.18. 证明:, 对顶角相等, 同位角相等,两直线平行 ,两直线平行,同位角相等 ,内错角相等,两直线平行, 两直线平行,内错角相等 故答案为: ;同位角相等,两直线平行; C ;两直线平行,同位角相等; AC ;内错角相等,两直线平行;两直线平行,内错角相等. 根据对顶角相等推知 ,从而证得两直线;然后由平行线的性质得到即可根据平行线的判定定理,推知两直线;最后由平行线的性质,证得 本题考查了平行线的判定与性质解答此题的关键是注意平行线的性质和判定定理的综合运用. 19. 直接利用立方根以及算术平方根的定义得出 利用 中所求,代入求出答案. 此题主要考查了估算无理数的大小以及算术平方根和立方根, 关键.20. 解:图形如右图所示,由题意可得,支管道总长度为为线段CD 的长, 支管道总长度为为线段CD 与线..段DN 的长,垂线段最短,故答案为:,垂线段最短.根据题意可以作出合适的图形,并得到本题考查作图 应用与设计作图,最短路径,解答本题的关键是明确题意,作出相应的 图形. 21. 解: 如图所示:如图所示:的面积b ,c 的值;a , 正确把握相关定义是解题 与 的大小关系和相应的理由,本题得以解决.市场坐标 ,超市坐标:以火车站为原点建立直角坐标系即可;根据平面直角坐标系写出点的坐标即可;根据题目要求画出三角形,利用矩形面积减去四周多余三角形的面积即可.此题主要考查了作图,平移,坐标确定位置,以及求三角形的面积,关键是正确画出图 形. 22. 根据矩形的性质,点 B 的横坐标与点 A 的横坐标相等,纵坐标与点 C 的纵坐标 相等解答,进而利用长方形的周长解答即可;求出被分成的两个部分的周长, 再根据点D 在边0A 上或AB 上确定出点D 坐标即可; 考查了点的坐标的确定, 矩形的性质,熟练掌握矩形的性质是解题的关键,难点在于 求出被分成的两个部分的周长并确定出点 D 的位置.23. 根据平行线的性质即可得出 的度数,再根据 ,可得 ;出: 的值为1: 2.本题主要考查了平行线、 角平分线的性质以及三角形内角和定理, 图理清图中各角度之间的关系是解题的关键.根据0B 平分,0E 平分,即可得出 ,从而得出答案;根据平行线的性质,即可得出,再根据 ,即可得 熟记各性质并准确识。
2016-2017学年安徽省合肥七年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.等于()A.﹣3 B.3 C.D.﹣2.下列运算正确的是()A.3a+2b=5ab B.a3•a2=a5 C.a8•a2=a4 D.(2a2)3=﹣6a63.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.001244.计算的平方根为()A.±4 B.±2 C.4 D.±5.若2x=3,4y=5,则2x﹣2y的值为()A.B.﹣2 C.D.6.加上下列单项式后,仍不能使4x2+1成为一个整式的完全平方式的是()A.4x4B.4x C.﹣4x D.2x7.长方形的面积为4a2﹣6ab+2a,若它的一边长为2a,则它的周长为()A.4a﹣3b B.8a﹣6b C.4a﹣3b+1 D.8a﹣6b+28.若使代数式的值在﹣1和2之间,m可以取的整数有()A.1个B.2个C.3个D.4个9.已知关于x的不等式组整数解有4个,则b的取值范围是()A.7≤b<8 B.7≤b≤8 C.8≤b<9 D.8≤b≤910.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a=b B.a=3b C.a=b D.a=4b二、填空题(每小题4分,共20分)11.因式分解:4mn﹣mn3= .12.若与|x+2y﹣5|互为相反数,则(x﹣y)2017= .13.某数的平方根是2a+3和a﹣15,则这个数为.14.已知不等式组的解集为﹣1<x<2,则(m+n)2012= .15.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2016,且AO=2BO,则a+b的值为.三、解答题(第16、17、18题各6分,第19、20题各10分,第21题12分,共50分)16.计算:17.解不等式组,并将解集在数轴上表示出来.18.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.19.已知:a+b=2,ab=1.求:(1)a﹣b(2)a2﹣b2+4b.20.若2(x+4)﹣5<3(x+1)+4的最小整数解是方程的解,求代数式m2﹣2m+11的平方根的值.21.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?2016-2017学年安徽省合肥七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.等于()A.﹣3 B.3 C.D.﹣【考点】24:立方根.【分析】运用开立方的方法计算.【解答】解: =﹣3,故选A.2.下列运算正确的是()A.3a+2b=5ab B.a3•a2=a5 C.a8•a2=a4 D.(2a2)3=﹣6a6【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、不是同类项,不能合并,选项错误;B、正确;C、a8•a2=a10,选项错误;D、(2a2)3=8a6,选项错误.故选B.3.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.00124【考点】1K:科学记数法—原数.【分析】科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到.24.故选D.4.计算的平方根为()A.±4 B.±2 C.4 D.±【考点】21:平方根;22:算术平方根.【分析】首先根据算术平方根的定义求出的值,然后根据平方根的定义即可求出结果.【解答】解:∵=4,又∵(±2)2=4,∴4的平方根是±2,即的平方根±2.故选B.5.若2x=3,4y=5,则2x﹣2y的值为()A.B.﹣2 C.D.【考点】48:同底数幂的除法.【分析】利用同底数幂除法的逆运算法则计算即可.【解答】解:∵2x=3,4y=5,∴2x﹣2y=2x÷22y,=2x÷4y,=3÷5,=0.6.故选:A.6.加上下列单项式后,仍不能使4x2+1成为一个整式的完全平方式的是()A.4x4B.4x C.﹣4x D.2x【考点】4E:完全平方式.【分析】根据完全平方公式的结构对各选项进行验证即可得解.【解答】解:A、4x4+4x2+1=(2x2+1)2,故本选项错误;B、4x+4x2+1=(2x+1)2,故本选项错误;C、﹣4x+4x2+1=(2x﹣1)2,故本选项错误;D、2x+4x2+1不能构成完全平方公式结构,故本选项正确.7.长方形的面积为4a2﹣6ab+2a,若它的一边长为2a,则它的周长为()A.4a﹣3b B.8a﹣6b C.4a﹣3b+1 D.8a﹣6b+2【考点】4H:整式的除法.【分析】首先利用面积除以一边长即可求得令一边长,则周长即可求解.【解答】解:另一边长是:(4a2﹣6ab+2a)÷2a=2a﹣3b+1,则周长是:2[(2a﹣3b+1)+2a]=8a﹣6b+2.故选D.8.若使代数式的值在﹣1和2之间,m可以取的整数有()A.1个B.2个C.3个D.4个【考点】CC:一元一次不等式组的整数解.【分析】由题意可得不等式组,解不等式组,得到不等式组的解集,然后求其整数解.【解答】解:由题意可得,由①得m>﹣,由②得m<,所以不等式组的解集为﹣<x<,则m可以取的整数有0,1共2个.故选:B.9.已知关于x的不等式组整数解有4个,则b的取值范围是()A.7≤b<8 B.7≤b≤8 C.8≤b<9 D.8≤b≤9【考点】CC:一元一次不等式组的整数解.【分析】首先确定不等式组的解集,先利用含b的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于b的不等式,从而求出b的范围.【解答】解:由不等式x﹣b≤0,得:x≤b,由不等式x﹣2≥3,得:x≥5,∵不等式组有4个整数解,∴其整数解为5、6、7、8,则8≤b<9,10.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a=b B.a=3b C.a=b D.a=4b【考点】4I:整式的混合运算.【分析】表示出左上角与右下角部分的面积,求出之差,根据差与BC无关即可求出a 与b的关系式.【解答】解:左上角阴影部分的长为AE,宽为AF=3b,右下角阴影部分的长为PC,宽为a,∵AD=BC,即AE+ED=AE+a,BC=BP+PC=4b+PC,∴AE+a=4b+PC,即AE﹣PC=4b﹣a,∴阴影部分面积之差S=AE•AF﹣PC•CG=3bAE﹣aPC=3b(PC+4b﹣a)﹣aPC=(3b﹣a)PC+12b2﹣3ab,则3b﹣a=0,即a=3b.解法二:既然BC是变化的,当点P与点C重合开始,然后BC向右伸展,设向右伸展长度为X,左上阴影增加的是3bX,右下阴影增加的是aX,因为S不变,∴增加的面积相等,∴3bX=aX,∴a=3b.故选:B.二、填空题(每小题4分,共20分)11.因式分解:4mn﹣mn3= mn(2+n)(2﹣n).【考点】55:提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=mn(4﹣n2)=mn(2+n)(2﹣n),故答案为:mn(2+n)(2﹣n)12.若与|x+2y﹣5|互为相反数,则(x﹣y)2017= ﹣1 .【考点】98:解二元一次方程组;16:非负数的性质:绝对值;23:非负数的性质:算术平方根.【分析】利用相反数性质及非负数性质列出方程组,求出方程组的解得到x与y的值,代入原式计算即可得到结果.【解答】解:∵与|x+2y﹣5|互为相反数,∴+|x+2y﹣5|=0,∴,①×2+②得:5x=5,解得:x=1,把x=1代入②得:y=2,则原式=﹣1,故答案为:﹣113.某数的平方根是2a+3和a﹣15,则这个数为121 .【考点】21:平方根;86:解一元一次方程.【分析】根据正数有两个平方根,这两个平方根互为相反数,据此即可得到关于a的方程即可求得a的值,进而求得这个数的值.【解答】解:根据题意得:2a+3+(a﹣15)=0,解得a=4,则这个数是(2a+3)2=121.故答案为:121.14.已知不等式组的解集为﹣1<x<2,则(m+n)2012= 1 .【考点】CB:解一元一次不等式组;98:解二元一次方程组;C6:解一元一次不等式.【分析】求出不等式组的解集,根据已知不等式组的解集得出m+n﹣2=﹣1,m=2,求出m、n的值,再代入求出即可.【解答】解:,解不等式②得:x<m,∴不等式组的解集为:m+n﹣2<x<m,∵不等式组的解集为﹣1<x<2,∴m+n﹣2=﹣1,m=2,解得:m=2,n=﹣1,∴(m+n)2012=(2﹣1)2012=1.故答案为:1.15.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2016,且AO=2BO,则a+b的值为﹣672 .【考点】33:代数式求值;13:数轴.【分析】依据绝对自的定义可知b﹣a=2016,﹣a=2b,从而可求得a、b的值,故此可求得a+b的值.【解答】解:∵点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧,∴a<0,b>0.又∵|a﹣b|=2016,∴b﹣a=2016.∵AO=2BO,∴﹣a=2b.∴3b=2016.解得:b=672.∴a=﹣1344.∴a+b=﹣1344+672=﹣672.故答案为:﹣672.三、解答题(第16、17、18题各6分,第19、20题各10分,第21题12分,共50分)16.计算:【考点】73:二次根式的性质与化简;15:绝对值;6E:零指数幂;6F:负整数指数幂.个数的负指数次幂等于这个数的正指数次幂的倒数;任何不等于0的数的0次幂都等于1.【解答】解:原式=2﹣+﹣1=1.17.解不等式组,并将解集在数轴上表示出来.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别解出两不等式的解集再求其公共解.【解答】解:解不等式①得x<﹣解不等式②得x≥﹣1∴不等式组的解集为﹣1≤x<﹣.其解集在数轴上表示为:如图所示.18.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.【考点】4J:整式的混合运算—化简求值.【分析】首先根据整式相乘的法则和平方差公式、完全平方公式去掉括号,然后合并同类项,最后代入数据计算即可求解.【解答】解:原式=9x2﹣4﹣(5x2﹣5x)﹣(4x2﹣4x+1)=9x2﹣4﹣5x2+5x﹣4x2+4x﹣1=9x﹣5,当时,原式==﹣3﹣5=﹣8.19.已知:a+b=2,ab=1.求:(1)a﹣b(2)a2﹣b2+4b.【考点】4C:完全平方公式.【分析】根据完全平方公式进行变形,再整体代入求出即可.【解答】解:(1)∵a+b=2,ab=1,∴(a﹣b)2=(a+b)2﹣4ab=4﹣4=0,(2)∵a+b=2,ab=1,a﹣b=0∴a2﹣b2+4b=420.若2(x+4)﹣5<3(x+1)+4的最小整数解是方程的解,求代数式m2﹣2m+11的平方根的值.【考点】C7:一元一次不等式的整数解;21:平方根;85:一元一次方程的解.【分析】首先计算出不等式的解集,从而确定出最小整数解,进而得到x的值,再把x的值代入方程算出m的值,然后再次把m的值代入代数式m2﹣2m+11计算出结果,再算出平方根即可.【解答】解:解不等式得:x>﹣4则x的最小整数解为﹣3,当x=﹣3时,×(﹣3)+3m=5,解得:m=2,把m=2代入m2﹣2m+11得:22﹣2×2+11=11,11平方根为±.故代数式m2﹣2m+11的平方根的值为±.21.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?【考点】CE:一元一次不等式组的应用.【分析】(1)设租用甲车x辆,则乙车(10﹣x)辆.不等关系:①两种车共坐人数不小于340人;②两种车共载行李不小于170件.(2)因为车的总数是一定的,所以费用少的车越多越省.【解答】解:(1)设租用甲车x辆,则乙车(10﹣x)辆.根据题意,得,解,得4≤x≤7.5.又x是整数,∴x=4或5或6或7.共有四种方案:①甲4辆,乙6辆;②甲5辆,乙5辆;③甲6辆,乙4辆;④甲7辆,乙3辆.(2)①甲4辆,乙6辆;总费用为4×2000+6×1800=18800元;②甲5辆,乙5辆;总费用5×2000+5×1800=19000元;③甲6辆,乙4辆;总费用为6×2000+4×1800=19200元;④甲7辆,乙3辆.总费用为7×2000+3×1800=19400元;因为乙车的租金少,所以乙车越多,总费用越少.故选方案①.2017年5月24日。
安徽省合肥市长陔中心学校七年级下学期期中考试数学试卷本试卷一共五大题,24小题,总分100分,答题时间为100分钟.一、精心挑选,小心有陷阱哟!(本大题共8小题,每小题3分,共24分.每小题四个选项中只有一个正确,请把正确选项的代号写在题后的括号内) 1. 如图,与∠1是内错角的是 ( ) A .∠2 B .∠C .∠ 4 D .∠5(第1题) (6题图) (7题图) 2、一个数的平方根和它的立方根相等,则这个数是 ( ) A 、0 B 、1 C 、1或0 D 、1或0或-13、已知()2230a b -++=,则P(a ,b)的坐标为 ( )A .(2,3) B. (2,-3) C. (-2,3) D. (-2,-3)4、将点A(-2,-3)向左平移3个单位长度得到点B,则点B的坐标是 ( ) A、(1,-3) B、(-2,0)C、(-5,-3) D、(-2,-6)5、直角坐标系中,点P (x ,y )在第三象限,且P 到x 轴和y 轴的距离分别为3、7,则 点P 的坐标为 ( )A. (-3,-7)B. (-7,-3)C. (3,7)D. (7,3)6、如图,把长方形ABCD 沿EF 对折,若∠1=500,则∠AEF 的度数等于 ( ) A 、25º B 、50º C 、100º D 、115º7.如图是丁丁画的一张脸的示意图,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成 ( ) A(1,0) B .(-1,0) C .(-1,1) D .(1,-1)8. 在-1.414,2,π, 3.41 ,2+3,3.212212221…,3.14这些数中,无理数的个数为( )A.5B.2C.3D.4二、细心填空,看谁又对又快哟!(本大题共8小题,每小题3分,共24分) 9.已知点A (-3+a ,2a+9)在y 轴上,则点A 的坐标是 . 10. 一个正数x 的平方根是2a -3与5-a ,则x= .11.把命题“垂直于同一条直线的两条直线互相平行”改写成“如果…那么…”的形式 . 12、如图所示,AB ∥CD ,直线EF 分别交AB 、CD 于E 、F ,EG 平分∠BEF ,若∠1=72°,A B D E121F EDCBAG则∠2= 度.(12题图) (15题图) (16题图) 13、先阅读理解,再回答下列问题: 因为2112=+,且221<<,所以112+的整数部分为1;因为6222=+,且362<<,所以222+的整数部分为2; 因为12332=+,且4123<<,所以332+的整数部分为3;以此类推,我们会发现n n n (2+为正整数)的整数部分为 . 14.81的算术平方根是 ,364 的平方根是 。
2016-2017学年安徽省合肥七年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.等于()A.﹣3 B.3 C.D.﹣2.下列运算正确的是()A.3a+2b=5ab B.a3•a2=a5 C.a8•a2=a4 D.(2a2)3=﹣6a63.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.001244.计算的平方根为()A.±4 B.±2 C.4 D.±5.若2x=3,4y=5,则2x﹣2y的值为()A.B.﹣2 C.D.6.加上下列单项式后,仍不能使4x2+1成为一个整式的完全平方式的是()A.4x4B.4x C.﹣4x D.2x7.长方形的面积为4a2﹣6ab+2a,若它的一边长为2a,则它的周长为()A.4a﹣3b B.8a﹣6b C.4a﹣3b+1 D.8a﹣6b+28.若使代数式的值在﹣1和2之间,m可以取的整数有()A.1个B.2个C.3个D.4个9.已知关于x的不等式组整数解有4个,则b的取值范围是()A.7≤b<8 B.7≤b≤8 C.8≤b<9 D.8≤b≤910.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a= b B.a=3b C.a= b D.a=4b二、填空题(每小题4分,共20分)11.因式分解:4mn﹣mn3= .12.若与|x+2y﹣5|互为相反数,则(x﹣y)2017= .13.某数的平方根是2a+3和a﹣15,则这个数为.14.已知不等式组的解集为﹣1<x<2,则(m+n)2012= .15.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2016,且AO=2BO,则a+b的值为.三、解答题(第16、17、18题各6分,第19、20题各10分,第21题12分,共50分)16.计算:17.解不等式组,并将解集在数轴上表示出来.18.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.19.已知:a+b=2,ab=1.求:(1)a﹣b(2)a2﹣b2+4b.20.若2(x+4)﹣5<3(x+1)+4的最小整数解是方程的解,求代数式m2﹣2m+11的平方根的值.21.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?2016-2017学年安徽省合肥七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.等于()A.﹣3 B.3 C.D.﹣【考点】24:立方根.【分析】运用开立方的方法计算.【解答】解: =﹣3,故选A.2.下列运算正确的是()A.3a+2b=5ab B.a3•a2=a5 C.a8•a2=a4 D.(2a2)3=﹣6a6【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、不是同类项,不能合并,选项错误;B、正确;C、a8•a2=a10,选项错误;D、(2a2)3=8a6,选项错误.故选B.3.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.00124【考点】1K:科学记数法—原数.【分析】科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到.【解答】解:把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到为0.001 24.故选D.4.计算的平方根为()A.±4 B.±2 C.4 D.±【考点】21:平方根;22:算术平方根.【分析】首先根据算术平方根的定义求出的值,然后根据平方根的定义即可求出结果.【解答】解:∵=4,又∵(±2)2=4,∴4的平方根是±2,即的平方根±2.故选B.5.若2x=3,4y=5,则2x﹣2y的值为()A.B.﹣2 C.D.【考点】48:同底数幂的除法.【分析】利用同底数幂除法的逆运算法则计算即可.【解答】解:∵2x=3,4y=5,∴2x﹣2y=2x÷22y,=2x÷4y,=3÷5,=0.6.故选:A.6.加上下列单项式后,仍不能使4x2+1成为一个整式的完全平方式的是()A.4x4B.4x C.﹣4x D.2x【考点】4E:完全平方式.【分析】根据完全平方公式的结构对各选项进行验证即可得解.【解答】解:A、4x4+4x2+1=(2x2+1)2,故本选项错误;B、4x+4x2+1=(2x+1)2,故本选项错误;C、﹣4x+4x2+1=(2x﹣1)2,故本选项错误;D、2x+4x2+1不能构成完全平方公式结构,故本选项正确.故选D.7.长方形的面积为4a2﹣6ab+2a,若它的一边长为2a,则它的周长为()A.4a﹣3b B.8a﹣6b C.4a﹣3b+1 D.8a﹣6b+2【考点】4H:整式的除法.【分析】首先利用面积除以一边长即可求得令一边长,则周长即可求解.【解答】解:另一边长是:(4a2﹣6ab+2a)÷2a=2a﹣3b+1,则周长是:2[(2a﹣3b+1)+2a]=8a﹣6b+2.故选D.8.若使代数式的值在﹣1和2之间,m可以取的整数有()A.1个B.2个C.3个D.4个【考点】CC:一元一次不等式组的整数解.【分析】由题意可得不等式组,解不等式组,得到不等式组的解集,然后求其整数解.【解答】解:由题意可得,由①得m>﹣,由②得m<,所以不等式组的解集为﹣<x<,则m可以取的整数有0,1共2个.故选:B.9.已知关于x的不等式组整数解有4个,则b的取值范围是()A.7≤b<8 B.7≤b≤8 C.8≤b<9 D.8≤b≤9【考点】CC:一元一次不等式组的整数解.【分析】首先确定不等式组的解集,先利用含b的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于b的不等式,从而求出b 的范围.【解答】解:由不等式x﹣b≤0,得:x≤b,由不等式x﹣2≥3,得:x≥5,∵不等式组有4个整数解,∴其整数解为5、6、7、8,则8≤b<9,故选:C.10.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a= b B.a=3b C.a= b D.a=4b【考点】4I:整式的混合运算.【分析】表示出左上角与右下角部分的面积,求出之差,根据差与BC无关即可求出a与b的关系式.【解答】解:左上角阴影部分的长为AE,宽为AF=3b,右下角阴影部分的长为PC,宽为a,∵AD=BC,即AE+ED=AE+a,BC=BP+PC=4b+PC,∴AE+a=4b+PC,即AE﹣PC=4b﹣a,∴阴影部分面积之差S=AE•AF﹣PC•CG=3bAE﹣aPC=3b(PC+4b﹣a)﹣aPC=(3b﹣a)PC+12b2﹣3ab,则3b﹣a=0,即a=3b.解法二:既然BC是变化的,当点P与点C重合开始,然后BC向右伸展,设向右伸展长度为X,左上阴影增加的是3bX,右下阴影增加的是aX,因为S不变,∴增加的面积相等,∴3bX=aX,∴a=3b.故选:B.二、填空题(每小题4分,共20分)11.因式分解:4mn﹣mn3= mn(2+n)(2﹣n).【考点】55:提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=mn(4﹣n2)=mn(2+n)(2﹣n),故答案为:mn(2+n)(2﹣n)12.若与|x+2y﹣5|互为相反数,则(x﹣y)2017= ﹣1 .【考点】98:解二元一次方程组;16:非负数的性质:绝对值;23:非负数的性质:算术平方根.【分析】利用相反数性质及非负数性质列出方程组,求出方程组的解得到x与y的值,代入原式计算即可得到结果.【解答】解:∵与|x+2y﹣5|互为相反数,∴+|x+2y﹣5|=0,∴,①×2+②得:5x=5,解得:x=1,把x=1代入②得:y=2,则原式=﹣1,故答案为:﹣113.某数的平方根是2a+3和a﹣15,则这个数为121 .【考点】21:平方根;86:解一元一次方程.【分析】根据正数有两个平方根,这两个平方根互为相反数,据此即可得到关于a的方程即可求得a的值,进而求得这个数的值.【解答】解:根据题意得:2a+3+(a﹣15)=0,解得a=4,则这个数是(2a+3)2=121.故答案为:121.14.已知不等式组的解集为﹣1<x<2,则(m+n)2012= 1 .【考点】CB:解一元一次不等式组;98:解二元一次方程组;C6:解一元一次不等式.【分析】求出不等式组的解集,根据已知不等式组的解集得出m+n﹣2=﹣1,m=2,求出m、n的值,再代入求出即可.【解答】解:,解不等式①得:x>m+n﹣2,解不等式②得:x<m,∴不等式组的解集为:m+n﹣2<x<m,∵不等式组的解集为﹣1<x<2,∴m+n﹣2=﹣1,m=2,解得:m=2,n=﹣1,∴(m+n)2012=(2﹣1)2012=1.故答案为:1.15.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2016,且AO=2BO,则a+b的值为﹣672 .【考点】33:代数式求值;13:数轴.【分析】依据绝对自的定义可知b﹣a=2016,﹣a=2b,从而可求得a、b的值,故此可求得a+b的值.【解答】解:∵点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧,∴a<0,b>0.又∵|a﹣b|=2016,∴b﹣a=2016.∵AO=2BO,∴﹣a=2b.∴3b=2016.解得:b=672.∴a=﹣1344.∴a+b=﹣1344+672=﹣672.故答案为:﹣672.三、解答题(第16、17、18题各6分,第19、20题各10分,第21题12分,共50分)16.计算:【考点】73:二次根式的性质与化简;15:绝对值;6E:零指数幂;6F:负整数指数幂.【分析】理解绝对值的意义:负数的绝对值是它的相反数;表示的算术平方根即;一个数的负指数次幂等于这个数的正指数次幂的倒数;任何不等于0的数的0次幂都等于1.【解答】解:原式=2﹣+﹣1=1.17.解不等式组,并将解集在数轴上表示出来.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别解出两不等式的解集再求其公共解.【解答】解:解不等式①得x<﹣解不等式②得x≥﹣1∴不等式组的解集为﹣1≤x<﹣.其解集在数轴上表示为:如图所示.18.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.【考点】4J:整式的混合运算—化简求值.【分析】首先根据整式相乘的法则和平方差公式、完全平方公式去掉括号,然后合并同类项,最后代入数据计算即可求解.【解答】解:原式=9x2﹣4﹣(5x2﹣5x)﹣(4x2﹣4x+1)=9x2﹣4﹣5x2+5x﹣4x2+4x﹣1=9x﹣5,当时,原式==﹣3﹣5=﹣8.19.已知:a+b=2,ab=1.求:(1)a﹣b(2)a2﹣b2+4b.【考点】4C:完全平方公式.【分析】根据完全平方公式进行变形,再整体代入求出即可.【解答】解:(1)∵a+b=2,ab=1,∴(a﹣b)2=(a+b)2﹣4ab=4﹣4=0,则a﹣b=0,(2)∵a+b=2,ab=1,a﹣b=0∴a2﹣b2+4b=420.若2(x+4)﹣5<3(x+1)+4的最小整数解是方程的解,求代数式m2﹣2m+11的平方根的值.【考点】C7:一元一次不等式的整数解;21:平方根;85:一元一次方程的解.【分析】首先计算出不等式的解集,从而确定出最小整数解,进而得到x的值,再把x的值代入方程算出m的值,然后再次把m的值代入代数式m2﹣2m+11计算出结果,再算出平方根即可.【解答】解:解不等式得:x>﹣4则x的最小整数解为﹣3,当x=﹣3时,×(﹣3)+3m=5,解得:m=2,把m=2代入m2﹣2m+11得:22﹣2×2+11=11,11平方根为±.故代数式m2﹣2m+11的平方根的值为±.21.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?【考点】CE:一元一次不等式组的应用.【分析】(1)设租用甲车x辆,则乙车(10﹣x)辆.不等关系:①两种车共坐人数不小于340人;②两种车共载行李不小于170件.(2)因为车的总数是一定的,所以费用少的车越多越省.【解答】解:(1)设租用甲车x辆,则乙车(10﹣x)辆.根据题意,得,解,得4≤x≤7.5.又x是整数,∴x=4或5或6或7.共有四种方案:①甲4辆,乙6辆;②甲5辆,乙5辆;③甲6辆,乙4辆;④甲7辆,乙3辆.(2)①甲4辆,乙6辆;总费用为4×2000+6×1800=18800元;②甲5辆,乙5辆;总费用5×2000+5×1800=19000元;③甲6辆,乙4辆;总费用为6×2000+4×1800=19200元;④甲7辆,乙3辆.总费用为7×2000+3×1800=19400元;因为乙车的租金少,所以乙车越多,总费用越少.故选方案①.2017年5月24日。
2016-2017学年安徽省合肥七年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.等于()A.﹣3 B.3 C.D.﹣2.下列运算正确的是()A.3a+2b=5ab B.a3•a2=a5 C.a8•a2=a4 D.(2a2)3=﹣6a63.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.001244.计算的平方根为()A.±4 B.±2 C.4 D.±5.若2x=3,4y=5,则2x﹣2y的值为()A.B.﹣2 C.D.6.加上下列单项式后,仍不能使4x2+1成为一个整式的完全平方式的是()A.4x4B.4x C.﹣4x D.2x7.长方形的面积为4a2﹣6ab+2a,若它的一边长为2a,则它的周长为()A.4a﹣3b B.8a﹣6b C.4a﹣3b+1 D.8a﹣6b+28.若使代数式的值在﹣1和2之间,m可以取的整数有()A.1个B.2个C.3个D.4个9.已知关于x的不等式组整数解有4个,则b的取值范围是()A.7≤b<8 B.7≤b≤8 C.8≤b<9 D.8≤b≤910.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a= b B.a=3b C.a= b D.a=4b二、填空题(每小题4分,共20分)11.因式分解:4mn﹣mn3= .12.若与|x+2y﹣5|互为相反数,则(x﹣y)2017= .13.某数的平方根是2a+3和a﹣15,则这个数为.14.已知不等式组的解集为﹣1<x<2,则(m+n)2012= .15.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a ﹣b|=2016,且AO=2BO,则a+b的值为.三、解答题(第16、17、18题各6分,第19、20题各10分,第21题12分,共50分)16.计算:17.解不等式组,并将解集在数轴上表示出来.18.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.19.已知:a+b=2,ab=1.求:(1)a﹣b(2)a2﹣b2+4b.20.若2(x+4)﹣5<3(x+1)+4的最小整数解是方程的解,求代数式m2﹣2m+11的平方根的值.21.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?2016-2017学年安徽省合肥七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.等于()A.﹣3 B.3 C.D.﹣【考点】24:立方根.【分析】运用开立方的方法计算.【解答】解: =﹣3,故选A.2.下列运算正确的是()A.3a+2b=5ab B.a3•a2=a5 C.a8•a2=a4 D.(2a2)3=﹣6a6【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、不是同类项,不能合并,选项错误;B、正确;C、a8•a2=a10,选项错误;D、(2a2)3=8a6,选项错误.故选B.3.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.00124【考点】1K:科学记数法—原数.【分析】科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到.【解答】解:把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到为0.001 24.故选D.4.计算的平方根为()A.±4 B.±2 C.4 D.±【考点】21:平方根;22:算术平方根.【分析】首先根据算术平方根的定义求出的值,然后根据平方根的定义即可求出结果.【解答】解:∵=4,又∵(±2)2=4,∴4的平方根是±2,即的平方根±2.故选B.5.若2x=3,4y=5,则2x﹣2y的值为()A.B.﹣2 C.D.【考点】48:同底数幂的除法.【分析】利用同底数幂除法的逆运算法则计算即可.【解答】解:∵2x=3,4y=5,∴2x﹣2y=2x÷22y,=2x÷4y,=3÷5,=0.6.故选:A.6.加上下列单项式后,仍不能使4x2+1成为一个整式的完全平方式的是()A.4x4B.4x C.﹣4x D.2x【考点】4E:完全平方式.【分析】根据完全平方公式的结构对各选项进行验证即可得解.【解答】解:A、4x4+4x2+1=(2x2+1)2,故本选项错误;B、4x+4x2+1=(2x+1)2,故本选项错误;C、﹣4x+4x2+1=(2x﹣1)2,故本选项错误;D、2x+4x2+1不能构成完全平方公式结构,故本选项正确.故选D.7.长方形的面积为4a2﹣6ab+2a,若它的一边长为2a,则它的周长为()A.4a﹣3b B.8a﹣6b C.4a﹣3b+1 D.8a﹣6b+2【考点】4H:整式的除法.【分析】首先利用面积除以一边长即可求得令一边长,则周长即可求解.【解答】解:另一边长是:(4a2﹣6ab+2a)÷2a=2a﹣3b+1,则周长是:2[(2a﹣3b+1)+2a]=8a﹣6b+2.故选D.8.若使代数式的值在﹣1和2之间,m可以取的整数有()A.1个B.2个C.3个D.4个【考点】CC:一元一次不等式组的整数解.【分析】由题意可得不等式组,解不等式组,得到不等式组的解集,然后求其整数解.【解答】解:由题意可得,由①得m>﹣,由②得m<,所以不等式组的解集为﹣<x<,则m可以取的整数有0,1共2个.故选:B.9.已知关于x的不等式组整数解有4个,则b的取值范围是()A.7≤b<8 B.7≤b≤8 C.8≤b<9 D.8≤b≤9【考点】CC:一元一次不等式组的整数解.【分析】首先确定不等式组的解集,先利用含b的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于b的不等式,从而求出b的范围.【解答】解:由不等式x﹣b≤0,得:x≤b,由不等式x﹣2≥3,得:x≥5,∵不等式组有4个整数解,∴其整数解为5、6、7、8,则8≤b<9,故选:C.10.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a= b B.a=3b C.a= b D.a=4b【考点】4I:整式的混合运算.【分析】表示出左上角与右下角部分的面积,求出之差,根据差与BC无关即可求出a与b的关系式.【解答】解:左上角阴影部分的长为AE,宽为AF=3b,右下角阴影部分的长为PC,宽为a,∵AD=BC,即AE+ED=AE+a,BC=BP+PC=4b+PC,∴AE+a=4b+PC,即AE﹣PC=4b﹣a,∴阴影部分面积之差S=AE•AF﹣PC•CG=3bAE﹣aPC=3b(PC+4b﹣a)﹣aPC=(3b﹣a)PC+12b2﹣3ab,则3b﹣a=0,即a=3b.解法二:既然BC是变化的,当点P与点C重合开始,然后BC向右伸展,设向右伸展长度为X,左上阴影增加的是3bX,右下阴影增加的是aX,因为S不变,∴增加的面积相等,∴3bX=aX,∴a=3b.故选:B.二、填空题(每小题4分,共20分)11.因式分解:4mn﹣mn3= mn(2+n)(2﹣n).【考点】55:提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=mn(4﹣n2)=mn(2+n)(2﹣n),故答案为:mn(2+n)(2﹣n)12.若与|x+2y﹣5|互为相反数,则(x﹣y)2017= ﹣1 .【考点】98:解二元一次方程组;16:非负数的性质:绝对值;23:非负数的性质:算术平方根.【分析】利用相反数性质及非负数性质列出方程组,求出方程组的解得到x与y的值,代入原式计算即可得到结果.【解答】解:∵与|x+2y﹣5|互为相反数,∴+|x+2y﹣5|=0,∴,①×2+②得:5x=5,解得:x=1,把x=1代入②得:y=2,则原式=﹣1,故答案为:﹣113.某数的平方根是2a+3和a﹣15,则这个数为121 .【考点】21:平方根;86:解一元一次方程.【分析】根据正数有两个平方根,这两个平方根互为相反数,据此即可得到关于a的方程即可求得a的值,进而求得这个数的值.【解答】解:根据题意得:2a+3+(a﹣15)=0,解得a=4,则这个数是(2a+3)2=121.故答案为:121.14.已知不等式组的解集为﹣1<x<2,则(m+n)2012= 1 .【考点】CB:解一元一次不等式组;98:解二元一次方程组;C6:解一元一次不等式.【分析】求出不等式组的解集,根据已知不等式组的解集得出m+n﹣2=﹣1,m=2,求出m、n 的值,再代入求出即可.【解答】解:,解不等式①得:x>m+n﹣2,解不等式②得:x<m,∴不等式组的解集为:m+n﹣2<x<m,∵不等式组的解集为﹣1<x<2,∴m+n﹣2=﹣1,m=2,解得:m=2,n=﹣1,∴(m+n)2012=(2﹣1)2012=1.故答案为:1.15.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2016,且AO=2BO,则a+b的值为﹣672 .【考点】33:代数式求值;13:数轴.【分析】依据绝对自的定义可知b﹣a=2016,﹣a=2b,从而可求得a、b的值,故此可求得a+b 的值.【解答】解:∵点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧,∴a<0,b>0.又∵|a﹣b|=2016,∴b﹣a=2016.∵AO=2BO,∴﹣a=2b.∴3b=2016.解得:b=672.∴a=﹣1344.∴a+b=﹣1344+672=﹣672.故答案为:﹣672.三、解答题(第16、17、18题各6分,第19、20题各10分,第21题12分,共50分)16.计算:【考点】73:二次根式的性质与化简;15:绝对值;6E:零指数幂;6F:负整数指数幂.【分析】理解绝对值的意义:负数的绝对值是它的相反数;表示的算术平方根即;一个数的负指数次幂等于这个数的正指数次幂的倒数;任何不等于0的数的0次幂都等于1.【解答】解:原式=2﹣+﹣1=1.17.解不等式组,并将解集在数轴上表示出来.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别解出两不等式的解集再求其公共解.【解答】解:解不等式①得x<﹣解不等式②得x≥﹣1∴不等式组的解集为﹣1≤x<﹣.其解集在数轴上表示为:如图所示.18.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.【考点】4J:整式的混合运算—化简求值.【分析】首先根据整式相乘的法则和平方差公式、完全平方公式去掉括号,然后合并同类项,最后代入数据计算即可求解.【解答】解:原式=9x2﹣4﹣(5x2﹣5x)﹣(4x2﹣4x+1)=9x2﹣4﹣5x2+5x﹣4x2+4x﹣1=9x﹣5,当时,原式==﹣3﹣5=﹣8.19.已知:a+b=2,ab=1.求:(1)a﹣b(2)a2﹣b2+4b.【考点】4C:完全平方公式.【分析】根据完全平方公式进行变形,再整体代入求出即可.【解答】解:(1)∵a+b=2,ab=1,∴(a﹣b)2=(a+b)2﹣4ab=4﹣4=0,则a﹣b=0,(2)∵a+b=2,ab=1,a﹣b=0∴a2﹣b2+4b=420.若2(x+4)﹣5<3(x+1)+4的最小整数解是方程的解,求代数式m2﹣2m+11的平方根的值.【考点】C7:一元一次不等式的整数解;21:平方根;85:一元一次方程的解.【分析】首先计算出不等式的解集,从而确定出最小整数解,进而得到x的值,再把x的值代入方程算出m的值,然后再次把m的值代入代数式m2﹣2m+11计算出结果,再算出平方根即可.【解答】解:解不等式得:x>﹣4则x的最小整数解为﹣3,当x=﹣3时,×(﹣3)+3m=5,解得:m=2,把m=2代入m2﹣2m+11得:22﹣2×2+11=11,11平方根为±.故代数式m2﹣2m+11的平方根的值为±.21.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?【考点】CE:一元一次不等式组的应用.【分析】(1)设租用甲车x辆,则乙车(10﹣x)辆.不等关系:①两种车共坐人数不小于340人;②两种车共载行李不小于170件.(2)因为车的总数是一定的,所以费用少的车越多越省.【解答】解:(1)设租用甲车x辆,则乙车(10﹣x)辆.根据题意,得,解,得4≤x≤7.5.又x是整数,∴x=4或5或6或7.共有四种方案:①甲4辆,乙6辆;②甲5辆,乙5辆;③甲6辆,乙4辆;④甲7辆,乙3辆.(2)①甲4辆,乙6辆;总费用为4×2000+6×1800=18800元;②甲5辆,乙5辆;总费用5×2000+5×1800=19000元;③甲6辆,乙4辆;总费用为6×2000+4×1800=19200元;④甲7辆,乙3辆.总费用为7×2000+3×1800=19400元;因为乙车的租金少,所以乙车越多,总费用越少.故选方案①.2017年5月24日。
安徽省合肥市2017-2018学年度下第2学期期中调研试卷七年级数学试题完成时间:120分钟满分:150分A. B. C. D.2.4的平方根是()A.2 B.±2 C.2D.±23.在下列所给出的坐标中,在第二象限的是()A.(2,3)B.(2,-3)C.(-2,-3)D.(-2,3)4.在实数5,227,38-,0,-1.414,2π,36,0.1010010001中,无理数有()A.2个B.3个C.4个D.5个5.如图,点E在AC的延长线上,下列条件中不能判断AC∥BD的是()A. ∠1=∠2B. ∠3=∠4C. ∠D=∠DCED. ∠D+∠ACD=180°6.下列命题是假命题的是()A. 对顶角相等B. 两直线平行,同旁内角相等C. 平行于同一条直线的两直线平行D. 同位角相等,两直线平行7.如图,表示7的点在数轴上表示时,应在哪两个字母之间()A. C与DB. A与BC. A与CD. B与C8.点P位于x轴下方,y轴左侧,距离x轴4个单位长度,距离y轴2个单位长度,那么点P的坐标是()A.(4,2)B.(-2,-4)C.(-4,-2)D.(2,4)9.在平面直角坐标系中,线段CF是由线段AB平移得到的;点A(-1,4)的对应点为C(4,1);则点B(a,b)的对应点F的坐标为()A.(a+3,b+5)B.(a+5,b+3)C.(a-5,b+3)D.(a+5,b-3)10.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上.若∠1=35°,则∠2的度数为()A. 10°B. 15°C. 25°D. 35°二、填空题(每题5分,共20分)7−x为整数的x的值是(只需填一个).12.如图所示,直线AB、CD、EF交于点O,OG平分∠BOF,且CD⊥EF,∠AOE=70°,则∠DOG= .第12题图第14题图13.把9的平方根和立方根按从小到大的顺序排列为.14.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点A1(0,1)、A2(1,1)、A3(1,0)、A(2,0),…,那么点A4n+1(n是自然数)的坐标为.三、解答题(共90分)15.(8分)计算:(1)100+38-(2)|3-2|-2)2(-16.(8分)求下列各式中x的值:(1)2x2=4;(2)64x3 + 27=017.(8分)如图,直线a∥b,点B在直线b上,AB⊥BC,∠1=55°,求∠2的度数. 18.(8分)完成下面的证明如图,点E在直线DF上,点B在直线AC上,若∠AGB=∠EHF,∠C=∠D.求证:∠A=∠F.证明:∵∠AGB=∠EHF∠AGB= (对顶角相等)∴∠EHF=∠DGF∴DB∥EC()∴∠=∠DBA()又∵∠C=∠D∴∠DBA=∠D∴DF∥()∴∠A=∠F().19.(10分)已知5a+2的立方根是3,3a+b-1的算术平方根是4,c是13的整数部分.(1)求a,b,c的值;(2)求3a-b+c的平方根.20.(10分)如图,直线AB是某天然气公司的主输气管道,点C、D是在AB异侧的两个小区,现在主输气管道上寻找支管道连接点,向两个小区铺设管道。
2016-2017学年安徽省合肥市瑶海区七年级(下)期中数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1.的值为()A.2 B.﹣2 C.±2 D.2.下列计算中,结果正确的是()A.(a﹣b)2=a2﹣b2B.(﹣2)3=8 C.D.6a2÷2a2=3a23.下列说法中,不正确的是()A.8的立方根是2 B.﹣8的立方根是﹣2C.0的立方根是0 D.125的立方根是±54.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.001245.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定[]的值为()A.3 B.4 C.5 D.66.如果多项式x2﹣mx+9是一个完全平方式,那么m的值为()A.﹣3 B.﹣6 C.±3 D.±67.已知x+y=﹣5,xy=6,则x2+y2的值是()A.1 B.13 C.17 D.258.已知x+y=2,xy=﹣2,则(1﹣x)(1﹣y)的值为()A.﹣1 B.1 C.5 D.﹣39.下列各数中,不是不等式2(x﹣5)<x﹣8的解的是()A.﹣4 B.﹣5 C.﹣3 D.510.计算(﹣2)100+(﹣2)99的结果是()A.2 B.﹣2 C.﹣299D.299二、填空题(本大题共5小题,每小题4分,共20分)11.的平方根是.12.若M=(x﹣3)(x﹣5),N=(x﹣2)(x﹣6),则M与N的大小关系为.13.如果2m,m,1﹣m这三个实数在数轴上所对应的点从左到右依次排列,那么m的取值范围是.14.(2x﹣3)=2x2+mx﹣6,则m=.15.已知2x=3,2y=5,则22x﹣y﹣1的值是.三、解答题(本大题共3小题,每小题16分,共48分)16.计算:(1)+++()﹣2(2)||+2+(﹣2017)0.17.解不等式和不等式组:(1)x为何值时,代数式的值比的值大1.(2)解不等式组:,并把解集在数轴上表示出来.18.(1)化简:a2b(a+b)﹣(2a﹣3ab)(a2b﹣ab)(2)先化简,再求值:(3x+2)(3x﹣2)﹣7x(x﹣1)﹣2(x﹣1)2,其中x=﹣.四、解答题(本大题共2小题,每小题9分,共18分)19.你能求(x﹣1)(x99+x98+x97+…+x+1)的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手,先分别计算下列各式的值.①(x﹣1)(x+1)=x2﹣1;②(x﹣1)(x2+x+1)=x3﹣1;③(x﹣1)(x3+x2+x+1)=x4﹣1;…由此我们可以得到:(x﹣1)(x99+x98+x97+…+x+1)=;请你利用上面的结论,解决下面的问题:若x2+x+1=0,求x2017的值.20.你发现了吗?()2=×,()﹣2==×=×由上述计算,我们发现()2()﹣2;(2)仿照(1),请你通过计算,判断()3与()﹣3之间的关系.(3)我们可以发现:()﹣m()m(ab≠0)(4)计算:()﹣4×()4.三、解答题(本大题共3小题,每小题8分,共24分)21.已知一个正方体的体积是1000cm3,现在要在它的8个角上分别截去8个大小相同的小正方体,使截去后余下的体积是488cm3,问截得的每个小正方体的棱长是多少?22.大学生小李自主创业,春节期间购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:要使销售文具所获利润不超过进货价格的40%,求至少要购进多少只A型文具?23.某市市区去年年底电动车拥有量是10万辆,为了缓解城区交通拥堵状况,今年年初,市交通部门要求到明年年底控制电动车拥有量不超过11.9万辆,如果每年底报废的电动车数量是上一年年底电动车拥有量的10%,且每年新增电动车数量相同,问:从今年年初起每年新增电动车数量最多是多少万辆?2016-2017学年安徽省合肥市瑶海区七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.的值为()A.2 B.﹣2 C.±2 D.【考点】22:算术平方根.【分析】根据算术平方根的定义得出即为4的算术平方根,进而求出即可.【解答】解:=2.故选A【点评】此题主要考查了算术平方根的定义,熟练利用算术平方根的定义得出是解题关键.2.下列计算中,结果正确的是()A.(a﹣b)2=a2﹣b2B.(﹣2)3=8 C.D.6a2÷2a2=3a2【考点】6F:负整数指数幂;1E:有理数的乘方;4C:完全平方公式;4H:整式的除法.【分析】根据完全平方公式可得A错误;根据乘方计算法则可得B错误;根据负整数指数幂:a﹣p=(a≠0,p为正整数)可得C正确;根据单项式除以单项式,把系数,同底数幂分别相除后,作为商的因式;对于只在被除式里含有的字母,则连同他的指数一起作为商的一个因式可得D错误.【解答】解:A、(a﹣b)2=a2﹣b2,计算错误,应为a2+b2﹣2ab;B、(﹣2)3=8,计算错误,应为﹣8;C、=3,计算正确;D、6a2÷2a2=3a2,计算错误,应为3;故选:C.【点评】此题主要考查了完全平方公式、负整数指数幂、单项式除以单项式、负整数指数幂,关键是掌握各计算法则.3.下列说法中,不正确的是()A.8的立方根是2 B.﹣8的立方根是﹣2C.0的立方根是0 D.125的立方根是±5【考点】24:立方根.【分析】ABCD都利用立方根的性质即可判定.【解答】解:A、8的立方根是2,故选项正确;B、﹣8的立方根是﹣2,故选项正确;C、0的立方根是0,故选项正确;D、∵5的立方等于125,∴125的立方根等于5,故选项错误.故选D.【点评】此题主要考查了立方根的性质:一个正数的立方根是正数,一个负数的立方根是负数,0的立方根是0.4.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.00124【考点】1K:科学记数法—原数.【专题】12 :应用题.【分析】科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到.【解答】解:把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到为0.001 24.故选D.【点评】本题考查写出用科学记数法表示的原数.将科学记数法a×10﹣n表示的数,“还原”成通常表示的数,就是把a的小数点向左移动n位所得到的数.把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法.5.规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定[]的值为()A.3 B.4 C.5 D.6【考点】2B:估算无理数的大小.【专题】23 :新定义.【分析】先求出+1的范围,再根据范围求出即可.【解答】解:∵3<<4,∴4<+1<5,∴[+1]=4,故选B.【点评】本题考查了估算无理数的大小的应用,关键是求出+1的范围.6.如果多项式x2﹣mx+9是一个完全平方式,那么m的值为()A.﹣3 B.﹣6 C.±3 D.±6【考点】4E:完全平方式.【专题】11 :计算题.【分析】利用完全平方公式的结构特征判断即可得到m的值.【解答】解:∵x2﹣mx+9是一个完全平方式,∴m=±6.故选D.【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.7.已知x+y=﹣5,xy=6,则x2+y2的值是()A.1 B.13 C.17 D.25【考点】4C:完全平方公式.【分析】将所求式子利用完全平方公式变形后,将x+y与xy的值代入计算,即可求出值.【解答】解:∵x+y=﹣5,xy=6,∴x2+y2=(x+y)2﹣2xy=25﹣2×6=25﹣12=13.故选:B.【点评】此题考查了完全平方公式,熟练掌握公式是解本题的关键.8.已知x+y=2,xy=﹣2,则(1﹣x)(1﹣y)的值为()A.﹣1 B.1 C.5 D.﹣3【考点】4J:整式的混合运算—化简求值.【专题】11 :计算题.【分析】原式利用多项式乘以多项式法则计算,整理后将x+y与xy的值代入计算即可求出值.【解答】解:∵x+y=2,xy=﹣2,∴(1﹣x)(1﹣y)=1﹣y﹣x+xy=1﹣(x+y)+xy=1﹣2﹣2=﹣3.故选D.【点评】此题考查了整式的混合运算﹣化简求值,熟练掌握运算法则是解本题的关键.9.下列各数中,不是不等式2(x﹣5)<x﹣8的解的是()A.﹣4 B.﹣5 C.﹣3 D.5【考点】C3:不等式的解集.【分析】求出不等式的解集,即可作出判断.【解答】解:2(x﹣5)<x﹣82x﹣10<x﹣82x﹣x<10﹣8x<2,则A、B、C都是不等式的解,只有D不是不等式的解,故选D.【点评】本题考查了不等式的解集,正确求解不等式是解题的关键.10.计算(﹣2)100+(﹣2)99的结果是()A.2 B.﹣2 C.﹣299D.299【考点】53:因式分解﹣提公因式法.【分析】根据提公因式法,可得负数的奇数次幂,根据负数的奇数次幂是负数,可得答案.【解答】解:原式=(﹣2)99[(﹣2)+1]=﹣(﹣2)99=299,故选:D.【点评】本题考查了因式分解,提公因式法是解题关键,注意负数的奇数次幂是负数,负数的偶数次幂是正数.二、填空题(本大题共5小题,每小题4分,共20分)11.的平方根是±2.【考点】21:平方根;22:算术平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:的平方根是±2.故答案为:±2【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.若M=(x﹣3)(x﹣5),N=(x﹣2)(x﹣6),则M与N的大小关系为m>N.【考点】4B:多项式乘多项式.【分析】根据题目中的M和N,可以得到M﹣N的值,然后与0比较大小,即可解答本题.【解答】解:∵M=(x﹣3)(x﹣5),N=(x﹣2)(x﹣6),∴M﹣N=(x﹣3)(x﹣5)﹣(x﹣2)(x﹣6)=x2﹣8x+15﹣x2+8x﹣12=3>0,∴M>N,故答案为:M>N.【点评】本题考查多项式的减法、比较数的大小,解答本题的关键是明确多项式减法的计算方法.13.如果2m,m,1﹣m这三个实数在数轴上所对应的点从左到右依次排列,那么m的取值范围是m<0.【考点】13:数轴.【分析】如果2m,m,1﹣m这三个实数在数轴上所对应的点从左到右依次排列,即已知2m<m,m<1﹣m,2m<1﹣m,即可解得m的范围.【解答】解:根据题意得:2m<m,m<1﹣m,2m<1﹣m,解得:m<0,m<,m<,∴m的取值范围是m<0.故答案为:m<0.【点评】此题综合考查了数轴的有关内容及一元一次不等式组的解法.14.(x+2)(2x﹣3)=2x2+mx﹣6,则m=1.【考点】4B:多项式乘多项式.【分析】按照多项式乘以多项式把等式的左边展开,根据等式的左边等于右边,即可解答.【解答】解:(x+2)(2x﹣3)=2x2﹣3x+4x﹣6=2x2+x﹣6=2x2+mx﹣6,∴m=1,故答案为:1.【点评】本题考查了多项式乘以多项式,解决本题的关键是按照多项式乘以多项式把等式的左边展开.15.已知2x=3,2y=5,则22x﹣y﹣1的值是.【考点】47:幂的乘方与积的乘方.【分析】根据同底数幂的除法底数不变指数相减,幂的乘方,可得答案.【解答】解:22x﹣y﹣1=22x÷2y÷2=(2x)2÷2y÷2=9÷5÷2=,故答案为:.【点评】本题考察了同底数幂的除法、幂的乘方,熟记法则并根据法则计算是解题关键.三、解答题(本大题共3小题,每小题16分,共48分)16.计算:(1)+++()﹣2(2)||+2+(﹣2017)0.【考点】2C:实数的运算;6E:零指数幂;6F:负整数指数幂.【专题】11 :计算题;511:实数.【分析】(1)原式利用平方根、立方根定义,以及负整数指数幂法则计算即可得到结果;(2)原式利用绝对值的代数意义,以及零指数幂法则计算即可得到结果.【解答】解:(1)原式=9﹣3++4=10;(2)原式=﹣+2﹣+1=+1.【点评】此题考查了实数的运算,零指数幂、负整数指数幂,熟练掌握运算法则是解本题的关键.17.解不等式和不等式组:(1)x为何值时,代数式的值比的值大1.(2)解不等式组:,并把解集在数轴上表示出来.【考点】CB:解一元一次不等式组;86:解一元一次方程;C4:在数轴上表示不等式的解集.【分析】(1)根据题意列出方程,在依据解一元一次方程的基本步骤依次进行可得答案;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.【解答】解:(1)根据题意,得:﹣=1,∴2(x+4)﹣3(3x﹣1)=6,2x+8﹣9x+3=6,2x﹣9x=6﹣8﹣3,﹣7x=﹣5,∴x=;(2)解不等式①,得:x≤3,解不等式②,得:x>﹣1,∴不等式组的解集为﹣1<x≤3,将解集表示在数轴上如下:【点评】本题考查的是解一元一次方程和解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.18.(1)化简:a2b(a+b)﹣(2a﹣3ab)(a2b﹣ab)(2)先化简,再求值:(3x+2)(3x﹣2)﹣7x(x﹣1)﹣2(x﹣1)2,其中x=﹣.【考点】4J:整式的混合运算—化简求值.【分析】(1)根据整式的运算法则即可化简,(2)先将原式进行化简,然后将x的值代入即可求出答案.【解答】解:(1)原式=a3b+a2b2﹣2a3b+2a2b+3a3b2﹣3a2b2=3a3b2﹣a3b﹣2a2b2+2a2b(2)当x=﹣时,原式=(9x2﹣4)﹣7x2+7x﹣2x2+4x﹣2=11x﹣6=﹣﹣6=﹣【点评】本题考查整式的混合运算,解题的关键是熟练运用整式的运算法则,本题属于基础题型.四、解答题(本大题共2小题,每小题9分,共18分)19.你能求(x﹣1)(x99+x98+x97+…+x+1)的值吗?遇到这样的问题,我们可以先思考一下,从简单的情形入手,先分别计算下列各式的值.①(x﹣1)(x+1)=x2﹣1;②(x﹣1)(x2+x+1)=x3﹣1;③(x﹣1)(x3+x2+x+1)=x4﹣1;…由此我们可以得到:(x﹣1)(x99+x98+x97+…+x+1)=x100﹣1;请你利用上面的结论,解决下面的问题:若x2+x+1=0,求x2017的值.【考点】4I:整式的混合运算.【专题】2A :规律型.【分析】根据已知三个等式规律可得(x﹣1)(x99+x98+x97+…+x+1)=x100﹣1;由x2+x+1=0可得(x﹣1)(x2+x+1)=0即x3﹣1=0,求得x的值代入计算即可.【解答】解:观察所给等式可得到(x﹣1)(x99+x98+x97+…+x+1)=x100﹣1;∵x2+x+1=0,∴(x﹣1)(x2+x+1)=0,即x3﹣1=0,解得:x=1,∴x2017=x=12017=1.故答案为:x100﹣1.【点评】此题考查整式的混合运算能力,同时也考查学生的分析、总结、归纳能力,规律型的习题一般是从所给的数据和运算方法进行分析,从特殊值的规律上总结出一般性的规律.20.(1)你发现了吗?()2=×,()﹣2==×=×由上述计算,我们发现()2=()﹣2;(2)仿照(1),请你通过计算,判断()3与()﹣3之间的关系.(3)我们可以发现:()﹣m=()m(ab≠0)(4)计算:()﹣4×()4.【考点】6F:负整数指数幂;1E:有理数的乘方.【分析】(1)类比题干中乘方的运算即可得;(2)类比题干中分数的乘方计算方法计算后即可得;(3)根据(1)、(2)的规律即可得;(4)逆用积的乘方将原式变形为()﹣4×()﹣4×()4,再利用同底数幂进行计算可得.【解答】解:(1)∵()2=×,()﹣2===×,∴()2=()﹣2,故答案为:=;(2)∵()3=××,()﹣3==××,∴()3=()﹣3;(3)由(1)、(2)知,()﹣m=()m,故答案为:=;(4)原式=(×)﹣4×()4=()﹣4×()﹣4×()4=×()﹣4+4=16×1=16.【点评】本题主要考查有理数的乘方、负整数指数幂及幂的运算,熟练掌握有理数的乘方法则和幂的运算法则是解题的关键.三、解答题(本大题共3小题,每小题8分,共24分)21.已知一个正方体的体积是1000cm3,现在要在它的8个角上分别截去8个大小相同的小正方体,使截去后余下的体积是488cm3,问截得的每个小正方体的棱长是多少?【考点】24:立方根.【专题】12 :应用题.【分析】由于个正方体的体积是1000cm3,现在要在它的8个角上分别截去8个大小相同的小正方体,使截去后余下的体积是488cm3,设截得的每个小正方体的棱长xcm,根据已知条件可以列出方程1000﹣8x3=488,解方程即可求解.【解答】解:设截得的每个小正方体的棱长xcm,依题意得1000﹣8x3=488,∴8x3=512,∴x=4,答:截得的每个小正方体的棱长是4cm.【点评】此题主要考查了立方根的应用,其中求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号.22.大学生小李自主创业,春节期间购进100只两种型号的文具进行销售,其进价和售价之间的关系如下表:要使销售文具所获利润不超过进货价格的40%,求至少要购进多少只A型文具?【考点】C9:一元一次不等式的应用.【分析】设购进A型玩具x只,根据题意可以得到利润与x的关系式,然后根据所获利润不超过进货价格的40%,列出相应的不等式,从而可以求得最大利润.【解答】解:设购进A型玩具x只,依题意得:(12﹣10)x+(23﹣15)(100﹣x)≤40%[10x+15(100﹣x)]解得,x≥50.答:至少要购进50只A型文具.【点评】本题考查了一元一次不等式的应用.解决问题的关键是读懂题意,找到关键描述语,找到所求的量的数量关系.23.某市市区去年年底电动车拥有量是10万辆,为了缓解城区交通拥堵状况,今年年初,市交通部门要求到明年年底控制电动车拥有量不超过11.9万辆,如果每年底报废的电动车数量是上一年年底电动车拥有量的10%,且每年新增电动车数量相同,问:从今年年初起每年新增电动车数量最多是多少万辆?【考点】C9:一元一次不等式的应用.【分析】根据题意分别求出今年将报废电动车的数量,进而得出明年报废的电动车数量,进而得出不等式求出即可.【解答】解:设从今年年初起每年新增电动车数量是x万辆,由题意可得出:今年将报废电动车:10×10%=1(万辆),∴(10﹣1)+x﹣10%[(10﹣1)+x]+x≤11.9即(10﹣1)+x(1﹣10%)+x≤11.9,解得:x≤2.答:从今年年初起每年新增电动车数量最多是2万辆.【点评】此题主要考查了一元一次不等式的应用,分别表示出今年与明年电动车数量是解题关键.。
第1页 共11页2017-2018学年安徽省合肥市七年级(下)期中数学试卷一、选择题(本大题共10小题,共30.0分)1. 下列各图中, 与 是对顶角的是A. B. C. D. 2. 的平方根是A. 2B.C.D.3. 在下列所给出坐标的点中,在第二象限的是 A.B. C. D. 4. 在实数 , , ,0, , , , 中,无理数有A. 2个B. 3个C. 4个D. 5个5. 如图所示,点E 在AC 的延长线上,下列条件中不能判断A. B.C. D.6. 下列命题是假命题的是A. 对顶角相等B. 两直线平行,同旁内角相等C. 平行于同一条直线的两直线平行D. 同位角相等,两直线平行7. 如图,表示 的点在数轴上表示时,所在哪两个字母之间A. C 与DB. A 与BC. A 与CD. B 与C8. 点P 位于x 轴下方,y 轴左侧,距离x 轴4个单位长度,距离y 轴2个单位长度,那么点P 的坐标是A. B. C. D.9. 在平面直角坐标系中,线段CF 是由线段AB 平移得到的;点 的对应点为;则点 的对应点F 的坐标为A. B. C. D.10. 如图所示,将含有 角的三角板的直角顶点放在相互平行的两条直线其中一条上,若 ,则 的度数A. B. C. D.二、填空题(本大题共4小题,共20.0分)11. 若整数x 满足 ,则使 为整数的x 的值是______ 只需填一个 .12. 如图,直线AB ,CD ,EF 交于点O ,OG 平分 ,且 , ,则 ______.13.把9的平方根和立方根按从小到大的顺序排列为______.14.如图,在平面直角坐标系中,一动点从原点O出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点,,,,那么点为自然数的坐标为______用n表示.三、解答题(本大题共9小题,共50.0分)15.计算:16.求下列各式中x的值:;17.如图,直线,点B在直线b上,,,求的度数.如图,点E在直线DF上,点B在直线AC上,若,.求证:.证明:______对顶角相等__________________又__________________19.已知的立方根是3,的算术平方根是4,c是的整数部分.求a,b,c的值;求的平方根.20.如图,直线AB是某天然气公司的主输气管道,点C、D是在AB异侧的两个小区,现在主输气管道上寻找支管道连接点,向两个小区铺设管道有以下两个方案:方案一:只取一个连接点P,使得像两个小区铺设的支管道总长度最短,在图中标出点P的位置,保留画图痕迹;方案二:取两个连接点M和N,使得点M到C小区铺设的支管道最短,使得点N 到D小区铺设的管道最短在途中标出M、N的位置,保留画图痕迹;设方案一中铺设的支管道总长度为,方案二中铺设的支管道总长度为,则与的大小关系为:______填“”、“”或“”理由是______.第3页共11页21.如图,这是某市部分简图,为了确定各建筑物的位置:请你以火车站为原点建立平面直角坐标系.写出市场的坐标为______;超市的坐标为______.请将体育场为A、宾馆为C和火车站为B看作三点用线段连起来,得,然后将此三角形向下平移4个单位长度,画出平移后的,并求出其面积.22.如图,长方形OABC中,O为直角坐标系的原点,A、C两点的坐标分别为,,点B在第一象限内.写出点B的坐标,并求长方形OABC的周长;若有过点C的直线CD把长方形OABC的周长分成3:5两部分,D为直线CD与长方形的边的交点,求点D的坐标.23.如图1,已知射线,,求证:;如图2,E、F在CB上,且满足,OE平分.当时,求的度数.若平行移动AB,那么:的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.第5页共11页答案和解析【答案】1. B2. D3. B4. A5. B6. B7. A8. B9. D10. B11. 答案不唯一12.13.14.15. 解:原式;原式.16. 解:;解得:;则解得:.17. 解:,.,,,,.18. ;同位角相等,两直线平行;C;两直线平行,同位角相等;AC;内错角相等,两直线平行;两直线平行,内错角相等19. 解:的立方根是3,的算术平方根是4,,,,,是的整数部分,;将,,代入得:,的平方根是.20. ;垂线段最短21. ;22. 解:,,,.四边形OABC是长方形,,,点B的坐标为.,,长方形OABC的周长为:.把长方形OABC的周长分为3:5两部分,被分成的两部分的长分别为12和20.当点D在AB上时,,所以点D的坐标为.当点D在OA上时,,所以点D的坐标为.23. 证明:,OE平分:的值不发生变化,::2【解析】1. 解:A、与不是对顶角,故A选项错误;B、与是对顶角,故B选项正确;C、与不是对顶角,故C选项错误;D、与不是对顶角,故D选项错误.故选:B.根据对顶角的定义对各选项分析判断后利用排除法求解.本题主要考查了对顶角的定义,熟记对顶角的图形是解题的关键.2. 解:,的平方根是.故选:D.先化简,然后再根据平方根的定义求解即可.本题考查了平方根的定义以及算术平方根,先把正确化简是解题的关键,本题比较容易出错.3. 解:根据每个象限内点的坐标符号可得在第二象限内的点是,故选:B.根据第二象限内点的坐标符号进行判断即可.第7页共11页本题考查了各象限内点的坐标的符号,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限.4. 解:无理数有:,,共2个,故选:A.利用无理数的定义判断即可.此题考查了无理数,算术平方根,以及立方根,弄清无理数的定义是解本题的关键.5. 解:A、,,故本选项错误;B、根据不能推出,故本选项正确;C、,,故本选项错误;D、,,故本选项错误;故选:B.根据平行线的判定逐个判断即可.本题考查了平行线的判定的应用,能熟记平行线的判定定理是解此题的关键,注意:平行线的判定有:同位角相等,两直线平行,内错角相等,两直线平行,同旁内角互补,两直线平行.6. 解:A、对顶角相等是真命题;B、两直线平行,同旁内角互补,B是假命题;C、平行于同一条直线的两直线平行是真命题;D、同位角相等,两直线平行是真命题;故选:B.根据对顶角的性质、平行线的判定和性质判断即可.本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题判断命题的真假关键是要熟悉课本中的性质定理.7. 解:,,则表示的点在数轴上表示时,所在C和D两个字母之间.故选:A.确定出7的范围,利用算术平方根求出的范围,即可得到结果.此题考查了估算无理数的大小,以及实数与数轴,解题关键是确定无理数的整数部分即可解决问题.8. 解:点P位于x轴下方,y轴左侧,点P在第三象限;距离y轴2个单位长度,点P的横坐标为;距离x轴4个单位长度,点P的纵坐标为;点P的坐标为,故选:B.位于x轴下方,y轴左侧,那么所求点在第三象限;距离x轴4个单位长度,可得点P 的纵坐标;距离y轴2个单位长度,可得点P的横坐标.用到的知识点为:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值;易错点的判断出所求点所在的象限.9. 解:线段CF是由线段AB平移得到的;点的对应点为,点的对应点F的坐标为:.故选:D.直接利用平移的性质得出对应点坐标的变化规律进而得出答案.此题主要考查了平移变换,正确得出坐标变化规律是解题关键.10. 解:如图,延长AB交CF于E,,,,,,,,故选:B.延长AB交CF于E,求出,根据三角形外角性质求出,根据平行线性质得出,代入求出即可.本题考查了三角形的内角和定理,三角形外角性质,平行线性质的应用,解题时注意:两直线平行,内错角相等.11. 解:,,则使为整数的x的值是:等故答案为:答案不唯一.直接得出x的取值范围,进而得出符合题意的答案.此题主要考查了估算无理数的大小,正确得出x的取值范围是解题关键.12. 解:,,平分,,,,,故答案为:.首先根据对顶角相等可得,再根据角平分线的性质可得,然后再算出,进而可以根据角的和差关系算出的度数.此题主要考查了角的计算,关键是掌握对顶角相等,垂直定义,角平分线的性质.13. 解:的平方根为,3,9的立方根为,把9的平方根和立方根按从小到大的顺序排列为.故答案为:.先分别得到3的平方根和立方根,然后比较大小.本题考查了平方根、立方根、有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.14. 解:由图可知,时,,点,时,,点,第9页共11页时,,点,所以,点.故答案为:.根据图形分别求出、2、3时对应的点的坐标,然后根据变化规律写出即可.本题考查了点的坐标的变化规律,仔细观察图形,分别求出、2、3时对应的点的对应的坐标是解题的关键.15. 直接利用算术平方根以及立方根的性质分别化简得出答案;直接利用绝对值以及二次根式的性质化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.16. 直接利用平方根的定义计算得出答案;直接利用立方根的定义计算得出答案.此题主要考查了平方根和立方根,正确把握相关定义是解题关键.17. 根据垂直定义和邻补角求出,根据平行线的性质得出,代入求出即可.本题考查了垂直定义,平行线的性质的应用,注意:两直线平行,同位角相等.18. 证明:,对顶角相等,,同位角相等,两直线平行,两直线平行,同位角相等,又,,内错角相等,两直线平行,两直线平行,内错角相等.故答案为:;同位角相等,两直线平行;C;两直线平行,同位角相等;AC;内错角相等,两直线平行;两直线平行,内错角相等.根据对顶角相等推知,从而证得两直线;然后由平行线的性质得到,即可根据平行线的判定定理,推知两直线;最后由平行线的性质,证得.本题考查了平行线的判定与性质解答此题的关键是注意平行线的性质和判定定理的综合运用.19. 直接利用立方根以及算术平方根的定义得出a,b,c的值;利用中所求,代入求出答案.此题主要考查了估算无理数的大小以及算术平方根和立方根,正确把握相关定义是解题关键.20. 解:图形如右图所示,由题意可得,支管道总长度为为线段CD的长,支管道总长度为为线段CD与线段DN的长,垂线段最短,故答案为:,垂线段最短.根据题意可以作出合适的图形,并得到与的大小关系和相应的理由,本题得以解决.本题考查作图应用与设计作图,最短路径,解答本题的关键是明确题意,作出相应的图形.21. 解:如图所示:市场坐标,超市坐标:;如图所示:的面积.以火车站为原点建立直角坐标系即可;根据平面直角坐标系写出点的坐标即可;根据题目要求画出三角形,利用矩形面积减去四周多余三角形的面积即可.此题主要考查了作图,平移,坐标确定位置,以及求三角形的面积,关键是正确画出图形.22. 根据矩形的性质,点B的横坐标与点A的横坐标相等,纵坐标与点C的纵坐标相等解答,进而利用长方形的周长解答即可;求出被分成的两个部分的周长,再根据点D在边OA上或AB上确定出点D坐标即可;考查了点的坐标的确定,矩形的性质,熟练掌握矩形的性质是解题的关键,难点在于求出被分成的两个部分的周长并确定出点D的位置.23. 根据平行线的性质即可得出的度数,再根据,可得;根据OB平分,OE平分,即可得出,从而得出答案;根据平行线的性质,即可得出,,再根据,即可得出:的值为1:2.本题主要考查了平行线、角平分线的性质以及三角形内角和定理,熟记各性质并准确识图理清图中各角度之间的关系是解题的关键.第11页共11页。
1安徽省合肥市2017-2018学年七年级数学下学期期中试卷选择题(本大题共10小题,共30.0 分)F 列各图中,与 是对顶角的是A. 2B. 在下列所给出坐标的点中,在第二象限的是A.B.在实数一,-, ,0, ,", ,中,无理数有A. 2个B. 3个C. 4个D. 5个如图所示,点 E 在AC 的延长线上, 下列条件中不能判断亠 /AC EA.B.C.如图,表示一的点在数轴上表示时,所在哪两个字母之间I I I4耳G 玖0 11.5 22.5 3A. C 与 DB. A 与 BC. A 与 CD. B 与 C那么点P 的坐标是在平面直角坐标系中,线段CF 是由线段AB 平移得到的;点的对应点为则点的对应点F 的坐标为1.2. 3.4.5.6.7.8. 9.10._ 、 11. 12.C. C.D. D.D.下列命题是假命题的是A.对顶角相等C.平行于同一条直线的两直线平行B. 两直线平行,同旁内角相等 D.同位角相等,两直线平行点P 位于x 轴下方,y 轴左侧,距离 x 轴4个单位长度,距离y 轴2个单位长度, A. B.C.D.A.B. C.如图所示,将含有角的三角板的直角顶点放在相互平行的两条直线其中一条上,若,则 的度数A.填空题(本大题共 若整数x 满足B.C.4小题,共20.0分),则使一为整数的x 的值是 ______________如图,直线 AB CD EF 交于点 O OG 平分,且一的平方根是,则17.如图,直线 ,点B 在直线b 上,, 度数.13. 把9的平方根和立方根按从小到大的顺序排列为 ______________ .14. 如图,在平面直角坐标系中,一动点从原点 0出发,按向上,向右,向下,向右的方向不断地移动,每次移动一个单位,得到点 ,,,,那么点 为自然数的坐标为 ______________ 用n 表示.三、解答题(本大题共 9小题,共50.0 分)15. 计算:16. 求下列各式中x 的值:;业 冬 禺的Bb18. 完成下面的证明如图,点E在直线DF上,点B在直线AC上,若求证:证明:_______对顶角相等19.已知的立方根是3, 的算术平方根是4, c是—的整数部分.求a,b, c的值;求的平方根.20.如图,直线AB是某天然气公司的主输气管道,点 C D是在AB异侧的两个小区,现在主输气管道上寻找支管道连接点,向两个小区铺设管道有以下两个方案:方案一:只取一个连接点P,使得像两个小区铺设的支管道总长度最短,在图中标出点P的位置,保留画图痕迹;方案二:取两个连接点M和N,使得点M到C小区铺设的支管道最短,使得点N到D小区铺设的管道最短在途中标出M N的位置,保留画图痕迹;设方案一中铺设的支管道总长度为,方案二中铺设的支管道总长度为,则与的大小关系为: _________ 填“ ”、“ ”或“ ”理由是 ________________ .322.如图,长方形OAB(中, O为直角坐标系的原点,A、C两点的坐标分别为,,点B在第一象限内.写出点B的坐标,并求长方形OABC勺周长;若有过点C的直线CD把长方形OABC勺周长分成3:5两部分,D为直线CD与长方形的边的交点,求点D的坐标.23.如图1,已知射线求证:如图2, E、F在CB上,且满足,0E平分 .当时,求的度数.若平行移动AB那么:的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值.图】5答案和解析【答案】I. B 2. D 3. B 4. A 5. B 6. B 8. B9. D10. BII. 一答案不唯一12. 13. -14.14. 解:原式;原式 ■15. 解:;解得:_;解得:18. ;同位角相等,两直线平行;C;两直线平行,同位角相等;两直线平行;两直线平行,内错角相等19. 解:的立方根是3,的算术平方根是 4,是—的整数部分,将, , 代入得:的平方根是•20. ; 垂线段最短 21. ;22.解:17.解: 7. AAC 内错角相等,四边形OABC长方形,点B的坐标为长方形OAB(的周长为:.把长方形OABC勺周长分为3: 5两部分, 被分成的两部分的长分别为12和20.当点D在AB上时,所以点D的坐标为当点D在OA上时,所以点D的坐标为23. 证明:,OE平分的值不发生变化:2【解析】1. 解:A、与不是对顶角,故A选项错误;B、与是对顶角,故B选项正确;C 与不是对顶角,故C选项错误;D 与不是对顶角,故D选项错误.故选:B.根据对顶角的定义对各选项分析判断后利用排除法求解. 本题主要考查了对顶角的定义,熟记对顶角的图形是解题的关键.2. 解:一,一的平方根是".故选:D.先化简一,然后再根据平方根的定义求解即可.本题考查了平方根的定义以及算术平方根,先把—正确化简是解题的关键,本题比较容易出错.3. 解:根据每个象限内点的坐标符号可得在第二象限内的点是,故选:B.根据第二象限内点的坐标符号进行判断即可.本题考查了各象限内点的坐标的符号,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限;第二象限;第三象限;第四象限74. 解:无理数有:一,共2个,故选:A利用无理数的定义判断即可.此题考查了无理数,算术平方根,以及立方根,弄清无理数的定义是解本题的关键.5. 解:A,,故本选项错误;B、根据不能推出,故本选项正确;C、,,故本选项错误;D ,,故本选项错误;故选:B.根据平行线的判定逐个判断即可.本题考查了平行线的判定的应用,能熟记平行线的判定定理是解此题的关键,注意:平行线的判定有:同位角相等,两直线平行,内错角相等,两直线平行,同旁内角互补,两直线平行.6. 解:A、对顶角相等是真命题;B、两直线平行,同旁内角互补,B是假命题;C平行于同一条直线的两直线平行是真命题;D同位角相等,两直线平行是真命题;故选:B.根据对顶角的性质、平行线的判定和性质判断即可.本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题判断命题的真假关键是要熟悉课本中的性质定理.7. 解:,则表示一的点在数轴上表示时,所在C和D两个字母之间.故选:A确定出7的范围,利用算术平方根求出—的范围,即可得到结果.此题考查了估算无理数的大小,以及实数与数轴,解题关键是确定无理数的整数部分即可解决问题.8. 解:点P位于x轴下方,y轴左侧,点P在第三象限;距离y轴2个单位长度,点P的横坐标为;距离x轴4个单位长度,点P的纵坐标为;点P的坐标为,故选:B.位于x轴下方,y轴左侧,那么所求点在第三象限;距离x轴4个单位长度,可得点P 的纵坐标;距离y轴2个单位长度,可得点P的横坐标.用到的知识点为:点到x轴的距离为点的纵坐标的绝对值,到y轴的距离为点的横坐标的绝对值;易错点的判断出所求点所在的象限.9. 解:线段CF是由线段AB平移得到的;点的对应点为,点的对应点F的坐标为:故选:D.直接利用平移的性质得出对应点坐标的变化规律进而得出答案. 此题主要考查了平移变换,正确得出坐标变化规律是解题关键.10.解:如图,延长AB交CF于E,故选:B.延长AB交CF于E,求出,根据三角形外角性质求出,根据平行线性质得出代入求出即可.本题考查了三角形的内角和定理,三角形外角性质,平行线性质的应用,解题时注意: 两直线平行,内错角相等.11. 解:,则使-为整数的x的值是:.等故答案为:一答案不唯一.直接得出x的取值范围,进而得出符合题意的答案.此题主要考查了估算无理数的大小,正确得出x的取值范围是解题关键.12. 解:,平分,故答案为:首先根据对顶角相等可得,再根据角平分线的性质可得,然后再算出,进而可以根据角的和差关系算出的度数.此题主要考查了角的计算,关键是掌握对顶角相等,垂直定义,角平分线的性质.13. 解:的平方根为,3,9的立方根为_,把9的平方根和立方根按从小到大的顺序排列为一 .故答案为:一 .先分别得到3的平方根和立方根,然后比较大小.本题考查了平方根、立方根、有理数大小比较:正数大于0,负数小于0;负数的绝对值越大,这个数越小.14. 解:由图可知,时,,点,时,,点,时,,点,9所以,点故答案为:11 根据图形分别求出 、2、3时对应的点 的坐标,然后根据变化规律写出即可.本题考查了点的坐标的变化规律,仔细观察图形,分别求出 、2、3时对应的点的 对应的坐标是解题的关键. 15. 直接利用算术平方根以及立方根的性质分别化简得出答案;直接利用绝对值以及二次根式的性质化简得出答案.此题主要考查了实数运算,正确化简各数是解题关键.16. 直接利用平方根的定义计算得出答案;直接利用立方根的定义计算得出答案.此题主要考查了平方根和立方根,正确把握相关定义是解题关键.17. 根据垂直定义和邻补角求出,根据平行线的性质得出 ,代入求出即可. 本题考查了垂直定义,平行线的性质的应用,注意:两直线平行,同位角相等.18. 证明:, 对顶角相等, 同位角相等,两直线平行 ,两直线平行,同位角相等 ,内错角相等,两直线平行, 两直线平行,内错角相等 故答案为: ;同位角相等,两直线平行; C ;两直线平行,同位角相等; AC ;内错角相等,两直线平行;两直线平行,内错角相等. 根据对顶角相等推知 ,从而证得两直线;然后由平行线的性质得到即可根据平行线的判定定理,推知两直线;最后由平行线的性质,证得 本题考查了平行线的判定与性质解答此题的关键是注意平行线的性质和判定定理的综合运用. 19. 直接利用立方根以及算术平方根的定义得出 利用 中所求,代入求出答案. 此题主要考查了估算无理数的大小以及算术平方根和立方根, 关键.20. 解:图形如右图所示,由题意可得,支管道总长度为为线段CD 的长, 支管道总长度为为线段CD 与线..段DN 的长,垂线段最短,故答案为:,垂线段最短.根据题意可以作出合适的图形,并得到本题考查作图 应用与设计作图,最短路径,解答本题的关键是明确题意,作出相应的 图形. 21. 解: 如图所示:如图所示:的面积b ,c 的值;a , 正确把握相关定义是解题 与 的大小关系和相应的理由,本题得以解决.市场坐标 ,超市坐标:以火车站为原点建立直角坐标系即可;根据平面直角坐标系写出点的坐标即可;根据题目要求画出三角形,利用矩形面积减去四周多余三角形的面积即可.此题主要考查了作图,平移,坐标确定位置,以及求三角形的面积,关键是正确画出图 形. 22. 根据矩形的性质,点 B 的横坐标与点 A 的横坐标相等,纵坐标与点 C 的纵坐标 相等解答,进而利用长方形的周长解答即可;求出被分成的两个部分的周长, 再根据点D 在边0A 上或AB 上确定出点D 坐标即可; 考查了点的坐标的确定, 矩形的性质,熟练掌握矩形的性质是解题的关键,难点在于 求出被分成的两个部分的周长并确定出点 D 的位置.23. 根据平行线的性质即可得出 的度数,再根据 ,可得 ;出: 的值为1: 2.本题主要考查了平行线、 角平分线的性质以及三角形内角和定理, 图理清图中各角度之间的关系是解题的关键.根据0B 平分,0E 平分,即可得出 ,从而得出答案;根据平行线的性质,即可得出,再根据 ,即可得 熟记各性质并准确识。
2017-2018学年安徽省合肥七年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.等于()A.﹣3 B.3 C.D.﹣2.下列运算正确的是()A.3a+2b=5ab B.a3•a2=a5 C.a8•a2=a4 D.(2a2)3=﹣6a63.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.001244.计算的平方根为()A.±4 B.±2 C.4 D.±5.若2x=3,4y=5,则2x﹣2y的值为()A.B.﹣2 C.D.6.加上下列单项式后,仍不能使4x2+1成为一个整式的完全平方式的是()A.4x4B.4x C.﹣4x D.2x7.长方形的面积为4a2﹣6ab+2a,若它的一边长为2a,则它的周长为()A.4a﹣3b B.8a﹣6b C.4a﹣3b+1 D.8a﹣6b+28.若使代数式的值在﹣1和2之间,m可以取的整数有()A.1个 B.2个 C.3个 D.4个9.已知关于x的不等式组整数解有4个,则b的取值范围是()A.7≤b<8 B.7≤b≤8 C.8≤b<9 D.8≤b≤910.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a= b B.a=3b C.a= b D.a=4b二、填空题(每小题4分,共20分)11.因式分解:4mn﹣mn3=.12.若与|x+2y﹣5|互为相反数,则(x﹣y)2017=.13.某数的平方根是2a+3和a﹣15,则这个数为.14.已知不等式组的解集为﹣1<x<2,则(m+n)2012=.15.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2016,且AO=2BO,则a+b的值为.三、解答题(第16、17、18题各6分,第19、20题各10分,第21题12分,共50分)16.计算:17.解不等式组,并将解集在数轴上表示出来.18.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.19.已知:a+b=2,ab=1.求:(1)a﹣b(2)a2﹣b2+4b.20.若2(x+4)﹣5<3(x+1)+4的最小整数解是方程的解,求代数式m2﹣2m+11的平方根的值.21.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?2016-2017学年安徽省合肥七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.等于()A.﹣3 B.3 C.D.﹣【考点】24:立方根.【分析】运用开立方的方法计算.【解答】解:=﹣3,故选A.2.下列运算正确的是()A.3a+2b=5ab B.a3•a2=a5 C.a8•a2=a4 D.(2a2)3=﹣6a6【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、不是同类项,不能合并,选项错误;B、正确;C、a8•a2=a10,选项错误;D、(2a2)3=8a6,选项错误.故选B.3.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.00124【考点】1K:科学记数法—原数.【分析】科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到.【解答】解:把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到为0.001 24.故选D.4.计算的平方根为()A.±4 B.±2 C.4 D.±【考点】21:平方根;22:算术平方根.【分析】首先根据算术平方根的定义求出的值,然后根据平方根的定义即可求出结果.【解答】解:∵=4,又∵(±2)2=4,∴4的平方根是±2,即的平方根±2.故选B.5.若2x=3,4y=5,则2x﹣2y的值为()A.B.﹣2 C.D.【考点】48:同底数幂的除法.【分析】利用同底数幂除法的逆运算法则计算即可.【解答】解:∵2x=3,4y=5,∴2x﹣2y=2x÷22y,=2x÷4y,=3÷5,=0.6.故选:A.6.加上下列单项式后,仍不能使4x2+1成为一个整式的完全平方式的是()A.4x4B.4x C.﹣4x D.2x【考点】4E:完全平方式.【分析】根据完全平方公式的结构对各选项进行验证即可得解.【解答】解:A、4x4+4x2+1=(2x2+1)2,故本选项错误;B、4x+4x2+1=(2x+1)2,故本选项错误;C、﹣4x+4x2+1=(2x﹣1)2,故本选项错误;D、2x+4x2+1不能构成完全平方公式结构,故本选项正确.故选D.7.长方形的面积为4a2﹣6ab+2a,若它的一边长为2a,则它的周长为()A.4a﹣3b B.8a﹣6b C.4a﹣3b+1 D.8a﹣6b+2【考点】4H:整式的除法.【分析】首先利用面积除以一边长即可求得令一边长,则周长即可求解.【解答】解:另一边长是:(4a2﹣6ab+2a)÷2a=2a﹣3b+1,则周长是:2[(2a﹣3b+1)+2a]=8a﹣6b+2.故选D.8.若使代数式的值在﹣1和2之间,m可以取的整数有()A.1个 B.2个 C.3个 D.4个【考点】CC:一元一次不等式组的整数解.【分析】由题意可得不等式组,解不等式组,得到不等式组的解集,然后求其整数解.【解答】解:由题意可得,由①得m>﹣,由②得m<,所以不等式组的解集为﹣<x<,则m可以取的整数有0,1共2个.9.已知关于x的不等式组整数解有4个,则b的取值范围是()A.7≤b<8 B.7≤b≤8 C.8≤b<9 D.8≤b≤9【考点】CC:一元一次不等式组的整数解.【分析】首先确定不等式组的解集,先利用含b的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于b的不等式,从而求出b 的范围.【解答】解:由不等式x﹣b≤0,得:x≤b,由不等式x﹣2≥3,得:x≥5,∵不等式组有4个整数解,∴其整数解为5、6、7、8,则8≤b<9,故选:C.10.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a= b B.a=3b C.a= b D.a=4b【考点】4I:整式的混合运算.【分析】表示出左上角与右下角部分的面积,求出之差,根据差与BC无关即可求出a与b的关系式.【解答】解:左上角阴影部分的长为AE,宽为AF=3b,右下角阴影部分的长为∵AD=BC,即AE+ED=AE+a,BC=BP+PC=4b+PC,∴AE+a=4b+PC,即AE﹣PC=4b﹣a,∴阴影部分面积之差S=AE•AF﹣PC•CG=3bAE﹣aPC=3b(PC+4b﹣a)﹣aPC=(3b ﹣a)PC+12b2﹣3ab,则3b﹣a=0,即a=3b.解法二:既然BC是变化的,当点P与点C重合开始,然后BC向右伸展,设向右伸展长度为X,左上阴影增加的是3bX,右下阴影增加的是aX,因为S不变,∴增加的面积相等,∴3bX=aX,∴a=3b.故选:B.二、填空题(每小题4分,共20分)11.因式分解:4mn﹣mn3=mn(2+n)(2﹣n).【考点】55:提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=mn(4﹣n2)=mn(2+n)(2﹣n),故答案为:mn(2+n)(2﹣n)12.若与|x+2y﹣5|互为相反数,则(x﹣y)2017=﹣1.【考点】98:解二元一次方程组;16:非负数的性质:绝对值;23:非负数的性质:算术平方根.【分析】利用相反数性质及非负数性质列出方程组,求出方程组的解得到x与y 的值,代入原式计算即可得到结果.【解答】解:∵与|x+2y﹣5|互为相反数,∴+|x+2y﹣5|=0,∴,①×2+②得:5x=5,解得:x=1,把x=1代入②得:y=2,则原式=﹣1,故答案为:﹣113.某数的平方根是2a+3和a﹣15,则这个数为121.【考点】21:平方根;86:解一元一次方程.【分析】根据正数有两个平方根,这两个平方根互为相反数,据此即可得到关于a的方程即可求得a的值,进而求得这个数的值.【解答】解:根据题意得:2a+3+(a﹣15)=0,解得a=4,则这个数是(2a+3)2=121.故答案为:121.14.已知不等式组的解集为﹣1<x<2,则(m+n)2012=1.【考点】CB:解一元一次不等式组;98:解二元一次方程组;C6:解一元一次不等式.【分析】求出不等式组的解集,根据已知不等式组的解集得出m+n﹣2=﹣1,m=2,求出m、n的值,再代入求出即可.【解答】解:,解不等式①得:x>m+n﹣2,解不等式②得:x<m,∴不等式组的解集为:m+n﹣2<x<m,∵不等式组的解集为﹣1<x<2,∴m+n﹣2=﹣1,m=2,解得:m=2,n=﹣1,∴(m+n)2012=(2﹣1)2012=1.故答案为:1.15.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2016,且AO=2BO,则a+b的值为﹣672.【考点】33:代数式求值;13:数轴.【分析】依据绝对自的定义可知b﹣a=2016,﹣a=2b,从而可求得a、b的值,故此可求得a+b的值.【解答】解:∵点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧,∴a<0,b>0.又∵|a﹣b|=2016,∴b﹣a=2016.∵AO=2BO,∴﹣a=2b.∴3b=2016.解得:b=672.∴a=﹣1344.∴a+b=﹣1344+672=﹣672.故答案为:﹣672.三、解答题(第16、17、18题各6分,第19、20题各10分,第21题12分,共50分)16.计算:【考点】73:二次根式的性质与化简;15:绝对值;6E:零指数幂;6F:负整数指数幂.【分析】理解绝对值的意义:负数的绝对值是它的相反数;表示的算术平方根即;一个数的负指数次幂等于这个数的正指数次幂的倒数;任何不等于0的数的0次幂都等于1.【解答】解:原式=2﹣+﹣1=1.17.解不等式组,并将解集在数轴上表示出来.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别解出两不等式的解集再求其公共解.【解答】解:解不等式①得x<﹣解不等式②得x≥﹣1∴不等式组的解集为﹣1≤x<﹣.其解集在数轴上表示为:如图所示.18.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.【考点】4J:整式的混合运算—化简求值.【分析】首先根据整式相乘的法则和平方差公式、完全平方公式去掉括号,然后合并同类项,最后代入数据计算即可求解.【解答】解:原式=9x2﹣4﹣(5x2﹣5x)﹣(4x2﹣4x+1)=9x2﹣4﹣5x2+5x﹣4x2+4x﹣1=9x﹣5,当时,原式==﹣3﹣5=﹣8.19.已知:a+b=2,ab=1.求:(1)a﹣b(2)a2﹣b2+4b.【考点】4C:完全平方公式.【分析】根据完全平方公式进行变形,再整体代入求出即可.【解答】解:(1)∵a+b=2,ab=1,∴(a﹣b)2=(a+b)2﹣4ab=4﹣4=0,则a﹣b=0,(2)∵a+b=2,ab=1,a﹣b=0∴a2﹣b2+4b=420.若2(x+4)﹣5<3(x+1)+4的最小整数解是方程的解,求代数式m2﹣2m+11的平方根的值.【考点】C7:一元一次不等式的整数解;21:平方根;85:一元一次方程的解.【分析】首先计算出不等式的解集,从而确定出最小整数解,进而得到x的值,再把x的值代入方程算出m的值,然后再次把m的值代入代数式m2﹣2m+11计算出结果,再算出平方根即可.【解答】解:解不等式得:x>﹣4则x的最小整数解为﹣3,当x=﹣3时,×(﹣3)+3m=5,解得:m=2,把m=2代入m2﹣2m+11得:22﹣2×2+11=11,11平方根为±.故代数式m2﹣2m+11的平方根的值为±.21.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?【考点】CE:一元一次不等式组的应用.【分析】(1)设租用甲车x辆,则乙车(10﹣x)辆.不等关系:①两种车共坐人数不小于340人;②两种车共载行李不小于170件.(2)因为车的总数是一定的,所以费用少的车越多越省.【解答】解:(1)设租用甲车x辆,则乙车(10﹣x)辆.根据题意,得,解,得4≤x≤7.5.又x是整数,∴x=4或5或6或7.共有四种方案:①甲4辆,乙6辆;②甲5辆,乙5辆;③甲6辆,乙4辆;④甲7辆,乙3辆.(2)①甲4辆,乙6辆;总费用为4×2000+6×1800=18800元;②甲5辆,乙5辆;总费用5×2000+5×1800=19000元;③甲6辆,乙4辆;总费用为6×2000+4×1800=19200元;④甲7辆,乙3辆.总费用为7×2000+3×1800=19400元;因为乙车的租金少,所以乙车越多,总费用越少.故选方案①.2017年5月24日。
合肥市七年级下学期期中考试数学试卷(一)一、单选题1、下列实数中,是无理数的为()A、0B、-C、D、142、如图,数轴上A、B两点表示的数分别为和5.1,则A、B两点之间表示整数的点共有()A、6个B、5个C、4个D、3个3、已知a<b,下列式子不成立的是()A、a+1<b+1B、3a<3bC、﹣a>﹣ bD、如果c<0,那么<4、下列运算中,结果是a6的式子是()A、a2•a3B、a12﹣a6C、(a3)3D、(﹣a)65、下列计算正确的是()A、=±3B、=6C、=﹣1D、|﹣2|=﹣26、不等式组的解集在数轴上表示正确的是()A、 B、C、 D、7、下列运算正确的是()A、(a+b)2=a2+b2+2aB、(a﹣b)2=a2﹣b2C、(x+3)(x+2)=x2+6D、(m+n)(﹣m+n)=﹣m2+n28、若关于x,y的二元一次方程组的解满足x+y<505,则a的取值范围()A、a>2016B、a<2016C、a>505D、a<5059、已知(x+a)(x+b)=x2﹣13x+36,则a+b=()A、-5B、5C、-13D、﹣13或510、已知整数a1, a2, a3, a4,…满足下列条件:a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…依此类推,则a2016的值为()A、﹣1007B、﹣1008C、﹣1009D、﹣1010二、填空题11、不等式2x+9≥3(x+2)的正整数解是________12、一种病毒近似于球体,它的半径为0.00000000375,用科学记数法表示为________13、若x2+kx+81是完全平方式,则k的值应是________14、规定用符号[m]表示一个实数m的整数部分,例如:[]=0,[3.14]=3.按此规定[+1]的值为________15、已知m+n=2,mn=﹣2,则(1﹣m)(1﹣n)=________三、计算题16、计算(﹣2)﹣1﹣+(﹣3)0.17、解不等式:1﹣+x.18、a3•a4•a+(a2)4+(﹣2a4)2.四、解答题19、解不等式组,并把解集在数轴上表示出来..20、先化简,再求值:(2x+5)(2x﹣5)+2x(x+1)﹣3x(2x﹣5),其中x=2.21、定义新运算:对于任意实数a,b,都有a⊕b=a(a﹣b)+1,等式右边是通常的加法,减法及乘法运算.比如:2⊕5=2×(2﹣5)+1=2×(﹣3)+1=﹣6+1=﹣5(1)求3⊕(﹣2)的值;(2)若3⊕x的值小于16,求x的取值范围,并在数轴上表示出来.22、如图所示,某计算装置有一数据的入口A和一运算结果的出口B.下表是小刚输入一些数后所得的结果:(1(2)若小刚输入的数是225,则输出的结果是多少?(3)若小刚输入的数是n(n≥10),你能用含n的式子表示输出的结果吗?试一试.23、瑶海教育局计划在3月12日植树节当天安排A,B两校部分学生到郊区公园参加植树活动.已知A校区的每位学生往返车费是6元,B校每位学生的往返车费是10元,要求两所学校均要有学生参加,且A校参加活动的学生比B校参加活动的学生少4人,本次活动的往返车费总和不超过210元.求A,B两校最多各有多少学生参加?24、南山植物园中现有A、B两个园区,已知A园区为长方形,长为(x+y)米,宽为(x﹣y)米;B园区为正方形,边长为(x+3y)米.(1)请用代数式表示A、B两园区的面积之和并化简;(2)现根据实际需要对A园区进行整改,长增加(11x﹣y)米,宽减少(x﹣2y)米,整改后A区的长比宽多350米,且整改后两园区的周长之和为980米.①求x、y的值;②若A园区全部种植C种花,B园区全部种植D种花,且C、D两种花投入的费用与吸引游客的收益如表:=收益﹣投入)答案解析部分一、单选题1、【答案】C【考点】无理数【解析】【解答】解:A、0是有理数,故A错误;B、﹣是有理数,故B错误;C、是无理数,故C正确;D、3.14是有理数,故D错误;故选:C.【分析】根据无理数是无限不循环小数,可得答案.2、【答案】C【考点】实数与数轴,估算无理数的大小【解析】【解答】解:∵1<<2,5<5.1<6,∴A、B两点之间表示整数的点有2,3,4,5,共有4个;故选C.【分析】根据比1大比2小,5.1比5大比6小,即可得出A、B两点之间表示整数的点的个数.3、【答案】D【考点】不等式的性质【解析】【解答】解:A、不等式两边同时加上1,不等号方向不变,故本选项正确,不符合题意;B、不等式两边同时乘以3,不等号方向不变,故本选项正确,不符合题意;C、不等式两边同时乘以﹣,不等号方向改变,故本选项正确,不符合题意;D、不等式两边同时乘以负数c,不等号方向改变,故本选项错误,符合题意.故选D.【分析】利用不等式的性质知:不等式两边同时乘以一个正数不等号方向不变,同乘以或除以一个负数不等号方向改变.4、【答案】D【考点】同类项、合并同类项,同底数幂的乘法,幂的乘方与积的乘方【解析】【解答】解:A、a2•a3=a5,故本选项错误;B、不能进行计算,故本选项错误;C、(a3)3=a9,故本选项错误;D、(﹣a)6=a6,正确.故选:D.【分析】根据同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘;有理数的乘方的意义,对各选项计算后利用排除法求解.5、【答案】C【考点】实数的运算【解析】【解答】解:A、原式=3,错误;B、原式=9,错误;C、原式=﹣1,正确;D、原式=2,错误,故选C.【分析】原式各项利用算术平方根,乘方的意义,以及绝对值的代数意义化简得到结果,即可作出判断.6、【答案】C【考点】在数轴上表示不等式的解集,解一元一次不等式组【解析】【解答】解:该不等式组的解集为1<x≤2,故选C.【分析】先求出每个不等式的解集再求出其公共解集.7、【答案】D【考点】多项式乘多项式,完全平方公式,平方差公式【解析】【解答】解:A、(a+b)2=a2+b2+2ab,本选项错误;B、(a﹣b)2=a2+b2﹣2ab,本选项错误;C、(x+3)(x+2)=x2+5x+6,本选项错误;D、(m+n)(﹣m+n)=﹣m2+n2,本选项正确,故选D.【分析】A、B选项中利用完全平方公式展开得到结果;C选项中利用多项式乘以多项式法则计算得到结果;D选项利用平方差公式化简得到结果,即可做出判断.8、【答案】B【考点】二元一次方程组的解,解一元一次不等式【解析】【解答】解:,①+②得:4(x+y)=a+4,即x+y=,代入已知不等式得:<505,解得:a<2016,故选B.【分析】方程组两方程相加表示出x+y,代入已知不等式求出a的范围即可.9、【答案】C【考点】多项式乘多项式【解析】【解答】解:∵(x+a)(x+b)=x2﹣13x+36,∴x2+(a+b)x+ab=x2﹣13x+36,∴a+b=﹣13.故选:C.【分析】直接利用多项式乘法去括号,进而合并同类项求出答案.10、【答案】B【考点】列代数式,探索数与式的规律【解析】【解答】解:∵a1=0,a2=﹣|a1+1|,a3=﹣|a2+2|,a4=﹣|a3+3|,…∴a2=﹣|0+1|=﹣1,a 3=﹣|a2+2|=﹣|﹣1+2|=﹣1,a 4=﹣|a3+3|=﹣|﹣1+3|=﹣2,a 5=﹣|a4+4|=﹣|﹣2+4|=﹣2,a 6=﹣|a5+5|=﹣|﹣2+5|=﹣3,a 7=﹣|a6+6|=﹣|﹣3+6|=﹣3,…,所以当n为奇数时:,当n为偶数时:故选:B.【分析】根据题目条件求出前几个数的值,知当n为奇数时:,当n 为偶数时:;把n的值代入进行计算可得.二、填空题11、【答案】1,2,3【考点】一元一次不等式的整数解【解析】【解答】解:2x+9≥3(x+2),去括号得,2x+9≥3x+6,移项得,2x﹣3x≥6﹣9,合并同类项得,﹣x≥﹣3,系数化为1得,x≤3,故其正整数解为1,2,3.故答案为:1,2,3.【分析】先解不等式,求出其解集,再根据解集判断其正整数解.12、【答案】3.75×10﹣9【考点】科学记数法—表示绝对值较小的数【解析】【解答】解:0.00000000375=3.75×10﹣9.故答案为:3.75×10﹣9.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.13、【答案】±18【考点】完全平方公式【解析】【解答】解:∵x2+kx+81是完全平方式,∴k=±18.故答案为:±18.【分析】利用完全平方公式的结构特征判断即可确定出k的值.14、【答案】4【考点】估算无理数的大小【解析】【解答】解:∵3<<4,∴3+1<+1<4+1,∴4<+1<5,∴[+1]=4,故答案为:4.【分析】求出的范围,求出+1的范围,即可求出答案.15、【答案】-3【考点】多项式乘多项式【解析】【解答】解:∵m+n=2,mn=﹣2,∴(1﹣m)(1﹣n)=1﹣(m+n)+mn=1﹣2﹣2=﹣3.故答案为:﹣3.【分析】原式利用多项式乘以多项式法则计算,变形后,将m+n与mn的值代入计算即可求出值.三、计算题16、【答案】解:原式=﹣﹣+1=﹣2+1=﹣1.【考点】实数的运算,零指数幂,负整数指数幂【解析】【分析】原式第一项利用负整数指数幂法则计算,第二项利用算术平方根定义计算,最后一项利用零指数幂法则计算即可得到结果.17、【答案】解:去分母得,3﹣(x﹣1)≤2x+3+3x,去括号得,3﹣x+1≤2x+3x+3,移项得,﹣x﹣2x﹣3x≤3﹣3﹣1,合并同类项得,﹣6x≤﹣1,把x的系数化为1得,x≥.【考点】解一元一次不等式【解析】【分析】先去分母,再去括号,移项,合并同类项,把x的系数化为1即可.18、【答案】解:原式=a3+4+1+a2×4+4a8,=a8+a8+4a8,=6a8.【考点】同类项、合并同类项,同底数幂的乘法,幂的乘方与积的乘方【解析】【分析】首先根据同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加计算a3•a4•a,再根据幂的乘方法则:底数不变,指数相乘计算(a2)4,再根据积的乘方法则:把每一个因式分别乘方,再把所得的幂相乘计算(﹣2a4)2.最后算加减即可.四、解答题19、【答案】解:解不等式4x+6>1﹣x,得:x>﹣1,解不等式3(x﹣1)≤x+5,得:x≤4,所以不等式组的解集为:﹣1<x≤4,将不等式组解集表示在数轴上如下:【考点】在数轴上表示不等式的解集,解一元一次不等式组【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.20、【答案】解:原式=4x2﹣25+2x2+2x﹣6x2+15x=17x﹣25,当x=2时,原式=34﹣25=9.【考点】整式的混合运算【解析】【分析】原式利用平方差公式,单项式乘以多项式法则计算,去括号合并得到最简结果,把x的值代入计算即可求出值.21、【答案】解:(1)∵a⊕b=a(a﹣b)+1,∴3⊕(﹣2)=3(3+2)+1=3×5+1=16;(2)∵a⊕b=a(a﹣b)+1,∴3⊕x=3(3+x)+1=10﹣3x.∵3⊕x的值小于16,∴10﹣3x<16,解得x>﹣2.在数轴上表示为:【考点】有理数的混合运算,在数轴上表示不等式的解集,解一元一次不等式【解析】【分析】(1)根据题意得出有理数混合运算的式子,再求出其值即可;(2)先得出有理数混合运算的式子,再根据3⊕x的值小于16求出x的取值范围,并在数轴上表示出来即可.22、【答案】解:有表中数据可发现:有输入的A的值可发现输入的数字为n2,输出的B的值为n﹣2.(1)输出的数是5,则小刚输入的数是(5+2)2=49;(2)输入的数是225,则输出的结果是﹣2=15﹣2=13;(3)输入的数是n(n≥10),则输出结果为:﹣2.【考点】探索数与式的规律【解析】【分析】(1)根据表格发现规律:A=(B+2)2;(2)根据表格发现规律:B=﹣2,根据这一规律进行计算;(2)根据表格中的规律进行表示.23、【答案】解:设A校有x名学生参加,B校有(x+4)名学生参加,依题意得6x+10(x+4)≤210,解得:x≤10.∵x为整数,∴x最多为10,x+4=10+4=14.答:A校最多有10名学生参加,B校最多有14名学生参加.【考点】一元一次方程的解,一元一次不等式的应用【解析】【分析】设A校有x名学生参加,B校有(x+4)名学生参加,根据往返车费=单人费用×人数,可列出关于x的一元一次不等式,解不等式可得出x 的取值范围,从而得出结论.24、【答案】解:(1)(x+y)(x﹣y)+(x+3y)(x+3y)=x2﹣y2+x2+6xy+9y2=2x2+6xy+8y2(平方米)答:A、B两园区的面积之和为(2x2+6xy)平方米;(2)(x+y)+(11x﹣y)=x+y+11x﹣y=12x(米),(x﹣y)﹣(x﹣2y)=x﹣y﹣x+2y=y(米),依题意有:,解得.12xy=12×30×10=3600(平方米),(x+3y)(x+3y)=x2+6xy+9y2=900+1800+900=3600(平方米),(18﹣12)×3600+(26﹣16)×3600=6×3600+10×3600=57600(元).答:整改后A、B两园区旅游的净收益之和为57600元.【考点】整式的混合运算,矩形的性质【解析】【分析】(1)根据长方形的面积公式和正方形的面积公式分别计算A、B两园区的面积,再相加即可求解;(2)①根据等量关系:整改后A区的长比宽多350米;整改后两园区的周长之和为980米;列出方程组求出x,y的值;②代入数值得到整改后A、B两园区的面积之和,再根据净收益=收益﹣投入,列式计算即可求解.合肥市七年级下学期期中考试数学试卷(二)一、选择题1、在﹣1.414,﹣,,,3.142,2﹣,2.121121112中的无理数的个数是()A、1B、2C、3D、42、三个实数﹣,﹣2,﹣之间的大小关系是()A、﹣>﹣>﹣2B、﹣>﹣2>﹣C、﹣2>﹣>﹣D、﹣<﹣2<﹣3、下列叙述中正确的是()A、(﹣11)2的算术平方根是±11B、大于零而小于1的数的算术平方根比原数大C、大于零而小于1的数的平方根比原数大D、任何一个非负数的平方根都是非负数4、若a<0,则关于x的不等式|a|x<a的解集是()A、x<1B、x>1C、x<﹣1D、x>﹣15、下列关系不正确的是()A、若a﹣5>b﹣5,则a>bB、若x2>1,则x>C、若2a>﹣2b,则a>﹣bD、若a>b,c>d,则a+c>b+d6、关于x的方程5x﹣2m=﹣4﹣x的解在2与10之间,则m的取值范围是()A、m>8B、m<32C、8<m<32D、m<8或m>327、不等式组的解集在数轴上表示为()A、 B、C、 D、8、已知9x2﹣30x+m是一个完全平方式,则m的值等于()A、5B、10C、20D、259、下列四个算式:(1)(x4)4=x4+4=x8;(2)[(y2)2]2=y2×2×2=y8;(3)(﹣y2)3=y6;(4)[(﹣x)3]2=(﹣x)6=x6.其中正确的有()A、0个B、1个C、2个D、3个10、﹣x n与(﹣x)n的正确关系是()A、相等B、互为相反数C、当n为奇数时它们互为相反数,当n为偶数时相等D、当n为奇数时相等,当n为偶数时互为相反数二、填空题11、分解因式9(a+b)2﹣(a﹣b)2=________.12、不等式3x﹣2≥4(x﹣1)的所有非负整数解的和等于________.13、已知a=﹣(0.3)2, b=﹣3﹣2, c=(﹣)﹣2, d=(﹣)0,用“<”连接a、b、c、d为________.14、不等式组的解集是0<x<2,那么a+b的值等于________.三、计算15、计算下列各式(1)(﹣)﹣2+()0+(﹣5)3÷(﹣5)2(2)(x3)2÷x2÷x+x3•(﹣x)2•(﹣x2)16、解不等式(组)(1)(2).四、解答题17、已知不等式5x﹣2<6x+1的最小整数解是方程﹣=6的解,求a的值.18、已知:2x=4y+1, 27y=3x﹣1,求x﹣y的值.19、已知关系x、y的方程组的解为正数,且x的值小于y的值.(1)解这个方程组(2)求a的取值范围.20、阅读下列材料:一般地,n个相同的因数a相乘记为a n,记为a n.如2×2×2=23=8,此时,3叫做以2为底8的对数,记为log28(即log28=3).一般地,若a n=b(a>0且a≠1,b>0),则n叫做以a为底b的对数,记为loga b(即logab=n).如34=81,则4叫做以3为底81的对数,记为log381(即log381=4).(1)计算以下各对数的值:log24=________,log216=________,log264=________.(2)观察(1)中三数4、16、64之间满足怎样的关系式,log24、log216、log264之间又满足怎样的关系式;(3)由(2)的结果,你能归纳出一个一般性的结论吗?loga M+logaN=________;(a>0且a≠1,M>0,N>0)(4)根据幂的运算法则:a n•a m=a n+m以及对数的含义证明上述结论.21、某公司有员工50人,为了提高经济效益,决定引进一条新的生产线并从现有员工中抽调一部分员工到新的生产线上工作,经调查发现:分工后,留在原生产线上工作的员工每月人均产值提高40%;到新生产线上工作的员工每月人均产值为原来的3倍,设抽调x人到新生产线上工作.(1)填空:若分工前员工每月的人均产值为a元,则分工后,留在原生产线上工作的员工每月人均产值是________元,每月的总产值是________元;到新生产线上工作的员工每月人均产值是________元,每月的总产值是________元;(2)分工后,若留在原生产线上的员工每月生产的总产值不少于分工前原生产线每月生产的总产值;而且新生产线每月生产的总产值又不少于分工前生产线每月生产的总产值的一半.问:抽调的人数应该在什么范围?答案解析部分一、选择题1、【答案】C【考点】无理数【解析】【解答】解:﹣1.414,,3.142,2.121121112都是有限小数,是分数,因而是有理数;﹣,,2﹣是无理数,故选C.【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.2、【答案】C【考点】实数大小比较【解析】【解答】解:∵﹣2=﹣,又∵ <<∴﹣2>﹣>﹣.故选C.【分析】根据两个负数绝对值大的反而小来比较即可解决问题.3、【答案】B【考点】平方根,算术平方根【解析】【解答】解:A、(﹣11)2的算术平方根是11,故A错误;B、大于零而小于1的数的算术平方根比原数大,故B正确;C、例如:0.01的平方根为±0.1,﹣0.1<0.01<0.1,故C错误;D、正数有两个平方根,它们互为相反数,故D错误.故选:B.【分析】依据平方根和算术平方根的定义以及性质求解即可.4、【答案】C【考点】解一元一次不等式【解析】【解答】解:∵a<0,∴|a|=﹣a,不等式化为﹣ax<a,解得:x<﹣1.故选C【分析】由a小于0,利用负数的绝对值等于它的相反数化简所求不等式,再利用不等式的基本性质即可求出解集.5、【答案】B【考点】不等式的性质【解析】【解答】解:A、不等式的两边都加上5,不等号的方向不变,正确;B、两边都除以x,x可以是负数,所以本选项错误;C、两边都除以2,不等号的方向不变,正确;D、∵a>b,∴a+c>b+c,∵c>d,∴c+b>b+d,∴a+c>b+d,正确.故选B.【分析】根据不等式的基本性质对各选项判断后利用排除法求解.6、【答案】C【考点】一元一次方程的解,解一元一次不等式组【解析】【解答】解:由题意得解方程5x﹣2m=﹣4﹣x得:x= ,∵方程的解在2与10之间,即2<<10,∴8<m<32,故选C.【分析】先解方程确定x的取值,再求不等式即可.7、【答案】A【考点】在数轴上表示不等式的解集,解一元一次不等式组【解析】【解答】解:,由①得,x>1,由②得,x≥2,故此不等式组得解集为:x≥2.在数轴上表示为:.故选A.【分析】分别求出各不等式的解集,再在数轴上表示出来即可.8、【答案】D【考点】完全平方公式【解析】【解答】解:∵30x=2×5×3x,∴这两个数是3x、5,∴m=52=25.故选D.【分析】根据乘积项先确定出这两个数是3x和5,再根据完全平方公式的结构特点求出5的平方即可.9、【答案】C【考点】幂的乘方与积的乘方【解析】【解答】解:(1)(x4)4=x4×4=x16,故本选项错误;(2)[(y2)2]2=y2×2×2=y8,正确;(3)(﹣y2)3=﹣y6,故本选项错误;(4)[(﹣x)3]2=(﹣x)6=x6,正确.正确的有(2),(4).故选C.【分析】根据幂的乘方,底数不变指数相乘,进行计算即可.10、【答案】D【考点】幂的乘方与积的乘方【解析】【解答】解:当n为奇数时,﹣x n=(﹣x)n;当n为偶数时,﹣x n=﹣(﹣x)n;故选D【分析】根据幂的乘方判断即可.二、<b >填空题</b>11、【答案】4(2a+b)(a+2b)【考点】因式分解-运用公式法【解析】【解答】解:9(a+b)2﹣(a﹣b)2=[3(a+b)+(a﹣b)][3(a+b)﹣(a﹣b)]=4(2a+b)(a+2b).故答案为:4(2a+b)(a+2b).【分析】直接利用平方差公式分解因式,进而整理得得出答案.12、【答案】3【考点】不等式的性质,解一元一次不等式,一元一次不等式的整数解【解析】【解答】解:3x﹣2≥4(x﹣1),去括号得:3x﹣2≥4x﹣4,移项、合并同类项得:﹣x≥﹣2,不等式的两边都除以﹣1得:x≤2,∴不等式3x﹣2≥4(x﹣1)的所有非负整数解是0、1、2,∴0+1+2=3.故答案为:3.【分析】根据不等式的性质求出不等式的解集x≤2,找出不等式的非负整数解,相加即可.13、【答案】b<a<d<c【考点】实数大小比较,零指数幂,负整数指数幂【解析】【解答】解:a=﹣(0.3)2=﹣0.009,b=﹣3﹣2=﹣,c=(﹣)﹣2=9,d=(﹣)0=1,b<a<d<c,故答案为:b<a<d<c.【分析】根据负整数指数幂与正整数指数幂互为倒数,非零的零次幂等于1,可得答案.14、【答案】1【考点】解一元一次不等式组【解析】【解答】解:解不等式x+2a>4,得:x>﹣2a+4,解不等式2x﹣b<5,得:x<,∵不等式组的解集是0<x<2,∴ ,解得:a=2,b=﹣1,∴a+b=1,故答案为:1.【分析】分别将a、b看做常数求出每个不等式解集,根据不等式组的解集得出关于a、b的方程组,解方程组可得a、b的值,代入计算可得.三、<b >计算</b>15、【答案】(1)解:原式=9+1+(﹣5)3﹣2=10﹣5=5(2)解:原式=x6÷x2÷x﹣x3•x2•x2=x6﹣2﹣1﹣x3+2+2=x3﹣x7【考点】整式的混合运算,零指数幂,负整数指数幂【解析】【分析】(1)利用同底数幂的除法运算法则化简进而求出答案;(2)直接利用幂的乘方运算法则以及同底数幂的乘除运算法则求出答案.16、【答案】(1)解:去分母,得:4(2﹣x)>2(3﹣x)+1,去括号,得:8﹣4x>6﹣2x+1,移项、合并,得:﹣2x>﹣1,系数化为1,得:x<(2)解:解不等式x+4≤3(x+2),得:x≥﹣1解不等式,得:x<3∴原不等式组的解为﹣1≤x<3【考点】解一元一次不等式,解一元一次不等式组【解析】【分析】(1)根据解一元一次不等式基本步骤:去分母、去括号、移项、合并同类项、系数化为1可得;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小无解了确定不等式组的解集.四、<b >解答题</b>17、【答案】解:解不等式5x﹣2<6x+1,得:x>﹣3,∴x的最小整数值为x=﹣2∴方程﹣=6的解为x=﹣2把x=﹣2代入方程得﹣+3a=6,解得a=∴a得值为【考点】一元一次方程的解,一元一次不等式的整数解【解析】【分析】解不等式求得x的取值范围,找到最小整数解代入方程得到关于a的方程,解方程可得a的值.18、【答案】解:∵2x=4y+1,∴2x=22y+2,∴x=2y+2①又∵27y=3x﹣1,∴33y=3x﹣1,∴3y=x﹣1②联立①②组成方程组并求解得,∴x﹣y=3【考点】幂的乘方与积的乘方【解析】【分析】先都转化为同底数的幂,根据指数相等列出方程,解方程求出x、y的值,然后代入x﹣y计算即可.19、【答案】(1)解:解方程组得(2)解:依题意得,解不等式(1),得a>﹣,解不等式(2),得a<﹣,故不等式组的解集为﹣<a<﹣,则a的取值范围是﹣<a<﹣【考点】二元一次方程组的解,解二元一次方程组【解析】【分析】(1)把a看作已知数求出方程组的解即可;(2)根据解为正数,且x的值小于y的值,确定出a的范围即可.20、【答案】(1)2①4②6(2)解:4×16=64,log24+log216=log264(3)loga(MN)(4)证明:设loga M=b1, logaN=b2,则=M,=N,∴MN= ,∴b1+b2=loga(MN)即logaM+logaN=loga(MN)【考点】幂的乘方与积的乘方【解析】【解答】解:(1)log24=2,log216=4,log264=6;(3)logaM+logaN=loga(MN);【分析】首先认真阅读题目,准确理解对数的定义,把握好对数与指数的关系.(1)根据对数的定义求解;(2)认真观察,不难找到规律:4×16=64,log24+log216=log264;(3)有特殊到一般,得出结论:logaM+logaN=loga(MN);(4)首先可设loga M=b1, logaN=b2,再根据幂的运算法则:a n•a m=a n+m以及对数的含义证明结论.21、【答案】(1)(1+40%)a;(50﹣x)(1+40%)a;3a;3ax(2)解:由题可得不等式组(其中a>0)解得≤x≤14由于x只能取正整数,所以抽调的人数应在9﹣14人之间(包括9人和14人)【考点】一元一次不等式组的应用【解析】【解答】解:(1)根据题意填空:(1+40%)a,(50﹣x)(1+40%)a,3a,3ax.【分析】(1)因为留在原生产线上工作的员工每月人均产值提高40%;到新生产线上工作的员工每月人均产值为原来的3倍,设抽调x人到新生产线上工作,所以留在原生产线上工作的员工每月人均产值是(1+40%)a,每月的总产值是(50﹣x)(1+40%)a元;到新生产线上工作的员工每月人均产值是3a元,每月的总产值是3ax元;(2)因为留在原生产线上的员工每月生产的总产值不少于分工前原生产线每月生产的总产值;而且新生产线每月生产的总产值又不少于分工前生产线每月生产的总产值的一半,所以有由题可得不等式组(其中a>0),解之即可.。
七年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.下列计算正确的是()A.a3•a2=a6 B.a5+a5=a10C.(﹣3a3)2=6a2D.(a3)2•a=a72.如果一个角的补角是150°,那么这个角的余角的度数是()A.30°B.60°C.90°D.120°3.将0.00000573用科学记数法表示为()A.0.573×10﹣5 B.5.73×10﹣5C.5.73×10﹣6D.0.573×10﹣64.(x﹣1)(2x+3)的计算结果是()A.2x2+x﹣3 B.2x2﹣x﹣3 C.2x2﹣x+3 D.x2﹣2x﹣35.如图,点E在CD延长线上,下列条件中不能判定AB∥CD的是()A.∠1=∠2 B.∠3=∠4 C.∠5=∠B D.∠B+∠BDC=180°6.下列各式中,能用平方差公式进行计算的是()A.(﹣x﹣y)(x+y)B.(2x﹣y)(y﹣2x)C.(1﹣x)(﹣1﹣x)D.(3x+y)(x﹣3y)7.如图,已知直线a,b被直线c所截,若a∥b,∠1=110°,∠2=40°,则∠3=()A.40°B.50°C.60°D.70°8.如图,下列条件不能证明△ABC≌△DCB的是()A.AB=DC,AC=DB B.∠A=∠D,∠ABC=∠DCBC.BO=CO,∠A=∠D D.AB=DB,AC=DC9.正常人的体温一般在37℃左右,但一天中的不同时刻不尽相同,下图反映了一天24小时内小明体温的变化情况,下列说法错误的是()A.清晨5时体温最低B.下午5时体温最高C.这天中小明体温T(℃)的范围是36.5≤T≤37.5D.从5时到24时,小明的体温一直是升高的10.某星期天小李步行取图书馆看书,途中遇到一个红灯,停下来耽误了几分钟,为了赶时间,他以更快速度步行到图书馆,下面几幅图是步行路程s(米)与行进时间t(分)的关系的示意图,你认为正确的是()A .B .C .D .二、填空题(每小题3分,共24分)11.计算:(﹣2xy3z2)2=.12.如图,直线AB、CD、EF相交于一点,∠1=50°,∠2=64°,则∠COF=度.13.将两张长方形纸片如图所示摆放,使其中一张长方形纸片的一个顶点恰好落在另一张长方形纸片的一条边上,则∠1+∠2=.14.如果多项式x2+8x+k是一个完全平方式,则k的值是.15.若5m=3,5n=2,则52m+n=.16.某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系.17.已知x+y=﹣5,xy=6,则x2+y2=.18.某城市大剧院地面的一部分为扇形,观众席的座位按下列方式设置:上述问题中,第五排、第六排分别有个、个座位;第n排有个座位.排数1234….座位数50535659….三、作图题(每小题5分,共5分)19.(5分)如图,已知∠BAC及BA上一点P,求作直线MN,使MN经过点P,且MN ∥AC.(要求:使用尺规正确作图,保留作图痕迹)四、计算与求值(每小题25分,共25分)20.(25分)计算与求值(1)(﹣1)2015+()﹣3﹣(π﹣3.1)0(2)(3x﹣2)2+(﹣3+x)(﹣x﹣3)(3)(﹣2x2y)2•3xy÷(﹣6x2y)(4)1122﹣113×111(用乘法公式计算)(5)[(2x+y)2+(2x+y)(y﹣2x)﹣6y]÷2y,其中x=﹣,y=3.五、解答题(共36分)21.(8分)如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两对全等三角形,并用“≌”符号连接起来;(2)求证:AB=CD.22.(9分)张阳从家里跑步去体育场,在那里锻炼了一会儿后,又走到文具店去买笔,然后走回家,如图是张阳离家的距离与时间的关系图象.根据图象回答下列问题:(1)体育场离张阳家多少千米?(2)体育场离文具店多少千米?张阳在文具店逗留了多长时间?(3)张阳从文具店到家的速度是多少?23.(7分)阅读下列推理过程,在括号中填写理由.已知:如图,点D、E分别在线段AB、BC上,AC∥DE,DF∥AE交BC于点F,AE平分∠BAC.求证:DF平分∠BDE证明:∵AE平分∠BAC(已知)∴∠1=∠2()∵AC∥DE(已知)∴∠1=∠3()故∠2=∠3()∵DF∥AE(已知)∴∠2=∠5,()∠3=∠4()∴∠4=∠5()∴DF平分∠BDE()24.(12分)(1)如图1,已知正方形ABCD的边长为a,正方形FGCH的边长为b,长方形ABGE和EFHD为阴影部分,则阴影部分的面积是(写成平方差的形式)(2)将图1中的长方形ABGE和EFHD剪下来,拼成图2所示的长方形,则长方形AHDE 的面积是(写成多项式相乘的形式)(3)比较图1与图2的阴影部分的面积,可得乘法公式.(4)利用所得公式计算:2(1+)(1+)(1+)(1+)+.七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.下列计算正确的是()A.a3•a2=a6 B.a5+a5=a10C.(﹣3a3)2=6a2D.(a3)2•a=a7【分析】A、利用同底数幂的乘法法则计算得到结果,即可作出判断;B、合并同类项得到结果,即可作出判断;C、利用积的乘方与幂的乘方运算法则计算得到结果,即可作出判断;D、利用幂的乘方及同底数幂的乘法运算得到结果,即可作出判断.【解答】解:A、a3•a2=a5,本选项错误;B、a5+a5=2a5,本选项错误;C、(﹣3a3)2=9a2,本选项错误;D、(a3)2•a=a6•a=a7,本选项正确.故选D.【点评】此题考查了幂的乘方与积的乘方,合并同类项,去括号与添括号,以及同底数幂的乘法,熟练掌握运算法则是解本题的关键.2.如果一个角的补角是150°,那么这个角的余角的度数是()A.30°B.60°C.90°D.120°【分析】本题根据互余和互补的概念计算即可.【解答】解:180°﹣150°=30°,那么这个角的余角的度数是90°﹣30°=60°.故选B.【点评】本题考查互余和互补的概念,和为90度的两个角互为余角,和为180度的两个角互为补角.3.将0.00000573用科学记数法表示为()A.0.573×10﹣5 B.5.73×10﹣5C.5.73×10﹣6D.0.573×10﹣6【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.00000573用科学记数法表示为5.73×10﹣6,故选:C.【点评】本题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.4.(x﹣1)(2x+3)的计算结果是()A.2x2+x﹣3 B.2x2﹣x﹣3 C.2x2﹣x+3 D.x2﹣2x﹣3【分析】根据多项式乘以多项式的法则,可表示为(a+b)(m+n)=am+an+bm+bn,计算即可.【解答】解:(x﹣1)(2x+3),=2x2﹣2x+3x﹣3,=2x2+x﹣3.故选:A.【点评】本题主要考查多项式乘以多项式的法则.注意不要漏项,漏字母,有同类项的合并同类项,属于基础题.5.如图,点E在CD延长线上,下列条件中不能判定AB∥CD的是()A .∠1=∠2B .∠3=∠4C .∠5=∠BD .∠B +∠BDC=180° 【分析】根据平行线的判定方法直接判定.【解答】解:选项B 中,∵∠3=∠4,∴AB ∥CD (内错角相等,两直线平行),所以正确;选项C 中,∵∠5=∠B ,∴AB ∥CD (内错角相等,两直线平行),所以正确;选项D 中,∵∠B +∠BDC=180°,∴AB ∥CD (同旁内角互补,两直线平行),所以正确; 而选项A 中,∠1与∠2是直线AC 、BD 被AD 所截形成的内错角,因为∠1=∠2,所以应是AC ∥BD ,故A 错误. 故选A .【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,不能遇到相等或互补关系的角就误认为具有平行关系,只有同位角相等、内错角相等、同旁内角互补,才能推出两被截直线平行.6.下列各式中,能用平方差公式进行计算的是( ) A .(﹣x ﹣y )(x +y ) B .(2x ﹣y )(y ﹣2x ) C .(1﹣x )(﹣1﹣x ) D .(3x +y )(x ﹣3y )【分析】利用平方差公式的结构特征判断即可.【解答】解:下列各式中,能用平方差公式进行计算的是(1﹣x )(﹣1﹣x ), 故选C .【点评】此题考查了平方差公式,熟练掌握平方差公式是解本题的关键.7.如图,已知直线a ,b 被直线c 所截,若a ∥b ,∠1=110°,∠2=40°,则∠3=( )A .40°B .50°C .60°D .70°【分析】先根据平行线的性质求出∠4的度数,故可得出∠4+∠2的度数.由对顶角相等即可得出结论. 【解答】解:∵a ∥b , ∴∠4=∠1=110°, ∵∠3=∠4﹣∠2, ∴∠3=110°﹣40°=70°, 故选D .【点评】本题考查的是平行线的性质,三角形的外角的性质,用到的知识点为:两直线平行,同位角相等.8.如图,下列条件不能证明△ABC ≌△DCB 的是( )A .AB=DC ,AC=DB B .∠A=∠D ,∠ABC=∠DCBC .BO=CO ,∠A=∠DD .AB=DB ,AC=DC【分析】利用全等三角形的判定方法:SSS 、SAS 、ASA 、AAS 、HL 分别进行分析即可.【解答】解:A、AB=DC,AC=DB再加公共边BC=BC可利用SSS判定△ABC≌△DCB,故此选项不合题意;B、∠A=∠D,∠ABC=∠DCB再加公共边BC=BC可利用AAS判定△ABC≌△DCB,故此选项不合题意;C、BO=CO,∠A=∠D再加对顶角∠AOB=∠DOC可利用AAS判定△AOB≌△DOC,可得AO=DO,AB=CD,进而可得AC=BD,再加公共边BC=BC可利用SSS判定△ABC≌△DCB,故此选项不合题意;D、AB=DB,AC=DC不能判定△ABC≌△DCB,故此选项不合题意;故选:D.【点评】本题考查三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.9.正常人的体温一般在37℃左右,但一天中的不同时刻不尽相同,下图反映了一天24小时内小明体温的变化情况,下列说法错误的是()A.清晨5时体温最低B.下午5时体温最高C.这天中小明体温T(℃)的范围是36.5≤T≤37.5D.从5时到24时,小明的体温一直是升高的【分析】分析折线统计图,即可求出答案.【解答】解:由折线统计图可知:折线统计图中最底部的数据,则是温度最低的时刻,最高位置的数据则是温度最高的时刻;则清晨5时体温最低,下午5时体温最高;最高温度为37.5℃,最低温度为36.5℃,则小明这一天的体温范围是36.5≤T≤37.5;从5时到17时,小明的体温一直是升高的趋势,而17﹣24时的体温是下降的趋势.所以错误的是从5时到24时,小明的体温一直是升高的,故选D.【点评】读懂统计图,从图中得到必要的信息是解决本题的关键.10.某星期天小李步行取图书馆看书,途中遇到一个红灯,停下来耽误了几分钟,为了赶时间,他以更快速度步行到图书馆,下面几幅图是步行路程s(米)与行进时间t(分)的关系的示意图,你认为正确的是()A .B .C .D .【分析】依题意可得小李步行速度匀速前进,然后中途因为遇到一个红灯停下来耽误了几分钟,然后加快速度但还是保持匀速前进,可把图象分为3个阶段.【解答】解:根据题意:步行去图书馆看书,分3个阶段;(1)从家里出发后以某一速度匀速前进,位移增大;(2)中途遇到一个红灯,停下来耽误了几分钟,位移不变;(3)小李加快速度(仍保持匀速)前进,位移变大.故选:C.【点评】本题主要考查函数图象的知识点,要求正确理解函数图象与实际问题的关系,理解问题的过程,能够通过图象得到函数是随自变量的增大,知道函数值是增大还是减小,通过图象得到函数是随自变量的增大或减小的快慢.二、填空题(每小题3分,共24分)11.计算:(﹣2xy3z2)2=4x2y6z4.【分析】根据积的乘方,即可解答.【解答】解:(﹣2xy3z2)2=4x2y6z4,故答案为:4x2y6z4.【点评】本题考查了积的乘方,解决本题的关键是熟记积的乘方的法则.12.如图,直线AB、CD、EF相交于一点,∠1=50°,∠2=64°,则∠COF=66度.【分析】根据平角意义求得∠EOD,再根据对顶角求得结论.【解答】解:∵∠1=50°,∠2=64°,∴∠EOD=180°﹣∠1﹣∠2=66°∴∠COF=∠EOD=66°,故答案为:66.【点评】本题主要考查了平角的定义,对顶角定理,熟记对顶角定理是解题的关键.13.将两张长方形纸片如图所示摆放,使其中一张长方形纸片的一个顶点恰好落在另一张长方形纸片的一条边上,则∠1+∠2=90°.【分析】过点B作BN∥FG,根据矩形的性质可得BN∥EH∥FG,再根据两直线平行,内错角相等可得∠1=∠3,∠2=∠4,然后求出∠1+∠2=∠ABC,从而得证.【解答】证明:如图,过点B作BN∥FG,∵四边形EFGH是矩形纸片,∴EH∥FG,∴BN∥EH∥FG,∴∠1=∠3,∠2=∠4,∴∠1+∠2=∠3+∠4=∠ABC=90°,即∠1+∠2=90°.故答案为:90°.【点评】本题考查了两直线平行,内错角相等的性质,矩形的对边平行,每一个角都是直角的性质,熟记性质并作出辅助线是解题的关键.14.如果多项式x2+8x+k是一个完全平方式,则k的值是16.【分析】根据完全平方公式的乘积二倍项和已知平方项先确定出另一个数是4,平方即可.【解答】解:∵8x=2×4•x,∴k=42=16.【点评】本题考点是对完全平方公式的应用,由乘积二倍项确定做完全平方运算的两个数是求解的关键.15.若5m=3,5n=2,则52m+n =18.【分析】逆运用同底数幂相乘,底数不变指数相加;幂的乘方,底数不变指数相乘进行计算即可得解.【解答】解:52m+n=52m•5n=(5m)2•5n=32•2=9×2=18.故答案为:18.【点评】本题考查了幂的乘方的性质,同底数幂的乘法,熟记运算性质并灵活运用是解题的关键.16.某书定价25元,如果一次购买20本以上,超过20本的部分打八折,试写出付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系y=.【分析】本题采取分段收费,根据20本及以下单价为25元,20本以上,超过20本的部分打八折分别求出付款金额y与购书数x的函数关系式,再进行整理即可得出答案.【解答】解:根据题意得:y=,整理得:;则付款金额y(单位:元)与购书数量x(单位:本)之间的函数关系是y=;故答案为:y=.【点评】此题考查了分段函数,理解分段收费的意义,明确每一段购书数量及相应的购书单价是解题的关键,要注意x的取值范围.17.已知x+y=﹣5,xy=6,则x2+y2=13.【分析】把x+y=﹣5两边平方,根据完全平方公式和已知条件即可求出x2+y2的值.【解答】解:∵x+y=﹣5,∴(x+y)2=25,∴x2+2xy+y2=25,∵xy=6,∴x2+y2=25﹣2xy=25﹣12=13.故答案为:13.【点评】本题考查了完全平方公式,完全平方公式有以下几个特征:①左边是两个数的和的平方;②右边是一个三项式,其中首末两项分别是两项的平方,都为正,中间一项是两项积的2倍;其符号与左边的运算符号相同.18.某城市大剧院地面的一部分为扇形,观众席的座位按下列方式设置:上述问题中,第五排、第六排分别有62个、65个座位;第n排有47+3n个座位.排数1234….座位数50535659….【分析】由座位数可以看出后一排的座位数总比前一排的座位数多3,由此得到第n(n >1)排有[50+3(n﹣1)]个座位,问题可以解答.【解答】解:第一排有50个座位,第二排有[50+(2﹣1)×3]=53个座位,第三排有[50+(3﹣1)×3]=56个座位,第四排有[50+(4﹣1)×3]=59个座位,第五排有[50+(5﹣1)×3]=62个座位,第六排有[50+(6﹣1)×3]=65个座位,第n排有[50+3(n﹣1)]=(47+3n)个座位.【点评】解决此类问题需要发现数字的一般规律,问题就容易解决.三、作图题(每小题5分,共5分)19.(5分)如图,已知∠BAC及BA上一点P,求作直线MN,使MN经过点P,且MN ∥AC.(要求:使用尺规正确作图,保留作图痕迹)【分析】过点P作PQ⊥AC,再过点P作MN⊥PQ,根据垂直于同一直线的两直线平行,即可得直线MN即为所求.【解答】解:如图,直线MN即为所求.【点评】本题主要考查作图﹣复杂作图,熟练掌握过一点作已知直线的垂线及平行线的判定是解题的关键.四、计算与求值(每小题25分,共25分)20.(25分)计算与求值(1)(﹣1)2015+()﹣3﹣(π﹣3.1)0(2)(3x﹣2)2+(﹣3+x)(﹣x﹣3)(3)(﹣2x2y)2•3xy÷(﹣6x2y)(4)1122﹣113×111(用乘法公式计算)(5)[(2x+y)2+(2x+y)(y﹣2x)﹣6y]÷2y,其中x=﹣,y=3.【分析】(1)先求出每一部分的值,再代入求出即可;(2)先算乘法,再合并同类项即可;(3)先算乘方,再算乘除即可;(4)先变形,再根据平方差公式进行计算即可;(5)先算乘法,再合并同类项,算除法,最后代入求出即可.【解答】解:(1)(﹣1)2015+()﹣3﹣(π﹣3.1)0=﹣1+27﹣1=25;(2)(3x﹣2)2+(﹣3+x)(﹣x﹣3)=9x2﹣12x+4+9﹣x2=8x2﹣12x+13;(3)(﹣2x2y)2•3xy÷(﹣6x2y)=4x4y2•3xy÷(﹣6x2y)=12x5y3÷(﹣6x2y)=﹣2x3y2;(4)原式=1122﹣(112+1)(112﹣1)=1122﹣1122+1=1;(5)[(2x+y)2+(2x+y)(y﹣2x)﹣6y]÷2y,=(4x2+4xy+y2+y2﹣4x2﹣6y)÷2y=(4xy+2y2﹣6y)÷2y=2x+y﹣3,把x=﹣,y=3代入得:原式=2×(﹣)+3﹣3=﹣1.【点评】本题考查了整式的混合运算和求值、零指数幂、负整数指数幂等知识点,能正确根据整式的运算法则进行化简是解此题的关键.五、解答题(共36分)21.(8分)如图,已知点A、F、E、C在同一直线上,AB∥CD,∠ABE=∠CDF,AF=CE.(1)从图中任找两对全等三角形,并用“≌”符号连接起来;(2)求证:AB=CD.【分析】(1)本题有三对三角形全等,分别是△ABE≌△CDF,△ABC≌△CDA,△BEC ≌△DFA(2)先根据AF=CE利用等式的性质得:AE=FC,由AB∥CD得内错角相等,则△ABE≌△CDF,得出结论.【解答】解:(1)△ABE≌△CDF,△ABC≌△CDA,(2)∵AF=CE,∴AF+EF=CE+EF,即AE=CF,∵AB∥CD,∴∠BAC=∠DCA,∵∠ABE=∠CDF,∴△ABE≌△CDF(AAS),∴AB=CD.【点评】本题考查了全等三角形的性质和判定,是常考题型,比较简单;熟练掌握全等三角形的性质和判定是做好本题的关键;从图形中看,要想得出结论,只需证明△ABE ≌△CDF,或是证明四边形ABCD为平行四边形,从已知上看,证明全等有一个条件,所以要再得出两个条件才行,从而得出结论.22.(9分)张阳从家里跑步去体育场,在那里锻炼了一会儿后,又走到文具店去买笔,然后走回家,如图是张阳离家的距离与时间的关系图象.根据图象回答下列问题:(1)体育场离张阳家多少千米?(2)体育场离文具店多少千米?张阳在文具店逗留了多长时间?(3)张阳从文具店到家的速度是多少?【分析】(1)根据离开家的最大距离就是体育场到张阳家的距离解答;(2)根据纵坐标的两个距离不变时的距离的差为体育场离文具店的距离计算即可得解,再求出距离不变时的时间差即可;(3)根据速度=路程÷时间,列式计算即可得解.【解答】解:(1)体育场离张阳家2.5 km.(2)因为2.5﹣1.5=1(km),所以体育场离文具店1 km.因为65﹣45=20(min),所以张阳在文具店逗留了20 min.(3)文具店到张阳家的距离为1.5 km,张阳从文具店到家用的时间为100﹣65=35(min),所以张阳从文具店到家的速度为1.5÷=(km/h).【点评】本题考查利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.23.(7分)阅读下列推理过程,在括号中填写理由.已知:如图,点D、E分别在线段AB、BC上,AC∥DE,DF∥AE交BC于点F,AE平分∠BAC.求证:DF平分∠BDE证明:∵AE平分∠BAC(已知)∴∠1=∠2(角平分线的定义)∵AC ∥DE(已知)∴∠1=∠3(两直线平行,内错角相等)故∠2=∠3(等量代换)∵DF∥AE(已知)∴∠2=∠5,(两直线平行,同位角相等)∠3=∠4(两直线平行,内错角相等)∴∠4=∠5(等量代换)∴DF平分∠BDE(角平分线的定义)【分析】根据角平分线的定义得到∠1=∠2,根据平行线的性质得到∠1=∠3,等量代换得到∠2=∠3,根据平行线的性质得到∠2=∠5,等量代换即可得到结论.【解答】证明:∵AE平分∠BAC(已知)∴∠1=∠2(角平分线的定义)∵AC∥DE(已知)∴∠1=∠3(两直线平行,内错角相等)故∠2=∠3(等量代换)∵DF∥AE(已知)∴∠2=∠5,(两直线平行,同位角相等)∠3=∠4(两直线平行,内错角相等)∴∠4=∠5(等量代换)∴DF平分∠BDE(角平分线的定义).故答案为:角平分线的定义,两直线平行,内错角相等,等量代换,两直线平行,同位角相等,等量代换,角平分线的定义.【点评】本题考查了平行线的性质,角平分线的定义,熟练掌握平行线的性质是解题的关键.24.(12分)(1)如图1,已知正方形ABCD的边长为a,正方形FGCH的边长为b,长方形ABGE和EFHD为阴影部分,则阴影部分的面积是a2﹣b2(写成平方差的形式)(2)将图1中的长方形ABGE和EFHD剪下来,拼成图2所示的长方形,则长方形AHDE 的面积是(a+b)(a﹣b)(写成多项式相乘的形式)(3)比较图1与图2的阴影部分的面积,可得乘法公式(a+b)(a﹣b)=a2﹣b2.(4)利用所得公式计算:2(1+)(1+)(1+)(1+)+.【分析】(1)根据图1确定出阴影部分面积即可;(2)根据图2确定出长方形面积即可;(3)根据两图形面积相等得到乘法公式;(4)利用得出的平方差公式计算即可得到结果.【解答】解:(1)根据题意得:阴影部分面积为a2﹣b2;(2)根据题意得:阴影部分面积为(a+b)(a﹣b);(3)可得(a+b)(a﹣b)=a2﹣b2;(4)原式=4(1﹣)(1+)(1+)(1+)(1+)+=4(1﹣))(1+)(1+)(1+)+=4(1﹣)(1+)(1+)+=4(1﹣)(1+)+=4(1﹣)+=4﹣+=4.故答案为:(1)a2﹣b2;(2)(a+b)(a﹣b);(3)(a+b)(a﹣b)=a2﹣b2【点评】此题考查了平方差公式的几何背景,熟练掌握平方差公式是解本题的关键.。
2016-2017学年安徽省合肥七年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.等于()A.﹣3 B.3 C.D.﹣2.下列运算正确的是()A.3a+2b=5ab B.a3•a2=a5 C.a8•a2=a4 D.(2a2)3=﹣6a63.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.001244.计算的平方根为()A.±4 B.±2 C.4 D.±5.若2x=3,4y=5,则2x﹣2y的值为()A.B.﹣2 C.D.6.加上下列单项式后,仍不能使4x2+1成为一个整式的完全平方式的是()A.4x4B.4x C.﹣4x D.2x7.长方形的面积为4a2﹣6ab+2a,若它的一边长为2a,则它的周长为()A.4a﹣3b B.8a﹣6b C.4a﹣3b+1 D.8a﹣6b+28.若使代数式的值在﹣1和2之间,m可以取的整数有()A.1个B.2个C.3个D.4个9.已知关于x的不等式组整数解有4个,则b的取值范围是()A.7≤b<8 B.7≤b≤8 C.8≤b<9 D.8≤b≤910.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a= b B.a=3b C.a= b D.a=4b二、填空题(每小题4分,共20分)11.因式分解:4mn﹣mn3= .12.若与|x+2y﹣5|互为相反数,则(x﹣y)2017= .13.某数的平方根是2a+3和a﹣15,则这个数为.14.已知不等式组的解集为﹣1<x<2,则(m+n)2012= .15.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2016,且AO=2BO,则a+b的值为.三、解答题(第16、17、18题各6分,第19、20题各10分,第21题12分,共50分)16.计算:17.解不等式组,并将解集在数轴上表示出来.18.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.19.已知:a+b=2,ab=1.求:(1)a﹣b(2)a2﹣b2+4b.20.若2(x+4)﹣5<3(x+1)+4的最小整数解是方程的解,求代数式m2﹣2m+11的平方根的值.21.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?2016-2017学年安徽省合肥七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.等于()A.﹣3 B.3 C.D.﹣【考点】24:立方根.【分析】运用开立方的方法计算.【解答】解: =﹣3,故选A.2.下列运算正确的是()A.3a+2b=5ab B.a3•a2=a5 C.a8•a2=a4 D.(2a2)3=﹣6a6【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、不是同类项,不能合并,选项错误;B、正确;C、a8•a2=a10,选项错误;D、(2a2)3=8a6,选项错误.故选B.3.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.00124【考点】1K:科学记数法—原数.【分析】科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到.【解答】解:把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到为0.001 24.故选D.4.计算的平方根为()A.±4 B.±2 C.4 D.±【考点】21:平方根;22:算术平方根.【分析】首先根据算术平方根的定义求出的值,然后根据平方根的定义即可求出结果.【解答】解:∵=4,又∵(±2)2=4,∴4的平方根是±2,即的平方根±2.故选B.5.若2x=3,4y=5,则2x﹣2y的值为()A.B.﹣2 C.D.【考点】48:同底数幂的除法.【分析】利用同底数幂除法的逆运算法则计算即可.【解答】解:∵2x=3,4y=5,∴2x﹣2y=2x÷22y,=2x÷4y,=3÷5,=0.6.故选:A.6.加上下列单项式后,仍不能使4x2+1成为一个整式的完全平方式的是()A.4x4B.4x C.﹣4x D.2x【考点】4E:完全平方式.【分析】根据完全平方公式的结构对各选项进行验证即可得解.【解答】解:A、4x4+4x2+1=(2x2+1)2,故本选项错误;B、4x+4x2+1=(2x+1)2,故本选项错误;C、﹣4x+4x2+1=(2x﹣1)2,故本选项错误;D、2x+4x2+1不能构成完全平方公式结构,故本选项正确.故选D.7.长方形的面积为4a2﹣6ab+2a,若它的一边长为2a,则它的周长为()A.4a﹣3b B.8a﹣6b C.4a﹣3b+1 D.8a﹣6b+2【考点】4H:整式的除法.【分析】首先利用面积除以一边长即可求得令一边长,则周长即可求解.【解答】解:另一边长是:(4a2﹣6ab+2a)÷2a=2a﹣3b+1,则周长是:2[(2a﹣3b+1)+2a]=8a﹣6b+2.故选D.8.若使代数式的值在﹣1和2之间,m可以取的整数有()A.1个B.2个C.3个D.4个【考点】CC:一元一次不等式组的整数解.【分析】由题意可得不等式组,解不等式组,得到不等式组的解集,然后求其整数解.【解答】解:由题意可得,由①得m>﹣,由②得m<,所以不等式组的解集为﹣<x<,则m可以取的整数有0,1共2个.故选:B.9.已知关于x的不等式组整数解有4个,则b的取值范围是()A.7≤b<8 B.7≤b≤8 C.8≤b<9 D.8≤b≤9【考点】CC:一元一次不等式组的整数解.【分析】首先确定不等式组的解集,先利用含b的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于b的不等式,从而求出b的范围.【解答】解:由不等式x﹣b≤0,得:x≤b,由不等式x﹣2≥3,得:x≥5,∵不等式组有4个整数解,∴其整数解为5、6、7、8,则8≤b<9,故选:C.10.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a= b B.a=3b C.a= b D.a=4b【考点】4I:整式的混合运算.【分析】表示出左上角与右下角部分的面积,求出之差,根据差与BC无关即可求出a与b的关系式.【解答】解:左上角阴影部分的长为AE,宽为AF=3b,右下角阴影部分的长为PC,宽为a,∵AD=BC,即AE+ED=AE+a,BC=BP+PC=4b+PC,∴AE+a=4b+PC,即AE﹣PC=4b﹣a,∴阴影部分面积之差S=AE•AF﹣PC•CG=3bAE﹣aPC=3b(PC+4b﹣a)﹣aPC=(3b﹣a)PC+12b2﹣3ab,则3b﹣a=0,即a=3b.解法二:既然BC是变化的,当点P与点C重合开始,然后BC向右伸展,设向右伸展长度为X,左上阴影增加的是3bX,右下阴影增加的是aX,因为S不变,∴增加的面积相等,∴3bX=aX,∴a=3b.故选:B.二、填空题(每小题4分,共20分)11.因式分解:4mn﹣mn3= mn(2+n)(2﹣n).【考点】55:提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=mn(4﹣n2)=mn(2+n)(2﹣n),故答案为:mn(2+n)(2﹣n)12.若与|x+2y﹣5|互为相反数,则(x﹣y)2017= ﹣1 .【考点】98:解二元一次方程组;16:非负数的性质:绝对值;23:非负数的性质:算术平方根.【分析】利用相反数性质及非负数性质列出方程组,求出方程组的解得到x与y的值,代入原式计算即可得到结果.【解答】解:∵与|x+2y﹣5|互为相反数,∴+|x+2y﹣5|=0,∴,①×2+②得:5x=5,解得:x=1,把x=1代入②得:y=2,则原式=﹣1,故答案为:﹣113.某数的平方根是2a+3和a﹣15,则这个数为121 .【考点】21:平方根;86:解一元一次方程.【分析】根据正数有两个平方根,这两个平方根互为相反数,据此即可得到关于a的方程即可求得a的值,进而求得这个数的值.【解答】解:根据题意得:2a+3+(a﹣15)=0,解得a=4,则这个数是(2a+3)2=121.故答案为:121.14.已知不等式组的解集为﹣1<x<2,则(m+n)2012= 1 .【考点】CB:解一元一次不等式组;98:解二元一次方程组;C6:解一元一次不等式.【分析】求出不等式组的解集,根据已知不等式组的解集得出m+n﹣2=﹣1,m=2,求出m、n 的值,再代入求出即可.【解答】解:,解不等式①得:x>m+n﹣2,解不等式②得:x<m,∴不等式组的解集为:m+n﹣2<x<m,∵不等式组的解集为﹣1<x<2,∴m+n﹣2=﹣1,m=2,解得:m=2,n=﹣1,∴(m+n)2012=(2﹣1)2012=1.故答案为:1.15.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a ﹣b|=2016,且AO=2BO,则a+b的值为﹣672 .【考点】33:代数式求值;13:数轴.【分析】依据绝对自的定义可知b﹣a=2016,﹣a=2b,从而可求得a、b的值,故此可求得a+b 的值.【解答】解:∵点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧,∴a<0,b>0.又∵|a﹣b|=2016,∴b﹣a=2016.∵AO=2BO,∴﹣a=2b.∴3b=2016.解得:b=672.∴a=﹣1344.∴a+b=﹣1344+672=﹣672.故答案为:﹣672.三、解答题(第16、17、18题各6分,第19、20题各10分,第21题12分,共50分)16.计算:【考点】73:二次根式的性质与化简;15:绝对值;6E:零指数幂;6F:负整数指数幂.【分析】理解绝对值的意义:负数的绝对值是它的相反数;表示的算术平方根即;一个数的负指数次幂等于这个数的正指数次幂的倒数;任何不等于0的数的0次幂都等于1.【解答】解:原式=2﹣+﹣1=1.17.解不等式组,并将解集在数轴上表示出来.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别解出两不等式的解集再求其公共解.【解答】解:解不等式①得x<﹣解不等式②得x≥﹣1∴不等式组的解集为﹣1≤x<﹣.其解集在数轴上表示为:如图所示.18.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.【考点】4J:整式的混合运算—化简求值.【分析】首先根据整式相乘的法则和平方差公式、完全平方公式去掉括号,然后合并同类项,最后代入数据计算即可求解.【解答】解:原式=9x2﹣4﹣(5x2﹣5x)﹣(4x2﹣4x+1)=9x2﹣4﹣5x2+5x﹣4x2+4x﹣1=9x﹣5,当时,原式==﹣3﹣5=﹣8.19.已知:a+b=2,ab=1.求:(1)a﹣b(2)a2﹣b2+4b.【考点】4C:完全平方公式.【分析】根据完全平方公式进行变形,再整体代入求出即可.【解答】解:(1)∵a+b=2,ab=1,∴(a﹣b)2=(a+b)2﹣4ab=4﹣4=0,则a﹣b=0,(2)∵a+b=2,ab=1,a﹣b=0∴a2﹣b2+4b=420.若2(x+4)﹣5<3(x+1)+4的最小整数解是方程的解,求代数式m2﹣2m+11的平方根的值.【考点】C7:一元一次不等式的整数解;21:平方根;85:一元一次方程的解.【分析】首先计算出不等式的解集,从而确定出最小整数解,进而得到x的值,再把x的值代入方程算出m的值,然后再次把m的值代入代数式m2﹣2m+11计算出结果,再算出平方根即可.【解答】解:解不等式得:x>﹣4则x的最小整数解为﹣3,当x=﹣3时,×(﹣3)+3m=5,解得:m=2,把m=2代入m2﹣2m+11得:22﹣2×2+11=11,11平方根为±.故代数式m2﹣2m+11的平方根的值为±.21.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?【考点】CE:一元一次不等式组的应用.【分析】(1)设租用甲车x辆,则乙车(10﹣x)辆.不等关系:①两种车共坐人数不小于340人;②两种车共载行李不小于170件.(2)因为车的总数是一定的,所以费用少的车越多越省.【解答】解:(1)设租用甲车x辆,则乙车(10﹣x)辆.根据题意,得,解,得4≤x≤7.5.又x是整数,∴x=4或5或6或7.共有四种方案:①甲4辆,乙6辆;②甲5辆,乙5辆;③甲6辆,乙4辆;④甲7辆,乙3辆.(2)①甲4辆,乙6辆;总费用为4×2000+6×1800=18800元;②甲5辆,乙5辆;总费用5×2000+5×1800=19000元;③甲6辆,乙4辆;总费用为6×2000+4×1800=19200元;④甲7辆,乙3辆.总费用为7×2000+3×1800=19400元;因为乙车的租金少,所以乙车越多,总费用越少.故选方案①.2017年5月24日。
安徽省合肥市2017-2018学年度下第2学期期中调研试卷七年级数学试题完成时间:120分钟 满分:150分A. B. C. D. 2.4的平方根是( )A .2B .±2C .2D .±2 3.在下列所给出的坐标中,在第二象限的是( )A.(2,3)B.(2,-3)C.(-2,-3)D.(-2,3)4.在实数5,227,38-, 0,-1.414,2π,36,0.1010010001中,无理数有( )A .2个B .3个C .4个D .5个5.如图,点E 在AC 的延长线上,下列条件中不能判断AC ∥BD 的是( ) A. ∠1=∠2 B. ∠3=∠4 C. ∠D=∠DCED. ∠D+∠ACD=180°6.下列命题是假命题的是( )A. 对顶角相等B. 两直线平行,同旁内角相等C. 平行于同一条直线的两直线平行D. 同位角相等,两直线平行 7.如图,表示7的点在数轴上表示时,应在哪两个字母之间( ) A. C 与D B. A 与B C. A 与C D. B 与C8.点P 位于x 轴下方,y 轴左侧,距离x 轴4个单位长度,距离y 轴2个单位长度,那么点P 的坐标是( )A.(4,2)B.(-2,-4)C.(-4,-2)D.(2,4)9.在平面直角坐标系中,线段CF 是由线段AB 平移得到的;点A (-1,4)的对应点为C (4,1);则点B (a ,b )的对应点F 的坐标为( )A.(a+3,b+5)B.(a+5,b+3)C.(a-5,b+3)D.(a+5,b-3)10.如图所示,将含有30°角的三角板的直角顶点放在相互平行的两条直线其中一条上. 若∠1=35°,则∠2的度数为( )A. 10°B. 15° 35° 二、填空题(每题5分,共20分)11.若整数x 满足|x|≤3,则使7−x 为整数的x 的值是 (只需填一个). 12.如图所示,直线AB 、CD 、EF 交于点O ,OG 平分∠BOF ,且CD ⊥EF ,∠AOE=70°,则∠DOG= .第12题图 第14题图13.把9的平方根和立方根按从小到大的顺序排列为 .14.如图,在平面直角坐标系中,一动点从原点O 出发,按向上、向右、向下、向右的方向依次不断地移动,每次移动一个单位,得到点A 1(0,1)、A 2(1,1)、A 3(1,0)、A 4n+1(n 是自然数)的坐标为 . 三、解答题(共90分)15.(8分)计算:(1)100+38- (2)|3-2|-2)2(-16.(8分)求下列各式中x 的值:(1)2x 2=4; (2)64x 3 + 27=017.(8分)如图,直线a ∥b ,点B 在直线b 上,AB ⊥BC ,∠1=55°,求∠2的度数.18.(8分)完成下面的证明如图,点E在直线DF上,点B在直线AC上,若∠AGB=∠EHF,∠C=∠D.求证:∠A=∠F.证明:∵∠AGB=∠EHF∠AGB= (对顶角相等)∴∠EHF=∠DGF∴DB∥EC()∴∠=∠DBA()又∵∠C=∠D∴∠DBA=∠D∴DF∥()∴∠A=∠F().19.(10分)已知5a+2的立方根是3,3a+b-1的算术平方根是4,c是13的整数部分.(1)求a,b,c的值;(2)求3a-b+c的平方根.20.(10分)如图,直线AB是某天然气公司的主输气管道,点C、D是在AB异侧的两个小区,现在主输气管道上寻找支管道连接点,向两个小区铺设管道。
2016-2017学年安徽省合肥七年级(下)期中数学试卷一、选择题(每小题3分,共30分)1.等于()A.﹣3 B.3 C.D.﹣2.下列运算正确的是()A.3a+2b=5ab B.a3•a2=a5 C.a8•a2=a4 D.(2a2)3=﹣6a63.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.001244.计算的平方根为()A.±4 B.±2 C.4 D.±5.若2x=3,4y=5,则2x﹣2y的值为()A.B.﹣2 C.D.6.加上下列单项式后,仍不能使4x2+1成为一个整式的完全平方式的是()A.4x4 B.4x C.﹣4x D.2x7.长方形的面积为4a2﹣6ab+2a,若它的一边长为2a,则它的周长为()A.4a﹣3b B.8a﹣6b C.4a﹣3b+1 D.8a﹣6b+28.若使代数式的值在﹣1和2之间,m可以取的整数有()A.1个B.2个C.3个D.4个9.已知关于x的不等式组整数解有4个,则b的取值范围是()A.7≤b<8 B.7≤b≤8 C.8≤b<9 D.8≤b≤910.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a= b B.a=3b C.a= b D.a=4b二、填空题(每小题4分,共20分)11.因式分解:4mn﹣mn3= .12.若与|x+2y﹣5|互为相反数,则(x﹣y)2017= .13.某数的平方根是2a+3和a﹣15,则这个数为.14.已知不等式组的解集为﹣1<x<2,则(m+n)2012= .15.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2016,且AO=2BO,则a+b的值为.三、解答题(第16、17、18题各6分,第19、20题各10分,第21题12分,共50分)16.计算:17.解不等式组,并将解集在数轴上表示出来.18.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.19.已知:a+b=2,ab=1.求:(1)a﹣b(2)a2﹣b2+4b.20.若2(x+4)﹣5<3(x+1)+4的最小整数解是方程的解,求代数式m2﹣2m+11的平方根的值.21.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?2016-2017学年安徽省合肥七年级(下)期中数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.等于()A.﹣3 B.3 C.D.﹣【考点】24:立方根.【分析】运用开立方的方法计算.【解答】解: =﹣3,故选A.2.下列运算正确的是()A.3a+2b=5ab B.a3•a2=a5 C.a8•a2=a4 D.(2a2)3=﹣6a6【考点】48:同底数幂的除法;35:合并同类项;46:同底数幂的乘法;47:幂的乘方与积的乘方.【分析】根据同底数幂的除法,底数不变指数相减;合并同类项,系数相加字母和字母的指数不变;同底数幂的乘法,底数不变指数相加;幂的乘方,底数不变指数相乘,对各选项计算后利用排除法求解.【解答】解:A、不是同类项,不能合并,选项错误;B、正确;C、a8•a2=a10,选项错误;D、(2a2)3=8a6,选项错误.故选B.3.已知空气的单位体积质量为1.24×10﹣3克/厘米3,1.24×10﹣3用小数表示为()A.0.000124 B.0.0124 C.﹣0.00124 D.0.00124【考点】1K:科学记数法—原数.【分析】科学记数法的标准形式为a×10n(1≤|a|<10,n为整数).本题把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到.【解答】解:把数据“1.24×10﹣3中1.24的小数点向左移动3位就可以得到为0.001 24.故选D.4.计算的平方根为()A.±4 B.±2 C.4 D.±【考点】21:平方根;22:算术平方根.【分析】首先根据算术平方根的定义求出的值,然后根据平方根的定义即可求出结果.【解答】解:∵=4,又∵(±2)2=4,∴4的平方根是±2,即的平方根±2.故选B.5.若2x=3,4y=5,则2x﹣2y的值为()A.B.﹣2 C.D.【考点】48:同底数幂的除法.【分析】利用同底数幂除法的逆运算法则计算即可.【解答】解:∵2x=3,4y=5,∴2x﹣2y=2x÷22y,=2x÷4y,=3÷5,=0.6.故选:A.6.加上下列单项式后,仍不能使4x2+1成为一个整式的完全平方式的是()A.4x4 B.4x C.﹣4x D.2x【考点】4E:完全平方式.【分析】根据完全平方公式的结构对各选项进行验证即可得解.【解答】解:A、4x4+4x2+1=(2x2+1)2,故本选项错误;B、4x+4x2+1=(2x+1)2,故本选项错误;C、﹣4x+4x2+1=(2x﹣1)2,故本选项错误;D、2x+4x2+1不能构成完全平方公式结构,故本选项正确.故选D.7.长方形的面积为4a2﹣6ab+2a,若它的一边长为2a,则它的周长为()A.4a﹣3b B.8a﹣6b C.4a﹣3b+1 D.8a﹣6b+2【考点】4H:整式的除法.【分析】首先利用面积除以一边长即可求得令一边长,则周长即可求解.【解答】解:另一边长是:(4a2﹣6ab+2a)÷2a=2a﹣3b+1,则周长是:2[(2a﹣3b+1)+2a]=8a﹣6b+2.故选D.8.若使代数式的值在﹣1和2之间,m可以取的整数有()A.1个B.2个C.3个D.4个【考点】CC:一元一次不等式组的整数解.【分析】由题意可得不等式组,解不等式组,得到不等式组的解集,然后求其整数解.【解答】解:由题意可得,由①得m>﹣,由②得m<,所以不等式组的解集为﹣<x<,则m可以取的整数有0,1共2个.故选:B.9.已知关于x的不等式组整数解有4个,则b的取值范围是()A.7≤b<8 B.7≤b≤8 C.8≤b<9 D.8≤b≤9【考点】CC:一元一次不等式组的整数解.【分析】首先确定不等式组的解集,先利用含b的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于b的不等式,从而求出b的范围.【解答】解:由不等式x﹣b≤0,得:x≤b,由不等式x﹣2≥3,得:x≥5,∵不等式组有4个整数解,∴其整数解为5、6、7、8,则8≤b<9,故选:C.10.7张如图1的长为a,宽为b(a>b)的小长方形纸片,按图2的方式不重叠地放在矩形ABCD内,未被覆盖的部分(两个矩形)用阴影表示.设左上角与右下角的阴影部分的面积的差为S,当BC的长度变化时,按照同样的放置方式,S始终保持不变,则a,b满足()A.a= b B.a=3b C.a= b D.a=4b【考点】4I:整式的混合运算.【分析】表示出左上角与右下角部分的面积,求出之差,根据差与BC无关即可求出a与b的关系式.【解答】解:左上角阴影部分的长为AE,宽为AF=3b,右下角阴影部分的长为PC,宽为a,∵AD=BC,即AE+ED=AE+a,BC=BP+PC=4b+PC,∴AE+a=4b+PC,即AE﹣PC=4b﹣a,∴阴影部分面积之差S=AE•AF﹣PC•CG=3bAE﹣aPC=3b(PC+4b﹣a)﹣aPC=(3b﹣a)PC+12b2﹣3ab,则3b﹣a=0,即a=3b.解法二:既然BC是变化的,当点P与点C重合开始,然后BC向右伸展,设向右伸展长度为X,左上阴影增加的是3bX,右下阴影增加的是aX,因为S 不变,∴增加的面积相等,∴3bX=aX,∴a=3b.故选:B.二、填空题(每小题4分,共20分)11.因式分解:4mn﹣mn3= mn(2+n)(2﹣n).【考点】55:提公因式法与公式法的综合运用.【分析】原式提取公因式,再利用平方差公式分解即可.【解答】解:原式=mn(4﹣n2)=mn(2+n)(2﹣n),故答案为:mn(2+n)(2﹣n)12.若与|x+2y﹣5|互为相反数,则(x﹣y)2017= ﹣1 .【考点】98:解二元一次方程组;16:非负数的性质:绝对值;23:非负数的性质:算术平方根.【分析】利用相反数性质及非负数性质列出方程组,求出方程组的解得到x与y的值,代入原式计算即可得到结果.【解答】解:∵与|x+2y﹣5|互为相反数,∴+|x+2y﹣5|=0,∴,①×2+②得:5x=5,解得:x=1,把x=1代入②得:y=2,则原式=﹣1,故答案为:﹣113.某数的平方根是2a+3和a﹣15,则这个数为121 .【考点】21:平方根;86:解一元一次方程.【分析】根据正数有两个平方根,这两个平方根互为相反数,据此即可得到关于a的方程即可求得a的值,进而求得这个数的值.【解答】解:根据题意得:2a+3+(a﹣15)=0,解得a=4,则这个数是(2a+3)2=121.故答案为:121.14.已知不等式组的解集为﹣1<x<2,则(m+n)2012= 1 .【考点】CB:解一元一次不等式组;98:解二元一次方程组;C6:解一元一次不等式.【分析】求出不等式组的解集,根据已知不等式组的解集得出m+n﹣2=﹣1,m=2,求出m、n的值,再代入求出即可.【解答】解:,解不等式①得:x>m+n﹣2,解不等式②得:x<m,∴不等式组的解集为:m+n﹣2<x<m,∵不等式组的解集为﹣1<x<2,∴m+n﹣2=﹣1,m=2,解得:m=2,n=﹣1,∴(m+n)2012=(2﹣1)2012=1.故答案为:1.15.在数轴上,点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧.若|a﹣b|=2016,且AO=2BO,则a+b的值为﹣672 .【考点】33:代数式求值;13:数轴.【分析】依据绝对自的定义可知b﹣a=2016,﹣a=2b,从而可求得a、b的值,故此可求得a+b的值.【解答】解:∵点A(表示整数a)在原点的左侧,点B(表示整数b)在原点的右侧,∴a<0,b>0.又∵|a﹣b|=2016,∴b﹣a=2016.∵AO=2BO,∴﹣a=2b.∴3b=2016.解得:b=672.∴a=﹣1344.∴a+b=﹣1344+672=﹣672.故答案为:﹣672.三、解答题(第16、17、18题各6分,第19、20题各10分,第21题12分,共50分)16.计算:【考点】73:二次根式的性质与化简;15:绝对值;6E:零指数幂;6F:负整数指数幂.【分析】理解绝对值的意义:负数的绝对值是它的相反数;表示的算术平方根即;一个数的负指数次幂等于这个数的正指数次幂的倒数;任何不等于0的数的0次幂都等于1.【解答】解:原式=2﹣+﹣1=1.17.解不等式组,并将解集在数轴上表示出来.【考点】CB:解一元一次不等式组;C4:在数轴上表示不等式的解集.【分析】分别解出两不等式的解集再求其公共解.【解答】解:解不等式①得x<﹣解不等式②得x≥﹣1∴不等式组的解集为﹣1≤x<﹣.其解集在数轴上表示为:如图所示.18.先化简,再求值,(3x+2)(3x﹣2)﹣5x(x﹣1)﹣(2x﹣1)2,其中x=﹣.【考点】4J:整式的混合运算—化简求值.【分析】首先根据整式相乘的法则和平方差公式、完全平方公式去掉括号,然后合并同类项,最后代入数据计算即可求解.【解答】解:原式=9x2﹣4﹣(5x2﹣5x)﹣(4x2﹣4x+1)=9x2﹣4﹣5x2+5x﹣4x2+4x﹣1=9x﹣5,当时,原式==﹣3﹣5=﹣8.19.已知:a+b=2,ab=1.求:(1)a﹣b(2)a2﹣b2+4b.【考点】4C:完全平方公式.【分析】根据完全平方公式进行变形,再整体代入求出即可.【解答】解:(1)∵a+b=2,ab=1,∴(a﹣b)2=(a+b)2﹣4ab=4﹣4=0,则a﹣b=0,(2)∵a+b=2,ab=1,a﹣b=0∴a2﹣b2+4b=420.若2(x+4)﹣5<3(x+1)+4的最小整数解是方程的解,求代数式m2﹣2m+11的平方根的值.【考点】C7:一元一次不等式的整数解;21:平方根;85:一元一次方程的解.【分析】首先计算出不等式的解集,从而确定出最小整数解,进而得到x的值,再把x的值代入方程算出m的值,然后再次把m的值代入代数式m2﹣2m+11计算出结果,再算出平方根即可.【解答】解:解不等式得:x>﹣4则x的最小整数解为﹣3,当x=﹣3时,×(﹣3)+3m=5,解得:m=2,把m=2代入m2﹣2m+11得:22﹣2×2+11=11,11平方根为±.故代数式m2﹣2m+11的平方根的值为±.21.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?【考点】CE:一元一次不等式组的应用.【分析】(1)设租用甲车x辆,则乙车(10﹣x)辆.不等关系:①两种车共坐人数不小于340人;②两种车共载行李不小于170件.(2)因为车的总数是一定的,所以费用少的车越多越省.【解答】解:(1)设租用甲车x辆,则乙车(10﹣x)辆.根据题意,得,解,得4≤x≤7.5.又x是整数,∴x=4或5或6或7.共有四种方案:①甲4辆,乙6辆;②甲5辆,乙5辆;③甲6辆,乙4辆;④甲7辆,乙3辆.(2)①甲4辆,乙6辆;总费用为4×2000+6×1800=18800元;②甲5辆,乙5辆;总费用5×2000+5×1800=19000元;③甲6辆,乙4辆;总费用为6×2000+4×1800=19200元;④甲7辆,乙3辆.总费用为7×2000+3×1800=19400元;因为乙车的租金少,所以乙车越多,总费用越少.故选方案①.2017年5月24日。