叠彩区一中2018-2019学年高二上学期第二次月考试卷数学
- 格式:doc
- 大小:480.50 KB
- 文档页数:15
叠彩区外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.已知某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N1(90,86)和ξ2:N2(93,79),则以下结论正确的是()A.第一次测试的平均分比第二次测试的平均分要高,也比第二次成绩稳定B.第一次测试的平均分比第二次测试的平均分要高,但不如第二次成绩稳定C.第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定D.第二次测试的平均分比第一次测试的平均分要高,但不如第一次成绩稳定2.(+)2n(n∈N*)展开式中只有第6项系数最大,则其常数项为()A.120 B.210 C.252 D.453.设D、E、F分别是△ABC的三边BC、CA、AB上的点,且=2,=2,=2,则与()A.互相垂直B.同向平行C.反向平行D.既不平行也不垂直4.已知在△ABC中,a=,b=,B=60°,那么角C等于()A.135°B.90°C.45°D.75°5.设有直线m、n和平面α、β,下列四个命题中,正确的是()A.若m∥α,n∥α,则m∥n B.若m⊂α,n⊂α,m∥β,n∥β,则α∥βC.若α⊥β,m⊂α,则m⊥βD.若α⊥β,m⊥β,m⊄α,则m∥α6.函数y=sin2x+cos2x的图象,可由函数y=sin2x﹣cos2x的图象()A.向左平移个单位得到B.向右平移个单位得到C.向左平移个单位得到D.向左右平移个单位得到7.已知x,y满足时,z=x﹣y的最大值为()A.4 B.﹣4 C.0 D.28.如图,圆O与x轴的正半轴的交点为A,点C、B在圆O上,且点C位于第一象限,点B的坐标为(,﹣),∠AOC=α,若|BC|=1,则cos2﹣sin cos﹣的值为()A .B .C .﹣D .﹣9. 定义:数列{a n }前n 项的乘积T n =a 1•a 2•…•a n ,数列a n =29﹣n ,则下面的等式中正确的是( ) A .T 1=T 19 B .T 3=T 17C .T 5=T 12D .T 8=T 1110.椭圆22:143x y C +=的左右顶点分别为12,A A ,点P 是C 上异于12,A A 的任意一点,且直线1PA 斜率的取值范围是[]1,2,那么直线2PA 斜率的取值范围是( )A .31,42⎡⎤--⎢⎥⎣⎦ B .33,48⎡⎤--⎢⎥⎣⎦ C .1,12⎡⎤⎢⎥⎣⎦ D .3,14⎡⎤⎢⎥⎣⎦【命题意图】本题考查椭圆的标准方程和简单几何性质、直线的斜率等基础知识,意在考查函数与方程思想和基本运算能力.11.方程1x -= )A .一个圆B . 两个半圆C .两个圆D .半圆12.已知函数f (x )=⎩⎨⎧a x -1,x ≤1log a1x +1,x >1(a >0且a ≠1),若f (1)=1,f (b )=-3,则f (5-b )=( ) A .-14B .-12C .-34D .-54二、填空题13.若函数()f x 的定义域为[]1,2-,则函数(32)f x -的定义域是 .14.设全集U=R ,集合M={x|2a ﹣1<x <4a ,a ∈R},N={x|1<x <2},若N ⊆M ,则实数a 的取值范围是 . 15.圆柱形玻璃杯高8cm ,杯口周长为12cm ,内壁距杯口2cm 的点A 处有一点蜜糖.A 点正对面的外壁(不是A 点的外壁)距杯底2cm 的点B 处有一小虫.若小虫沿杯壁爬向蜜糖饱食一顿,最少要爬多少 cm .(不计杯壁厚度与小虫的尺寸)16.以点(1,3)和(5,﹣1)为端点的线段的中垂线的方程是 .17.已知函数22tan ()1tan xf x x=-,则()3f π的值是_______,()f x 的最小正周期是______. 【命题意图】本题考查三角恒等变换,三角函数的性质等基础知识,意在考查运算求解能力.18.在(1+x )(x 2+)6的展开式中,x 3的系数是 .三、解答题19.已知椭圆()2222:10x y C a b a b +=>>的左右焦点分别为12,F F ,椭圆C 过点1,2P ⎛ ⎝⎭,直线1PF 交y 轴于Q ,且22,PF QO O =为坐标原点.(1)求椭圆C 的方程;(2)设M 是椭圆C 上的顶点,过点M 分别作出直线,MA MB 交椭圆于,A B 两点,设这两条直线的斜率 分别为12,k k ,且122k k +=,证明:直线AB 过定点.20.如图,平面ABB 1A 1为圆柱OO 1的轴截面,点C 为底面圆周上异于A ,B 的任意一点. (Ⅰ)求证:BC ⊥平面A 1AC ;(Ⅱ)若D 为AC 的中点,求证:A 1D ∥平面O 1BC .21.设圆C 满足三个条件①过原点;②圆心在y=x 上;③截y 轴所得的弦长为4,求圆C 的方程.22.(本小题满分12分)已知函数131)(23+-=ax x x h ,设x a x h x f ln 2)(')(-=, 222ln )(a x x g +=,其中0>x ,R a ∈.(1)若函数)(x f 在区间),2(+∞上单调递增,求实数的取值范围; (2)记)()()(x g x f x F +=,求证:21)(≥x F .23.(本小题满分13分)设1()1f x x=+,数列{}n a 满足:112a =,1(),n n a f a n N *+=∈.(Ⅰ)若12,λλ为方程()f x x =的两个不相等的实根,证明:数列12n n a a λλ⎧⎫-⎨⎬-⎩⎭为等比数列;(Ⅱ)证明:存在实数m ,使得对n N *∀∈,2121222n n n n a a m a a -++<<<<.)24.已知函数f (x )=|x ﹣2|. (1)解不等式f (x )+f (x+1)≤2(2)若a <0,求证:f (ax )﹣af (x )≥f (2a )叠彩区外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】C【解析】解:∵某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N1(90,86)和ξ2:N2(93,79),∴μ1=90,▱1=86,μ2=93,▱2=79,∴第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定,故选:C.【点评】本题考查正态分布曲线的特点,考查学生分析解决问题的能力,比较基础.2.【答案】B【解析】【专题】二项式定理.【分析】由已知得到展开式的通项,得到第6项系数,根据二项展开式的系数性质得到n,可求常数项.【解答】解:由已知(+)2n(n∈N*)展开式中只有第6项系数为最大,所以展开式有11项,所以2n=10,即n=5,又展开式的通项为=,令5﹣=0解得k=6,所以展开式的常数项为=210;故选:B【点评】本题考查了二项展开式的系数以及求特征项;解得本题的关键是求出n,利用通项求特征项.3.【答案】D【解析】解:如图所示,△ABC中,=2,=2,=2,根据定比分点的向量式,得==+,=+,=+,以上三式相加,得++=﹣,所以,与反向共线.【点评】本题考查了平面向量的共线定理与定比分点的应用问题,是基础题目.4.【答案】D【解析】解:由正弦定理知=,∴sinA==×=,∵a<b,∴A<B,∴A=45°,∴C=180°﹣A﹣B=75°,故选:D.5.【答案】D【解析】解:A不对,由面面平行的判定定理知,m与n可能相交,也可能是异面直线;B不对,由面面平行的判定定理知少相交条件;C不对,由面面垂直的性质定理知,m必须垂直交线;故选:D.6.【答案】C【解析】解:y=sin2x+cos2x=sin(2x+),y=sin2x﹣cos2x=sin(2x﹣)=sin[2(x﹣)+)],∴由函数y=sin2x﹣cos2x的图象向左平移个单位得到y=sin(2x+),故选:C.【点评】本题主要考查三角函数的图象关系,利用辅助角公式将函数化为同名函数是解决本题的关键.7.【答案】A【解析】解:由约束条件作出可行域如图,联立,得A(6,2),化目标函数z=x﹣y为y=x﹣z,由图可知,当直线y=x﹣z过点A时,直线在y轴上的截距最小,z有最大值为4.故选:A.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.8.【答案】A【解析】解:∵|BC|=1,点B的坐标为(,﹣),故|OB|=1,∴△BOC为等边三角形,∴∠BOC=,又∠AOC=α,∴∠AOB=﹣α,∴cos(﹣α)=,﹣sin(﹣α)=﹣,∴sin(﹣α)=.∴cosα=cos[﹣(﹣α)]=cos cos(﹣α)+sin sin(﹣α)=+=,∴sinα=sin[﹣(﹣α)]=sin cos(﹣α)﹣cos sin(﹣α)=﹣=.∴cos2﹣sin cos﹣=(2cos2﹣1)﹣sinα=cosα﹣sinα=﹣=,故选:A.【点评】本题主要考查任意角的三角函数的定义,三角恒等变换,属于中档题.9. 【答案】C 【解析】解:∵a n =29﹣n,∴T n =a 1•a 2•…•a n =28+7+…+9﹣n=∴T 1=28,T 19=2﹣19,故A 不正确T 3=221,T 17=20,故B 不正确 T 5=230,T 12=230,故C 正确 T 8=236,T 11=233,故D 不正确 故选C10.【答案】B11.【答案】A 【解析】试题分析:由方程()2111x y -=-+()2221(11)x y -=-+,即22(1)(1)1x y -++=,所以方程表示的轨迹为一个圆,故选A. 考点:曲线的方程. 12.【答案】【解析】解析:选C.由题意得a -1=1,∴a =2. 若b ≤1,则2b -1=-3,即2b =-2,无解.∴b >1,即有log 21b +1=-3,∴1b +1=18,∴b =7.∴f (5-b )=f (-2)=2-2-1=-34,故选C.二、填空题13.【答案】1,22⎡⎤⎢⎥⎣⎦【解析】试题分析:依题意得11322,,22x x ⎡⎤-≤-≤∈⎢⎥⎣⎦.考点:抽象函数定义域.14.【答案】 [,1] .【解析】解:∵全集U=R ,集合M={x|2a ﹣1<x <4a ,a ∈R},N={x|1<x <2},N ⊆M ,∴2a ﹣1≤1 且4a ≥2,解得 2≥a ≥,故实数a 的取值范围是[,1],故答案为[,1].15.【答案】 10 cm【解析】解:作出圆柱的侧面展开图如图所示,设A 关于茶杯口的对称点为A ′,则A ′A=4cm ,BC=6cm ,∴A ′C=8cm ,∴A ′B==10cm .故答案为:10.【点评】本题考查了曲面的最短距离问题,通常转化为平面图形来解决.16.【答案】 x ﹣y ﹣2=0 .【解析】解:直线AB 的斜率 k AB =﹣1,所以线段AB 的中垂线得斜率k=1,又线段AB 的中点为(3,1),所以线段AB 的中垂线得方程为y ﹣1=x ﹣3即x ﹣y ﹣2=0, 故答案为x ﹣y ﹣2=0.【点评】本题考查利用点斜式求直线的方程的方法,此外,本题还可以利用线段的中垂线的性质(中垂线上的点到线段的2个端点距离相等)来求中垂线的方程.17.【答案】,π.【解析】∵22tan ()tan 21tan x f x x x ==-,∴2()tan 33f ππ==,又∵221tan 0x k x ππ⎧≠+⎪⎨⎪-≠⎩,∴()f x 的定义域为(,)(,)(,)244442k k kk k k ππππππππππππ-+-+-++++,k Z ∈,将()f x 的图象如下图画出,从而可知其最小正周期为π,故填:,π.18.【答案】 20 .【解析】解:(1+x )(x 2+)6的展开式中,x 3的系数是由(x2+)6的展开式中x 3与1的积加上x 2与x 的积组成;又(x 2+)6的展开式中,通项公式为 T r+1=•x 12﹣3r ,令12﹣3r=3,解得r=3,满足题意; 令12﹣3r=2,解得r=,不合题意,舍去;所以展开式中x 3的系数是=20.故答案为:20.三、解答题19.【答案】(1)2212x y +=;(2)证明见解析. 【解析】试题解析:(1)22PF QO =,∴212PF F F ⊥,∴1c =,2222221121,1a b c b a b +==+=+, ∴221,2b a ==,即2212x y +=; (2)设AB 方程为y kx b =+代入椭圆方程22212102k x kbx b ⎛⎫+++-= ⎪⎝⎭,22221,1122A B A B kb b x x x x k k --+==++,11,A B MA MB A B y y k k x x --==,∴()112A B A B A B A B MA MB A BA By x x y x x y y k k x x x x +-+--+=+==,∴1k b =+代入y kx b =+得:1y kx k =+-所以, 直线必过()1,1--.1 考点:直线与圆锥曲线位置关系.【方法点晴】求曲线方程主要方法是方程的思想,将向量的条件转化为垂直.直线和圆锥曲线的位置关系一方面要体现方程思想,另一方面要结合已知条件,从图形角度求解.联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后由根与系数的关系求解是一个常用的方法. 涉及弦长的问题中,应熟练地利用根与系数关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.20.【答案】【解析】证明:(Ⅰ)因为AB为圆O的直径,点C为圆O上的任意一点∴BC⊥AC …又圆柱OO1中,AA1⊥底面圆O,∴AA1⊥BC,即BC⊥AA1…而AA1∩AC=A∴BC⊥平面A1AC …(Ⅱ)取BC中点E,连结DE、O1E,∵D为AC的中点∴△ABC中,DE∥AB,且DE=AB …又圆柱OO1中,A1O1∥AB,且∴DE∥A1O1,DE=A1O1∴A1DEO1为平行四边形…∴A1D∥EO1…而A1D⊄平面O1BC,EO1⊂平面O1BC∴A1D∥平面O1BC …【点评】本题主要考查直线与直线、直线与平面、平面与平面的位置关系;考查学生的空间想象能力及推理论证能力.21.【答案】【解析】解:根据题意画出图形,如图所示:当圆心C 1在第一象限时,过C 1作C 1D 垂直于x 轴,C 1B 垂直于y 轴,连接AC 1,由C 1在直线y=x 上,得到C 1B=C 1D ,则四边形OBC 1D 为正方形, ∵与y 轴截取的弦OA=4,∴OB=C 1D=OD=C 1B=2,即圆心C 1(2,2),在直角三角形ABC1中,根据勾股定理得:AC 1=2,则圆C 1方程为:(x ﹣2)2+(y ﹣2)2=8;当圆心C 2在第三象限时,过C 2作C 2D 垂直于x 轴,C 2B 垂直于y 轴,连接AC 2,由C 2在直线y=x 上,得到C 2B=C 2D ,则四边形OB ′C 2D ′为正方形,∵与y 轴截取的弦OA ′=4,∴OB ′=C 2D ′, =OD ′=C 2B ′=2,即圆心C 2(﹣2,﹣2), 在直角三角形A ′B ′C2中,根据勾股定理得:A ′C 2=2, 则圆C 1方程为:(x+2)2+(y+2)2=8,∴圆C 的方程为:(x ﹣2)2+(y ﹣2)2=8或(x+2)2+(y+2)2=8.【点评】本题考查了角平分线定理,垂径定理,正方形的性质及直角三角形的性质,做题时注意分两种情况,利用数形结合的思想,分别求出圆心坐标和半径,写出所有满足题意的圆的标准方程,是中档题.22.【答案】(1)]34,( .(2)证明见解析. 【解析】试题解析:解:(1)函数131)(23+-=ax x x h ,ax x x h 2)('2-=,1111] 所以函数x a ax x x a x h x f ln 22ln 2)(')(2--=-=,∵函数)(x f 在区间),2(+∞上单调递增,∴0222ln 2)(')('2≥--=-=x a ax x x a x h x f 在区间),2(+∞上恒成立,所以12+≤x x a 在),2(+∞∈x 上恒成立.令1)(2+=x x x M ,则2222)1(2)1()1(2)('++=+-+=x x x x x x x x M ,当),2(+∞∈x 时,0)('>x M , ∴34)2(1)(2=>+=M x x x M ,∴实数的取值范围为]34,(-∞. (2)]2ln )ln ([22ln ln 22)(222222xx a x x a a x x a ax x x F +++-=++--=, 令2ln )ln ()(222x x a x x a a P +++-=,则111]4)ln (4)ln ()2ln (2ln )2ln ()2ln ()(2222222x x x x x x a x x x x x x a a P +≥+-+-=+++-+-=.令x x x Q ln )(-=,则x x x x Q 111)('-=-=,显然)(x Q 在区间)1,0(上单调递减,在区间),1[+∞上单调递增,则1)1()(min ==Q x Q ,则41)(≥a P ,故21412)(=⨯≥x F .考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【方法点晴】本题主要考查导数在解决函数问题中的应用.考查利用导数证明不等式成立.(1)利用导数的工具性求解实数的取值范围;(2)先写出具体函数()x F ,通过观察()x F 的解析式的形式,能够想到解析式里可能存在完全平方式,所以试着构造完全平方式并放缩,所以只需证明放缩后的式子大于等于41即可,从而对新函数求导判单调性求出最值证得成立.23.【答案】【解析】解:证明:2()10f x x x x =⇔+-=,∴2112221010λλλλ⎧+-=⎪⎨+-=⎪⎩,∴21122211λλλλ⎧-=⎪⎨-=⎪⎩.∵12111111112122222222111111n n n n n n n n n na a a a a a a a a a λλλλλλλλλλλλλλλλ++--+----====⋅------+, (3分) 11120a a λλ-≠-,120λλ≠,∴数列12n na a λλ⎧⎫-⎨⎬-⎩⎭为等比数列. (4分)(Ⅱ)证明:设12m =,则()f m m =.由112a =及111n n a a +=+得223a =,335a =,∴130a a m <<<.∵()f x 在(0,)+∞上递减,∴13()()()f a f a f m >>,∴24a a m >>.∴1342a a m a a <<<<,(8分)下面用数学归纳法证明:当n N *∈时,2121222n n n n a a m a a -++<<<<.①当1n =时,命题成立. (9分)②假设当n k =时命题成立,即2121222k k k k a a m a a -++<<<<,那么 由()f x 在(0,)+∞上递减得2121222()()()()()k k k k f a f a f m f a f a -++>>>> ∴2222321k k k k a a m a a +++>>>>由2321k k m a a ++>>得2321()()()k k f m f a f a ++<<,∴2422k k m a a ++<<, ∴当1n k =+时命题也成立, (12分)由①②知,对一切n N *∈命题成立,即存在实数m ,使得对n N *∀∈,2121222n n n n a a m a a -++<<<<.24.【答案】【解析】(1)解:不等式f (x )+f (x+1)≤2,即|x ﹣1|+|x ﹣2|≤2. |x ﹣1|+|x ﹣2|表示数轴上的点x 到1、2对应点的距离之和, 而2.5 和0.5对应点到1、2对应点的距离之和正好等于2, ∴不等式的解集为[0.5,2.5].(2)证明:∵a <0,f (ax )﹣af (x )=|ax ﹣2|﹣a|x ﹣2|=|ax ﹣2|+|2﹣ax| ≥|ax ﹣2+2a ﹣ax|=|2a ﹣2|=f (2a ﹣2), ∴f (ax )﹣af (x )≥f (2a )成立.。
叠彩区外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.已知某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N1(90,86)和ξ2:N2(93,79),则以下结论正确的是()A.第一次测试的平均分比第二次测试的平均分要高,也比第二次成绩稳定B.第一次测试的平均分比第二次测试的平均分要高,但不如第二次成绩稳定C.第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定D.第二次测试的平均分比第一次测试的平均分要高,但不如第一次成绩稳定2.(+)2n(n∈N*)展开式中只有第6项系数最大,则其常数项为()A.120B.210C.252D.453.设D、E、F分别是△ABC的三边BC、CA、AB上的点,且=2,=2,=2,则与()A.互相垂直B.同向平行C.反向平行D.既不平行也不垂直4.已知在△ABC中,a=,b=,B=60°,那么角C等于()A.135°B.90°C.45°D.75°5.设有直线m、n和平面α、β,下列四个命题中,正确的是()A.若m∥α,n∥α,则m∥n B.若m⊂α,n⊂α,m∥β,n∥β,则α∥βC.若α⊥β,m⊂α,则m⊥βD.若α⊥β,m⊥β,m⊄α,则m∥α6.函数y=sin2x+cos2x的图象,可由函数y=sin2x﹣cos2x的图象()A.向左平移个单位得到B.向右平移个单位得到C.向左平移个单位得到D.向左右平移个单位得到7.已知x,y满足时,z=x﹣y的最大值为()A.4B.﹣4C.0D.28.如图,圆O与x轴的正半轴的交点为A,点C、B在圆O上,且点C位于第一象限,点B的坐标为(,﹣),∠AOC=α,若|BC|=1,则cos2﹣sin cos﹣的值为()A .B .C .﹣D .﹣9. 定义:数列{a n }前n 项的乘积T n =a 1•a 2•…•a n ,数列a n =29﹣n ,则下面的等式中正确的是( )A .T 1=T 19B .T 3=T 17C .T 5=T 12D .T 8=T 1110.椭圆的左右顶点分别为,点是上异于的任意一点,且直线斜率的22:143x y C +=12,A A P C 12,A A 1PA 取值范围是,那么直线斜率的取值范围是( )[]1,22PA A . B . C . D .31,42⎡⎤--⎢⎥⎣⎦33,48⎡⎤--⎢⎥⎣⎦1,12⎡⎤⎢⎥⎣⎦3,14⎡⎤⎢⎥⎣⎦【命题意图】本题考查椭圆的标准方程和简单几何性质、直线的斜率等基础知识,意在考查函数与方程思想和基本运算能力.11.方程表示的曲线是( )1x -=A .一个圆 B . 两个半圆C .两个圆D .半圆12.已知函数f (x )=(a >0且a ≠1),若f (1)=1,f (b )=-3,则f (5-b )={a x -1,x ≤1log a 1x +1,x >1)()A .-B .-1412C .-D .-3454二、填空题13.若函数的定义域为,则函数的定义域是.()f x []1,2-(32)f x -14.设全集U=R ,集合M={x|2a ﹣1<x <4a ,a ∈R},N={x|1<x <2},若N ⊆M ,则实数a 的取值范围是 .15.圆柱形玻璃杯高8cm ,杯口周长为12cm ,内壁距杯口2cm 的点A 处有一点蜜糖.A 点正对面的外壁(不是A 点的外壁)距杯底2cm 的点B 处有一小虫.若小虫沿杯壁爬向蜜糖饱食一顿,最少要爬多少 cm .(不计杯壁厚度与小虫的尺寸)16.以点(1,3)和(5,﹣1)为端点的线段的中垂线的方程是 .17.已知函数,则的值是_______,的最小正周期是______.22tan ()1tan x f x x =-()3f π()f x 【命题意图】本题考查三角恒等变换,三角函数的性质等基础知识,意在考查运算求解能力.18.在(1+x )(x 2+)6的展开式中,x 3的系数是 .三、解答题19.已知椭圆的左右焦点分别为,椭圆过点,直线()2222:10x y C a b a b +=>>12,F F C P ⎛ ⎝1PF 交轴于,且为坐标原点.y Q 22,PF QO O =(1)求椭圆的方程;C (2)设是椭圆上的顶点,过点分别作出直线交椭圆于两点,设这两条直线的斜率M C M ,MA MB ,A B 分别为,且,证明:直线过定点.12,k k 122k k +=AB 20.如图,平面ABB 1A 1为圆柱OO 1的轴截面,点C 为底面圆周上异于A ,B 的任意一点.(Ⅰ)求证:BC ⊥平面A 1AC ;(Ⅱ)若D 为AC 的中点,求证:A 1D ∥平面O 1BC .21.设圆C 满足三个条件①过原点;②圆心在y=x 上;③截y 轴所得的弦长为4,求圆C 的方程.22.(本小题满分12分)已知函数,设,131)(23+-=ax x x h x a x h x f ln 2)(')(-=,其中,.222ln )(a x x g +=0>x R a ∈(1)若函数在区间上单调递增,求实数的取值范围; )(x f ),2(+∞(2)记,求证:.)()()(x g x f x F +=21)(≥x F 23.(本小题满分13分)设,数列满足:,.1()1f x x =+{}n a 112a =1(),n n a f a n N *+=∈(Ⅰ)若为方程的两个不相等的实根,证明:数列为等比数列;12,λλ()f x x =12n na a λλ⎧⎫-⎨⎬-⎩⎭(Ⅱ)证明:存在实数,使得对,.m n N *∀∈2121222n n n n a a m a a -++<<<< )24.已知函数f (x )=|x ﹣2|.(1)解不等式f (x )+f (x+1)≤2(2)若a <0,求证:f (ax )﹣af (x )≥f (2a ) 叠彩区外国语学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】C【解析】解:∵某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N1(90,86)和ξ2:N2(93,79),∴μ1=90,▱1=86,μ2=93,▱2=79,∴第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定,故选:C.【点评】本题考查正态分布曲线的特点,考查学生分析解决问题的能力,比较基础.2.【答案】B【解析】【专题】二项式定理.【分析】由已知得到展开式的通项,得到第6项系数,根据二项展开式的系数性质得到n,可求常数项.【解答】解:由已知(+)2n(n∈N*)展开式中只有第6项系数为最大,所以展开式有11项,所以2n=10,即n=5,又展开式的通项为=,令5﹣=0解得k=6,所以展开式的常数项为=210;故选:B【点评】本题考查了二项展开式的系数以及求特征项;解得本题的关键是求出n,利用通项求特征项.3.【答案】D【解析】解:如图所示,△ABC中,=2,=2,=2,根据定比分点的向量式,得==+,=+,=+,以上三式相加,得++=﹣,所以,与反向共线.【点评】本题考查了平面向量的共线定理与定比分点的应用问题,是基础题目. 4. 【答案】D【解析】解:由正弦定理知=,∴sinA==×=,∵a <b ,∴A <B ,∴A=45°,∴C=180°﹣A ﹣B=75°,故选:D . 5. 【答案】D【解析】解:A 不对,由面面平行的判定定理知,m 与n 可能相交,也可能是异面直线;B 不对,由面面平行的判定定理知少相交条件;C 不对,由面面垂直的性质定理知,m 必须垂直交线;故选:D .6. 【答案】C【解析】解:y=sin2x+cos2x=sin (2x+),y=sin2x ﹣cos2x=sin (2x ﹣)=sin[2(x ﹣)+)],∴由函数y=sin2x ﹣cos2x 的图象向左平移个单位得到y=sin (2x+),故选:C .【点评】本题主要考查三角函数的图象关系,利用辅助角公式将函数化为同名函数是解决本题的关键. 7.【答案】A【解析】解:由约束条件作出可行域如图,联立,得A(6,2),化目标函数z=x﹣y为y=x﹣z,由图可知,当直线y=x﹣z过点A时,直线在y轴上的截距最小,z有最大值为4.故选:A.【点评】本题考查简单的线性规划,考查了数形结合的解题思想方法,是中档题.8.【答案】A【解析】解:∵|BC|=1,点B的坐标为(,﹣),故|OB|=1,∴△BOC为等边三角形,∴∠BOC=,又∠AOC=α,∴∠AOB=﹣α,∴cos(﹣α)=,﹣sin(﹣α)=﹣,∴sin(﹣α)=.∴cosα=cos[﹣(﹣α)]=cos cos(﹣α)+sin sin(﹣α)=+=,∴sinα=sin[﹣(﹣α)]=sin cos(﹣α)﹣cos sin(﹣α)=﹣=.∴cos2﹣sin cos﹣=(2cos2﹣1)﹣sinα=cosα﹣sinα=﹣=,故选:A.【点评】本题主要考查任意角的三角函数的定义,三角恒等变换,属于中档题.9. 【答案】C 【解析】解:∵a n =29﹣n ,∴T n =a 1•a 2•…•a n =28+7+…+9﹣n =∴T 1=28,T 19=2﹣19,故A 不正确T 3=221,T 17=20,故B 不正确T 5=230,T 12=230,故C 正确T 8=236,T 11=233,故D 不正确故选C 10.【答案】B11.【答案】A 【解析】试题分析:由方程,两边平方得,即,所1x -=221x -=22(1)(1)1x y -++=以方程表示的轨迹为一个圆,故选A.考点:曲线的方程.12.【答案】【解析】解析:选C.由题意得a -1=1,∴a =2.若b ≤1,则2b -1=-3,即2b =-2,无解.∴b >1,即有log 2=-3,∴=,∴b =7.1b +11b +118∴f (5-b )=f (-2)=2-2-1=-,故选C.34二、填空题13.【答案】1,22⎡⎤⎢⎥⎣⎦【解析】试题分析:依题意得.11322,,22x x ⎡⎤-≤-≤∈⎢⎥⎣⎦考点:抽象函数定义域.14.【答案】 [,1] .【解析】解:∵全集U=R ,集合M={x|2a ﹣1<x <4a ,a ∈R},N={x|1<x <2},N ⊆M ,∴2a ﹣1≤1 且4a ≥2,解得 2≥a ≥,故实数a 的取值范围是[,1],故答案为[,1]. 15.【答案】 10 cm【解析】解:作出圆柱的侧面展开图如图所示,设A 关于茶杯口的对称点为A ′,则A ′A=4cm ,BC=6cm ,∴A ′C=8cm ,∴A ′B==10cm .故答案为:10.【点评】本题考查了曲面的最短距离问题,通常转化为平面图形来解决. 16.【答案】 x ﹣y ﹣2=0 .【解析】解:直线AB 的斜率 k AB =﹣1,所以线段AB 的中垂线得斜率k=1,又线段AB 的中点为(3,1),所以线段AB 的中垂线得方程为y ﹣1=x ﹣3即x ﹣y ﹣2=0,故答案为x ﹣y ﹣2=0.【点评】本题考查利用点斜式求直线的方程的方法,此外,本题还可以利用线段的中垂线的性质(中垂线上的点到线段的2个端点距离相等)来求中垂线的方程. 17.【答案】,.π【解析】∵,∴,又∵,∴的定义域为22tan ()tan 21tan x f x x x ==-2(tan 33f ππ==221tan 0x k x ππ⎧≠+⎪⎨⎪-≠⎩()f x ,,将的图象如下图画出,从而(,)(,)(,)244442k k k k k k ππππππππππππ-+-+-++++ k Z ∈()f x 可知其最小正周期为,故填:.ππ18.【答案】 20 .【解析】解:(1+x )(x 2+)6的展开式中,x 3的系数是由(x 2+)6的展开式中x 3与1的积加上x 2与x 的积组成;又(x 2+)6的展开式中,通项公式为 T r+1=•x 12﹣3r ,令12﹣3r=3,解得r=3,满足题意;令12﹣3r=2,解得r=,不合题意,舍去;所以展开式中x 3的系数是=20.故答案为:20. 三、解答题19.【答案】(1);(2)证明见解析.2212x y +=【解析】试题解析:(1),∴,∴,22PF QO =212PF F F ⊥1c =,2222221121,1a b c b a b +==+=+∴,221,2b a ==即;2212x y +=(2)设方程为代入椭圆方程AB y kx b =+,,22212102k x kbx b ⎛⎫+++-= ⎪⎝⎭22221,1122A B A B kb b x x x x kk --+==++A ,∴,11,A B MA MB A B y y k k x x --==()112A B A B A B A B MA MB A B A By x x y x x y y k k x x x x +-+--+=+==A ∴代入得:所以, 直线必过.11k b =+y kx b =+1y kx k =+-()1,1--考点:直线与圆锥曲线位置关系.【方法点晴】求曲线方程主要方法是方程的思想,将向量的条件转化为垂直.直线和圆锥曲线的位置关系一方面要体现方程思想,另一方面要结合已知条件,从图形角度求解.联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后由根与系数的关系求解是一个常用的方法. 涉及弦长的问题中,应熟练地利用根与系数关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.20.【答案】【解析】证明:(Ⅰ)因为AB为圆O的直径,点C为圆O上的任意一点∴BC⊥AC …又圆柱OO1中,AA1⊥底面圆O,∴AA1⊥BC,即BC⊥AA1…而AA1∩AC=A∴BC⊥平面A1AC …(Ⅱ)取BC中点E,连结DE、O1E,∵D为AC的中点∴△ABC中,DE∥AB,且DE=AB …又圆柱OO1中,A1O1∥AB,且∴DE∥A1O1,DE=A1O1∴A1DEO1为平行四边形…∴A1D∥EO1…而A1D⊄平面O1BC,EO1⊂平面O1BC∴A1D∥平面O1BC …【点评】本题主要考查直线与直线、直线与平面、平面与平面的位置关系;考查学生的空间想象能力及推理论证能力.21.【答案】【解析】解:根据题意画出图形,如图所示:当圆心C 1在第一象限时,过C 1作C 1D 垂直于x 轴,C 1B 垂直于y 轴,连接AC 1,由C 1在直线y=x 上,得到C 1B=C 1D ,则四边形OBC 1D 为正方形,∵与y 轴截取的弦OA=4,∴OB=C 1D=OD=C 1B=2,即圆心C 1(2,2),在直角三角形ABC 1中,根据勾股定理得:AC 1=2,则圆C 1方程为:(x ﹣2)2+(y ﹣2)2=8;当圆心C 2在第三象限时,过C 2作C 2D 垂直于x 轴,C 2B 垂直于y 轴,连接AC 2,由C 2在直线y=x 上,得到C 2B=C 2D ,则四边形OB ′C 2D ′为正方形,∵与y 轴截取的弦OA ′=4,∴OB ′=C 2D ′,=OD ′=C 2B ′=2,即圆心C 2(﹣2,﹣2),在直角三角形A ′B ′C 2中,根据勾股定理得:A ′C 2=2,则圆C 1方程为:(x+2)2+(y+2)2=8,∴圆C 的方程为:(x ﹣2)2+(y ﹣2)2=8或(x+2)2+(y+2)2=8.【点评】本题考查了角平分线定理,垂径定理,正方形的性质及直角三角形的性质,做题时注意分两种情况,利用数形结合的思想,分别求出圆心坐标和半径,写出所有满足题意的圆的标准方程,是中档题. 22.【答案】(1).(2)证明见解析.]34,( 【解析】试题解析:解:(1)函数,,1111]131)(23+-=ax x x h ax x x h 2)('2-=所以函数,∵函数在区间上单调递增,x a ax x x a x h x f ln 22ln 2)(')(2--=-=)(x f ),2(+∞∴在区间上恒成立,所以在上恒成0222ln 2)(')('2≥--=-=x a ax x x a x h x f ),2(+∞12+≤x x a ),2(+∞∈x 立.令,则,当时,,1)(2+=x x x M 2222)1(2)1()1(2)('++=+-+=x x x x x x x x M ),2(+∞∈x 0)('>x M ∴,∴实数的取值范围为.34)2(1)(2=>+=M x x x M ]34,(-∞(2),]2ln )ln ([22ln ln 22)(222222xx a x x a a x x a ax x x F +++-=++--=令,则111]2ln )ln ()(222x x a x x a a P +++-=.4)ln (4)ln (2ln (2ln )2ln ()2ln ()(2222222x x x x x x a x x x x x x a a P +≥+-+-=+++-+-=令,则,显然在区间上单调递减,在区间上单调递增,x x x Q ln )(-=x x x x Q 111)('-=-=)(x Q )1,0(),1[+∞则,则,故.1)1()(min ==Q x Q 41)(≥a P 21412)(=⨯≥x F 考点:利用导数研究函数的单调性;利用导数求闭区间上函数的最值.【方法点晴】本题主要考查导数在解决函数问题中的应用.考查利用导数证明不等式成立.(1)利用导数的工具性求解实数的取值范围;(2)先写出具体函数,通过观察的解析式的形式,能够想到解析式里可能存()x F ()x F 在完全平方式,所以试着构造完全平方式并放缩,所以只需证明放缩后的式子大于等于即可,从而对新函数求41导判单调性求出最值证得成立.23.【答案】【解析】解:证明:,∴,∴.2()10f x x x x =⇔+-=2112221010λλλλ⎧+-=⎪⎨+-=⎪⎩21122211λλλλ⎧-=⎪⎨-=⎪⎩∵, (3分)12111111112122222222111111n n n n n n n n n na a a a a a a a a a λλλλλλλλλλλλλλλλ++--+----====⋅------+,,11120a a λλ-≠-120λλ≠∴数列为等比数列. (4分)12n na a λλ⎧⎫-⎨⎬-⎩⎭(Ⅱ)证明:设,则.m =()f m m =由及得,,∴.112a =111n n a a +=+223a =335a =130a a m <<<∵在上递减,∴,∴.∴,(8分)()f x (0,)+∞13()()()f a f a f m >>24a a m >>1342a a m a a <<<<下面用数学归纳法证明:当时,.n N *∈2121222n n n n a a m a a -++<<<<①当时,命题成立. (9分)1n =②假设当时命题成立,即,那么n k =2121222k k k k a a m a a -++<<<<由在上递减得()f x (0,)+∞2121222()()()()()k k k k f a f a f m f a f a -++>>>>∴2222321k k k k a a m a a +++>>>>由得,∴,2321k k m a a ++>>2321()()()k k f m f a f a ++<<2422k k m a a ++<<∴当时命题也成立, (12分)1n k =+由①②知,对一切命题成立,即存在实数,使得对,.n N *∈m n N *∀∈2121222n n n n a a m a a -++<<<<24.【答案】【解析】(1)解:不等式f (x )+f (x+1)≤2,即|x ﹣1|+|x ﹣2|≤2.|x ﹣1|+|x ﹣2|表示数轴上的点x 到1、2对应点的距离之和,而2.5 和0.5对应点到1、2对应点的距离之和正好等于2,∴不等式的解集为[0.5,2.5].(2)证明:∵a <0,f (ax )﹣af (x )=|ax ﹣2|﹣a|x ﹣2|=|ax ﹣2|+|2﹣ax|≥|ax ﹣2+2a ﹣ax|=|2a ﹣2|=f (2a ﹣2),∴f (ax )﹣af (x )≥f (2a )成立.。
榆林市第二中学2018--2019学年第一学期第二次月考高二年级数学试题(文科)命题人:时间:120分钟总分:150分一、选择题(本大题共12小题,共60.0分)1.设,则“”是“”的A. 充分非必要条件B. 必要非充分条件C. 充要条件D. 既非充分也非必要条件2.下列有关命题的说法错误的是A. 若“”为假命题,则p,q均为假命题B. “”是“”的充分不必要条件C. “”的必要不充分条件是“”D. 若命题p:,,则命题:,3.命题“,”的否定是A. ,B. ,C. ,D. ,4.椭圆中,以点为中点的弦所在直线斜率为A. B. C. D.5.已知A,B是椭圆E:的左、右顶点,M是E上不同于A,B的任意一点,若直线AM,BM的斜率之积为,则E的离心率为A. B. C. D.6.抛物线的准线方程是A. B. C. D.7.点到抛物线准线的距离为1,则a的值为A. 或B. 或C. 或D. 4或128.以抛物线C的顶点为圆心的圆交C于A、B两点,交C的准线于D、E两点已知,,则C的焦点到准线的距离为( )A. 2B. 4C. 6D. 89.椭圆与双曲线有相同的焦点,且两曲线的离心率互为倒数,则双曲线渐近线的倾斜角的正弦值为A. B. C. D.10.已知函数在处有极值10,则等于A. 1B. 2C.D.11.已知函数的定义域为,导函数在上的图象如图所示,则函数在上的极大值点的个数为A. 1B. 2C. 3D. 412.已知,则A. 2015B.C. 2016D.二、填空题(本大题共4小题,共20.0分)13.方程表示焦点在y轴上的椭圆,则m的取值范围是______ .14.点P是椭圆上一点,,分别是椭圆的左、右焦点,若,则的大小______ .15.已知函数,为的导函数,则的值为______ .16.若函数,则______.三、解答题(本大题共6小题,共70分)17.求曲线过原点的切线方程.18.已知点,,动点P到点,的距离和等于4.Ⅰ试判断点P的轨迹C的形状,并写出其方程;Ⅱ若曲线C与直线m:相交于A、B两点,求弦AB的长.19.已知抛物线C:,焦点为F,准线为l,抛物线C上一点A的横坐标为3,且点A到准线l的距离为5.求抛物线C的方程;求以点为中点的弦所在直线方程.20.已知的图象经过点,且在处的切线方程是求的解析式;(2)求的单调递增区间。
叠彩区外国语学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.如果点P(sinθcosθ,2cosθ)位于第二象限,那么角θ所在象限是()A.第一象限B.第二象限C.第三象限D.第四象限2.定义在R上的奇函数f(x),满足,且在(0,+∞)上单调递减,则xf(x)>0的解集为()A.B.C.D.3.已知棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积不可能是()A.1 B.C.D.4.下列命题中正确的是()A.若命题p为真命题,命题q为假命题,则命题“p∧q”为真命题B.命题“若xy=0,则x=0”的否命题为:“若xy=0,则x≠0”C.“”是“”的充分不必要条件D.命题“∀x∈R,2x>0”的否定是“”5.命题“设a、b、c∈R,若ac2>bc2则a>b”以及它的逆命题、否命题、逆否命题中,真命题的个数为()A.0 B.1 C.2 D.36.已知,,那么夹角的余弦值()A.B.C.﹣2 D.﹣7.已知函数f(x)=a x(a>0且a≠1)在(0,2)内的值域是(1,a2),则函数y=f(x)的图象大致是()A.B.C.D.8.已知α是三角形的一个内角,且,则这个三角形是()A .钝角三角形B .锐角三角形C .不等腰的直角三角形D .等腰直角三角形9. 函数的最小正周期不大于2,则正整数k 的最小值应该是( )A .10B .11C .12D .1310.某单位安排甲、乙、丙三人在某月1日至12日值班,每人4天. 甲说:我在1日和3日都有值班; 乙说:我在8日和9日都有值班;丙说:我们三人各自值班的日期之和相等.据此可判断丙必定值班的日期是( ) A .2日和5日 B .5日和6日 C .6日和11日 D .2日和11日11.已知直线l ∥平面α,P ∈α,那么过点P 且平行于l 的直线( )A .只有一条,不在平面α内B .只有一条,在平面α内C .有两条,不一定都在平面α内D .有无数条,不一定都在平面α内12.过直线3x ﹣2y+3=0与x+y ﹣4=0的交点,与直线2x+y ﹣1=0平行的直线方程为( )A .2x+y ﹣5=0B .2x ﹣y+1=0C .x+2y ﹣7=0D .x ﹣2y+5=0二、填空题13.一个总体分为A ,B ,C 三层,用分层抽样的方法从中抽取一个容量为15的样本,若B 层中每个个体被抽到的概率都为,则总体的个数为 .14.已知△ABC 的面积为S ,三内角A ,B ,C 的对边分别为,,.若2224S a b c +=+, 则sin cos()4C B π-+取最大值时C = .15.当a >0,a ≠1时,函数f (x )=log a (x ﹣1)+1的图象恒过定点A ,若点A 在直线mx ﹣y+n=0上,则4m +2n 的最小值是 .16.在正方体ABCD ﹣A 1B 1C 1D 1中,异面直线A 1B 与AC 所成的角是 °.17.向量=(1,2,﹣2),=(﹣3,x ,y ),且∥,则x ﹣y= .18.函数y=lgx 的定义域为 .三、解答题19.已知函数,.(Ⅰ)求函数的最大值;(Ⅱ)若,求函数的单调递增区间.20.已知m≥0,函数f(x)=2|x﹣1|﹣|2x+m|的最大值为3.(Ⅰ)求实数m的值;(Ⅱ)若实数a,b,c满足a﹣2b+c=m,求a2+b2+c2的最小值.21.已知椭圆x2+4y2=4,直线l:y=x+m(1)若l与椭圆有一个公共点,求m的值;(2)若l与椭圆相交于P、Q两点,且|PQ|等于椭圆的短轴长,求m的值.22.已知函数f (x )=log a (x 2+2),若f (5)=3; (1)求a 的值; (2)求的值;(3)解不等式f (x )<f (x+2).23.(本小题12分)设{}n a 是等差数列,{}n b 是各项都为正数的等比数列,且111a b ==,3521a b +=,5313a b +=.111](1)求{}n a ,{}n b 的通项公式; (2)求数列{}nna b 的前项和n S .24.已知二阶矩阵M 有特征值λ1=4及属于特征值4的一个特征向量=并有特征值λ2=﹣1及属于特征值﹣1的一个特征向量=,=(Ⅰ)求矩阵M ;(Ⅱ)求M5.叠彩区外国语学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:∵P(sinθcosθ,2cosθ)位于第二象限,∴sinθcosθ<0,cosθ>0,∴sinθ<0,∴θ是第四象限角.故选:D.【点评】本题考查了象限角的三角函数符号,属于基础题.2.【答案】B【解析】解:∵函数f(x)是奇函数,在(0,+∞)上单调递减,且f ()=0,∴f (﹣)=0,且在区间(﹣∞,0)上单调递减,∵当x<0,当﹣<x<0时,f(x)<0,此时xf(x)>0当x>0,当0<x<时,f(x)>0,此时xf(x)>0综上xf(x)>0的解集为故选B3.【答案】C【解析】解:水平放置的正方体,当正视图为正方形时,其面积最小为1;当正视图为对角面时,其面积最大为.因此满足棱长为1的正方体的俯视图是一个面积为1的正方形,则该正方体的正视图的面积的范围为.因此可知:A,B,D皆有可能,而<1,故C不可能.故选C.【点评】正确求出满足条件的该正方体的正视图的面积的范围为是解题的关键.4.【答案】D【解析】解:若命题p为真命题,命题q为假命题,则命题“p∧q”为假命题,故A不正确;命题“若xy=0,则x=0”的否命题为:“若xy≠0,则x≠0”,故B不正确;“”⇒“+2kπ,或,k∈Z”,“”⇒“”,故“”是“”的必要不充分条件,故C不正确;命题“∀x∈R,2x>0”的否定是“”,故D正确.故选D.【点评】本题考查命题的真假判断,是基础题,解题时要认真审题,仔细解答.5.【答案】C【解析】解:命题“设a、b、c∈R,若ac2>bc2,则c2>0,则a>b”为真命题;故其逆否命题也为真命题;其逆命题为“设a、b、c∈R,若a>b,则ac2>bc2”在c=0时不成立,故为假命题故其否命题也为假命题故原命题及其逆命题、否命题、逆否命题中,真命题的个数为2个故选C【点评】本题考查的知识点是四种命题的真假判断,不等式的基本性质,其中熟练掌握互为逆否的两个命题真假性相同,是解答的关键.6.【答案】A【解析】解:∵,,∴=,||=,=﹣1×1+3×(﹣1)=﹣4,∴cos<>===﹣,故选:A.【点评】本题考查了向量的夹角公式,属于基础题.7.【答案】B【解析】解:函数f(x)=a x(a>0且a≠1)在(0,2)内的值域是(1,a2),则由于指数函数是单调函数,则有a>1,由底数大于1指数函数的图象上升,且在x轴上面,可知B正确.故选B.8.【答案】A【解析】解:∵(sinα+cosα)2=,∴2sinαcosα=﹣,∵α是三角形的一个内角,则sinα>0,∴cosα<0,∴α为钝角,∴这个三角形为钝角三角形.故选A.【点评】把和的形式转化为乘积的形式,易于判断三角函数的符号,进而判断出角的范围,最后得出三角形的形状.9.【答案】D【解析】解:∵函数y=cos(x+)的最小正周期不大于2,∴T=≤2,即|k|≥4π,则正整数k的最小值为13.故选D【点评】此题考查了三角函数的周期性及其求法,熟练掌握周期公式是解本题的关键.10.【答案】C【解析】解:由题意,1至12的和为78,因为三人各自值班的日期之和相等,所以三人各自值班的日期之和为26,根据甲说:我在1日和3日都有值班;乙说:我在8日和9日都有值班,可得甲在1、3、10、12日值班,乙在8、9、2、7或8、9、4、5,据此可判断丙必定值班的日期是6日和11日,故选:C.【点评】本题考查分析法,考查学生分析解决问题的能力,比较基础.11.【答案】B【解析】解:假设过点P且平行于l的直线有两条m与n∴m∥l且n∥l由平行公理4得m∥n这与两条直线m与n相交与点P相矛盾又因为点P在平面内所以点P且平行于l的直线有一条且在平面内所以假设错误.故选B.【点评】反证法一般用于问题的已知比较简单或命题不易证明的命题的证明,此类题目属于难度较高的题型.12.【答案】A【解析】解:联立,得x=1,y=3,∴交点为(1,3),过直线3x﹣2y+3=0与x+y﹣4=0的交点,与直线2x+y﹣1=0平行的直线方程为:2x+y+c=0,把点(1,3)代入,得:2+3+c=0,解得c=﹣5,∴直线方程是:2x+y﹣5=0,故选:A.二、填空题13.【答案】300.【解析】解:根据分层抽样的特征,每个个体被抽到的概率都相等,所以总体中的个体的个数为15÷=300.故答案为:300.【点评】本题考查了样本容量与总体的关系以及抽样方法的应用问题,是基础题目.14.【答案】4【解析】考点:1、余弦定理及三角形面积公式;2、两角和的正弦、余弦公式及特殊角的三角函数.1【方法点睛】本题主要考查余弦定理及三角形面积公式、两角和的正弦、余弦公式及特殊角的三角函数,属于难题.在解与三角形有关的问题时,正弦定理、余弦定理是两个主要依据.一般来说 ,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦函数交叉出现时,往往运用正弦定理将边化为正弦函数再结合和、差、倍角的正余弦公式进行解答,解三角形时三角形面积公式往往根据不同情况选用下列不同形式111sin ,,(),2224abc ab C ah a b c r R++.15.【答案】 2.【解析】解:整理函数解析式得f (x )﹣1=log a (x ﹣1),故可知函数f (x )的图象恒过(2,1)即A (2,1),故2m+n=1.∴4m+2n ≥2=2=2.当且仅当4m =2n,即2m=n ,即n=,m=时取等号.∴4m+2n的最小值为2.故答案为:216.【答案】 60° °.【解析】解:连结BC 1、A 1C 1,∵在正方体ABCD ﹣A 1B 1C 1D 1中,A 1A 平行且等于C 1C , ∴四边形AA 1C 1C 为平行四边形,可得A 1C 1∥AC ,因此∠BA 1C 1(或其补角)是异面直线A 1B 与AC 所成的角, 设正方体的棱长为a ,则△A1B 1C 中A 1B=BC 1=C 1A 1=a ,∴△A 1B 1C 是等边三角形,可得∠BA 1C 1=60°,即异面直线A 1B 与AC 所成的角等于60°.故答案为:60°.【点评】本题在正方体中求异面直线所成角和直线与平面所成角的大小,着重考查了正方体的性质、空间角的定义及其求法等知识,属于中档题.17.【答案】﹣12.【解析】解:∵向量=(1,2,﹣2),=(﹣3,x,y),且∥,∴==,解得x=﹣6,y=6,x﹣y=﹣6﹣6=﹣12.故答案为:﹣12.【点评】本题考查了空间向量的坐标表示与共线定理的应用问题,是基础题目.18.【答案】{x|x>0}.【解析】解:对数函数y=lgx的定义域为:{x|x>0}.故答案为:{x|x>0}.【点评】本题考查基本函数的定义域的求法.三、解答题19.【答案】【解析】【知识点】三角函数的图像与性质恒等变换综合【试题解析】(Ⅰ)由已知当,即,时,(Ⅱ)当时,递增即,令,且注意到函数的递增区间为20.【答案】【解析】解:(Ⅰ)f(x)=2|x﹣1|﹣|2x+m|=|2x﹣2|﹣|2x+m|≤|(2x﹣2)﹣(2x+m)|=|m+2|∵m≥0,∴f(x)≤|m+2|=m+2,当x=1时取等号,∴f(x)max=m+2,又f(x)的最大值为3,∴m+2=3,即m=1.(Ⅱ)根据柯西不等式得:(a2+b2+c2)[12+(﹣2)2+12]≥(a﹣2b+c)2,∵a﹣2b+c=m=1,∴,当,即时取等号,∴a2+b2+c2的最小值为.【点评】本题考查绝对值不等式、柯西不等式,考查学生分析解决问题的能力,属于中档题.21.【答案】【解析】解:(1)把直线y=x+m代入椭圆方程得:x2+4(x+m)2=4,即:5x2+8mx+4m2﹣4=0,△=(8m)2﹣4×5×(4m2﹣4)=﹣16m2+80=0解得:m=.(2)设该直线与椭圆相交于两点A(x1,y1),B(x2,y2),则x1,x2是方程5x2+8mx+4m2﹣4=0的两根,由韦达定理可得:x1+x2=﹣,x1•x2=,∴|AB|====2;∴m=±.【点评】本题考查直线与圆锥曲线的位置关系与弦长问题,难点在于弦长公式的灵活应用,属于中档题.22.【答案】【解析】解:(1)∵f(5)=3,∴,即log a27=3解锝:a=3…(2)由(1)得函数,则=…(3)不等式f(x)<f(x+2),即为化简不等式得…∵函数y=log 3x 在(0,+∞)上为增函数,且的定义域为R .∴x 2+2<x 2+4x+6…即4x >﹣4, 解得x >﹣1,所以不等式的解集为:(﹣1,+∞)…23.【答案】(1)2,2==q d ;(2)12326-+-=n n n S . 【解析】(2)1212--=n n n n b a ,………………6分 122121223225231---+-++++=n n n n n S ,①n n n n n S 212232252321211321-+-++++=- .②……………8分 ①-②得n n n n n S 2122222222212`1221--+++++=-- 23112222211222222nn nn S --=++++-,…………10分所以12326-+-=n n n S .………………12分 考点:等差数列的概念与通项公式,错位相减法求和,等比数列的概念与通项公式.【方法点晴】本题主要考查等差数列和等比数列的通项公式以及数列的求和,通过设}{n a 的公差为d ,}{n b 的公比为,根据等差数列和等比数列的通项公式,联立方程求得d 和,进而可得}{n a ,}{n b 的通项公式;(2)数列}a {nnb 的通项公式由等差数列和等比数列对应项相乘构成,需用错位相减法求得前项和n S . 24.【答案】【解析】解:(Ⅰ)设M=则=4=,∴①又=(﹣1)=,∴②由①②可得a=1,b=2,c=3,d=2,∴M=;(Ⅱ)易知=0•+(﹣1),∴M5=(﹣1)6=.【点评】本题考查矩阵的运算法则,考查学生的计算能力,比较基础.。
叠彩区高中2018-2019学年上学期高三数学10月月考试题 班级__________ 座号_____ 姓名__________ 分数__________一、选择题(本大题共12小题,每小题5分,共60分.每小题给出的四个选项中,只有一项是符合题目要求的.)1. 已知集合M={1,4,7},M ∪N=M ,则集合N 不可能是( )A .∅B .{1,4}C .MD .{2,7}2. 已知M N 、为抛物线24y x =上两个不同的点,F 为抛物线的焦点.若线段MN 的中点的纵坐标为2,||||10MF NF +=,则直线MN 的方程为( )A .240x y +-=B .240x y --=C .20x y +-=D .20x y --=3. 已知函数,函数,其中b ∈R ,若函数y=f (x )﹣g (x )恰有4个零点,则b 的取值范围是( )A .B .C .D .4. 在数列{}n a 中,115a =,*1332()n n a a n N +=-∈,则该数列中相邻两项的乘积为负数的项是 ( )A .21a 和22aB .22a 和23aC .23a 和24aD .24a 和25a 5. 已知函数1)1(')(2++=x x f x f ,则=⎰dx x f 1)(( )A .67-B .67C .65D .65- 【命题意图】本题考查了导数、积分的知识,重点突出对函数的求导及函数积分运算能力,有一定技巧性,难度中等.6. 函数21()ln 2f x x x ax =++存在与直线03=-y x 平行的切线,则实数a 的取值范围是( ) A. ),0(+∞ B. )2,(-∞ C. ),2(+∞ D. ]1,(-∞【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力. 7. 已知向量=(1,2),=(x ,﹣4),若∥,则x=( ) A . 4 B . ﹣4 C . 2 D . ﹣28. 为了得到函数的图象,只需把函数y=sin3x 的图象( )A .向右平移个单位长度B .向左平移个单位长度C.向右平移个单位长度 D.向左平移个单位长度9. 已知函数211,[0,)22()13,[,1]2x x f x x x ⎧+∈⎪⎪=⎨⎪∈⎪⎩,若存在常数使得方程()f x t =有两个不等的实根12,x x(12x x <),那么12()x f x ∙的取值范围为( )A .3[,1)4 B.1[8 C .31[,)162 D .3[,3)810.将函数y=cosx 的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向右平移个单位,所得函数图象的一条对称轴方程是( ) A .x=π B.C.D.11.某空间几何体的三视图如图所示,则该几何体的体积为( )A. B .8 C. D .1612.底面为矩形的四棱锥P -ABCD 的顶点都在球O 的表面上,且O 在底面ABCD 内,PO ⊥平面ABCD ,当四棱锥P -ABCD 的体积的最大值为18时,球O 的表面积为( ) A .36π B .48π C .60πD .72π二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在横线上)13.下列命题:①函数y=sinx 和y=tanx 在第一象限都是增函数;②若函数f (x )在[a ,b]上满足f (a )f (b )<0,函数f (x )在(a ,b )上至少有一个零点; ③数列{a n }为等差数列,设数列{a n }的前n 项和为S n ,S 10>0,S 11<0,S n 最大值为S 5; ④在△ABC 中,A >B 的充要条件是cos2A <cos2B ;⑤在线性回归分析中,线性相关系数越大,说明两个量线性相关性就越强. 其中正确命题的序号是 (把所有正确命题的序号都写上).14.如图,P 是直线x +y -5=0上的动点,过P 作圆C :x 2+y 2-2x +4y -4=0的两切线、切点分别为A 、B ,当四边形P ACB 的周长最小时,△ABC 的面积为________.15.已知,a b 为常数,若()()224+3a 1024f x x x f x b x x =++=++,,则5a b -=_________.16.已知角α终边上一点为P (﹣1,2),则值等于 .三、解答题(本大共6小题,共70分。
叠彩区实验中学2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. “方程+=1表示椭圆”是“﹣3<m <5”的( )条件.A .必要不充分B .充要C .充分不必要D .不充分不必要2. 已知数列{n a }满足nn n a 2728-+=(*∈N n ).若数列{n a }的最大项和最小项分别为M 和m ,则=+m M ( ) A .211 B .227 C . 32259 D .324353. 在平行四边形ABCD 中,AC 为一条对角线,=(2,4),=(1,3),则等于( )A .(2,4)B .(3,5)C .(﹣3,﹣5)D .(﹣2,﹣4)4. 两个圆锥有公共底面,且两圆锥的顶点和底面圆周都在同一个球面上.若圆锥底面面积是球面面积的,则这两个圆锥的体积之比为( ) A .2:1 B .5:2 C .1:4 D .3:15. 长方体ABCD ﹣A 1B 1C 1D 1中,AA 1=2AB=2AD ,G 为CC 1中点,则直线A 1C 1与BG 所成角的大小是( )A .30°B .45°C .60°D .120°6. 如图,四面体D ﹣ABC 的体积为,且满足∠ACB=60°,BC=1,AD+=2,则四面体D ﹣ABC 中最长棱的长度为( )A .B .2C .D .37. 以的焦点为顶点,顶点为焦点的椭圆方程为( )A .B .C .D .8. 等差数列{a n }中,a 2=3,a 3+a 4=9 则a 1a 6的值为( ) A .14 B .18 C .21 D .279. 数列1,3,6,10,…的一个通项公式是( ) A .21n a n n =-+ B .(1)2n n n a -= C .(1)2n n n a += D .21n a n =+ 10.将函数)63sin(2)(π+=x x f 的图象向左平移4π个单位,再向上平移3个单位,得到函数)(x g 的图象, 则)(x g 的解析式为( )A .3)43sin(2)(--=πx x g B .3)43sin(2)(++=πx x g C .3)123sin(2)(+-=πx x g D .3)123sin(2)(--=πx x g【命题意图】本题考查三角函数的图象及其平移变换理论,突出了对函数图象变换思想的理解,属于中等难度. 11.设命题p :,则p 为( )A .B .C .D .12.过抛物线y=x 2上的点的切线的倾斜角( )A .30°B .45°C .60°D .135°二、填空题13.当a >0,a ≠1时,函数f (x )=log a (x ﹣1)+1的图象恒过定点A ,若点A 在直线mx ﹣y+n=0上,则4m +2n 的最小值是 .14.已知直线5x+12y+m=0与圆x 2﹣2x+y 2=0相切,则m= .15.如图,在长方体ABCD ﹣A 1B 1C 1D 1中,AB=5,BC=4,AA 1=3,沿该长方体对角面ABC 1D 1将其截成两部分,并将它们再拼成一个新的四棱柱,那么这个四棱柱表面积的最大值为 .16.空间四边形ABCD 中,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 的中点.①若AC=BD ,则四边形EFGH 是 ;②若AC ⊥BD ,则四边形EFGH 是 .17.若直线x ﹣y=1与直线(m+3)x+my ﹣8=0平行,则m= . 18.已知函数5()sin (0)2f x x a x π=-≤≤的三个零点成等比数列,则2log a = . 三、解答题19.【淮安市淮海中学2018届高三上第一次调研】已知函数()133x x af x b+-+=+.(1)当1a b ==时,求满足()3xf x =的x 的取值;(2)若函数()f x 是定义在R 上的奇函数①存在t R ∈,不等式()()2222f t t f t k -<-有解,求k 的取值范围;②若函数()g x 满足()()()12333xx f x g x -⎡⎤⋅+=-⎣⎦,若对任意x R ∈,不等式()()211g x m g x ≥⋅-恒成立,求实数m 的最大值.20.某人在如图所示的直角边长为4米的三角形地块的每个格点(指纵、横直线的交叉点以及三角形顶点)处都种了一株相同品种的作物.根据历年的种植经验,一株该种作物的年收获Y (单位:kg )与它的“相近”作物株数X 之间的关系如下表所示:X 1 2 3 4 Y 51 48 45 42这里,两株作物“相近”是指它们之间的直线距离不超过1米.(I )从三角形地块的内部和边界上分别随机选取一株作物,求它们恰 好“相近”的概率;(II)在所种作物中随机选取一株,求它的年收获量的分布列与数学期望.21.2008年奥运会在中国举行,某商场预计2008年从1日起前x个月,顾客对某种奥运商品的需求总量p(x)件与月份x的近似关系是且x≤12),该商品的进价q(x)元与月份x的近似关系是q(x)=150+2x,(x∈N*且x≤12).(1)写出今年第x月的需求量f(x)件与月份x的函数关系式;(2)该商品每件的售价为185元,若不计其他费用且每月都能满足市场需求,则此商场今年销售该商品的月利润预计最大是多少元?22.已知函数f(x)=ax2+bx+c,满足f(1)=﹣,且3a>2c>2b.(1)求证:a>0时,的取值范围;(2)证明函数f(x)在区间(0,2)内至少有一个零点;(3)设x1,x2是函数f(x)的两个零点,求|x1﹣x2|的取值范围.23.如图在长方形ABCD中,是CD的中点,M是线段AB上的点,.(1)若M是AB的中点,求证:与共线;(2)在线段AB上是否存在点M,使得与垂直?若不存在请说明理由,若存在请求出M点的位置;(3)若动点P在长方形ABCD上运动,试求的最大值及取得最大值时P点的位置.24.在中,、、是角、、所对的边,是该三角形的面积,且(1)求的大小;(2)若,,求的值。
西藏林芝一中2018-2019学年高二数学上学期第二次月考暨期中试题文第I 卷 选择题(满分60分)一、选择题(共12小题,每题5分,满分60分) 1.函数241xy -=的定义域是( )A.}22|{<<-x xB.}22|{≤≤-x xC.}2,2|{-<>x x x 或D.}2,2|{-≤≥x x x 或 2.在△ABC 中,若,45,2,2︒===B b a 则角A 等于( )A.60°B.30°C.60°或120°D.30°或150° 3.在等差数列}{n a 中,若,1,16497==+a a a 则的值是( )A.15B.30C.31D.64 4.设,,,,b a R c b a >∈则下列不等式一定正确的是( )A.22bc ac > B.ba 11< C.c b c a ->- D.b a > 5.在△ABC 中,三个内角C B A ,,的对边分别是,c b a ,,若,41cos ,3,2-===C b a 则等于( )A.1B.2C.3D.4 6.已知正数b a ,满足1=+b a ,则( )A.有最小值41B.有最小值21C.有最大值41D.有最大值217.已知等比数列}{n a 的公比为2,前4项的和是1,则前8项的和为 ( )A.15B.17C.19D.218.在△ABC 中,三个内角C B A ,,的对边分别是,c b a ,,已知,350,150,30==︒=b c B 那么这个三角形是( )A.等腰三角形或直角三角形B.等腰三角形C.直角三角形D.等边三角形9.等差数列{}n a 中,,11=a 公差,0≠d 如果521,,a a a 成等比数列,那么等于( )A.3B.2C.-2D.2或-210.设,x y 满足约束条件12x y y x y +≤⎧⎪≤⎨⎪≥-⎩,则3z x y =+的最大值为( )A.2B.3C.5D.711.设数列{}n a 的通项公式1092--=n n a n ,若使得取得最小值,n =( )A.8B.8、9C.9D.9、1012.某村办服装厂生产某种风衣,月销售量(件)与售价(元/件)的关系为,2300x p -=生产件的成本x r 30500+=(元),为使月获利不少于8600元,则月产量满足( ) A.6055≤≤x B.6560≤≤x C.7065≤≤x D.7570≤≤x第II 卷 非选择题(满分90分)二、填空题(共4空,每空5分,满分20分) 13. n a ,,31,52,21,32,1 ---=. 14.若不等式02<--b ax x 的解集为},32|{<<x x 则=+b a ________.15.在△ABC 中,16,60=︒=∠AC A ,△ABC 的面积3220=S ,则=BC ________. 16. 某种细菌的培养过程中,每20分钟分裂一次(一个分裂为两个),经过3个小时,这种细菌可以由1个繁殖成________个. 三、简答题(满分70分)17.(10分)已知全集,R U =集合}.0128|{},61|{>--=<-=x x x B x x A (1)求B A ; (2)求B A C U )(.18.(12分)在△ABC 中,角C B A ,,所对的边分别为c b a ,,且.sin 2sin ,3,5A C b a ===(1)求的值; (2)求A sin 的值.19.(12分)已知}{n a 是等差数列,.14,552==a a(1)求}{n a 的通项公式;(2)设}{n a 的前项和,155=n S 求的值.20.(12分)已知函数6)(2++=ax x x f(1)当5=a 时,解不等式0)(<x f ;(2)若不等式0)(>x f 的解集为,求实数的取值范围.21.(12分)在△ABC 中,已知b AC ==,a BC ,且b a ,是方程02322=+-x x 的两根,1)(cos 2=+B A .(1)求角的度数; (2)求AB 的长; (3)求△ABC 的面积.22.(12分)设}{n a 是等差数列, 是各项都为正数的等比数列,且 , , ,(1)求 的通项公式;(2)求数列 的前n 项和 .林芝市第一中学2018—2019学年第一学期第一学段考试高二汉文班数学参考答案一、选择题:1-5:ABACD 6-10:CBABD 11-12:DC 二、填空题:13.nn2)1(⋅- 14. 15. 49 16. 512 三、解答题:17.解:由|x -1|<6,得-6<x -1<6,解得-5<x <7.由128--x x >0,得(x -8)(2x -1)>0,解得x >8,或x <21. (1)A ∩B ={x |-5<x <7∩{x |x >8,或x <21={x |-5<x <21. (2)∵U A ={x |x ≤-5,或x ≥7,∴(U A )∪B ={x |x ≤-5,或x ≥7∪{x |x >8,或x <21= {x |x ≥7,或x <21. 18.解:(1)在△ABC 中,根据正弦定理,AaC c sin sin =, {}n b 111a b ==3521a b +=5313a b +={}n a {}n b n n a b ⎧⎫⎨⎬⎩⎭于是c =sin C ·522sin ==a Aa. (2)在△ABC 中,根据余弦定理,得522cos 222=-+=bca b c A ,于是sin A =55cos 12=-A , 19.解:(1)设等差数列{a n }的公差为d ,则a 1+d =5,a 1+4d =14,解得a 1=2,d =3.所以数列{a n }的通项为a n =a 1+(n -1)d =3n -1.(2)数列{a n }的前n 项和S n =n n a a n n 21232)(21+=+. 由15521232=+n n ,化简得3n 2+n -310=0, 即(3n +31)(n -10)=0,所以n =10.20.解:(1)当a =5时,f (x )=x 2+5x +6.f (x )<0x 2+5x +6<0(x +2)(x +3)<0-3<x <-2.(2)若不等式f (x )>0的解集为R ,则a 2-4×6<06262<<-a ,即实数a 的取值范围是)62,62(-21.解:(1)因为2cos(A +B )=1,所以A +B =60°,故C =120°.(2)由题意,得a +b =2,ab =2, 又AB 2=c 2=a 2+b 2-2ab cos C =(a +b )2-2ab -2ab cos C=12-4-4×(21-)=10.所以AB =10. (3)S △ABC =21ab sin C =21·2·23=23.22.解:。
叠彩区第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1.在△ABC中,内角A,B,C所对的边分别为a,b,c,若sinB=2sinC,a2﹣c2=3bc,则A等于()A.30°B.60°C.120°D.150°2.如图是某几何体的三视图,正视图是等腰梯形,俯视图中的曲线是两个同心的半圆组成的半圆环,侧视图是直角梯形.则该几何体表面积等于()A.12+ B.12+23πC.12+24πD.12+π3.执行如图所示的程序框图,输出的结果是()A.15 B.21 C.24 D.354.设集合A={x|﹣2<x<4},B={﹣2,1,2,4},则A∩B=()A.{1,2} B.{﹣1,4} C.{﹣1,2} D.{2,4}5.某班设计了一个八边形的班徽(如图),它由腰长为1,顶角为 的四个等腰三角形,及其底边构成的正方形所组成,该八边形的面积为()A .2sin 2cos 2αα-+B .sin 3αα+C. 3sin 1αα+ D .2sin cos 1αα-+6. 已知函数f (x )=a x ﹣1+log a x 在区间[1,2]上的最大值和最小值之和为a ,则实数a 为( )A .B .C .2D .47. 已知α,[,]βππ∈-,则“||||βα>”是“βαβαcos cos ||||->-”的( ) A. 充分必要条件 B. 充分不必要条件 C. 必要不充分条件 D. 既不充分也不必要条件【命题意图】本题考查三角函数的性质与充分必要条件等基础知识,意在考查构造函数的思想与运算求解能力. 8. 已知向量=(1,2),=(x ,﹣4),若∥,则x=( ) A . 4 B . ﹣4 C . 2 D . ﹣29. 已知某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N 1(90,86)和ξ2:N 2(93,79),则以下结论正确的是( )A .第一次测试的平均分比第二次测试的平均分要高,也比第二次成绩稳定B .第一次测试的平均分比第二次测试的平均分要高,但不如第二次成绩稳定C .第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定D .第二次测试的平均分比第一次测试的平均分要高,但不如第一次成绩稳定10.奇函数()f x 满足()10f =,且()f x 在()0+∞,上是单调递减,则()()210x f x f x -<--的解集为( ) A .()11-, B .()()11-∞-+∞,,C .()1-∞-,D .()1+∞,11.设f (x )=asin (πx+α)+bcos (πx+β)+4,其中a ,b ,α,β均为非零的常数,f (1988)=3,则f (2008)的值为( )A .1B .3C .5D .不确定12.执行如图所示程序框图,若使输出的结果不大于50,则输入的整数k 的最大值为( )A .4B .5C .6D .7二、填空题13.已知直线l 的参数方程是(t 为参数),曲线C 的极坐标方程是ρ=8cos θ+6sin θ,则曲线C 上到直线l 的距离为4的点个数有 个.14.若x ,y 满足线性约束条件,则z=2x+4y 的最大值为 .15.一个正四棱台,其上、下底面均为正方形,边长分别为2cm 和4cm ,侧棱长为2cm ,则其表面积为__________2cm .16.直线20x y t +-=与抛物线216y x =交于A ,B 两点,且与x 轴负半轴相交,若O 为坐标原点,则OAB ∆面积的最大值为 .【命题意图】本题考查抛物线的几何性质,直线与抛物线的位置关系等基础知识,意在考查分析问题以及解决问题的能力.17.【2017-2018学年度第一学期如皋市高三年级第一次联考】已知函数()ln 4f x x x =+-的零点在区间()1k k +,内,则正整数k 的值为________. 18.x 为实数,[x]表示不超过x 的最大整数,则函数f (x )=x ﹣[x]的最小正周期是 .三、解答题19.如图在长方形ABCD中,是CD的中点,M是线段AB上的点,.(1)若M是AB的中点,求证:与共线;(2)在线段AB上是否存在点M,使得与垂直?若不存在请说明理由,若存在请求出M点的位置;(3)若动点P在长方形ABCD上运动,试求的最大值及取得最大值时P点的位置.20.已知a>b>0,求证:.21.(本小题满分10分)选修4-1:几何证明选讲.如图,AB是⊙O的直径,AC是⊙O的切线,BC交⊙O于E,过E的切线与AC交于D. (1)求证:CD=DA;(2)若CE=1,AB=2,求DE的长.22.已知函数3()1xf x x =+,[]2,5x ∈. (1)判断()f x 的单调性并且证明; (2)求()f x 在区间[]2,5上的最大值和最小值.23.(本小题满分10分) 已知函数()2f x x a x =++-.(1)若4a =-求不等式()6f x ≥的解集; (2)若()3f x x ≤-的解集包含[]0,1,求实数的取值范围.24.已知抛物线C :x 2=2y 的焦点为F .(Ⅰ)设抛物线上任一点P (m ,n ).求证:以P 为切点与抛物线相切的方程是mx=y+n ;(Ⅱ)若过动点M (x 0,0)(x 0≠0)的直线l 与抛物线C 相切,试判断直线MF 与直线l 的位置关系,并予以证明.叠彩区第二高级中学2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】C【解析】解:由sinB=2sinC,由正弦定理可知:b=2c,代入a2﹣c2=3bc,可得a2=7c2,所以cosA===﹣,∵0<A<180°,∴A=120°.故选:C.【点评】本题考查正弦定理以及余弦定理在解三角形中的应用,考查了转化思想,属于基本知识的考查.2.【答案】C【解析】解:根据几何体的三视图,得;该几何体是一半圆台中间被挖掉一半圆柱,其表面积为S=[×(2+8)×4﹣2×4]+[×π•(42﹣12)+×(4π×﹣π×)+×8π]=12+24π.故选:C.【点评】本题考查了空间几何体三视图的应用问题,也考查了空间想象能力与计算能力的应用问题,是基础题目.3.【答案】C【解析】【知识点】算法和程序框图【试题解析】否,否,否,是,则输出S=24.故答案为:C4.【答案】A【解析】解:集合A={x|﹣2<x<4},B={﹣2,1,2,4},则A∩B={1,2}.故选:A.【点评】本题考查交集的运算法则的应用,是基础题.5.【答案】A【解析】试题分析:利用余弦定理求出正方形面积()ααcos 22cos 2-11221-=+=S ;利用三角形知识得出四个等腰三角形面积ααsin 2sin 112142=⨯⨯⨯⨯=S ;故八边形面积2cos 2sin 221+-=+=ααS S S .故本题正确答案为A.考点:余弦定理和三角形面积的求解.【方法点晴】本题是一道关于三角函数在几何中的应用的题目,掌握正余弦定理是解题的关键;首先根据三角形面积公式ααsin 21sin 1121=⨯⨯⨯=S 求出个三角形的面积αsin 24=S ;接下来利用余弦定理可求出正方形的边长的平方()αcos 2-1122+,进而得到正方形的面积()ααcos 22cos 2-11221-=+=S ,最后得到答案.6. 【答案】A【解析】解:分两类讨论,过程如下:①当a >1时,函数y=a x ﹣1 和y=log a x 在[1,2]上都是增函数, ∴f (x )=ax ﹣1+log a x在[1,2]上递增,∴f (x )max +f (x )min =f (2)+f (1)=a+log a 2+1=a ,∴log a 2=﹣1,得a=,舍去;②当0<a <1时,函数y=a x ﹣1 和y=log a x 在[1,2]上都是减函数, ∴f (x )=ax ﹣1+log a x在[1,2]上递减,∴f (x )max +f (x )min =f (2)+f (1)=a+log a 2+1=a ,∴log a 2=﹣1,得a=,符合题意; 故选A .7. 【答案】A.【解析】||||cos cos ||cos ||cos αβαβααββ->-⇔->-,设()||cos f x x x =-,[,]x ππ∈-, 显然()f x 是偶函数,且在[0,]π上单调递增,故()f x 在[,0]π-上单调递减,∴()()||||f f αβαβ>⇔>,故是充分必要条件,故选A. 8. 【答案】D【解析】: 解:∵∥, ∴﹣4﹣2x=0,解得x=﹣2. 故选:D . 9. 【答案】C【解析】解:∵某市两次数学测试的成绩ξ1和ξ2分别服从正态分布ξ1:N 1(90,86)和ξ2:N 2(93,79), ∴μ1=90,▱1=86,μ2=93,▱2=79,∴第二次测试的平均分比第一次测试的平均分要高,也比第一次成绩稳定, 故选:C .【点评】本题考查正态分布曲线的特点,考查学生分析解决问题的能力,比较基础.10.【答案】B 【解析】试题分析:由()()()()()212102102x x x f x f x f x f x --<⇒⇒-<--,即整式21x -的值与函数()f x 的值符号相反,当0x >时,210x ->;当0x <时,210x -<,结合图象即得()()11-∞-+∞,,.考点:1、函数的单调性;2、函数的奇偶性;3、不等式.11.【答案】B【解析】解:∵f (1988)=asin (1988π+α)+bcos (1998π+β)+4=asin α+bcos β+4=3,∴asin α+bcos β=﹣1,故f (2008)=asin (2008π+α)+bcos (2008π+β)+4=asin α+bcos β+4=﹣1+4=3,故选:B .【点评】本题主要考查利用诱导公式进行化简求值,属于中档题.12.【答案】A解析:模拟执行程序框图,可得 S=0,n=0满足条,0≤k ,S=3,n=1 满足条件1≤k ,S=7,n=2 满足条件2≤k ,S=13,n=3 满足条件3≤k ,S=23,n=4 满足条件4≤k ,S=41,n=5满足条件5≤k ,S=75,n=6 …若使输出的结果S 不大于50,则输入的整数k 不满足条件5≤k ,即k <5, 则输入的整数k 的最大值为4. 故选:二、填空题13.【答案】 2【解析】解:由,消去t得:2x﹣y+5=0,由ρ=8cosθ+6sinθ,得ρ2=8ρcosθ+6ρsinθ,即x2+y2=8x+6y,化为标准式得(x﹣4)2+(y﹣3)2=25,即C是以(4,3)为圆心,5为半径的圆.又圆心到直线l的距离是,故曲线C上到直线l的距离为4的点有2个,故答案为:2.【点评】本题考查了参数方程化普通方程,考查了极坐标方程化直角坐标方程,考查了点到直线的距离公式的应用,是基础题.14.【答案】38.【解析】解:作出不等式组对应的平面区域如图:由z=2x+4y得y=﹣x+,平移直线y=﹣x+,由图象可知当直线y=﹣x+经过点A时,直线y=﹣x+的截距最大,此时z最大,由,解得,即A(3,8),此时z=2×3+4×8=6+32=32,故答案为:3815.【答案】20【解析】考点:棱台的表面积的求解.16.【答案】9【解析】17.【答案】2【解析】18.【答案】[1,)∪(9,25].【解析】解:∵集合,得(ax﹣5)(x2﹣a)<0,当a=0时,显然不成立,当a>0时,原不等式可化为,若时,只需满足,解得;若,只需满足,解得9<a≤25,当a<0时,不符合条件,综上,故答案为[1,)∪(9,25].【点评】本题重点考查分式不等式的解法,不等式的性质及其应用和分类讨论思想的灵活运用,属于中档题.三、解答题19.【答案】【解析】(1)证明:如图,以AB所在直线为x轴,AD所在直线为y轴建立平面直角坐标系,当M是AB的中点时,A(0,0),N(1,1),C(2,1),M(1,0),,由,可得与共线;(2)解:假设线段AB上是否存在点M,使得与垂直,设M(t,0)(0≤t≤2),则B(2,0),D(0,1),M(t,0),,由=﹣2(t﹣2)﹣1=0,解得t=,∴线段AB上存在点,使得与垂直;(3)解:由图看出,当P在线段BC上时,在上的投影最大,则有最大值为4.【点评】本题考查平面向量的数量积运算,考查了向量在向量方向上的投影,体现了数形结合的解题思想方法,是中档题.20.【答案】【解析】解:∵又==∵a>b>0,∴,所以上式大于1,故成立,同理可证21.【答案】【解析】解:(1)证明:如图,连接AE , ∵AB 是⊙O 的直径, AC ,DE 均为⊙O 的切线, ∴∠AEC =∠AEB =90°, ∠DAE =∠DEA =∠B , ∴DA =DE .∠C =90°-∠B =90°-∠DEA =∠DEC , ∴DC =DE , ∴CD =DA .(2)∵CA 是⊙O 的切线,AB 是直径, ∴∠CAB =90°,由勾股定理得CA 2=CB 2-AB 2, 又CA 2=CE ×CB ,CE =1,AB =2, ∴1·CB =CB 2-2,即CB 2-CB -2=0,解得CB =2, ∴CA 2=1×2=2,∴CA = 2. 由(1)知DE =12CA =22,所以DE 的长为22.22.【答案】(1)增函数,证明见解析;(2)最小值为,最大值为2.5. 【解析】试题分析:(1)在[]2,5上任取两个数12x x <,则有1212123()()()0(1)(1)x x f x f x x x --=<++,所以()f x 在[]2,5上是增函数;(2)由(1)知,最小值为(2)2f =,最大值为5(5)2f =.试题解析:在[]2,5上任取两个数12x x <,则有12121233()()11x x f x f x x x -=-++12123()(1)(1)x x x x -=++0<,所以()f x 在[]2,5上是增函数. 所以当2x =时,min ()(2)2f x f ==, 当5x =时,max 5()(5)2f x f ==. 考点:函数的单调性证明.【方法点晴】本题主要考查利用定义法求证函数的单调性并求出单调区间,考查化归与转化的数学思想方法.先在定义域内任取两个数12x x <,然后作差12()()f x f x -,利用十字相乘法、提公因式法等方法化简式子成几个因式的乘积,判断最后的结果是大于零韩式小于零,如果小于零,则函数为增函数,如果大于零,则函数为减函数.123.【答案】(1)(][),06,-∞+∞;(2)[]1,0-.【解析】试题分析:(1)当4a =-时,()6f x ≥,利用零点分段法将表达式分成三种情况,分别解不等式组,求得解集为(][),06,-∞+∞;(2)()3f x x ≤-等价于23x a x x ++-≤-,即11x a x --≤≤-在[]0,1上恒成立,即10a -≤≤.试题解析:(1)当4a =-时,()6f x ≥,即2426x x x ≤⎧⎨-+-≥⎩或24426x x x <<⎧⎨-+-≥⎩或4426x x x ≥⎧⎨-+-≥⎩,解得0x ≤或6x ≥,不等式的解集为(][),06,-∞+∞;考点:不等式选讲. 24.【答案】【解析】证明:(Ⅰ)由抛物线C :x 2=2y 得,y=x 2,则y ′=x ,∴在点P (m ,n )切线的斜率k=m ,∴切线方程是y ﹣n=m (x ﹣m ),即y ﹣n=mx ﹣m 2,又点P (m ,n )是抛物线上一点,∴m 2=2n ,∴切线方程是mx ﹣2n=y ﹣n ,即mx=y+n … (Ⅱ)直线MF 与直线l 位置关系是垂直.由(Ⅰ)得,设切点为P(m,n),则切线l方程为mx=y+n,∴切线l的斜率k=m,点M(,0),又点F(0,),此时,k MF====…∴k•k MF=m×()=﹣1,∴直线MF⊥直线l …【点评】本题考查直线与抛物线的位置关系,导数的几何意义,直线垂直的条件等,属于中档题.。
叠彩区二中2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.已知点A(0,1),B(﹣2,3)C(﹣1,2),D(1,5),则向量在方向上的投影为()A.B.﹣C. D.﹣2.如图是七位评委为甲,乙两名参赛歌手打出的分数的茎叶图(其中m,n为数字0~9中的一个),则甲歌手得分的众数和乙歌手得分的中位数分别为a和b,则一定有()A.a>b B.a<bC.a=b D.a,b的大小与m,n的值有关3.如图,正方体ABCD﹣A1B1C1D1中,点E,F分别是AA1,AD的中点,则CD1与EF所成角为()A.0°B.45°C.60°D.90°4.已知双曲线﹣=1(a>0,b>0)的左右焦点分别为F1,F2,若双曲线右支上存在一点P,使得F2关于直线PF1的对称点恰在y轴上,则该双曲线的离心率e的取值范围为()A.1<e<B.e>C.e>D.1<e<5.已知某运动物体的位移随时间变化的函数关系为,设物体第n秒内的位移为a n,则数列{a n}是()A.公差为a的等差数列B.公差为﹣a的等差数列C.公比为a的等比数列D.公比为的等比数列6.偶函数f(x)的定义域为R,若f(x+2)为奇函数,且f(1)=1,则f(89)+f(90)为()A .﹣2B .﹣1C .0D .17. 已知圆C :x 2+y 2﹣2x=1,直线l :y=k (x ﹣1)+1,则l 与C 的位置关系是( ) A .一定相离 B .一定相切C .相交且一定不过圆心D .相交且可能过圆心8. 已知集合A={x|a ﹣1≤x ≤a+2},B={x|3<x <5},则A ∩B=B 成立的实数a 的取值范围是( ) A .{a|3≤a ≤4} B .{a|3<a ≤4} C .{a|3<a <4} D .∅ 9. 已知函数f (x )=x 4cosx+mx 2+x (m ∈R ),若导函数f ′(x )在区间[﹣2,2]上有最大值10,则导函数f ′(x )在区间[﹣2,2]上的最小值为( ) A .﹣12 B .﹣10 C .﹣8 D .﹣610.已知函数f (x )满足f (x )=f (π﹣x ),且当x ∈(﹣,)时,f (x )=e x+sinx ,则( )A .B .C .D .11.双曲线4x 2+ty 2﹣4t=0的虚轴长等于( )A .B .﹣2tC .D .412.设全集U={1,2,3,4,5,6},设集合P={1,2,3,4},Q={3,4,5},则P ∩(∁U Q )=( ) A .{1,2,3,4,6} B .{1,2,3,4,5} C .{1,2,5}D .{1,2}二、填空题13.设集合A={x|x+m ≥0},B={x|﹣2<x <4},全集U=R ,且(∁U A )∩B=∅,求实数m 的取值范围为 . 14.已知1,3x x ==是函数()()()sin 0f x x ωϕω=+>两个相邻的两个极值点,且()f x 在32x =处的导数302f ⎛⎫'<⎪⎝⎭,则13f ⎛⎫= ⎪⎝⎭___________.15.在ABC ∆中,有等式:①sin sin a A b B =;②sin sin a B b A =;③cos cos a B b A =;④ sin sin sin a b cA B C+=+.其中恒成立的等式序号为_________. 16.函数f (x )=a x +4的图象恒过定点P ,则P 点坐标是 .17.设全集U=R ,集合M={x|2a ﹣1<x <4a ,a ∈R},N={x|1<x <2},若N ⊆M ,则实数a 的取值范围是 . 18.以点(1,3)和(5,﹣1)为端点的线段的中垂线的方程是 .三、解答题19.设函数f (x )=lnx ﹣ax 2﹣bx .(1)当a=2,b=1时,求函数f (x )的单调区间;(2)令F (x )=f (x )+ax 2+bx+(2≤x ≤3)其图象上任意一点P (x 0,y 0)处切线的斜率k ≤恒成立,求实数a 的取值范围;(3)当a=0,b=﹣1时,方程f (x )=mx 在区间[1,e 2]内有唯一实数解,求实数m 的取值范围.20.记函数f (x )=log 2(2x ﹣3)的定义域为集合M ,函数g (x )=的定义域为集合N .求:(Ⅰ)集合M ,N ;(Ⅱ)集合M ∩N ,∁R (M ∪N ).21.如图,在四边形ABCD 中,,,3,2,45AD DC AD BC AD CD AB DAB ⊥===∠=, 四 边形绕着直线AD 旋转一周.(1)求所成的封闭几何体的表面积; (2)求所成的封闭几何体的体积.22.解不等式|3x﹣1|<x+2.23.如图1,圆O的半径为2,AB,CE均为该圆的直径,弦CD垂直平分半径OA,垂足为F,沿直径AB将半圆ACB所在平面折起,使两个半圆所在的平面互相垂直(如图2)(Ⅰ)求四棱锥C﹣FDEO的体积(Ⅱ)如图2,在劣弧BC上是否存在一点P(异于B,C两点),使得PE∥平面CDO?若存在,请加以证明;若不存在,请说明理由.24.设函数f(x)=lg(a x﹣b x),且f(1)=lg2,f(2)=lg12(1)求a,b的值.(2)当x∈[1,2]时,求f(x)的最大值.(3)m为何值时,函数g(x)=a x的图象与h(x)=b x﹣m的图象恒有两个交点.叠彩区二中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】D【解析】解:∵;∴在方向上的投影为==.故选D.【点评】考查由点的坐标求向量的坐标,一个向量在另一个向量方向上的投影的定义,向量夹角的余弦的计算公式,数量积的坐标运算.2.【答案】C【解析】解:根据茎叶图中的数据,得;甲得分的众数为a=85,乙得分的中位数是b=85;所以a=b.故选:C.3.【答案】C【解析】解:连结A1D、BD、A1B,∵正方体ABCD﹣A1B1C1D1中,点E,F分别是AA1,AD的中点,∴EF∥A1D,∵A1B∥D1C,∴∠DA1B是CD1与EF所成角,∵A1D=A1B=BD,∴∠DA1B=60°.∴CD1与EF所成角为60°.故选:C.【点评】本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.4.【答案】B【解析】解:设点F2(c,0),由于F2关于直线PF1的对称点恰在y轴上,不妨设M在正半轴上,由对称性可得,MF1=F1F2=2c,则MO==c,∠MFF2=60°,∠PF1F2=30°,1设直线PF1:y=(x+c),代入双曲线方程,可得,(3b2﹣a2)x2﹣2ca2x﹣a2c2﹣3a2b2=0,则方程有两个异号实数根,则有3b2﹣a2>0,即有3b2=3c2﹣3a2>a2,即c>a,则有e=>.故选:B.5.【答案】A【解析】解:∵,∴a n=S(n)﹣s(n﹣1)==∴a n﹣a n﹣1==a∴数列{a n}是以a为公差的等差数列故选A【点评】本题主要考察了数列的递推公式求解数列的通项公式,等差数列的定义的应用,属于数列知识的简单应用6.【答案】D【解析】解:∵f(x+2)为奇函数,∴f(﹣x+2)=﹣f(x+2),∵f(x)是偶函数,∴f(﹣x+2)=﹣f(x+2)=f(x﹣2),即﹣f(x+4)=f(x),则f(x+4)=﹣f(x),f(x+8)=﹣f(x+4)=f(x),即函数f(x)是周期为8的周期函数,则f(89)=f(88+1)=f(1)=1,f(90)=f(88+2)=f(2),由﹣f(x+4)=f(x),得当x=﹣2时,﹣f(2)=f(﹣2)=f(2),则f(2)=0,故f(89)+f(90)=0+1=1,故选:D.【点评】本题主要考查函数值的计算,利用函数奇偶性的性质,得到函数的对称轴是解决本题的关键.7.【答案】C【解析】【分析】将圆C方程化为标准方程,找出圆心C坐标与半径r,利用点到直线的距离公式表示出圆心到直线的距离d,与r比较大小即可得到结果.【解答】解:圆C方程化为标准方程得:(x﹣1)2+y2=2,∴圆心C(1,0),半径r=,∵≥>1,∴圆心到直线l的距离d=<=r,且圆心(1,0)不在直线l上,∴直线l与圆相交且一定不过圆心.故选C8.【答案】A【解析】解:∵A={x|a﹣1≤x≤a+2}B={x|3<x<5}∵A∩B=B∴A⊇B∴解得:3≤a≤4故选A【点评】本题考查集合的包含关系判断及应用,通过对集合间的关系转化为元素的关系,属于基础题.9.【答案】C【解析】解:由已知得f′(x)=4x3cosx﹣x4sinx+2mx+1,令g(x)=4x3cosx﹣x4sinx+2mx是奇函数,由f′(x)的最大值为10知:g(x)的最大值为9,最小值为﹣9,从而f′(x)的最小值为﹣9+1=﹣8.故选C.【点评】本题考查了导数的计算、奇函数的最值的性质.属于常规题,难度不大.10.【答案】D【解析】解:由f(x)=f(π﹣x)知,∴f()=f(π﹣)=f(),∵当x∈(﹣,)时,f(x)=e x+sinx为增函数∵<<<,∴f()<f()<f(),∴f()<f()<f(),故选:D11.【答案】C【解析】解:双曲线4x2+ty2﹣4t=0可化为:∴∴双曲线4x2+ty2﹣4t=0的虚轴长等于故选C.12.【答案】D【解析】解:∵U={1,2,3,4,5,6},Q={3,4,5},∴∁U Q={1,2,6},又P={1,2,3,4},∴P∩(C U Q)={1,2}故选D.二、填空题13.【答案】m≥2.【解析】解:集合A={x|x+m≥0}={x|x≥﹣m},全集U=R,所以C U A={x|x<﹣m},又B={x|﹣2<x <4},且(∁U A )∩B=∅,所以有﹣m ≤﹣2,所以m ≥2. 故答案为m ≥2.14.【答案】12【解析】考点:三角函数图象与性质,函数导数与不等式.【思路点晴】本题主要考查两个知识点:三角函数图象与性质,函数导数与不等式.三角函数的极值点,也就是最大值、最小值的位置,所以两个极值点之间为半周期,由此求得周期和ω,再结合极值点的导数等于零,可求出ϕ.在求ϕ的过程中,由于题目没有给定它的取值范围,需要用302f ⎛⎫'< ⎪⎝⎭来验证.求出()f x 表达式后,就可以求出13f ⎛⎫ ⎪⎝⎭.1 15.【答案】②④ 【解析】试题分析:对于①中,由正弦定理可知sin sin a A b B =,推出A B =或2A B π+=,所以三角形为等腰三角形或直角三角形,所以不正确;对于②中,sin sin a B b A =,即sin sin sin sin A B B A =恒成立,所以是正确的;对于③中,cos cos a B b A =,可得sin()0B A -=,不满足一般三角形,所以不正确;对于④中,由正弦定理以及合分比定理可知sin sin sin a b cA B C+=+是正确,故选选②④.1 考点:正弦定理;三角恒等变换.16.【答案】 (0,5) .【解析】解:∵y=a x 的图象恒过定点(0,1),而f (x )=a x +4的图象是把y=a x 的图象向上平移4个单位得到的, ∴函数f (x )=a x +4的图象恒过定点P (0,5), 故答案为:(0,5).【点评】本题考查指数函数的性质,考查了函数图象的平移变换,是基础题.17.【答案】 [,1] .【解析】解:∵全集U=R ,集合M={x|2a ﹣1<x <4a ,a ∈R},N={x|1<x <2},N ⊆M ,∴2a ﹣1≤1 且4a ≥2,解得 2≥a ≥,故实数a 的取值范围是[,1],故答案为[,1].18.【答案】 x ﹣y ﹣2=0 .【解析】解:直线AB 的斜率 k AB =﹣1,所以线段AB 的中垂线得斜率k=1,又线段AB 的中点为(3,1),所以线段AB 的中垂线得方程为y ﹣1=x ﹣3即x ﹣y ﹣2=0, 故答案为x ﹣y ﹣2=0.【点评】本题考查利用点斜式求直线的方程的方法,此外,本题还可以利用线段的中垂线的性质(中垂线上的点到线段的2个端点距离相等)来求中垂线的方程.三、解答题19.【答案】【解析】解:(1)依题意,知f (x )的定义域为(0,+∞).… 当a=2,b=1时,f (x )=lnx ﹣x 2﹣x ,f ′(x )=﹣2x ﹣1=﹣.令f ′(x )=0,解得x=.…当0<x <时,f ′(x )>0,此时f (x )单调递增;当x >时,f ′(x )<0,此时f (x )单调递减.所以函数f (x )的单调增区间(0,),函数f (x )的单调减区间(,+∞).…(2)F (x )=lnx+,x ∈[2,3],所以k=F ′(x 0)=≤,在x 0∈[2,3]上恒成立,…所以a ≥(﹣x 02+x 0)max ,x 0∈[2,3]…当x 0=2时,﹣x 02+x 0取得最大值0.所以a ≥0.…(3)当a=0,b=﹣1时,f (x )=lnx+x ,因为方程f (x )=mx 在区间[1,e 2]内有唯一实数解,所以lnx+x=mx 有唯一实数解.∴m=1+,…设g (x )=1+,则g ′(x )=.…令g ′(x )>0,得0<x <e ; g ′(x )<0,得x >e ,∴g (x )在区间[1,e]上是增函数,在区间[e ,e 2]上是减函数,…1 0分∴g (1)=1,g (e 2)=1+=1+,g (e )=1+,…所以m=1+,或1≤m <1+.…20.【答案】【解析】解:(1)由2x ﹣3>0 得 x >,∴M={x|x >}.由(x ﹣3)(x ﹣1)>0 得 x <1 或x >3,∴N={x|x <1,或 x >3}. (2)M ∩N=(3,+∞),M ∪N={x|x <1,或 x >3}, ∴C R (M ∪N )=.【点评】本题主要考查求函数的定义域,两个集合的交集、并集、补集的定义和运算,属于基础题.21.【答案】(1)(8π+;(2)203π. 【解析】考点:旋转体的概念;旋转体的表面积、体积.22.【答案】【解析】解:∵|3x﹣1|<x+2,∴,解得﹣.∴原不等式的解集为{x|﹣<x<}.23.【答案】【解析】解:(Ⅰ)如图1,∵弦CD垂直平分半径OA,半径为2,∴CF=DF,OF=,∴在Rt△COF中有∠COF=60°,CF=DF=,∵CE为直径,∴DE⊥CD,∴OF∥DE,DE=2OF=2,∴,图2中,平面ACB⊥平面ADE,平面ACB∩平面ADE=AB,又CF⊥AB,CF⊂平面ACB,∴CF⊥平面ADE,则CF是四棱锥C﹣FDEO的高,∴.(Ⅱ)在劣弧BC上是存在一点P(劣弧BC的中点),使得PE∥平面CDO.证明:分别连接PE,CP,OP,∵点P为劣弧BC弧的中点,∴,∵∠COF=60°,∴∠COP=60°,则△COP为等边三角形,∴CP∥AB,且,又∵DE∥AB且DE=,∴CP∥DE且CP=DE,∴四边形CDEP为平行四边形,∴PE∥CD,又PE⊄面CDO,CD⊂面CDO,∴PE∥平面CDO.【点评】本题以空间几何体的翻折为背景,考查空间几何体的体积,考查空间点、线、面的位置关系、线面平行及线面垂直等基础知识,考查空间想象能力,求解运算能力和推理论证能力,考查数形结合,化归与数学转化等思想方法,是中档题.24.【答案】【解析】解:(1)∵f(x)=lg(a x﹣b x),且f(1)=lg2,f(2)=lg12,∴a﹣b=2,a2﹣b2=12,解得:a=4,b=2;(2)由(1)得:函数f(x)=lg(4x﹣2x),当x∈[1,2]时,4x﹣2x∈[2,12],故当x=2时,函数f(x)取最大值lg12,(3)若函数g(x)=a x的图象与h(x)=b x﹣m的图象恒有两个交点.则4x﹣2x=m有两个解,令t=2x,则t>0,则t2﹣t=m有两个正解;则,解得:m∈(﹣,0)【点评】本题考查的知识点是对数函数的图象和性质,熟练掌握对数函数的图象和性质,是解答的关键.。
叠彩区三中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 三个实数a 、b 、c 成等比数列,且a+b+c=6,则b 的取值范围是( )A .[﹣6,2]B .[﹣6,0)∪( 0,2]C .[﹣2,0)∪( 0,6]D .(0,2]2. 若命题p :∃x ∈R ,x ﹣2>0,命题q :∀x ∈R ,<x ,则下列说法正确的是( ) A .命题p ∨q 是假命题B .命题p ∧(¬q )是真命题C .命题p ∧q 是真命题D .命题p ∨(¬q )是假命题3. 某企业为了监控产品质量,从产品流转均匀的生产线上每间隔10分钟抽取一个样本进行检测,这种抽样方法是( )A .抽签法B .随机数表法C .系统抽样法D .分层抽样法4. 设{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( )A .1B .2C .4D .65. 已知集合{}{}421,2,3,,4,7,,3A k B a a a ==+,且*,,a N x A y B ∈∈∈使B 中元素31y x =+和A 中的元素x 对应,则,a k 的值分别为( ) A .2,3 B .3,4 C .3,5 D .2,56. 函数y=的图象大致为( )A .B .C .D .7. 有以下四个命题:①若=,则x=y . ②若lgx 有意义,则x >0.③若x=y ,则=.④若x >y ,则 x 2<y 2. 则是真命题的序号为( ) A .①②B .①③C .②③D .③④8. 两个圆锥有公共底面,且两圆锥的顶点和底面圆周都在同一个球面上.若圆锥底面面积是球面面积的,则这两个圆锥的体积之比为( )A .2:1B .5:2C .1:4D .3:19. 若函数2()48f x x kx =--在[5,8]上是单调函数,则k 的取值范围是( ) A .(][),4064,-∞+∞ B .[40,64] C .(],40-∞ D .[)64,+∞10.已知等差数列的公差且成等比数列,则( )A .B .C .D .11.已知A ,B 是以O 为圆心的单位圆上的动点,且||=,则•=( )A .﹣1B .1C .﹣D .12.已知数列{n a }满足nn n a 2728-+=(*∈N n ).若数列{n a }的最大项和最小项分别为M 和m ,则=+m M ( ) A .211 B .227 C . 32259 D .32435 二、填空题13.在直角梯形,,DC//AB,AD DC 1,AB 2,E,F ABCD AB AD ⊥===分别为,AB AC 的中点,点P 在以A 为圆心,AD 为半径的圆弧DE 上变动(如图所示).若AP ED AF λμ=+,其中,R λμ∈, 则2λμ-的取值范围是___________.14.如图,已知m ,n 是异面直线,点A ,B m ∈,且6AB =;点C ,D n ∈,且4CD =.若M ,N 分别是AC ,BD 的中点,MN =m 与n 所成角的余弦值是______________.【命题意图】本题考查用空间向量知识求异面直线所成的角,考查空间想象能力,推理论证能力,运算求解能力.15.函数()y f x =图象上不同两点()()1122,,,A x y B x y 处的切线的斜率分别是A B k k ,,规定(),A Bk k A B ABϕ-=(AB 为线段AB 的长度)叫做曲线()y f x =在点A 与点B 之间的“弯曲度”,给 出以下命题:①函数321y x x =-+图象上两点A 与B 的横坐标分别为1和2,则(),3A B ϕ>; ②存在这样的函数,图象上任意两点之间的“弯曲度”为常数; ③设点A,B 是抛物线21y x =+上不同的两点,则(),2A B ϕ≤;④设曲线xy e =(e 是自然对数的底数)上不同两点()()112212,,,,1A x y B x y x x -=且,若(),1t A B ϕ⋅<恒成立,则实数t 的取值范围是(),1-∞.其中真命题的序号为________.(将所有真命题的序号都填上)16.若命题“∃x ∈R ,x 2﹣2x+m ≤0”是假命题,则m 的取值范围是 .17.已知向量b a ,满足42=a ,2||=b ,4)3()(=-⋅+b a b a ,则a 与b 的夹角为 .【命题意图】本题考查向量的数量积、模及夹角知识,突出对向量的基础运算及化归能力的考查,属于容易题. 18.如图,是一回形图,其回形通道的宽和OB 1的长均为1,回形线与射线OA 交于A 1,A 2,A 3,…,若从点O 到点A 3的回形线为第1圈(长为7),从点A 3到点A 2的回形线为第2圈,从点A 2到点A 3的回形线为第3圈…依此类推,第8圈的长为 .三、解答题19.如图,四边形ABEF 是等腰梯形,,2,42,22AB EF AF BE EF AB ====,四边形ABCD 是矩形,AD ⊥平面ABEF ,其中,Q M 分别是,AC EF 的中点,P 是BM 的中点.(1)求证:PQ 平面BCE ; (2)AM ⊥平面BCM .20.某校高一年级学生全部参加了体育科目的达标测试,现从中随机抽取40名学生的测试成绩,整理数据并按分数段,,,,,进行分组,假设同一组中的每个数据可用该组区间的中点值代替,则得到体育成绩的折线图(如下).(Ⅰ)体育成绩大于或等于70分的学生常被称为“体育良好”.已知该校高一年级有1000名学生,试估计高一年级中“体育良好”的学生人数;(Ⅱ)为分析学生平时的体育活动情况,现从体育成绩在和的样本学生中随机抽取2人,求在抽取的2名学生中,至少有1人体育成绩在的概率;(Ⅲ)假设甲、乙、丙三人的体育成绩分别为,且分别在,,三组中,其中.当数据的方差最大时,写出的值.(结论不要求证明)(注:,其中为数据的平均数)21.(本小题满分12分)∆的内角,,ABCa b c,(sin,5sin5sin)A B C所对的边分别为,,=+,m B A C=--垂直.(5sin6sin,sin sin)n B C C A(1)求sin A的值;∆的面积S的最大值.(2)若a=ABC22.已知数列{a n}满足a1=3,a n+1=a n+p•3n(n∈N*,p为常数),a1,a2+6,a3成等差数列.(1)求p的值及数列{a n}的通项公式;(2)设数列{b n}满足b n=,证明b n≤.23.已知函数f(x)=4x﹣a•2x+1+a+1,a∈R.(1)当a=1时,解方程f(x)﹣1=0;(2)当0<x<1时,f(x)<0恒成立,求a的取值范围;(3)若函数f(x)有零点,求实数a的取值范围.24.已知梯形ABCD中,AB∥CD,∠B=,DC=2AB=2BC=2,以直线AD为旋转轴旋转一周的都如图所示的几何体(Ⅰ)求几何体的表面积(Ⅱ)判断在圆A上是否存在点M,使二面角M﹣BC﹣D的大小为45°,且∠CAM为锐角若存在,请求出CM的弦长,若不存在,请说明理由.叠彩区三中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】B【解析】解:设此等比数列的公比为q,∵a+b+c=6,∴=6,∴b=.当q>0时,=2,当且仅当q=1时取等号,此时b∈(0,2];当q<0时,b=﹣6,当且仅当q=﹣1时取等号,此时b∈[﹣6,0).∴b的取值范围是[﹣6,0)∪(0,2].故选:B.【点评】本题考查了等比数列的通项公式、基本不等式的性质、分类讨论思想方法,考查了推理能力与计算能力,属于中档题.2.【答案】B【解析】解:∃x∈R,x﹣2>0,即不等式x﹣2>0有解,∴命题p是真命题;x<0时,<x无解,∴命题q是假命题;∴p∨q为真命题,p∧q是假命题,¬q是真命题,p∨(¬q)是真命题,p∧(¬q)是真命题;故选:B.【点评】考查真命题,假命题的概念,以及p∨q,p∧q,¬q的真假和p,q真假的关系.3.【答案】C【解析】解:由题意知,这个抽样是在传送带上每隔10分钟抽取一产品,是一个具有相同间隔的抽样,并且总体的个数比较多,∴是系统抽样法,故选:C.【点评】本题考查了系统抽样.抽样方法有简单随机抽样、系统抽样、分层抽样,抽样选用哪一种抽样形式,要根据题目所给的总体情况来决定,若总体个数较少,可采用抽签法,若总体个数较多且个体各部分差异不大,可采用系统抽样,若总体的个体差异较大,可采用分层抽样.属于基础题.4. 【答案】B 【解析】试题分析:设{}n a 的前三项为123,,a a a ,则由等差数列的性质,可得1322a a a +=,所以12323a a a a ++=,解得24a =,由题意得1313812a a a a +=⎧⎨=⎩,解得1326a a =⎧⎨=⎩或1362a a =⎧⎨=⎩,因为{}n a 是递增的等差数列,所以132,6a a ==,故选B .考点:等差数列的性质. 5. 【答案】D 【解析】试题分析:分析题意可知:对应法则为31y x =+,则应有42331331a a a k ⎧=⨯+⎪⎨+=⋅+⎪⎩(1)或42313331a k a a ⎧=⋅+⎪⎨+=⨯+⎪⎩(2),由于*a N ∈,所以(1)式无解,解(2)式得:25a k =⎧⎨=⎩。
叠彩区第二高级中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.若定义在R上的函数f(x)满足f(0)=﹣1,其导函数f′(x)满足f′(x)>k>1,则下列结论中一定错误的是()A.B.C.D.2.已知命题p:“∀x∈R,e x>0”,命题q:“∃x0∈R,x0﹣2>x02”,则()A.命题p∨q是假命题B.命题p∧q是真命题C.命题p∧(¬q)是真命题D.命题p∨(¬q)是假命题3.等差数列{a n}中,a2=3,a3+a4=9 则a1a6的值为()A.14 B.18 C.21 D.274.已知函数f(x)=Asin(ωx﹣)(A>0,ω>0)的部分图象如图所示,△EFG是边长为2 的等边三角形,为了得到g(x)=Asinωx的图象,只需将f(x)的图象()A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位5.已知函数y=f(x)对任意实数x都有f(1+x)=f(1﹣x),且函数f(x)在[1,+∞)上为单调函数.若数列{a n}是公差不为0的等差数列,且f(a6)=f(a23),则{a n}的前28项之和S28=()A.7 B.14 C.28 D.566.在△ABC中,AB边上的中线CO=2,若动点P满足=(sin2θ)+(cos2θ)(θ∈R),则(+)•的最小值是()A.1 B.﹣1 C.﹣2 D.07.函数y=2sin2x+sin2x的最小正周期()A.B.C.πD.2π8. 函数()2cos()f x x ωϕ=+(0ω>,0ϕ-π<<)的部分图象如图所示,则 f (0)的值为( )A.32-B.1-C.D.【命题意图】本题考查诱导公式,三角函数的图象和性质,数形结合思想的灵活应用.9. 已知△ABC 中,a=1,b=,B=45°,则角A 等于( )A .150°B .90°C .60°D .30°10.已知实数x ,y 满足a x <a y (0<a <1),则下列关系式恒成立的是( )A .B .ln (x 2+1)>ln (y 2+1)C .x 3>y 3D .sinx >siny11.设()f x 是偶函数,且在(0,)+∞上是增函数,又(5)0f =,则使()0f x >的的取值范围是( ) A .50x -<<或5x > B .5x <-或5x > C .55x -<< D .5x <-或05x << 12.已知函数f (x )=a x (a >0且a ≠1)在(0,2)内的值域是(1,a 2),则函数y=f (x )的图象大致是( )A .B .C .D .二、填空题13.如图,在矩形ABCD 中,AB = 3BC =, E 在AC 上,若BE AC ⊥, 则ED 的长=____________14.已知点F 是抛物线y 2=4x 的焦点,M ,N 是该抛物线上两点,|MF|+|NF|=6,M ,N ,F 三点不共线,则△MNF的重心到准线距离为 .15.在ABC ∆中,已知sin :sin :sin 3:5:7A B C =,则此三角形的最大内角的度数等于__________.16.分别在区间[0,1]、[1,]e 上任意选取一个实数a b 、,则随机事件“ln a b ≥”的概率为_________.17.设函数,其中[x]表示不超过x 的最大整数.若方程f (x )=ax 有三个不同的实数根,则实数a 的取值范围是 .18.命题“∀x ∈R ,x 2﹣2x ﹣1>0”的否定形式是 .三、解答题19.已知等比数列{a n }中,a 1=,公比q=.(Ⅰ)S n 为{a n }的前n 项和,证明:S n =(Ⅱ)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{b n }的通项公式.20.设集合{}{}2|8150,|10A x x x B x ax =-+==-=.(1)若15a =,判断集合A 与B 的关系; (2)若A B B =,求实数组成的集合C .21.已知等边三角形PAB 的边长为2,四边形ABCD 为矩形,AD=4,平面PAB ⊥平面ABCD ,E ,F ,G 分别是线段AB ,CD ,PD 上的点.(1)如图1,若G为线段PD的中点,BE=DF=,证明:PB∥平面EFG;(2)如图2,若E,F分别是线段AB,CD的中点,DG=2GP,试问:矩形ABCD内(包括边界)能否找到点H,使之同时满足下面两个条件,并说明理由.①点H到点F的距离与点H到直线AB的距离之差大于4;②GH⊥PD.22.在平面直角坐标系xOy中.己知直线l的参数方程为(t为参数),以坐标原点为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程是ρ=4.(1)写出直线l的普通方程与曲线C的直角坐标系方程;(2)直线l与曲线C相交于A、B两点,求∠AOB的值.23.双曲线C:x2﹣y2=2右支上的弦AB过右焦点F.(1)求弦AB的中点M的轨迹方程(2)是否存在以AB为直径的圆过原点O?若存在,求出直线AB的斜率K的值.若不存在,则说明理由.24.【镇江2018届高三10月月考文科】已知函数,其中实数为常数,为自然对数的底数. (1)当时,求函数的单调区间;(2)当时,解关于的不等式;(3)当时,如果函数不存在极值点,求的取值范围.叠彩区第二高级中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解;∵f′(x)=f′(x)>k>1,∴>k>1,即>k>1,当x=时,f()+1>×k=,即f()﹣1=故f()>,所以f()<,一定出错,故选:C.2.【答案】C【解析】解:命题p:“∀x∈R,e x>0”,是真命题,命题q:“∃x0∈R,x0﹣2>x02”,即﹣x0+2<0,即:+<0,显然是假命题,∴p∨q真,p∧q假,p∧(¬q)真,p∨(¬q)假,故选:C.【点评】本题考查了指数函数的性质,解不等式问题,考查复合命题的判断,是一道基础题.3.【答案】A【解析】解:由等差数列的通项公式可得,a3+a4=2a1+5d=9,a1+d=3解方程可得,a1=2,d=1∴a1a6=2×7=14故选:A【点评】本题主要考查了等差数列的通项公式的简单应用,属于基础试题4.【答案】A【解析】解:∵△EFG是边长为2的正三角形,∴三角形的高为,即A=,函数的周期T=2FG=4,即T==4,解得ω==,即f(x)=Asinωx=sin(x﹣),g(x)=sin x,由于f(x)=sin(x﹣)=sin[(x﹣)],故为了得到g(x)=Asinωx的图象,只需将f(x)的图象向左平移个长度单位.故选:A.【点评】本题主要考查三角函数的图象和性质,利用函数的图象确定函数的解析式是解决本题的关键,属于中档题.5.【答案】C【解析】解:∵函数y=f(x)对任意实数x都有f(1+x)=f(1﹣x),且函数f(x)在[1,+∞)上为单调函数.∴函数f(x)关于直线x=1对称,∵数列{a n}是公差不为0的等差数列,且f(a6)=f(a23),∴a6+a23=2.则{a n}的前28项之和S28==14(a6+a23)=28.故选:C.【点评】本题考查了等差数列的通项公式性质及其前n项和公式、函数的对称性,考查了推理能力与计算能力,属于中档题.6.【答案】C【解析】解:∵=(sin2θ)+(cos2θ)(θ∈R),且sin2θ+cos2θ=1,∴=(1﹣cos2θ)+(cos2θ)=+cos2θ•(﹣),即﹣=cos2θ•(﹣),可得=cos2θ•,又∵cos2θ∈[0,1],∴P在线段OC上,由于AB边上的中线CO=2,因此(+)•=2•,设||=t ,t ∈[0,2],可得(+)•=﹣2t (2﹣t )=2t 2﹣4t=2(t ﹣1)2﹣2,∴当t=1时,(+)•的最小值等于﹣2.故选C .【点评】本题着重考查了向量的数量积公式及其运算性质、三角函数的图象与性质、三角恒等变换公式和二次函数的性质等知识,属于中档题.7. 【答案】C【解析】解:函数y=2sin 2x+sin2x=2×+sin2x=sin (2x ﹣)+1,则函数的最小正周期为=π,故选:C .【点评】本题主要考查三角恒等变换,函数y=Asin (ωx+φ)的周期性,利用了函数y=Asin (ωx+φ)的周期为,属于基础题.8. 【答案】D【解析】易知周期112()1212T π5π=-=π,∴22T ωπ==.由52212k ϕπ⨯+=π(k ∈Z ),得526k ϕπ=-+π(k Z ∈),可得56ϕπ=-,所以5()2cos(2)6f x x π=-,则5(0)2cos()6f π=-=,故选D. 9. 【答案】D【解析】解:∵,B=45°根据正弦定理可知∴sinA==∴A=30° 故选D .【点评】本题主要考查正弦定理的应用.属基础题.10.【答案】C【解析】解:∵实数x 、y 满足a x <a y(1>a >0),∴y <x .对于A .取x=1,y=0,不成立,因此不正确;对于B .取y=﹣2,x=﹣1,ln (x 2+1)>ln (y 2+1)不成立;对于C .利用y=x 3在R 上单调递增,可得x 3>y 3,正确;对于D .取y=﹣π,x=,但是sinx=,siny=,sinx >siny 不成立,不正确.故选:C .【点评】本题考查了函数的单调性、不等式的性质,考查了推理能力,属于基础题.11.【答案】B考点:函数的奇偶性与单调性.【思路点晴】本题主要考查函数的单调性、函数的奇偶性,数形结合的数学思想方法.由于函数是偶函数,所以定义域关于原点对称,图象关于y 轴对称,单调性在y 轴两侧相反,即在0x >时单调递增,当0x <时,函数单调递减.结合(5)0f =和对称性,可知(5)0f ±=,再结合函数的单调性,结合图象就可以求得最后的解集.1 12.【答案】B【解析】解:函数f (x )=a x (a >0且a ≠1)在(0,2)内的值域是(1,a 2),则由于指数函数是单调函数,则有a >1,由底数大于1指数函数的图象上升,且在x 轴上面,可知B 正确. 故选B .二、填空题13.【答案】212【解析】在Rt △ABC 中,BC =3,AB =3,所以∠BAC =60°.因为BE ⊥AC ,AB =3,所以AE =32,在△EAD 中,∠EAD =30°,AD =3,由余弦定理知,ED 2=AE 2+AD 2-2AE ·AD ·cos ∠EAD =34+9-2×32×3×32=214,故ED =212.14.【答案】.【解析】解:∵F 是抛物线y 2=4x 的焦点, ∴F (1,0),准线方程x=﹣1,设M (x 1,y 1),N (x 2,y 2), ∴|MF|+|NF|=x 1+1+x 2+1=6, 解得x 1+x 2=4,∴△MNF 的重心的横坐标为,∴△MNF 的重心到准线距离为.故答案为:.【点评】本题考查解决抛物线上的点到焦点的距离问题,利用抛物线的定义将到焦点的距离转化为到准线的距离.15.【答案】120 【解析】考点:解三角形.【方法点晴】本题主要考查了解三角形问题,其中解答中涉及到三角形的正弦定理、余弦定理的综合应用,着重考查了学生分析问题和解答问题的能力,以及推理与运算能力,属于基础题,本题的解答中根据sin :sin :sin 3:5:7A B C =,根据正弦定理,可设3,5,7a b ===,即可利用余弦定理求解最大角的余弦,熟记正弦、余弦定理的公式是解答的关键. 16.【答案】1e e- 【解析】解析: 由ln a b ≥得ab e ≤,如图所有实数对(,)a b 表示的区域的面积为e ,满足条件“ab e ≤”的实数对(,)a b 表示的区域为图中阴影部分,其面积为1101|a a e da e e ==-⎰,∴随机事件“ln ab ≥”的概率为1e e-.17.【答案】 (﹣1,﹣]∪[,) .【解析】解:当﹣2≤x <﹣1时,[x]=﹣2,此时f (x )=x ﹣[x]=x+2. 当﹣1≤x <0时,[x]=﹣1,此时f (x )=x ﹣[x]=x+1.当0≤x <1时,﹣1≤x ﹣1<0,此时f (x )=f (x ﹣1)=x ﹣1+1=x . 当1≤x <2时,0≤x ﹣1<1,此时f (x )=f (x ﹣1)=x ﹣1.当2≤x<3时,1≤x﹣1<2,此时f(x)=f(x﹣1)=x﹣1﹣1=x﹣2.当3≤x<4时,2≤x﹣1<3,此时f(x)=f(x﹣1)=x﹣1﹣2=x﹣3.设g(x)=ax,则g(x)过定点(0,0),坐标系中作出函数y=f(x)和g(x)的图象如图:当g(x)经过点A(﹣2,1),D(4,1)时有3个不同的交点,当经过点B(﹣1,1),C(3,1)时,有2个不同的交点,则OA的斜率k=,OB的斜率k=﹣1,OC的斜率k=,OD的斜率k=,故满足条件的斜率k的取值范围是或,故答案为:(﹣1,﹣]∪[,)【点评】本题主要考查函数交点个数的问题,利用函数零点和方程之间的关系转化为两个函数的交点是解决本题的根据,利用数形结合是解决函数零点问题的基本思想.18.【答案】.【解析】解:因为全称命题的否定是特称命题所以,命题“∀x∈R,x2﹣2x﹣1>0”的否定形式是:.故答案为:.三、解答题19.【答案】【解析】证明:(I)∵数列{a n}为等比数列,a1=,q=∴a n=×=,S n =又∵==S n∴S n =(II )∵a n =∴b n =log 3a 1+log 3a 2+…+log 3a n =﹣log 33+(﹣2log 33)+…+(﹣nlog 33)=﹣(1+2+…+n )=﹣∴数列{b n }的通项公式为:b n =﹣【点评】本题主要考查等比数列的通项公式、前n 项和以及对数函数的运算性质.20.【答案】(1)A B ⊆;(2){}5,3,0=C . 【解析】考点:1、集合的表示;2、子集的性质.21.【答案】【解析】(1)证明:依题意,E ,F 分别为线段BA 、DC 的三等分点,取CF的中点为K,连结PK,BK,则GF为△DPK的中位线,∴PK∥GF,∵PK⊄平面EFG,∴PK∥平面EFG,∴四边形EBKF为平行四边形,∴BK∥EF,∵BK⊄平面EFG,∴BK∥平面EFG,∵PK∩BK=K,∴平面EFG∥平面PKB,又∵PB⊂平面PKB,∴PB∥平面EFG.(2)解:连结PE,则PE⊥AB,∵平面PAB⊥平面ABCD,平面PAB∩平面ABCD=AB,PE⊂平面PAB,PE⊥平面ABCD,分别以EB,EF,EP为x轴,y轴,z轴,建立空间直角坐标系,∴P(0,0,),D(﹣1,4,0),=(﹣1,4,﹣),∵P(0,0,),D(﹣1,4,0),=(﹣1,4,﹣),∵==(﹣,,﹣),∴G(﹣,,),设点H(x,y,0),且﹣1≤x≤1,0≤y≤4,依题意得:,∴x2>16y,(﹣1≤x≤1),(i)又=(x+,y﹣,﹣),∵GH⊥PD,∴,∴﹣x﹣+4y﹣,即y=,(ii)把(ii)代入(i),得:3x2﹣12x﹣44>0,解得x>2+或x<2﹣,∵满足条件的点H必在矩形ABCD内,则有﹣1≤x≤1,∴矩形ABCD内不能找到点H,使之同时满足①点H到点F的距离与点H到直线AB的距离之差大于4,②GH⊥PD.【点评】本题考查空间直线与平面的位置关系、空间向量的运算等基础知识,考查运算求解能力和推理论证能力、空间想象能力,考查数形结合、转化与化归等数学思想方法及创新意识.22.【答案】【解析】解:(1)∵直线l的参数方程为(t为参数),∴直线l的普通方程为.∵曲线C的极坐标方程是ρ=4,∴ρ2=16,∴曲线C的直角坐标系方程为x2+y2=16.(2)⊙C的圆心C(0,0)到直线l:+y﹣4=0的距离:d==2,∴cos,∵0,∴,∴.23.【答案】【解析】解:(1)设M(x,y),A(x1,y1)、B(x2,y2),则x12﹣y12=2,x22﹣y22=2,两式相减可得(x1+x2)(x1﹣x2)﹣(y1+y2)(y1﹣y2)=0,∴2x(x1﹣x2)﹣2y(y1﹣y2)=0,∴=,∵双曲线C:x2﹣y2=2右支上的弦AB过右焦点F(2,0),∴,化简可得x2﹣2x﹣y2=0,(x≥2)﹣﹣﹣﹣﹣﹣﹣(2)假设存在,设A(x1,y1),B(x2,y2),l AB:y=k(x﹣2)由已知OA⊥OB得:x1x2+y1y2=0,∴﹣﹣﹣﹣﹣﹣﹣﹣﹣①,所以(k2≠1)﹣﹣﹣﹣﹣﹣﹣﹣②联立①②得:k2+1=0无解所以这样的圆不存在.﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣﹣24.【答案】(1)单调递增区间为;单调递减区间为.(2)(3)【解析】试题分析:把代入由于对数的真数为正数,函数定义域为,所以函数化为,求导后在定义域下研究函数的单调性给出单调区间;代入,,分和两种情况解不等式;当时,,求导,函数不存在极值点,只需恒成立,根据这个要求得出的范围.试题解析:(2)时,.当时,原不等式可化为.记,则,当时,,所以在单调递增,又,故不等式解为;当时,原不等式可化为,显然不成立,综上,原不等式的解集为.。
会泽一中2018年秋季学期半月考试卷2高二 数学一、选择题(本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知集合A ={x },,则( ) A. {x } B 。
{x } C. {x}ﻩD . {x}2. ( ) A. B. C . D.3.已知向量,,且则()A.B. C . D . 4。
一个几何体的三视图形状都相同,大小均等,那么这个几何体不可以是( )A.球 B.三棱锥 C.正方体 D.圆柱5.若等比数列满足,则公比为 ( ) A。
2 B。
4 C。
8 D. 166.若函数为奇函数,则 ( )A。
B. C 。
D 。
1 7。
已知三条不重合的直线和两个不重合的平面,下列命题正确的是( )A .若,,则B .若,,且,则C.若,,则 D .若,,且,则8.函数的图像的一条对称轴是( ) ﻬA.B. C . D.1|>x {}21<<-=x x B =⋂B A21|<<-x 1|->x 11|<<-x 21|<<x =210cos21-1-23-0)2,1(-=→x a )1,2(=→b →→⊥b a 21-=x 1-=x 5=x 0=x {}n a nn n a a161=+))(12()(a x x xx f -+==a 213243l n m ,,βα,n m //α⊂n α//m βα⊥m=βα m n ⊥α⊥n n l ⊥n m ⊥m l //α⊥l β⊥m m l ⊥βα⊥)4sin()(π-=x x f 4π=x 2π=x 4π-=x 2π-=x9.设,,则值为( ) A .1 B .0 C . D.10。
设长方体的长、宽、高分别为2a 、a 、a,其顶点都在一个球面上,则该球的表面积为( ) A.3a2B .6a2C 。
12a2D. 24a 211.已知函数错误!未找到引用源。
叠彩区第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 如图,为正方体,下面结论:① 平面;② ;③ 平1111D C B A ABCD -//BD 11D CB BD AC ⊥1⊥1AC 面.其中正确结论的个数是()11D CBA .B .C .D .2. 已知双曲线﹣=1的一个焦点与抛物线y 2=4x 的焦点重合,且双曲线的渐近线方程为y=±x ,则该双曲线的方程为( )A .﹣=1B .﹣y 2=1C .x 2﹣=1D .﹣=13. 如图,已知正方体ABCD ﹣A 1B 1C 1D 1的棱长为4,点E ,F 分别是线段AB ,C 1D 1上的动点,点P 是上底面A 1B 1C 1D 1内一动点,且满足点P 到点F 的距离等于点P 到平面ABB 1A 1的距离,则当点P 运动时,PE 的最小值是()A .5B .4C .4D .24. 5名运动员争夺3项比赛冠军(每项比赛无并列冠军),获得冠军的可能种数为( )A .35B .C .D .535. 已知直线l 1:(3+m )x+4y=5﹣3m ,l 2:2x+(5+m )y=8平行,则实数m 的值为( )A .﹣7B .﹣1C .﹣1或﹣7D .6. 如图所示为某几何体的正视图和侧视图,则该几何体体积的所有可能取值的集合是()A .{, }B .{,, }C .{V|≤V ≤}D .{V|0<V ≤}7. 已知,若不等式对一切恒成立,则的最大值为2,0()2, 0ax x x f x x x ⎧+>=⎨-≤⎩(2)()f x f x -≥x R ∈a ( )A .B .C .D .716-916-12-14-8. 若a <b <0,则下列不等式不成立是( )A .>B .>C .|a|>|b|D .a 2>b 29. 袋中装有红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,则恰有两个球同色的概率为( )A .B .C .D .10.若复数在复平面内对应的点关于轴对称,且,则复数在复平面内对应的点在12,z z y 12i z =-12z z ()A .第一象限B .第二象限C .第三象限D .第四象限【命题意图】本题考查复数的几何意义、代数运算等基础知识,意在考查转化思想与计算能力.11.已知直线l ∥平面α,P ∈α,那么过点P 且平行于l 的直线()A.只有一条,不在平面α内B.只有一条,在平面α内C.有两条,不一定都在平面α内D.有无数条,不一定都在平面α内12.已知数列{a n}是等比数列前n项和是S n,若a2=2,a3=﹣4,则S5等于()A.8B.﹣8C.11D.﹣11二、填空题13.执行如图所示的程序框图,输出的所有值之和是.【命题意图】本题考查程序框图的功能识别,突出对逻辑推理能力的考查,难度中等.14.已知实数x,y满足约束条,则z=的最小值为 .15.函数的单调递增区间是 .16.设f(x)是(x2+)6展开式的中间项,若f(x)≤mx在区间[,]上恒成立,则实数m的取值范围是 .17.已知双曲线的标准方程为,则该双曲线的焦点坐标为, 渐近线方程为 .18.【2017-2018第一学期东台安丰中学高三第一次月考】若函数在其定义域上恰有两()2,0,{,0x x x f x x lnx x a+≤=->个零点,则正实数的值为______.a 三、解答题19.直三棱柱ABC ﹣A 1B 1C 1 中,AA 1=AB=AC=1,E ,F 分别是CC 1、BC 的中点,AE ⊥A 1B 1,D 为棱A 1B 1上的点.(1)证明:DF ⊥AE ;(2)是否存在一点D ,使得平面DEF 与平面ABC 所成锐二面角的余弦值为?若存在,说明点D 的位置,若不存在,说明理由.20.已知、、是三个平面,且,,,且.求证:、αβc αβ= a βγ= b αγ= a b O = 、三线共点.21.已知函数f (x )=e ﹣x (x 2+ax )在点(0,f (0))处的切线斜率为2.(Ⅰ)求实数a 的值;(Ⅱ)设g (x )=﹣x (x ﹣t ﹣)(t ∈R ),若g (x )≥f (x )对x ∈[0,1]恒成立,求t 的取值范围;(Ⅲ)已知数列{a n }满足a 1=1,a n+1=(1+)a n ,求证:当n ≥2,n ∈N 时 f ()+f ()+L+f ()<n •()(e 为自然对数的底数,e ≈2.71828).22.(本题满分12分)如图所示,在正方体ABCD —A 1B 1C 1D 1中, E 、F 分别是棱DD 1 、C 1D 1的中点. (1)求直线BE 和平面ABB 1A 1所成角θ的正弦值; (2)证明:B 1F ∥平面A 1BE .23.(本小题满分12分)已知函数2()(21)ln f x x a x a x =-++ (I )若,求的单调区间;12a >)(x f y = (II )函数,若使得成立,求实数的取值范围.()(1)g x a x =-0[1,]x e ∃∈00()()f x g x ≥a B 1124.某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B 产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资单位是万元)(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润约为多少万元.(精确到1万元).叠彩区第一中学校2018-2019学年高二上学期数学期末模拟试卷含解析(参考答案)一、选择题1.【答案】D【解析】考点:1.线线,线面,面面平行关系;2.线线,线面,面面垂直关系.【方法点睛】本题考查了立体几何中的命题,属于中档题型,多项选择题是容易出错的一个题,当考察线面平行时,需证明平面外的线与平面内的线平行,则线面平行,一般可构造平行四边形,或是构造三角形的中位线,可证明线线平行,再或是证明面面平行,则线面平行,一般需在选取一点,使直线与直线外一点构成平面证明面面平行,要证明线线垂直,可转化为证明线面垂直,需做辅助线,转化为线面垂直.2.【答案】B【解析】解:已知抛物线y2=4x的焦点和双曲线的焦点重合,则双曲线的焦点坐标为(,0),即c=,又因为双曲线的渐近线方程为y=±x,则有a2+b2=c2=10和=,解得a=3,b=1.所以双曲线的方程为:﹣y2=1.故选B.【点评】本题主要考查的知识要点:双曲线方程的求法,渐近线的应用.属于基础题.3.【答案】D【解析】解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,设AE=a,D1F=b,0≤a≤4,0≤b≤4,P(x,y,4),0≤x≤4,0≤y≤4,则F(0,b,4),E(4,a,0),=(﹣x,b﹣y,0),∵点P到点F的距离等于点P到平面ABB1A1的距离,∴当E、F分别是AB、C1D1上的中点,P为正方形A1B1C1D1时,PE取最小值,此时,P(2,2,4),E(4,2,0),∴|PE|min==2.故选:D.【点评】本题考查空间直线与平面的位置关系、空间向量的运算等基础知识,考查运算求解能力和推理论证能力、空间想象能力,考查数形结合、转化与化归等数学思想方法及创新意识.4.【答案】D【解析】解:每一项冠军的情况都有5种,故5名学生争夺三项冠军,获得冠军的可能的种数是53,故选:D.【点评】本题主要考查分步计数原理的应用,属于基础题.5.【答案】A【解析】解:因为两条直线l1:(3+m)x+4y=5﹣3m,l2:2x+(5+m)y=8,l1与l2平行.所以,解得m=﹣7.故选:A.【点评】本题考查直线方程的应用,直线的平行条件的应用,考查计算能力.6.【答案】D【解析】解:根据几何体的正视图和侧视图,得;当该几何体的俯视图是边长为1的正方形时,它是高为2的四棱锥,其体积最大,为×12×2=;当该几何体的俯视图为一线段时,它的底面积为0,此时不表示几何体;所以,该几何体体积的所有可能取值集合是{V|0<V ≤}.故选:D .【点评】本题考查了空间几何体的三视图的应用问题,解题的关键是根据三视图得出几何体的结构特征是什么,是基础题目. 7. 【答案】C【解析】解析:本题考查用图象法解决与函数有关的不等式恒成立问题.当(如图1)、(如图2)时,不等式不可能恒成立;当时,如图3,直线与0a >0a =0a <2(2)y x =--函数图象相切时,,切点横坐标为,函数图象经过点时,,2y ax x =+916a =-832y ax x =+(2,0)12a =-观察图象可得,选C .12a ≤-8. 【答案】A【解析】解:∵a <b <0,∴﹣a >﹣b >0,∴|a|>|b|,a 2>b 2,即,可知:B ,C ,D 都正确,因此A 不正确.故选:A .【点评】本题考查了不等式的基本性质,属于基础题. 9. 【答案】B【解析】解:从红、黄、蓝三种颜色的球各2个,无放回的从中任取3个球,共有C 63=20种,其中恰有两个球同色C 31C 41=12种,故恰有两个球同色的概率为P==,故选:B .【点评】本题考查了排列组合和古典概率的问题,关键是求出基本事件和满足条件的基本事件的种数,属于基础题. 10.【答案】B 【解析】11.【答案】B【解析】解:假设过点P 且平行于l 的直线有两条m 与n ∴m ∥l 且n ∥l 由平行公理4得m ∥n这与两条直线m 与n 相交与点P 相矛盾又因为点P 在平面内所以点P 且平行于l 的直线有一条且在平面内所以假设错误.故选B .【点评】反证法一般用于问题的已知比较简单或命题不易证明的命题的证明,此类题目属于难度较高的题型. 12.【答案】D【解析】解:设{a n }是等比数列的公比为q ,因为a 2=2,a 3=﹣4,所以q===﹣2,所以a 1=﹣1,根据S 5==﹣11.故选:D .【点评】本题主要考查学生运用等比数列的前n 项的求和公式的能力,本题较易,属于基础题. 二、填空题13.【答案】54【解析】根据程序框图可知循环体共运行了9次,输出的是1,3,5,7,9,11,13,15, 17中不是3的x 倍数的数,所以所有输出值的和.54171311751=+++++14.【答案】 .【解析】解:作出不等式组对应的平面区域如图:(阴影部分).由z==32x+y,设t=2x+y,则y=﹣2x+t,平移直线y=﹣2x+t,由图象可知当直线y=﹣2x+t经过点B时,直线y=﹣2x+t的截距最小,此时t最小.由,解得,即B(﹣3,3),代入t=2x+y得t=2×(﹣3)+3=﹣3.∴t最小为﹣3,z有最小值为z==3﹣3=.故答案为:.【点评】本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.15.【答案】 [2,3) .【解析】解:令t=﹣3+4x﹣x2>0,求得1<x<3,则y=,本题即求函数t在(1,3)上的减区间.利用二次函数的性质可得函数t在(1,3)上的减区间为[2,3),故答案为:[2,3).16.【答案】 [5,+∞) .【解析】二项式定理.【专题】概率与统计;二项式定理.【分析】由题意可得 f (x )=x 3,再由条件可得m ≥x 2 在区间[,]上恒成立,求得x 2在区间[,]上的最大值,可得m 的范围.【解答】解:由题意可得 f (x )=x 6=x 3.由f (x )≤mx 在区间[,]上恒成立,可得m ≥x 2 在区间[,]上恒成立,由于x 2在区间[,]上的最大值为 5,故m ≥5,即m 的范围为[5,+∞),故答案为:[5,+∞).【点评】本题主要考查二项式定理的应用,二项展开式的通项公式,求展开式中某项的系数,函数的恒成立问题,属于中档题.17.【答案】 (±,0) y=±2x .【解析】解:双曲线的a=2,b=4,c==2,可得焦点的坐标为(±,0),渐近线方程为y=±x ,即为y=±2x .故答案为:(±,0),y=±2x .【点评】本题考查双曲线的方程和性质,主要是焦点的求法和渐近线方程的求法,考查运算能力,属于基础题.18.【答案】e 【解析】考查函数,其余条件均不变,则:()()20{x x x f x ax lnx+≤=-当x ⩽0时,f (x )=x +2x ,单调递增,f (−1)=−1+2−1<0,f (0)=1>0,由零点存在定理,可得f (x )在(−1,0)有且只有一个零点;则由题意可得x >0时,f (x )=ax −lnx 有且只有一个零点,即有有且只有一个实根。
叠彩区实验中学2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 已知回归直线的斜率的估计值是1.23,样本点的中心为(4,5),则回归直线的方程是( )A . =1.23x+4B . =1.23x ﹣0.08C . =1.23x+0.8D . =1.23x+0.082. 在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,a=5,b=4,cosC=,则△ABC 的面积是( ) A .16B .6C .4D .83. 已知圆C :x 2+y 2=4,若点P (x 0,y 0)在圆C 外,则直线l :x 0x+y 0y=4与圆C 的位置关系为( ) A .相离 B .相切 C .相交 D .不能确定4. 已知集合A={x|x 2﹣x ﹣2<0},B={x|﹣1<x <1},则( ) A .A ⊊B B .B ⊊A C .A=B D .A ∩B=∅5. 设{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( )A .1B .2C .4D .6 6. 以下四个命题中,真命题的是( ) A .2,2x R x x ∃∈≤-B .“对任意的x R ∈,210x x ++>”的否定是“存在0x R ∈,20010x x ++<C .R θ∀∈,函数()sin(2)f x x θ=+都不是偶函数D .已知m ,n 表示两条不同的直线,α,β表示不同的平面,并且m α⊥,n β⊂,则“αβ⊥”是 “//m n ”的必要不充分条件【命题意图】本题考查量词、充要条件等基础知识,意在考查逻辑推理能力. 7. 计算log 25log 53log 32的值为( )A .1B .2C .4D .88. 过抛物线22(0)y px p =>焦点F 的直线与双曲线2218-=y x 的一条渐近线平行,并交其抛物线于A 、 B 两点,若>AF BF ,且||3AF =,则抛物线方程为( )A .2y x = B .22y x = C .24y x = D .23y x =【命题意图】本题考查抛物线方程、抛物线定义、双曲线标准方程和简单几何性质等基础知识,意在考查方程思想和运算能力.9. 如图,1111D C B A ABCD -为正方体,下面结论:① //BD 平面11D CB ;② BD AC ⊥1;③ ⊥1AC 平面11D CB .其中正确结论的个数是( )A .B .C .D .10.已知函数f (x )=a x ﹣1+log a x 在区间[1,2]上的最大值和最小值之和为a ,则实数a 为( )A .B .C .2D .411.与﹣463°终边相同的角可以表示为(k ∈Z )( )A .k360°+463°B .k360°+103°C .k360°+257°D .k360°﹣257° 12.现准备将7台型号相同的健身设备全部分配给5个不同的社区,其中甲、乙两个社区每个社区至少2台,其它社区允许1台也没有,则不同的分配方案共有( )A .27种B .35种C .29种D .125种二、填空题13.三角形ABC 中,2,60AB BC C ==∠=,则三角形ABC 的面积为 .14.用1,2,3,4,5组成不含重复数字的五位数,要求数字4不出现在首位和末位,数字1,3,5中有且 仅有两个数字相邻,则满足条件的不同五位数的个数是 .(注:结果请用数字作答)【命题意图】本题考查计数原理、排列与组合的应用,同时也渗透了分类讨论的思想,本题综合性强,难度较大.15.已知随机变量ξ﹣N (2,σ2),若P (ξ>4)=0.4,则P (ξ>0)= .16.某校开设9门课程供学生选修,其中A ,B ,C3门课由于上课时间相同,至多选1门,若学校规定每位学生选修4门,则不同选修方案共有 种.17.已知关于 的不等式在上恒成立,则实数的取值范围是__________18.从等边三角形纸片ABC 上,剪下如图所示的两个正方形,其中BC=3+,则这两个正方形的面积之和的最小值为 .三、解答题19.如图,四棱锥P ﹣ABCD 的底面是正方形,PD ⊥底面ABCD ,点E 在棱PB 上.(1)求证:平面AEC ⊥平面PDB ;(2)当PD=AB ,且E 为PB 的中点时,求AE 与平面PDB 所成的角的大小.20.(本小题满分12分)一直线被两直线12:460,:3560l x y l x y ++=--=截得线段的中点是P 点, 当P 点为()0,0时, 求此直线方程.21.如图,四边形ABCD 与A ′ABB ′都是边长为a 的正方形,点E 是A ′A 的中点,AA ′⊥平面ABCD . (1)求证:A ′C ∥平面BDE ;(2)求体积V A ′﹣ABCD 与V E ﹣ABD 的比值.22.某少数民族的刺绣有着悠久的历史,图(1)、(2)、(3)、(4)为她们刺绣最简单的四个图案,这些图案都由小正方形构成,小正方形数越多刺绣越漂亮,现按同样的规律刺绣(小正方形的摆放规律相同),设第n个图形包含f(n)个小正方形.(Ⅰ)求出f(5);(Ⅱ)利用合情推理的“归纳推理思想”归纳出f(n+1)与f(n)的关系式,并根据你得到的关系式求f(n)的表达式.23.(本小题满分12分)某媒体对“男女延迟退休”这一公众关注的问题进行名意调查,下表是在某单位(Ⅱ)从赞同“男女延迟退休”的80人中,利用分层抽样的方法抽出8人,然后从中选出2人进行陈述发言,求事件“选出的2人中,至少有一名女士”的概率.参考公式:22()K ()()()()n ad bc a b c d a c b d -=++++,()n a b c d =+++【命题意图】本题考查统计案例、抽样方法、古典概型等基础知识,意在考查统计的思想和基本运算能力24.设F 是抛物线G :x 2=4y 的焦点.(1)过点P (0,﹣4)作抛物线G 的切线,求切线方程;(2)设A ,B 为抛物线上异于原点的两点,且满足FA ⊥FB ,延长AF ,BF 分别交抛物线G 于点C ,D ,求四边形ABCD 面积的最小值.叠彩区实验中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】D【解析】解:设回归直线方程为=1.23x+a∵样本点的中心为(4,5),∴5=1.23×4+a∴a=0.08∴回归直线方程为=1.23x+0.08故选D.【点评】本题考查线性回归方程,考查学生的计算能力,属于基础题.2.【答案】D【解析】解:∵a=5,b=4,cosC=,可得:sinC==,∴S△ABC=absinC==8.故选:D.3.【答案】C【解析】解:由点P(x0,y0)在圆C:x2+y2=4外,可得x02+y02 >4,求得圆心C(0,0)到直线l:x0x+y0y=4的距离d=<=2,故直线和圆C相交,故选:C.【点评】本题主要考查点和圆的位置关系、直线和圆的位置关系,点到直线的距离公式的应用,属于基础题.4.【答案】B【解析】解:由题意可得,A={x|﹣1<x<2},∵B={x|﹣1<x<1},在集合B中的元素都属于集合A,但是在集合A中的元素不一定在集合B中,例如x=∴B⊊A.故选B.5.【答案】B【解析】试题分析:设{}n a 的前三项为123,,a a a ,则由等差数列的性质,可得1322a a a +=,所以12323a a a a ++=, 解得24a =,由题意得1313812a a a a +=⎧⎨=⎩,解得1326a a =⎧⎨=⎩或1362a a =⎧⎨=⎩,因为{}n a 是递增的等差数列,所以132,6a a ==,故选B .考点:等差数列的性质. 6. 【答案】D7. 【答案】A【解析】解:log 25log 53log 32==1.故选:A .【点评】本题考查对数的运算法则的应用,考查计算能力.8. 【答案】C【解析】由已知得双曲线的一条渐近线方程为=y ,设00(,)A x y ,则02>p x,所以0002002322ì=ïï-ïïïï+=íïï=ïïïïîy p x p x y px ,解得2=p 或4=p ,因为322->p p,故03p <<,故2=p ,所以抛物线方程为24y x =. 9. 【答案】D【解析】考点:1.线线,线面,面面平行关系;2.线线,线面,面面垂直关系.【方法点睛】本题考查了立体几何中的命题,属于中档题型,多项选择题是容易出错的一个题,当考察线面平行时,需证明平面外的线与平面内的线平行,则线面平行,一般可构造平行四边形,或是构造三角形的中位线,可证明线线平行,再或是证明面面平行,则线面平行,一般需在选取一点,使直线与直线外一点构成平面证明面面平行,要证明线线垂直,可转化为证明线面垂直,需做辅助线,转化为线面垂直.10.【答案】A【解析】解:分两类讨论,过程如下:①当a>1时,函数y=a x﹣1和y=log a x在[1,2]上都是增函数,∴f(x)=a x﹣1+log a x在[1,2]上递增,∴f(x)max+f(x)min=f(2)+f(1)=a+log a2+1=a,∴log a2=﹣1,得a=,舍去;②当0<a<1时,函数y=a x﹣1和y=log a x在[1,2]上都是减函数,∴f(x)=a x﹣1+log a x在[1,2]上递减,∴f(x)max+f(x)min=f(2)+f(1)=a+log a2+1=a,∴log a2=﹣1,得a=,符合题意;故选A.11.【答案】C【解析】解:与﹣463°终边相同的角可以表示为:k360°﹣463°,(k∈Z)即:k360°+257°,(k∈Z)故选C【点评】本题考查终边相同的角,是基础题.12.【答案】B【解析】排列、组合及简单计数问题.【专题】计算题.【分析】根据题意,可将7台型号相同的健身设备看成是相同的元素,首先分给甲、乙两个社区各台设备,再将余下的三台设备任意分给五个社区,分三种情况讨论分配方案,①当三台设备都给一个社区,②当三台设备分为1和2两份分给2个社区,③当三台设备按1、1、1分成三份时分给三个社区,分别求出其分配方案数目,将其相加即可得答案.【解答】解:根据题意,7台型号相同的健身设备是相同的元素,首先要满足甲、乙两个社区至少2台,可以先分给甲、乙两个社区各2台设备,余下的三台设备任意分给五个社区,分三种情况讨论:①当三台设备都给一个社区时,有5种结果,②当三台设备分为1和2两份分给2个社区时,有2×C 52=20种结果, ③当三台设备按1、1、1分成三份时分给三个社区时,有C 53=10种结果,∴不同的分配方案有5+20+10=35种结果;故选B .【点评】本题考查分类计数原理,注意分类时做到不重不漏,其次注意型号相同的健身设备是相同的元素.二、填空题13.【答案】【解析】试题分析:因为ABC ∆中,2,60AB BC C ===︒2sin A=,1sin 2A =,又BC AB <,即A C <,所以30C =︒,∴90B =︒,AB BC ⊥,12ABCS AB BC ∆=⨯⨯=. 考点:正弦定理,三角形的面积.【名师点睛】本题主要考查正弦定理的应用,三角形的面积公式.在解三角形有关问题时,正弦定理、余弦定理是两个主要依据,一般来说,当条件中同时出现ab 及2b 、2a 时,往往用余弦定理,而题设中如果边和正弦、余弦交叉出现时,往往运用正弦定理将边化为正弦,再结合和、差、倍角的正弦公式进行解答.解三角形时.三角形面积公式往往根据不同情况选用不同形式1sin 2ab C ,12ah ,1()2a b c r ++,4abc R等等. 14.【答案】48 【解析】15.【答案】0.6.【解析】解:随机变量ξ服从正态分布N(2,σ2),∴曲线关于x=2对称,∴P(ξ>0)=P(ξ<4)=1﹣P(ξ>4)=0.6,故答案为:0.6.【点评】本题考查正态分布曲线的特点及曲线所表示的意义,考查概率的性质,是一个基础题.16.【答案】75【解析】计数原理的应用.【专题】应用题;排列组合.【分析】由题意分两类,可以从A、B、C三门选一门,再从其它6门选3门,也可以从其他六门中选4门,根据分类计数加法得到结果.【解答】解:由题意知本题需要分类来解,第一类,若从A、B、C三门选一门,再从其它6门选3门,有C31C63=60,第二类,若从其他六门中选4门有C64=15,∴根据分类计数加法得到共有60+15=75种不同的方法.故答案为:75.【点评】本题考查分类计数问题,考查排列组合的实际应用,利用分类加法原理时,要注意按照同一范畴分类,分类做到不重不漏.17.【答案】【解析】因为在上恒成立,所以,解得答案:18.【答案】.【解析】解:设大小正方形的边长分别为x,y,(x,y>0).则+x+y+=3+,化为:x+y=3.则x2+y2=,当且仅当x=y=时取等号.∴这两个正方形的面积之和的最小值为.故答案为:.三、解答题19.【答案】【解析】(Ⅰ)证明:∵四边形ABCD是正方形,∴AC⊥BD,∵PD⊥底面ABCD,∴PD⊥AC,∴AC⊥平面PDB,∴平面AEC⊥平面PDB.(Ⅱ)解:设AC∩BD=O,连接OE,由(Ⅰ)知AC⊥平面PDB于O,∴∠AEO为AE与平面PDB所的角,∴O,E分别为DB、PB的中点,∴OE∥PD,,又∵PD⊥底面ABCD,∴OE⊥底面ABCD,OE⊥AO,在Rt△AOE中,,∴∠AEO=45°,即AE与平面PDB所成的角的大小为45°.【点评】本题主要考查了直线与平面垂直的判定,以及直线与平面所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.20.【答案】16y x =-. 【解析】试题分析:设所求直线与两直线12,l l 分别交于()()1122,,,A x y B x y ,根据因为()()1122,,,A x y B x y 分别在直线12,l l 上,列出方程组,求解11,x y 的值,即可求解直线的方程. 1考点:直线方程的求解. 21.【答案】【解析】(1)证明:设BD 交AC 于M ,连接ME . ∵ABCD 为正方形,∴M 为AC 中点, 又∵E 为A ′A 的中点, ∴ME 为△A ′AC 的中位线, ∴ME ∥A ′C .又∵ME ⊂平面BDE ,A ′C ⊄平面BDE , ∴A ′C ∥平面BDE .(2)解:∵V E ﹣ABD ====V A ′﹣ABCD .∴V A ′﹣ABCD :V E ﹣ABD =4:1.22.【答案】【解析】解:(Ⅰ)∵f(1)=1,f(2)=5,f(3)=13,f(4)=25,∴f(2)﹣f(1)=4=4×1.f(3)﹣f(2)=8=4×2,f(4)﹣f(3)=12=4×3,f(5)﹣f(4)=16=4×4∴f(5)=25+4×4=41.…(Ⅱ)由上式规律得出f(n+1)﹣f(n)=4n.…∴f(2)﹣f(1)=4×1,f(3)﹣f(2)=4×2,f(4)﹣f(3)=4×3,…f(n﹣1)﹣f(n﹣2)=4•(n﹣2),f(n)﹣f(n﹣1)=4•(n﹣1)…∴f(n)﹣f(1)=4[1+2+…+(n﹣2)+(n﹣1)]=2(n﹣1)•n,∴f(n)=2n2﹣2n+1.…23.【答案】【解析】(Ⅰ)根据题中的数据计算:()2 240050170301506.2580320200200⨯⨯-⨯K==⨯⨯⨯因为6.25>5.024,所以有97.5%的把握认为对这一问题的看法与性别有关(Ⅱ)由已知得抽样比为81=8010,故抽出的8人中,男士有5人,女士有3人.分别设为,,,,,1,2,3a b c d e,选取2人共有{},a b,{},a c,{},a d,{},a e,{},1a,{},2a,{},3a,{},b c,{},b d,{},b e,{},1b,{},2b,{},3b,{},c d,{},c e,{},1c,{},2c,{},3c,{},d e,{},1d,{},2d,{},3d,{},1e,{},2e,{},3e,{}1,2,{}1,3,{}2,328个基本事件,其中事件“选出的2人中,至少有一名女士”包含18个基本事件,故所求概率为189=2814P=.24.【答案】【解析】解:(1)设切点.由,知抛物线在Q点处的切线斜率为,故所求切线方程为.即y=x0x﹣x02.因为点P(0,﹣4)在切线上.所以,,解得x0=±4.所求切线方程为y=±2x﹣4.(2)设A(x1,y1),C(x2,y2).由题意知,直线AC的斜率k存在,由对称性,不妨设k>0.因直线AC过焦点F(0,1),所以直线AC的方程为y=kx+1.点A,C的坐标满足方程组,得x2﹣4kx﹣4=0,由根与系数的关系知,|AC|==4(1+k2),因为AC⊥BD,所以BD的斜率为﹣,从而BD的方程为y=﹣x+1.同理可求得|BD|=4(1+),S ABCD=|AC||BD|==8(2+k2+)≥32.当k=1时,等号成立.所以,四边形ABCD面积的最小值为32.【点评】本题考查抛物线的方程和运用,考查直线和抛物线相切的条件,以及直线方程和抛物线的方程联立,运用韦达定理和弦长公式,考查基本不等式的运用,属于中档题.。
叠彩区第二中学2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1.独立性检验中,假设H0:变量X与变量Y没有关系.则在H0成立的情况下,估算概率P(K2≥6.635)≈0.01表示的意义是()A.变量X与变量Y有关系的概率为1%B.变量X与变量Y没有关系的概率为99%C.变量X与变量Y有关系的概率为99%D.变量X与变量Y没有关系的概率为99.9%2.复数i﹣1(i是虚数单位)的虚部是()A.1 B.﹣1 C.i D.﹣i3.执行右面的程序框图,若输入x=7,y=6,则输出的有数对为()A.(11,12)B.(12,13)C.(13,14)D.(13,12)4.在极坐标系中,圆的圆心的极坐标系是( )。
ABCD5.=()A .2B .4C .πD .2π6. 设集合,,则( )A BCDA .甲B .乙C .丙D .丁 8. 边长为2的正方形ABCD 的定点都在同一球面上,球心到平面ABCD 的距离为1,则此球的表面积为( ) A .3π B .5πC .12πD .20π9. 下列各组函数中,表示同一函数的是( )A 、()f x =x 与()f x =2x xB 、()1f x x =- 与()f x =C 、()f x x =与()f x =D 、()f x x =与2()f x =10.双曲线4x 2+ty 2﹣4t=0的虚轴长等于( )A .B .﹣2tC .D .411.如图,正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是AA 1,AD 的中点,则CD 1与EF 所成角为( )A .0°B .45°C .60°D .90°12.若⎩⎨⎧≥<+=-)2(,2)2(),2()(x x x f x f x则)1(f 的值为( ) A .8 B .81 C .2 D .21二、填空题13.已知实数x,y满足,则目标函数z=x﹣3y的最大值为14.设i是虚数单位,是复数z的共轭复数,若复数z=3﹣i,则z•=.15.已知变量x,y,满足,则z=log4(2x+y+4)的最大值为.16.一质点从正四面体A﹣BCD的顶点A出发沿正四面体的棱运动,每经过一条棱称为一次运动.第1次运动经过棱AB由A到B,第2次运动经过棱BC由B到C,第3次运动经过棱CA由C到A,第4次经过棱AD由A到D,…对于N∈n*,第3n次运动回到点A,第3n+1次运动经过的棱与3n﹣1次运动经过的棱异面,第3n+2次运动经过的棱与第3n次运动经过的棱异面.按此运动规律,质点经过2015次运动到达的点为.17.在半径为2的球面上有A、B、C、D四点,若AB=CD=2,则四面体ABCD的体积的最大值为.18.设函数,其中[x]表示不超过x的最大整数.若方程f(x)=ax有三个不同的实数根,则实数a的取值范围是.三、解答题19.已知圆的极坐标方程为ρ2﹣4ρcos(θ﹣)+6=0.(1)将极坐标方程化为普通方程;(2)若点P在该圆上,求线段OP的最大值和最小值.20.某游乐场有A 、B 两种闯关游戏,甲、乙、丙、丁四人参加,其中甲乙两人各自独立进行游戏A ,丙丁两人各自独立进行游戏B .已知甲、乙两人各自闯关成功的概率均为,丙、丁两人各自闯关成功的概率均为. (1)求游戏A 被闯关成功的人数多于游戏B 被闯关成功的人数的概率; (2)记游戏A 、B 被闯关总人数为ξ,求ξ的分布列和期望.21.(本题12分)正项数列{}n a 满足2(21)20n n a n a n ---=. (1)求数列{}n a 的通项公式n a ; (2)令1(1)n nb n a =+,求数列{}n b 的前项和为n T .22.已知函数f (x )=x 3﹣x 2+cx+d 有极值.(Ⅰ)求c 的取值范围;(Ⅱ)若f (x )在x=2处取得极值,且当x <0时,f (x )<d 2+2d 恒成立,求d 的取值范围.23.已知函数的图象在y轴右侧的第一个最大值点和最小值点分别为(π,2)和(4π,﹣2).(1)试求f(x)的解析式;(2)将y=f(x)图象上所有点的横坐标缩短到原来的(纵坐标不变),然后再将新的图象向轴正方向平移个单位,得到函数y=g(x)的图象.写出函数y=g(x)的解析式.24.已知全集U={1,2,3,4,5,6,7},A={2,4,5},B={1,3,5,7}.(1)求A∪B;(2)求(∁U A)∩B;(3)求∁U(A∩B).叠彩区第二中学2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】C【解析】解:∵概率P(K2≥6.635)≈0.01,∴两个变量有关系的可信度是1﹣0.01=99%,即两个变量有关系的概率是99%,故选C.【点评】本题考查实际推断原理和假设检验的应用,本题解题的关键是理解所求出的概率的意义,本题是一个基础题.2.【答案】A【解析】解:由复数虚部的定义知,i﹣1的虚部是1,故选A.【点评】该题考查复数的基本概念,属基础题.3.【答案】A【解析】解:当n=1时,满足进行循环的条件,故x=7,y=8,n=2,当n=2时,满足进行循环的条件,故x=9,y=10,n=3,当n=3时,满足进行循环的条件,故x=11,y=12,n=4,当n=4时,不满足进行循环的条件,故输出的数对为(11,12),故选:A【点评】本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.4.【答案】B【解析】,圆心直角坐标为(0,-1),极坐标为,选B。
漳平一中2018-2019学年第一学期第二次月考高二数学试卷(考试时间:120分钟总分:150分)本试卷分第I卷(选择题)和第II卷(非选择题)两部分第I卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.抛物线的焦点坐标是( )A. B. C. D.2.已知中,,则等于()A. B. C. D.3. 已知空间向量,若,则( )A. B. C. D.4.过抛物线的焦点作直线交抛物线于两点,若线段中点的横坐标为,则等于()A.B.C. D.5.已知,与的夹角为,则的值为( )A. B. C. D.6.已知是椭圆的左、右焦点,过且垂直于轴的直线与椭圆交于两点,若为钝角三角形,则该椭圆的离心率的取值范围是()A. B. C. D.7. 实数满足,则的最小值为()A. B. C. D.8.设数列是单调递增的等差数列,且成等比数列,则()A. B. C. D.9. 已知双曲线的一条渐近线与y轴的夹角为,若以双曲线的实轴和虚轴为对角线的四边形的面积为,则双曲线的标准方程为()A. B. C. D.10.如图,在上,是上的点,且,则等于()A. B. C. D.11.设等差数列的前项和为,其中且.则数列的前项和的最大值为()A. B. C. D.12.已知椭圆的短轴长为,上顶点为,左顶点为,分别是椭圆的左、右焦点,且的面积为,点为椭圆上的任意一点,则的取值范围为()A. B. C. D.第Ⅱ卷(非选择题,共90分)二、填空题:(本大题4小题,每小题5分,共20分。
把答案填在答题卡相应位置)13.方程表示焦点在轴上的椭圆,则实数的取值范围是_________.14.在正四棱柱中,为侧棱上一点,,且异面直线与所成角的余弦值为,则_________15. 已知实数x.y满足约束条件,则的最大值为_______16. 为双曲线右支上一点,分别为双曲线的左、右焦点,且,直线交轴于点,则的内切圆半径为________三、解答题:(本大题共6小题,共70分,解答应写出文字说明、证明过程或演算步骤) 17.(本小题10分)已知命题,命题.(1)若是的充分条件,求实数的取值范围;(2)若,为真命题,为假命题,求实数的取值范围.18.(本小题12分)已知双曲线的离心率为,左右焦点分别为,且双曲线过点.(1)求双曲线的方程;(2)若点在该双曲线上,且直线的斜率为,求的面积.19.(本小题12分)设的角所对边的长分别为,且.(1)求角的大小;(2)若求的面积.20.(本小题12分)椭圆()的离心率是,点在短轴上,且.(1)求椭圆的方程;(2)设为坐标原点,过点的动直线与曲线交于两点。
叠彩区第三中学校2018-2019学年高二上学期第二次月考试卷数学班级__________ 姓名__________ 分数__________一、选择题1 f x [14]f (x )的导函数y=f ′(x )的图象如图所示.)A .2B .3C .4D .52. 设{}n a 是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是( )A .1B .2C .4D .6 3. 若多项式 x 2+x 10=a 0+a 1(x+1)+…+a 8(x+1)8+a 9(x+1)9+a 10(x+1)10,则 a 8=( ) A .45 B .9 C .﹣45 D .﹣94. 如图所示的程序框图输出的结果是S=14,则判断框内应填的条件是( )A .i ≥7?B .i >15?C .i ≥15?D .i >31?5. 已知双曲线和离心率为4sinπ的椭圆有相同的焦点21F F 、,P 是两曲线的一个公共点,若 21cos 21=∠PF F ,则双曲线的离心率等于( ) A . B .25 C .26 D .276. 若直线l 的方向向量为=(1,0,2),平面α的法向量为=(﹣2,0,﹣4),则( ) A .l ∥α B .l ⊥αC .l ⊂αD .l 与α相交但不垂直7. 如图,正方体ABCD ﹣A 1B 1C 1D 1的棱线长为1,线段B 1D 1上有两个动点E ,F ,且EF=,则下列结论中错误的是( )A .AC ⊥BEB .EF ∥平面ABCDC .三棱锥A ﹣BEF 的体积为定值D .异面直线AE ,BF 所成的角为定值8. 已知函数x x x f 2sin )(-=,且)2(),31(log ),23(ln 3.02f c f b f a ===,则( )A .c a b >>B .a c b >>C .a b c >>D .b a c >>【命题意图】本题考查导数在单调性上的应用、指数值和对数值比较大小等基础知识,意在考查基本运算能力. 9. 设m ,n 表示两条不同的直线,α、β表示两个不同的平面,则下列命题中不正确的是( ) A .m ⊥α,m ⊥β,则α∥β B .m ∥n ,m ⊥α,则n ⊥α C .m ⊥α,n ⊥α,则m ∥nD .m ∥α,α∩β=n ,则m ∥n10.为了得到函数y=cos (2x+1)的图象,只需将函数y=cos2x 的图象上所有的点( )A .向左平移个单位长度B .向右平移个单位长度C .向左平移1个单位长度D .向右平移1个单位长度11.空间直角坐标系中,点A (﹣2,1,3)关于点B (1,﹣1,2)的对称点C 的坐标为( ) A .(4,1,1) B .(﹣1,0,5)C .(4,﹣3,1)D .(﹣5,3,4)12.设复数1i z =-(i 是虚数单位),则复数22z z+=( ) A.1i - B.1i + C. 2i + D. 2i -【命题意图】本题考查复数的有关概念,复数的四则运算等基础知识,意在考查学生的基本运算能力.二、填空题13.对于|q|<1(q 为公比)的无穷等比数列{a n }(即项数是无穷项),我们定义S n (其中S n 是数列{a n }的前n 项的和)为它的各项的和,记为S ,即S=S n =,则循环小数0. 的分数形式是 .14.如图,在三棱锥P ABC -中,PA PB PC ==,PA PB ⊥,PA PC ⊥,PBC △为等边三角形,则PC 与平面ABC 所成角的正弦值为______________.【命题意图】本题考查空间直线与平面所成角的概念与计算方法,意在考查学生空间想象能力和计算能力.15.已知f (x )=,若不等式f (x ﹣2)≥f (x )对一切x ∈R 恒成立,则a 的最大值为 .16.函数的单调递增区间是 .17.已知数列1,a 1,a 2,9是等差数列,数列1,b 1,b 2,b 3,9是等比数列,则的值为 .18.“黑白配”游戏,是小朋友最普及的一种游戏,很多时候被当成决定优先权的一种方式.它需要参与游戏的人(三人或三人以上)同时出示手势,以手心(白)、手背(黑)来决定胜负,当其中一个人出示的手势与其它人都不一样时,则这个人胜出,其他情况,则不分胜负.现在甲乙丙三人一起玩“黑白配”游戏.设甲乙丙三人每次都随机出“手心(白)、手背(黑)”中的某一个手势,则一次游戏中甲胜出的概率是 .三、解答题19.双曲线C 与椭圆+=1有相同的焦点,直线y=x 为C 的一条渐近线.求双曲线C 的方程.20.已知函数f(x)=log a(x2+2),若f(5)=3;(1)求a的值;(2)求的值;(3)解不等式f(x)<f(x+2).21.全集U=R,若集合A={x|3≤x<10},B={x|2<x≤7},(1)求A∪B,(∁U A)∩(∁U B);(2)若集合C={x|x>a},A⊆C,求a的取值范围.22.已知函数f(x)=ax2+blnx在x=1处有极值.(1)求a,b的值;(2)判断函数y=f(x)的单调性并求出单调区间.23.计算:(1)8+(﹣)0﹣;(2)lg25+lg2﹣log 29×log 32.24.(本小题满分12分)已知点()()(),0,0,4,4A a B b a b >>,直线AB 与圆22:4430M x y x y +--+=相交于,C D 两点, 且2CD =,求.(1)()()44a b --的值; (2)线段AB 中点P 的轨迹方程; (3)ADP ∆的面积的最小值.叠彩区第三中学校2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1. 【答案】C【解析】解:根据导函数图象,可得2为函数的极小值点,函数y=f (x )的图象如图所示:因为f (0)=f (3)=2,1<a <2,所以函数y=f (x )﹣a 的零点的个数为4个. 故选:C .【点评】本题主要考查导函数和原函数的单调性之间的关系.二者之间的关系是:导函数为正,原函数递增;导函数为负,原函数递减.2. 【答案】B 【解析】试题分析:设{}n a 的前三项为123,,a a a ,则由等差数列的性质,可得1322a a a +=,所以12323a a a a ++=, 解得24a =,由题意得1313812a a a a +=⎧⎨=⎩,解得1326a a =⎧⎨=⎩或1362a a =⎧⎨=⎩,因为{}n a 是递增的等差数列,所以132,6a a ==,故选B .考点:等差数列的性质.3. 【答案】A【解析】解:a 8 是 x 10=[﹣1+(x+1)]10的展开式中第九项(x+1)8的系数, ∴a 8==45,故选:A .【点评】本题主要考查二项展开式的通项公式,二项展开式系数的性质以及多项恒等式系数相等的性质,属于基础题.4. 【答案】C【解析】解:模拟执行程序框图,可得 S=2,i=0不满足条件,S=5,i=1 不满足条件,S=8,i=3 不满足条件,S=11,i=7 不满足条件,S=14,i=15由题意,此时退出循环,输出S 的值即为14, 结合选项可知判断框内应填的条件是:i ≥15? 故选:C .【点评】本题主要考查了程序框图和算法,依次写出每次循环得到的S ,i 的值是解题的关键,属于基本知识的考查.5. 【答案】C 【解析】试题分析:设椭圆的长半轴长为1a ,双曲线的实半轴长为2a ,焦距为c 2,m PF =1,n PF =2,且不妨设n m >,由12a n m =+,22a n m =-得21a a m +=,21a a n -=,又21c os 21=∠PF F ,∴由余弦定理可知:mn n m c -+=2224,2221234a a c +=∴,432221=+∴c a c a ,设双曲线的离心率为,则4322122=+e)(,解得26=e .故答案选C .考点:椭圆的简单性质.【思路点晴】本题主要考查圆锥曲线的定义和离心率.根据椭圆和双曲线的定义,由P 为公共点,可把焦半径1PF 、2PF 的长度用椭圆的半长轴以及双曲线的半实轴21,a a 来表示,接着用余弦定理表示21cos 21=∠PF F ,成为一个关于21,a a 以及的齐次式,等式两边同时除以2c ,即可求得离心率.圆锥曲线问题在选择填空中以考查定义和几何性质为主. 6. 【答案】B【解析】解:∵ =(1,0,2),=(﹣2,0,4),∴=﹣2,∴∥, 因此l ⊥α. 故选:B .7.【答案】D【解析】解:∵在正方体中,AC⊥BD,∴AC⊥平面B1D1DB,BE⊂平面B1D1DB,∴AC⊥BE,故A正确;∵平面ABCD∥平面A1B1C1D1,EF⊂平面A1B1C1D1,∴EF∥平面ABCD,故B正确;∵EF=,∴△BEF的面积为定值×EF×1=,又AC⊥平面BDD1B1,∴AO为棱锥A﹣BEF的高,∴三棱锥A﹣BEF的体积为定值,故C正确;∵利用图形设异面直线所成的角为α,当E与D1重合时sinα=,α=30°;当F与B1重合时tanα=,∴异面直线AE、BF所成的角不是定值,故D错误;故选D.8.【答案】D9.【答案】D【解析】解:A选项中命题是真命题,m⊥α,m⊥β,可以推出α∥β;B选项中命题是真命题,m∥n,m⊥α可得出n⊥α;C选项中命题是真命题,m⊥α,n⊥α,利用线面垂直的性质得到n∥m;D选项中命题是假命题,因为无法用线面平行的性质定理判断两直线平行.故选D.【点评】本题考查了空间线面平行和线面垂直的性质定理和判定定理的运用,关键是熟练有关的定理.10.【答案】A【解析】解:∵,故将函数y=cos2x的图象上所有的点向左平移个单位长度,可得函数y=cos(2x+1)的图象,故选:A.【点评】本题主要考查函数y=Asin(ωx+φ)的图象变换规律,属于基础题.11.【答案】C【解析】解:设C(x,y,z),∵点A(﹣2,1,3)关于点B(1,﹣1,2)的对称点C,∴,解得x=4,y=﹣3,z=1,∴C(4,﹣3,1).故选:C.12.【答案】A【解析】二、填空题13.【答案】.【解析】解:0.=++…+==,故答案为:.【点评】本题考查数列的极限,考查学生的计算能力,比较基础.14.【答案】7【解析】15.【答案】﹣.【解析】解:∵不等式f(x﹣2)≥f(x)对一切x∈R恒成立,∴若x≤0,则x﹣2≤﹣2.则不等式f(x﹣2)≥f(x)等价为,﹣2(x﹣2)≥﹣2x,即4≥0,此时不等式恒成立,若0<x≤2,则x﹣2≤0,则不等式f(x﹣2)≥f(x)等价为,﹣2(x﹣2)≥ax2+x,即ax2≤4﹣3x,则a≤=﹣,设h(x)=﹣=4(﹣)2﹣9,∵0<x≤2,∴≥,则h(x)≥﹣9,∴此时a≤﹣9,若x>2,则x﹣2>0,则f(x﹣2)≥f(x)等价为,a(x﹣2)2+(x﹣2)≥ax2+x,即2a(1﹣x)≥2,∵x>2,∴﹣x<﹣2,1﹣x<﹣1,则不等式等价,4a≤=﹣即2a≤﹣则g(x)=﹣在x>2时,为增函数,∴g(x)>g(2)=﹣1,即2a≤﹣1,则a≤﹣,故a的最大值为﹣,故答案为:﹣【点评】本题主要考查不等式恒成立问题,利用分类讨论的数学思想,结合参数分离法进行求解即可.16.【答案】[2,3).【解析】解:令t=﹣3+4x﹣x2>0,求得1<x<3,则y=,本题即求函数t在(1,3)上的减区间.利用二次函数的性质可得函数t在(1,3)上的减区间为[2,3),故答案为:[2,3).17.【答案】.【解析】解:已知数列1,a1,a2,9是等差数列,∴a1+a2 =1+9=10.数列1,b1,b2,b3,9是等比数列,∴=1×9,再由题意可得b2=1×q2>0 (q为等比数列的公比),∴b2=3,则=,故答案为.【点评】本题主要考查等差数列、等比数列的定义和性质应用,属于中档题.18.【答案】.【解析】解:一次游戏中,甲、乙、丙出的方法种数都有2种,所以总共有23=8种方案,而甲胜出的情况有:“甲黑乙白丙白”,“甲白乙黑丙黑”,共2种,所以甲胜出的概率为故答案为.【点评】本题考查等可能事件的概率,关键是分清甲在游戏中胜出的情况数目.三、解答题19.【答案】【解析】解:设双曲线方程为(a>0,b>0)由椭圆+=1,求得两焦点为(﹣2,0),(2,0),∴对于双曲线C:c=2.又y=x为双曲线C的一条渐近线,∴=解得a=1,b=,∴双曲线C的方程为.20.【答案】【解析】解:(1)∵f(5)=3,∴,即log a27=3解锝:a=3…(2)由(1)得函数,则=…(3)不等式f(x)<f(x+2),即为化简不等式得…∵函数y=log3x在(0,+∞)上为增函数,且的定义域为R.∴x2+2<x2+4x+6…即4x>﹣4,解得x>﹣1,所以不等式的解集为:(﹣1,+∞)…21.【答案】【解析】解:(1)∵A={x|3≤x<10},B={x|2<x≤7},∴A∩B=[3,7];A∪B=(2,10);(C U A)∩(C U B)=(﹣∞,3)∪[10,+∞);(2)∵集合C={x|x>a},∴若A⊆C,则a<3,即a的取值范围是{a|a<3}.22.【答案】【解析】解:(1)因为函数f(x)=ax2+blnx,所以.又函数f(x)在x=1处有极值,所以即可得,b=﹣1.(2)由(1)可知,其定义域是(0,+∞),且23.【答案】【解析】解:(1)8+(﹣)0﹣=2﹣1+1﹣(3﹣e ) =e ﹣.(2)lg25+lg2﹣log 29×log 32 ===1﹣2=﹣1.…(6分)【点评】本题考查指数式、对数式化简求值,是基础题,解题时要认真审题,注意对数、指数性质及运算法则的合理运用.24.【答案】(1)()()448a b --=;(2)()()()2222,2x y x y --=>>;(3)6. 【解析】试题分析:(1)利用2CD =,得圆心到直线的距离2d =2=,再进行化简,即可求解()()44a b --的值;(2)设点P 的坐标为(),x y ,则22a xb y ⎧=⎪⎪⎨⎪=⎪⎩代入①,化简即可求得线段AB 中点P 的轨迹方程;(3)将面积表示为()()()114482446224ADP b S a a b a b a b ∆==+-=+-=-+-+,再利用基本不等式,即可求得ADP ∆的面积的最小值.(3)()()()11448244666224ADP b S a a b a b a b ∆==+-=+-=-+-+≥=,∴当4a b ==+, 面积最小, 最小值为6.考点:直线与圆的综合问题.【方法点晴】本题主要考查了直线与圆的综合问题,其中解答中涉及到点到直线的距离公式、轨迹方程的求解,以及基本不等式的应用求最值等知识点的综合考查,着重考查了转化与化归思想和学生分析问题和解答问题的能力,本题的解答中将面积表示为()()446ADP S a b ∆=-+-+,再利用基本不等式是解答的一个难点,属于中档试题.。
叠彩区第二中学校2018-2019学年高二上学期数学期末模拟试卷含解析 班级__________ 座号_____ 姓名__________ 分数__________一、选择题1. 下面的结构图,总经理的直接下属是( )A .总工程师和专家办公室B .开发部C .总工程师、专家办公室和开发部D .总工程师、专家办公室和所有七个部2. 已知,,x y z 均为正实数,且22log x x =-,22log y y -=-,22log zz -=,则( )A .x y z <<B .z x y <<C .z y z <<D .y x z << 3. 函数f (x )=2x ﹣的零点个数为( ) A .0B .1C .2D .34. 已知函数()x e f x x=,关于x 的方程2()2()10f x af x a -+-=(a R Î)有3个相异的实数根,则a 的取值范围是( )A .21(,)21e e -+?-B .21(,)21e e --?-C .21(0,)21e e --D .2121e e 禳-镲睚-镲铪【命题意图】本题考查函数和方程、导数的应用等基础知识,意在考查数形结合思想、综合分析问题解决问题的能力.5. 与向量=(1,﹣3,2)平行的一个向量的坐标是( )A .(,1,1)B .(﹣1,﹣3,2)C .(﹣,,﹣1)D .(,﹣3,﹣2)6. 已知函数()e sin xf x x =,其中x ∈R ,e 2.71828=为自然对数的底数.当[0,]2x π∈时,函数()y f x =的图象不在直线y kx =的下方,则实数k 的取值范围( )A .(,1)-∞B .(,1]-∞C .2(,e )π-∞ D .2(,e ]π-∞【命题意图】本题考查函数图象与性质、利用导数研究函数的单调性、零点存在性定理,意在考查逻辑思维能力、等价转化能力、运算求解能力,以及构造思想、分类讨论思想的应用.7.四棱锥的八条棱代表8种不同的化工产品,由公共点的两条棱代表的化工产品放在同一仓库是危险的,没有公共点的两条棱代表的化工产品放在同一仓库是安全的,现打算用编号为①、②、③、④的4个仓库存放这8种化工产品,那么安全存放的不同方法种数为()A.96 B.48 C.24 D.08.“双曲线C的渐近线方程为y=±x”是“双曲线C的方程为﹣=1”的()A.充要条件B.充分不必要条件C.必要不充分条件D.不充分不必要条件9.底面为矩形的四棱锥P-ABCD的顶点都在球O的表面上,且O在底面ABCD内,PO⊥平面ABCD,当四棱锥P-ABCD的体积的最大值为18时,球O的表面积为()A.36πB.48πC.60πD.72π10.已知集合A={4,5,6,8},B={3,5,7,8},则集合A∪B=()A.{5,8} B.{4,5,6,7,8} C.{3,4,5,6,7,8} D.{4,5,6,7,8}11.已知集合M={1,4,7},M∪N=M,则集合N不可能是()A.∅B.{1,4} C.M D.{2,7}12.设集合A={x||x﹣2|≤2,x∈R},B={y|y=﹣x2,﹣1≤x≤2},则∁R(A∩B)等于()A.R B.{x|x∈R,x≠0} C.{0} D.∅二、填空题13.平面内两定点M(0,一2)和N(0,2),动点P(x,y)满足,动点P的轨迹为曲线E,给出以下命题:①∃m,使曲线E过坐标原点;②对∀m,曲线E与x轴有三个交点;③曲线E只关于y轴对称,但不关于x轴对称;④若P、M、N三点不共线,则△PMN周长的最小值为+4;⑤曲线E上与M,N不共线的任意一点G关于原点对称的另外一点为H,则四边形GMHN的面积不大于m。
叠彩区二中2018-2019学年上学期高二数学12月月考试题含解析班级__________ 姓名__________ 分数__________一、选择题1. 数列1,﹣4,7,﹣10,13,…,的通项公式a n 为( ) A .2n ﹣1B .﹣3n+2C .(﹣1)n+1(3n ﹣2)D .(﹣1)n+13n ﹣22. 已知直线l ∥平面α,P ∈α,那么过点P 且平行于l 的直线( )A .只有一条,不在平面α内B .只有一条,在平面α内C .有两条,不一定都在平面α内D .有无数条,不一定都在平面α内3. 四棱锥P ﹣ABCD 的底面是一个正方形,PA ⊥平面ABCD ,PA=AB=2,E 是棱PA 的中点,则异面直线BE 与AC 所成角的余弦值是( )A .B .C .D .4. 函数21()ln 2f x x x ax =++存在与直线03=-y x 平行的切线,则实数a 的取值范围是( ) A. ),0(+∞ B. )2,(-∞ C. ),2(+∞ D. ]1,(-∞【命题意图】本题考查导数的几何意义、基本不等式等基础知识,意在考查转化与化归的思想和基本运算能力. 5. 如图,在正六边形ABCDEF 中,点O 为其中心,则下列判断错误的是( )A . =B .∥C .D .6. 已知2,0()2, 0ax x x f x x x ⎧+>=⎨-≤⎩,若不等式(2)()f x f x -≥对一切x R ∈恒成立,则a 的最大值为( )A.716-B.916-C.12-D.14-7.已知是虚数单位,若复数22aiZi+=+在复平面内对应的点在第四象限,则实数的值可以是()A.-2 B.1 C.2 D.38.如图,函数f(x)=Asin(2x+φ)(A>0,|φ|<)的图象过点(0,),则f(x)的图象的一个对称中心是()A.(﹣,0)B.(﹣,0)C.(,0)D.(,0)9.如果命题p∨q是真命题,命题¬p是假命题,那么()A.命题p一定是假命题B.命题q一定是假命题C.命题q一定是真命题D.命题q是真命题或假命题10.对于函数f(x),若∀a,b,c∈R,f(a),f(b),f(c)为某一三角形的三边长,则称f(x)为“可构造三角形函数”,已知函数f(x)=是“可构造三角形函数”,则实数t的取值范围是()A. C. D.11.已知数列{a n}中,a1=1,a n+1=a n+n,若利用如图所示的程序框图计算该数列的第10项,则判断框内的条件是()A .n ≤8?B .n ≤9?C .n ≤10?D .n ≤11?12.已知定义域为R 的偶函数)(x f 满足对任意的R x ∈,有)1()()2(f x f x f -=+,且当]3,2[∈x 时,18122)(2-+-=x x x f .若函数)1(log )(+-=x x f y a 在),0(+∞上至少有三个零点,则实数的取值范围是( )111]A .)22,0( B .)33,0( C .)55,0( D .)66,0(二、填空题13.命题“∀x ∈R ,x 2﹣2x ﹣1>0”的否定形式是 .14.已知数列{a n }中,2a n ,a n+1是方程x 2﹣3x+b n =0的两根,a 1=2,则b 5= .15.若函数f (x ),g (x )满足:∀x ∈(0,+∞),均有f (x )>x ,g (x )<x 成立,则称“f (x )与g (x )关于y=x 分离”.已知函数f (x )=a x 与g (x )=log a x (a >0,且a ≠1)关于y=x 分离,则a 的取值范围是 .16.复数z=(i 虚数单位)在复平面上对应的点到原点的距离为 .17.设i 是虚数单位,是复数z 的共轭复数,若复数z=3﹣i ,则z •= .18.函数f (x )=log(x 2﹣2x ﹣3)的单调递增区间为 .三、解答题19.已知等差数列{a n }的首项和公差都为2,且a 1、a 8分别为等比数列{b n }的第一、第四项. (1)求数列{a n }、{b n }的通项公式;(2)设c n=,求{c n}的前n项和S n.20.如图,四面体ABCD中,平面ABC⊥平面BCD,AC=AB,CB=CD,∠DCB=120°,点E在BD上,且CE=DE.(Ⅰ)求证:AB⊥CE;(Ⅱ)若AC=CE,求二面角A﹣CD﹣B的余弦值.21.一台还可以用的机器由于使用的时间较长,它按不同的转速生产出来的某机械零件有一些会有缺陷,每小时生产有缺陷零件的多少随机器运转的速率而变化,下表为抽样试验结果:转速x(转/秒)16 14 12 8每小时生产有缺陷的零件数y(件)11 9 8 5(1)画出散点图;(2)如果y与x有线性相关的关系,求回归直线方程;(3)若实际生产中,允许每小时的产品中有缺陷的零件最多为10个,那么机器的转运速度应控制在什么范围内?参考公式:线性回归方程系数公式开始=,=﹣x.22.已知函数f(x)=lnx+ax2+b(a,b∈R).(Ⅰ)若曲线y=f(x)在x=1处的切线为y=﹣1,求函数f(x)的单调区间;(Ⅱ)求证:对任意给定的正数m,总存在实数a,使函数f(x)在区间(m,+∞)上不单调;(Ⅲ)若点A(x1,y1),B(x2,y2)(x2>x1>0)是曲线f(x)上的两点,试探究:当a<0时,是否存在实数x0∈(x1,x2),使直线AB的斜率等于f'(x0)?若存在,给予证明;若不存在,说明理由.23.(1)直线l的方程为(a+1)x+y+2﹣a=0(a∈R).若l在两坐标轴上的截距相等,求a的值;(2)已知A(﹣2,4),B(4,0),且AB是圆C的直径,求圆C的标准方程.24.已知命题p:x2﹣2x+a≥0在R上恒成立,命题q:若p或q为真,p且q为假,求实数a的取值范围.叠彩区二中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题1.【答案】C【解析】解:通过观察前几项可以发现:数列中符号是正负交替,每一项的符号为(﹣1)n+1,绝对值为3n ﹣2,故通项公式a n=(﹣1)n+1(3n﹣2).故选:C.2.【答案】B【解析】解:假设过点P且平行于l的直线有两条m与n∴m∥l且n∥l由平行公理4得m∥n这与两条直线m与n相交与点P相矛盾又因为点P在平面内所以点P且平行于l的直线有一条且在平面内所以假设错误.故选B.【点评】反证法一般用于问题的已知比较简单或命题不易证明的命题的证明,此类题目属于难度较高的题型.3.【答案】B【解析】解:以A为原点,AB为x轴,AD为y轴,AP为z轴,建立空间直角坐标系,则B(2,0,0),E(0,0,1),A(0,0,0),C(2,2,0),=(﹣2,0,1),=(2,2,0),设异面直线BE与AC所成角为θ,则cosθ===.故选:B.4. 【答案】D 【解析】因为1()f x x a x'=++,直线的03=-y x 的斜率为3,由题意知方程13x a x ++=(0x >)有解,因为12x x+?,所以1a £,故选D . 5. 【答案】D【解析】解:由图可知,,但不共线,故,故选D .【点评】本题考查平行向量与共线向量、相等向量的意义,属基础题.6. 【答案】C【解析】解析:本题考查用图象法解决与函数有关的不等式恒成立问题.当0a >(如图1)、0a =(如图2)时,不等式不可能恒成立;当0a <时,如图3,直线2(2)y x =--与函数2y ax x =+图象相切时,916a =-,切点横坐标为83,函数2y ax x =+图象经过点(2,0)时,12a =-,观察图象可得12a ≤-,选C . 7. 【答案】A 【解析】 试题分析:()()()()2224(22)2225ai i ai a a ii i i +-+++-==++-,对应点在第四象限,故40220a a +>⎧⎨-<⎩,A 选项正确. 考点:复数运算. 8. 【答案】 B【解析】解:由函数图象可知:A=2,由于图象过点(0,),可得:2sinφ=,即sinφ=,由于|φ|<,解得:φ=,即有:f(x)=2sin(2x+).由2x+=kπ,k∈Z可解得:x=,k∈Z,故f(x)的图象的对称中心是:(,0),k∈Z当k=0时,f(x)的图象的对称中心是:(,0),故选:B.【点评】本题主要考查由函数y=Asin(ωx+φ)的部分图象求函数的解析式,正弦函数的对称性,属于中档题.9.【答案】D【解析】解:∵命题“p或q”真命题,则命题p与命题q中至少有一个命题为真命题,又∵命题“非p”也是假命题,∴命题p为真命题.故命题q为可真可假.故选D【点评】本题考查的知识点是命题的真假判断与应用,其中熟练掌握复合命题真值表是解答本题的关键.10.【答案】D【解析】解:由题意可得f(a)+f(b)>f(c)对于∀a,b,c∈R都恒成立,由于f(x)==1+,①当t﹣1=0,f(x)=1,此时,f(a),f(b),f(c)都为1,构成一个等边三角形的三边长,满足条件.②当t﹣1>0,f(x)在R上是减函数,1<f(a)<1+t﹣1=t,同理1<f(b)<t,1<f(c)<t,由f(a)+f(b)>f(c),可得2≥t,解得1<t≤2.③当t﹣1<0,f(x)在R上是增函数,t<f(a)<1,同理t <f (b )<1,t <f (c )<1,由f (a )+f (b )>f (c ),可得 2t ≥1,解得1>t≥.综上可得,≤t ≤2,故实数t 的取值范围是[,2],故选D .【点评】本题主要考查了求参数的取值范围,以及构成三角形的条件和利用函数的单调性求函数的值域,同时考查了分类讨论的思想,属于难题.11.【答案】B【解析】解:n=1,满足条件,执行循环体,S=1+1=2 n=2,满足条件,执行循环体,S=1+1+2=4 n=3,满足条件,执行循环体,S=1+1+2+3=7n=10,不满足条件,退出循环体,循环满足的条件为n ≤9, 故选B .【点评】本题主要考查了当型循环结构,算法和程序框图是新课标新增的内容,在近两年的新课标地区高考都考查到了,这启示我们要给予高度重视,属于基础题.12.【答案】B 【解析】试题分析:()()1)2(f x f x f -=+ ,令1-=x ,则()()()111f f f --=,()x f 是定义在R 上的偶函数,()01=∴f ()()2+=∴x f x f .则函数()x f 是定义在R 上的,周期为的偶函数,又∵当[]3,2∈x 时,()181222-+-=x x x f ,令()()1log +=x x g a ,则()x f 与()x g 在[)+∞,0的部分图象如下图,()()1log +-=x x f y a 在()+∞,0上至少有三个零点可化为()x f 与()x g 的图象在()+∞,0上至少有三个交点,()x g 在()+∞,0上单调递减,则⎩⎨⎧-><<23log 10a a ,解得:330<<a 故选A .考点:根的存在性及根的个数判断.【方法点晴】本题是一道关于函数零点的题目,关键是结合数形结合的思想进行解答.根据已知条件推导可得()x f 是周期函数,其周期为,要使函数()()1log +-=x x f y a 在()+∞,0上至少有三个零点,等价于函数()x f 的图象与函数()1log +=x y a 的图象在()+∞,0上至少有三个交点,接下来在同一坐标系内作出图象,进而可得的范围.二、填空题13.【答案】 .【解析】解:因为全称命题的否定是特称命题所以,命题“∀x ∈R ,x 2﹣2x ﹣1>0”的否定形式是:.故答案为:.14.【答案】 ﹣1054 .【解析】解:∵2a n ,a n+1是方程x 2﹣3x+b n =0的两根,∴2a n +a n+1=3,2a n a n+1=b n , ∵a 1=2,∴a 2=﹣1,同理可得a 3=5,a 4=﹣7,a 5=17,a 6=﹣31.则b 5=2×17×(﹣31)=1054.故答案为:﹣1054.【点评】本题考查了一元二次方程的根与系数的关系、递推关系,考查了推理能力与计算能力,属于中档题.15.【答案】 (,+∞) .【解析】解:由题意,a>1.故问题等价于a x>x(a>1)在区间(0,+∞)上恒成立.构造函数f(x)=a x﹣x,则f′(x)=a x lna﹣1,由f′(x)=0,得x=log a(log a e),x>log a(log a e)时,f′(x)>0,f(x)递增;0<x<log a(log a e),f′(x)<0,f(x)递减.则x=log a(log a e)时,函数f(x)取到最小值,故有﹣log a(log a e)>0,解得a>.故答案为:(,+∞).【点评】本题考查恒成立问题关键是将问题等价转化,从而利用导数求函数的最值求出参数的范围.16.【答案】.【解析】解:复数z==﹣i(1+i)=1﹣i,复数z=(i虚数单位)在复平面上对应的点(1,﹣1)到原点的距离为:.故答案为:.【点评】本题考查复数的代数形式的混合运算,复数的几何意义,考查计算能力.17.【答案】10.【解析】解:由z=3﹣i,得z•=.故答案为:10.【点评】本题考查公式,考查了复数模的求法,是基础题.18.【答案】(﹣∞,﹣1).【解析】解:函数的定义域为{x|x>3或x<﹣1}令t=x2﹣2x﹣3,则y=因为y=在(0,+∞)单调递减t=x2﹣2x﹣3在(﹣∞,﹣1)单调递减,在(3,+∞)单调递增由复合函数的单调性可知函数的单调增区间为(﹣∞,﹣1)故答案为:(﹣∞,﹣1)三、解答题19.【答案】【解析】解:(1)由等差数列通项公式可知:a n=2+(n﹣1)2=2n,当n=1时,2b1=a1=2,b4=a8=16, (3)设等比数列{b n}的公比为q,则, (4)∴q=2, (5)∴ (6)(2)由(1)可知:log2b n+1=n (7)∴ (9)∴,∴{c n}的前n项和S n,S n=. (12)【点评】本题考查等比数列及等差数列通项公式,等比数列性质,考查“裂项法”求数列的前n项和,考查计算能力,属于中档题.20.【答案】【解析】解:(Ⅰ)证明:△BCD中,CB=CD,∠BCD=120°,∴∠CDB=30°,∵EC=DE,∴∠DCE=30°,∠BCE=90°,∴EC⊥BC,又∵平面ABC⊥平面BCD,平面ABC与平面BCD的交线为BC,∴EC⊥平面ABC,∴EC⊥AB.(Ⅱ)解:取BC的中点O,BE中点F,连结OA,OF,∵AC=AB,∴AO⊥BC,∵平面ABC⊥平面BCD,平面ABC∩平面BCD=BC,∴AO⊥平面BCD,∵O是BC中点,F是BE中点,∴OF⊥BC,以O为原点,OB为y轴,OA为z轴,建立空间直角坐标系,设DE=2,则A(0,0,1),B(0,,0),C(0,﹣,0),D(3,﹣2,0),∴=(0,﹣,﹣1),=(3,﹣,0),设平面ACD的法向量为=(x,y,z),则,取x=1,得=(1,,﹣3),又平面BCD的法向量=(0,0,1),∴cos<>==﹣,∴二面角A﹣CD﹣B的余弦值为.【点评】本小题主要考查立体几何的相关知识,具体涉及到线面以及面面的垂直关系、二面角的求法及空间向量在立体几何中的应用.本小题对考生的空间想象能力与运算求解能力有较高要求.21.【答案】【解析】【专题】应用题;概率与统计.【分析】(1)利用所给的数据画出散点图;(2)先做出横标和纵标的平均数,做出利用最小二乘法求线性回归方程的系数的量,做出系数,求出a,写出线性回归方程.(3)根据上一问做出的线性回归方程,使得函数值小于或等于10,解出不等式.【解答】解:(1)画出散点图,如图所示:(2)=12.5,=8.25,∴b=≈0.7286,a=﹣0.8575∴回归直线方程为:y=0.7286x﹣0.8575;(3)要使y≤10,则0.728 6x﹣0.8575≤10,x≤14.901 9.故机器的转速应控制在14.9转/秒以下.【点评】本题考查线性回归分析,考查线性回归方程,考查线性回归方程的应用,考查不等式的解法,是一个综合题目.22.【答案】【解析】解:(Ⅰ)由已知得解得…此时,(x>0).f'x=0x=1f x f'x(Ⅱ)(x>0).(1)当a≥0时,f'(x)>0恒成立,此时,函数f(x)在区间(0,+∞)上单调递增,不合题意,舍去.…(2)当a<0时,令f'(x)=0,得,f(x),f'(x)的变化情况如下表:)所以函数f(x)的增区间为(0,),减区间为(,+∞).…要使函数f(x)在区间(m,+∞)上不单调,须且只须>m,即.所以对任意给定的正数m,只须取满足的实数a,就能使得函数f(x)在区间(m,+∞)上不单调.…(Ⅲ)存在实数x0∈(x1,x2),使直线AB的斜率等于f'(x0).…证明如下:令g(x)=lnx﹣x+1(x>0),则,易得g(x)在x=1处取到最大值,且最大值g(1)=0,即g(x)≤0,从而得lnx≤x﹣1.(*)…由,得.…令,,则p(x),q(x)在区间[x1,x2]上单调递增.且,,结合(*)式可得,,.令h(x)=p(x)+q(x),由以上证明可得,h(x)在区间[x1,x2]上单调递增,且h(x1)<0,h(x2)>0,…所以函数h(x)在区间(x1,x2)上存在唯一的零点x0,即成立,从而命题成立.…(注:在(Ⅰ)中,未计算b的值不扣分.)【点评】本小题主要考查函数导数的几何意义、导数的运算及导数的应用,考查运算求解能力、抽象概括能力、推理论证能力,考查函数与方程思想、化归与转化思想、分类与整合思想.23.【答案】【解析】解:(1)当a=﹣1时,直线化为y+3=0,不符合条件,应舍去;当a≠﹣1时,分别令x=0,y=0,解得与坐标轴的交点(0,a﹣2),(,0).∵直线l在两坐标轴上的截距相等,∴a﹣2=,解得a=2或a=0;(2)∵A(﹣2,4),B(4,0),∴线段AB的中点C坐标为(1,2).又∵|AB|=,∴所求圆的半径r=|AB|=.因此,以线段AB为直径的圆C的标准方程为(x﹣1)2+(y﹣2)2=13.24.【答案】【解析】解:若P是真命题.则△=4﹣4a≤0∴a≥1;…(3分)若q为真命题,则方程x2+2ax+2﹣a=0有实根,∴△=4a2﹣4(2﹣a)≥0,即,a≥1或a≤﹣2,…(6分)依题意得,当p真q假时,得a∈ϕ;…(8分)当p假q真时,得a≤﹣2.…(10分)综上所述:a的取值范围为a≤﹣2.…(12分)【点评】本题考查复合函数的真假与构成其简单命题的真假的关系,解决此类问题应该先求出简单命题为真时参数的范围,属于基础题.。
叠彩区一中2018-2019学年高二上学期第二次月考试卷数学 班级__________ 姓名__________ 分数__________一、选择题1. 已知三棱锥S ABC -外接球的表面积为32π,090ABC ∠=,三棱锥S ABC -的三视图如图 所示,则其侧视图的面积的最大值为( )A .4B .C .8D .2. 三个实数a 、b 、c 成等比数列,且a+b+c=6,则b 的取值范围是( )A .[﹣6,2]B .[﹣6,0)∪( 0,2]C .[﹣2,0)∪( 0,6]D .(0,2]3. 某校在高三第一次模拟考试中约有1000人参加考试,其数学考试成绩近似服从正态分布,即()2~100,X N a (0a >),试卷满分150分,统计结果显示数学考试成绩不及格(低于90分)的人数占总人数的110,则此次数学考试成绩在100分到110分之间的人数约为( ) (A ) 400 ( B ) 500 (C ) 600 (D ) 800 4. 如图是一个多面体的三视图,则其全面积为( )A .B .C .D .5. 复数z=在复平面上对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限6. 设全集U={1,2,3,4,5},集合A={2,3,4},B={2,5},则B ∪(∁U A )=( ) A .{5} B .{1,2,5} C .{1,2,3,4,5} D .∅ 7. 已知集合P={x|﹣1<x <b ,b ∈N},Q={x|x 2﹣3x <0,x ∈Z},若P ∩Q ≠∅,则b 的最小值等于( ) A .0B .1C .2D .38. 若命题p :∃x 0∈R ,sinx 0=1;命题q :∀x ∈R ,x 2+1<0,则下列结论正确的是( )A .¬p 为假命题B .¬q 为假命题C .p ∨q 为假命题D .p ∧q 真命题9. 在正方体1111ABCD A B C D -中,M 是线段11AC 的中点,若四面体M ABD -的外接球体积为36p , 则正方体棱长为( )A .2B .3C .4D .5【命题意图】本题考查以正方体为载体考查四面体的外接球半径问题,意在考查空间想象能力和基本运算能力. 10.已知集合A={x|x 是平行四边形},B={x|x 是矩形},C={x|x 是正方形},D={x|x 是菱形},则( ) A .A ⊆B B .C ⊆B C .D ⊆C D .A ⊆D11.集合A={1,2,3},集合B={﹣1,1,3},集合S=A ∩B ,则集合S 的子集有( ) A .2个 B .3 个 C .4 个 D .8个12.设函数y=x 3与y=()x 的图象的交点为(x 0,y 0),则x 0所在的区间是( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)二、填空题13.【盐城中学2018届高三上第一次阶段性考试】已知函数f (x )=lnx -mx(m ∈R )在区间[1,e]上取得最小值4,则m =________.14.已知命题p :∃x ∈R ,x 2+2x+a ≤0,若命题p 是假命题,则实数a 的取值范围是 .(用区间表示) 15.将一个半径为3和两个半径为1的球完全装入底面边长为6的正四棱柱容器中,则正四棱柱容器的高的最小值为 .16.函数f (x )=2a x+1﹣3(a >0,且a ≠1)的图象经过的定点坐标是 . 17.阅读下图所示的程序框图,运行相应的程序,输出的n 的值等于_________.18.设某总体是由编号为01,02,…6个个体,选取方法是从随机数表第1行的第3列数字开始从左到右依次选取两个数字,则选出来的第6个个体编号为________.【命题意图】本题考查抽样方法等基础知识,意在考查统计的思想.三、解答题19.已知函数f(x)=ax3+2x﹣a,(Ⅰ)求函数f(x)的单调递增区间;(Ⅱ)若a=n且n∈N*,设x n是函数f n(x)=nx3+2x﹣n的零点.(i)证明:n≥2时存在唯一x n且;(i i)若b n=(1﹣x n)(1﹣x n+1),记S n=b1+b2+…+b n,证明:S n<1.20.根据下列条件求方程.(1)若抛物线y2=2px的焦点与椭圆+=1的右焦点重合,求抛物线的准线方程(2)已知双曲线的离心率等于2,且与椭圆+=1有相同的焦点,求此双曲线标准方程.21.在△ABC中,角A,B,C所对的边分别为a,b,c.已知b2+c2=a2+bc.(Ⅰ)求A的大小;(Ⅱ)如果cosB=,b=2,求a的值.1818 0792 4544 1716 5809 7983 8619 6206 7650 0310 5523 6405 0526 623822.如图所示,在正方体ABCD﹣A1B1C1D1中,E是棱DD1的中点.(Ⅰ)求直线BE与平面ABB1A1所成的角的正弦值;(Ⅱ)在棱C1D1上是否存在一点F,使B1F∥平面A1BE?证明你的结论.23.某商场销售某种品牌的空调器,每周周初购进一定数量的空调器,商场每销售一台空调器可获利500元,若供大于求,则每台多余的空调器需交保管费100元;若供不应求,则可从其他商店调剂供应,此时每台空调器仅获利润200元.(Ⅰ)若该商场周初购进20台空调器,求当周的利润(单位:元)关于当周需求量n(单位:台,n∈N)的函数解析式f(n);Ⅱ10n以10周记录的各需求量的频率作为各需求量发生的概率,若商场周初购进20台空调器,X 表示当周的利润(单位:元),求X 的分布列及数学期望.24.(本小题满分12分)1111]已知函数()()1ln 0f x a x a a x=+≠∈R ,.(1)若1a =,求函数()f x 的极值和单调区间;(2)若在区间(0]e ,上至少存在一点0x ,使得()00f x <成立,求实数的取值范围.叠彩区一中2018-2019学年高二上学期第二次月考试卷数学(参考答案)一、选择题1.【答案】A【解析】考点:三视图.【方法点睛】本题主要考查几何体的三视图,空间想象能力.空间几何体的三视图是分别从空间几何体的正面,左面,上面用平行投影的方法得到的三个平面投影图.因此在分析空间几何体的三视图时,先根据俯视图确定几何体的底面,然后根据正视图或侧视图确定几何体的侧棱与侧面的特征,调整实线和虚线所对应的棱,面的位置,再确定几何体的形状,即可得到结果. 要能够牢记常见几何体的三视图.2.【答案】B【解析】解:设此等比数列的公比为q,∵a+b+c=6,∴=6,∴b=.当q>0时,=2,当且仅当q=1时取等号,此时b∈(0,2];当q<0时,b=﹣6,当且仅当q=﹣1时取等号,此时b∈[﹣6,0).∴b的取值范围是[﹣6,0)∪(0,2].故选:B.【点评】本题考查了等比数列的通项公式、基本不等式的性质、分类讨论思想方法,考查了推理能力与计算能力,属于中档题.3.【答案】A 【解析】P(X≤90)=P(X≥110)=110,P(90≤X≤110)=1-15=45,P(100≤X≤110)=25,1000×25=400. 故选A.4.【答案】C【解析】解:由三视图可知几何体是一个正三棱柱,底面是一个边长是的等边三角形,侧棱长是,∴三棱柱的面积是3××2=6+,故选C.【点评】本题考查根据三视图求几何体的表面积,考查由三视图确定几何图形,考查三角形面积的求法,本题是一个基础题,运算量比较小.5.【答案】A【解析】解:∵z===+i,∴复数z在复平面上对应的点位于第一象限.故选A.【点评】本题考查复数的乘除运算,考查复数与复平面上的点的对应,是一个基础题,在解题过程中,注意复数是数形结合的典型工具.6.【答案】B【解析】解:∵C U A={1,5}∴B∪(∁U A)={2,5}∪{1,5}={1,2,5}.故选B.7.【答案】C【解析】解:集合P={x|﹣1<x<b,b∈N},Q={x|x2﹣3x<0,x∈Z}={1,2},P∩Q≠∅,可得b的最小值为:2.故选:C.【点评】本题考查集合的基本运算,交集的意义,是基础题.8.【答案】A【解析】解:时,sinx0=1;∴∃x0∈R,sinx0=1;∴命题p是真命题;由x2+1<0得x2<﹣1,显然不成立;∴命题q是假命题;∴¬p为假命题,¬q为真命题,p∨q为真命题,p∧q为假命题;∴A正确.故选A.【点评】考查对正弦函数的图象的掌握,弧度数是个实数,对∀∈R满足x2≥0,命题¬p,p∨q,p∧q的真假和命题p,q真假的关系.9.【答案】C10.【答案】B【解析】解:因为菱形是平行四边形的特殊情形,所以D⊂A,矩形与正方形是平行四边形的特殊情形,所以B⊂A,C⊂A,正方形是矩形,所以C⊆B.故选B.11.【答案】C【解析】解:∵集合A={1,2,3},集合B={﹣1,1,3},∴集合S=A∩B={1,3},则集合S的子集有22=4个,故选:C.【点评】本题主要考查集合的基本运算和集合子集个数的求解,要求熟练掌握集合的交并补运算,比较基础.12.【答案】A【解析】解:令f(x)=x3﹣,∵f′(x)=3x2﹣ln=3x2+ln2>0,∴f(x)=x3﹣在R上单调递增;又f(1)=1﹣=>0,f(0)=0﹣1=﹣1<0,∴f(x)=x3﹣的零点在(0,1),∵函数y=x3与y=()x的图象的交点为(x0,y0),∴x0所在的区间是(0,1).故答案为:A.二、填空题13.【答案】-3e【解析】f′(x)=1x+2mx=2x mx,令f′(x)=0,则x=-m,且当x<-m时,f′(x)<0,f(x)单调递减,当x>-m时,f′(x)>0,f(x)单调递增.若-m≤1,即m≥-1时,f(x)min=f(1)=-m≤1,不可能等于4;若1<-m≤e,即-e≤m<-1时,f(x)min=f(-m)=ln(-m)+1,令ln(-m)+1=4,得m=-e3(-e,-1);若-m>e,即m<-e时,f(x)min=f(e)=1-me,令1-me=4,得m=-3e,符合题意.综上所述,m=-3e.14.【答案】(1,+∞)【解析】解:∵命题p:∃x∈R,x2+2x+a≤0,当命题p是假命题时,命题¬p:∀x∈R,x2+2x+a>0是真命题;即△=4﹣4a<0,∴a>1;∴实数a的取值范围是(1,+∞).故答案为:(1,+∞).【点评】本题考查了命题与命题的否定的真假性相反问题,也考查了二次不等式恒成立的问题,是基础题目.15.【答案】 4+ .【解析】解:作出正四棱柱的对角面如图,∵底面边长为6,∴BC=,球O 的半径为3,球O 1 的半径为1, 则,在Rt △OMO1中,OO 1=4,,∴=,∴正四棱柱容器的高的最小值为4+.故答案为:4+.【点评】本题考查球的体积和表面积,考查空间想象能力和思维能力,是中档题.16.【答案】 (﹣1,﹣1) .【解析】解:由指数幂的性质可知,令x+1=0得x=﹣1,此时f (﹣1)=2﹣3=﹣1, 即函数f (x )的图象经过的定点坐标是(﹣1,﹣1), 故答案为:(﹣1,﹣1).17.【答案】6【解析】解析:本题考查程序框图中的循环结构.第1次运行后,9,2,2,S T n S T ===>;第2次运行后,13,4,3,S T n S T ===>;第3次运行后,17,8,4,S T n S T ===>;第4次运行后,21,16,5,S T n S T ===>;第5次运行后,25,32,6,S T n S T ===<,此时跳出循环,输出结果6n =程序结束. 18.【答案】19【解析】由题意可得,选取的这6个个体分别为18,07,17,16,09,19,故选出的第6个个体编号为19.三、解答题19.【答案】【解析】解:(Ⅰ)f'(x )=3ax 2+2,若a ≥0,则f'(x )>0,函数f (x )在R 上单调递增;若a<0,令f'(x)>0,∴或,函数f(x)的单调递增区间为和;(Ⅱ)(i)由(Ⅰ)得,f n(x)=nx3+2x﹣n在R上单调递增,又f n(1)=n+2﹣n=2>0,f n()====﹣当n≥2时,g(n)=n2﹣n﹣1>0,,n≥2时存在唯一x n且(i i)当n≥2时,,∴(零点的区间判定)∴,(数列裂项求和)∴,又f1(x)=x3+2x﹣1,,(函数法定界),又,∴,∴,(不等式放缩技巧)命题得证.【点评】本题主要考查了导数的求单调区间的方法和利用数列的裂项求和和不等式的放缩求和技巧解题,属于难题.20.【答案】【解析】解:(1)易知椭圆+=1的右焦点为(2,0),由抛物线y2=2px的焦点(,0)与椭圆+=1的右焦点重合,可得p=4,可得抛物线y2=8x的准线方程为x=﹣2.(2)椭圆+=1的焦点为(﹣4,0)和(4,0),可设双曲线的方程为﹣=1(a,b>0),由题意可得c=4,即a2+b2=16,又e==2,解得a=2,b=2,则双曲线的标准方程为﹣=1.【点评】本题考查圆锥曲线的方程和性质,主要是抛物线的准线方程和双曲线的方程的求法,注意运用待定系数法,考查运算能力,属于基础题.21.【答案】【解析】解:(Ⅰ)∵b2+c2=a2+bc,即b2+c2﹣a2=bc,∴cosA==,又∵A∈(0,π),∴A=;(Ⅱ)∵cosB=,B∈(0,π),∴sinB==,由正弦定理=,得a===3.【点评】此题考查了正弦、余弦定理,以及同角三角函数间的基本关系,熟练掌握定理是解本题的关键.22.【答案】【解析】解:(I)如图(a),取AA1的中点M,连接EM,BM,因为E是DD1的中点,四边形ADD1A1为正方形,所以EM∥AD.又在正方体ABCD﹣A1B1C1D1中.AD⊥平面ABB1A1,所以EM⊥面ABB1A1,从而BM为直线BE在平面ABB1A1上的射影,∠EBM直线BE与平面ABB1A1所成的角.设正方体的棱长为2,则EM=AD=2,BE=,于是在Rt △BEM 中,即直线BE 与平面ABB 1A 1所成的角的正弦值为. (Ⅱ)在棱C 1D 1上存在点F ,使B 1F 平面A 1BE ,事实上,如图(b )所示,分别取C 1D 1和CD 的中点F ,G ,连接EG ,BG ,CD 1,FG ,因A 1D 1∥B 1C 1∥BC ,且A 1D 1=BC ,所以四边形A 1BCD 1为平行四边形,因此D 1C ∥A 1B ,又E ,G 分别为D 1D ,CD 的中点,所以EG ∥D 1C ,从而EG ∥A 1B ,这说明A 1,B ,G ,E 共面,所以BG ⊂平面A 1BE因四边形C 1CDD 1与B 1BCC 1皆为正方形,F ,G 分别为C 1D 1和CD 的中点,所以FG ∥C 1C ∥B 1B ,且FG=C 1C=B 1B ,因此四边形B 1BGF 为平行四边形,所以B 1F ∥BG ,而B 1F ⊄平面A 1BE ,BG ⊂平面A 1BE ,故B 1F ∥平面A 1BE .【点评】本题考查直线与平面所成的角,直线与平面平行,考查考生探究能力、空间想象能力.23.【答案】【解析】解:(I )当n ≥20时,f (n )=500×20+200×(n ﹣20)=200n+6000, 当n ≤19时,f (n )=500×n ﹣100×(20﹣n )=600n ﹣2000,∴.( II )由(1)得f (18)=8800,f (19)=9400,f (20)=10000,f (21)=10200,f (22)=10400, ∴P (X=8800)=0.1,P (X=9400)=0.2,P (X=10000)=0.3,P (X=10200)=0.3,P (X=10400)=0.1, X24.【答案】(1)极小值为,单调递增区间为()1+∞,,单调递减区间为()01,;(2)()1a e e ⎛⎫∈-∞-+∞ ⎪⎝⎭,,.【解析】试题分析:(1)由1a =⇒()22111'x f x x x x -=-+=.令()'0f x =⇒1x =.再利用导数工具可得:极小值和单调区间;(2)求导并令()'0f x =⇒1x a =,再将命题转化为()f x 在区间(0]e ,上的最小值小于.当10x a=<,即0a <时,()'0f x <恒成立,即()f x 在区间(0]e ,上单调递减,再利用导数工具对的取值进行分类讨论.111]①若1e a≤,则()'0f x ≤对(0]x e ∈,成立,所以()f x 在区间(0]e ,上单调递减, 则()f x 在区间(0]e ,上的最小值为()11ln 0f e a e a e e=+=+>,显然,()f x 在区间(0]e ,的最小值小于0不成立. ②若10e <<,即1a >时,则有所以()f x 在区间(0]e ,上的最小值为ln f a a a a ⎛⎫=+ ⎪⎝⎭,由()11ln 1ln 0f a a a a a a ⎛⎫=+=-< ⎪⎝⎭,得1ln 0a -<,解得a e >,即()a e ∈+∞,,综上,由①②可知,()1a e e ⎛⎫∈-∞-+∞ ⎪⎝⎭,,符合题意.……………………………………12分考点:1、函数的极值;2、函数的单调性;3、函数与不等式.【方法点晴】本题考查导数与函数单调性的关系、不等式的证明与恒成立问题,以及逻辑思维能力、等价转化能力、运算求解能力、分类讨论的思想与转化思想. 利用导数处理不等式问题.在解答题中主要体现为不等式的证明与不等式的恒成立问题.常规的解决方法是首先等价转化不等式,然后构造新函数,利用导数研究新函数的单调性和最值来解决,当然要注意分类讨论思想的应用.。