安徽省2020届高三数学上学期10月联考试题理
- 格式:doc
- 大小:444.50 KB
- 文档页数:5
绝密★启用前天一大联考●皖豫名校联盟体2021届高三毕业班上学期第一次大联考地理试题2020年10月考生注意:1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡的指定位置。
2.回答选择题时,远出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动.用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共25小题,每小题2分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
图1为我国某城市7月某日地面热量收支和气温变化示意图、读图完成1~2题。
1.由图可知A.地而是近地面大气主要、直接的热源B.地面热量盈余速度最快时气温最高C.气温最低时地面热量亏损速度最怏D.气温与太阳辐射大致呈正相关2.该城市最有可能是A.拉萨(91°E)B.乌鲁木齐(88°E)C.昆明(103°E)D.上海(121°E)沙特阿拉伯位于阿拉伯半岛上,因大量出口石油而成为世界上最富裕的国家之一、该国也是世界上大的淡化海水生产国,20世纪70年代通过对农业进行大规模补贴,一度成为世界小麦出口国.但近年来该国完全停止了小麦的种植、改为积极在泰国、印度尼西亚等国家投资粮食生产。
图2示意沙特阿拉伯位置及阿拉伯半岛地理事物分布。
据此完成3~5题。
3.与同纬度埃及相比,沙特阿拉伯成为世界上最大的淡化海水生产国的主要影响因素是A.技术B.临海C.资金D.市场4.沙特阿拉伯停止国内小麦生产的主要原因是A.市场需水减少B.土地供应困难C.饮食习惯改变D.种植成本过高5.沙特阿拉伯在泰国、印度尼西亚等国家投资生产的粮食作物最可能是A.小麦B.水稻C.甘蔗D.剑麻鄱阳湖是我国第一大淡水湖,湖水水量变化受江西五条河流径流来水和长江洪水影响。
湖水在入流处和出流处之间的高差作用下的流动称为吞吐流。
安徽省皖豫名校联盟2025届高三上学期10月联考数学试题考生注意:1.答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上,并将考生号条形码粘贴在答题卡上的指定位置.2.回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,则A .B .C .D .2.已知直线与直线,则“”是“”的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.下列四个数中最大的是A .B .C .D.4.某工厂产生的废气经过滤后排放,过滤过程中废气的污染物含量(单位:与时间(单位:h )之间的关系式为,其中为初始污染物含量,均为正的常数,已知过滤前后废气的体积相等,且在前4h 过滤掉了的污染物.如果废气中污染物的含量不超过时达到排放标准,那么该工厂产生的废气要达到排放标准,至少需要过滤的时间为A .4hB .6hC .8hD .12h5.函数的部分图象如图所示,则的解析式可能是A .B .1{244x A xy B x ⎧⎫===<<⎨⎬⎩⎭∣A B ⋂=(1,2)-[1,2)-(2,1)--(2,1]--21:10l a x y ++=2:370l x ay -+=3a =12l l ⊥lg 20lg(lg 20)2(lg 20)1lg 20P mg /L)t 0e(0)tP P t λ-=…0P 0,P λ80%00.04P ()f x ()f x 1()cos f x x x x ⎛⎫=-⎪⎝⎭1()sin f x x x x ⎛⎫=+⎪⎝⎭C .D .6.已知函数在上单调递减,则实数的取值范围是A .B .C .D .7.已知函数,则满足的的取值范围是A .B .C .D .8.定义为不超过的最大整数,区间(或)的长度记为.若关于的不等式的解集对应区间的长度为2,则实数的取值范围为A .B .C .D .二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.已知,若,则下列命题正确的是A .若,则B .若,则C .若,则D .若,则10.已知,且,则A .B .CD.11.已知函数与的导函数分别为与,且的定义域均为为奇函数,则A .B .为偶函数C .D .三、填空题:本题共3小题,每小题5分,共15分.12.若“”是假命题,则实数的最小值为______.1()ln ||f x x x x ⎛⎫=+⎪⎝⎭1()cos f x x x x ⎛⎫=+⎪⎝⎭22,1()1ln(2),1x ax a x f x x x ⎧-+<-=⎨-+-⎩…R a (,0]-∞[0,)+∞[2,)-+∞[2,0]-33()e e x x f x x --=-+(22)(1)6f m f m -++>m (3,)+∞3,2⎛⎫+∞⎪⎝⎭1,3⎛⎫+∞ ⎪⎝⎭7,3⎛⎫+∞⎪⎝⎭[]x x []a b ,(,),[,),(,]a b a b a b b a -x []2[]6k x x >-k 40,5⎛⎤ ⎥⎝⎦14,25⎛⎫⎪⎝⎭1,12⎛⎤⎥⎝⎦4,15⎛⎤⎥⎝⎦,(0,1)(1,)m n ∈⋃+∞211log 2,log 212m n a a==-2a =2mn =2a >2mn >1mn =1a =1mn >1a >0,0ab >>24a b +=1ab (12)2a b + (2)412b a a+…()f x ()g x ()f x '()g x '(),(),(),()f x g x f x g x '',()(6)3()(2),(4)g x f x f x g x g x ''--==-+R (2)(6)0g g +=(4)f x '+()(8)f x f x =+20241()0k g k ==∑π2π,,sin 43x x m ⎡⎤∀∈>⎢⎥⎣⎦m13.若函数在时取得极小值,则的极大值为______.14.已知函数,若存在两条不同的直线与曲线和均相切,则实数的取值范围为______.四、解答题:本题共5小题,共77分、解答应写出文字说明、证明过程或演算步骤.15.(13分)(Ⅰ)已知函数满足,求在区间上的值域;(Ⅱ)若函数的最小值为,且,求的最小值.16.(15分)设是函数的导函数,是函数的导函数,若方程有实数解,则称点为曲线的“拐点”.经过探究发现:任何一个三次函数的图象都有“拐点”,且“拐点”就是三次函数图象的对称中心.已知函数13的图象的对称中心为.(Ⅰ)求实数m ,n 的值;(Ⅱ)求的零点个数.17.(15分)已知函数.(Ⅰ)若,证明:;(Ⅱ)若且存在,使得成立,求的取值范围.18.(17分)已知函数.(Ⅰ)当时,求曲线在点处的切线方程;(Ⅱ)当时,求的极值;(Ⅲ)若恒成立,求的取值范围.19.(17分)已知函数.2e ()1xf x x bx =++2x =()f x ()()3ln f xg x x ==+()y f x =()y g x =m 2()f x ax bx =+()(1)2f x f x x -+=()f x (0,1)2(1)1x y x x =>-M 0m M <<11M m m +-()f x '()f x ()f x ''()f x '()0f x ''=0x ()()0,x f x ()y f x =32()9f x mx nx x =+--(1,2)--()f x 2()ln 1()a f x a x a x=+-∈R 1a =()0f x …0a >0(0,e]x ∈()01f x <-a ()(1)ln ,f x a x x x a =++∈R 2a =-()y f x =(e,(e))f 1a =()f x 2()e x a f x x -+…a e ()ln ,x m f x m x m x x=--∈R(Ⅰ)讨论的单调性.(Ⅱ)当时.(ⅰ)证明:当时,;(ⅱ)若方程有两个不同的实数根,证明:.附:当时,.()f x 1m =2x …()f x x >()f x a =12,x x 122x x +>0x →2e 11,e 7.4,ln 20.7x x-→≈≈数学•答案一、单项选择题:本题共8小题,每小题5分,共40分.1.答案B 命题意图本题考查集合的交运算.解析由已知,得,由,得,所以,所以.2.答案A 命题意图本题考查充分必要条件的判断.解析若,则,解得或,所以“”是“”的充分不必要条件.3.答案C 命题意图本题考查对数函数的性质.解析由的单调性可知,即.故最大的是.4.答案C 命题意图本题考查函数的实际应用.解析依题意得,当时,,当时,,则,可得,即,所以,当时,解得,故至少需要过滤8h才能达到排放标准.5.答案D 命题意图本题考查函数图象的识别.解析对于A ,当时,,排除A ;对于B ,因为,所以函数为偶函数,与函数图象不符,排除B ;对于C ,当时,由0,得,排除C ,故选D .6.答案B 命题意图本题考查函数的单调性.{1}A x x =-∣ (1)244x <<22x -<<{22}B x x =-<<∣{1A B x ⋂=-∣…2}x <12l l ⊥230a a -=0a =3a =3a =12l l ⊥lg y x =lg10lg 20lg100<<1lg 202,<<21lg(lg 20)lg 21,1,(lg 20)lg 20∴<<<- 2lg 20(lg 201)lg 200,(lg 20)lg 20=->∴>2(lg 20)0t =0P P =4t =00(180%)0.2P P P =-=400e0.2P P λ-=4e0.2λ-=1ln 54λ=ln540e t P P -=ln5400e 0.04t P P P -=…8t …(0,1)x ∈()0f x <11()sin()sin f x x x x x x x ⎛⎫⎛⎫-=---=+= ⎪ ⎪⎝⎭⎝⎭()f x 1()sin f x x x x ⎛⎫=+ ⎪⎝⎭0x >1ln ||x x x ⎛⎫+= ⎪⎝⎭1x =解析易知在上单调递减,要使在上单调递减,则需满足解得,即的取值范围是.7.答案D 命题意图本题考查利用函数性质解不等式.解析令为奇函数,且易知在上单调递增.原不等式可转化为,即,解得.8.答案B 命题意图本题考查新定义及不等式与函数综合问题.解析设,作出的图象,因为不等式的解集对应区间的长度为2,所以解集只可能为或.当解集为时,如图(1),数形结合易知即无解.当解集为时,如图,数形结合易知即解得所以.综上,实数的取值范围为.二、多项选择题:本题共3小题,每小题6分,共18分.每小题全部选对的得6分,部分选对的得部分分,有选错的得0分.9.答案ABC 命题意图本题考查指、对数的运算性质和函数的性质.1ln(2)y x =-+[1,)-+∞()f x R 1,2131,aa ⎧-⎪⎨⎪+⎩……0a …a [0,)+∞()(3)3e e,()()0,()xxg x f x x g x g x g x -=+-=-++-=∴ ()g x R (22)(25)3,(1)(2)3,f m g m f m g m -=-++=-+∴ (25)(2)0g m g m -+->(25)(2),252g m g m m m ->-∴->-73m >(),()|26|f x kx g x x ==-(),()f x g x []|2[]6|k x x >-[2,4)[3,5)[2,4)(2)(2),(4)(4),f g f g >⎧⎨⎩…2|226|,4|246|,k k >⨯-⎧⎨⨯-⎩…[3,5)(2)(2)(2),(4)(4),(5)(5),f g f g f g ⎧⎪>⎨⎪⎩……2226,4246, 5256,k k k ⎧⨯-⎪>⨯-⎨⎪⨯-⎩……1,1,24,5k k k ⎧⎪⎪⎪>⎨⎪⎪⎪⎩……1425k <…k 14,25⎛⎤ ⎥⎝⎦解析由题意知,所以,所以.对于A ,若,则,故A 正确;对于B ,若,则,所以,故B 正确;对于C ,若,则,解得,故C 正确;对于D ,若,则,不能得到,故D 错误.10.答案BC命题意图本题考查基本不等式的应用.解析对于A ,因为,所以,所以,故A 错误;对于,当且仅当时等号成立,故B 正确;对于C ,因为C 正确;对于D ,因为,所以,所以,当且仅当时等号成立,故D 错误.11.答案ACD命题意图本题考查抽象函数及函数的性质.解析对于A ,因为为奇函数,所以,令,得,故A 正确;对于B ,由,得,又,所以,即,所以,又的定义域为,故为奇函数,故B 错误;对于C ,由,可得为常数).,又,所以,所以,所以,所以是周期为8的函数,同理也是周期为8的函数,故C 正确;222log 12,log m a n a =-=22log ()21mn a a =-+2212a a mn -+=2a =122mn ==2a >2221(1)1a a a -+=->122mn >=1mn =2210a a -+=1a =1mn >2221(1)0a a a -+=->1a >0,0a b >>42a b =+…2ab …12112141B,(2)442444b a a b a b a b a b ⎛⎛⎫⎛⎫+=++=+++= ⎪ ⎪ ⎝⎭⎝⎭⎝…22b a ==224448a b =++=++=24a b +=42b a =-22(42)164481616b a a a a a a a-+=+=+--…a =4b =-(4)g x +(4)(4)g x g x -+=-+2x =(2)(6)0g g +=()(6)3g x f x --=()(6)0g x f x ''+-=()(2)f x g x ''=-(2)()(6)f x g x f x '''+==--(2)(6)f x f x ''+=--(4)(4)f x f x ''+=--(4)f x '+R (4)f x '+()(2),(4)(4)f x g x g x g x ''=--+=-+()(2)(f x g x b b =-+(6)(4)f x g x b -=-+=(4)g x b -++()(6)3g x f x --=()(6)()(4)3g x f x g x g x b --=++-=()(4)g x g x ++=3,(4)(8)3b g x g x b ++++=+()(8)g x g x =+()g x ()f x对于D ,,令,得,则,再令,得,又是周期为8的函数,所以,因为,所以,又,所以,故D 正确.三、填空题:本题共3小题,每小题5分,共15分.12.答案命题意图本题考查全称量词命题.解析因为“”是假命题,所以“”是真命题,所以,故实数.13.答案命题意图本题考查利用导数研究函数的极值.解析由题意可得,,解得,所以,所以在上单调递增,在上单调递减,在上单调递增,所以的极大值为.14.答案命题意图本题考查导数的几何意义、公切线及函数与方程.解析设曲线上的切点坐标为,由已知得为,即上的切点坐标为,由已知得,则公切线的方程为,即,消去,得.若存在两条不同(4)(4)g x g x -+=-+0x =(4)(4)g g =-(4)0g =4x =(0)(8)g g =-()g x (0)(8)0g g ==(4)(4)g x g x -+=-+(1)(7)0,(3)g g g +=+(5)0g =(2)(6)0g g +=20241()253[(1)(2)(3)(4)(5)(6)(7)k g k g g g g g g g ==+++++++∑(8)]25300g =⨯=π2π,,sin 43x x m ⎡⎤∀∈>⎢⎥⎣⎦π2π,,sin 43x x m ⎡⎤∃∈⎢⎥⎣⎦…m …m e()22e (1)(1)(),(2)01x x x b f x f xbx ''-+-==++1b =-()22e (1)(2)()1x x x f x xx '--=-+()f x (,1)-∞(1,2)(2,)+∞()f x (1)e f =(0,()y f x =(11,,0x x …()f x '=y -=)1x x -y x =+()y g x =()222,3ln ,0x x x +>()g x '=1x()()22213ln y x x x x -+=-2212ln y x x x =++2212ln x x ==+1x 2222ln 4x m x +=的直线与曲线均相切,则关于的方程有两个不同的实数根.设,则,令,得,令,得,所以在上单调递增,在上单调递减,所以,由可得,当且时,,当时,且,则的大致图像如图所示,所以,解得.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.命题意图本题考查二次函数的性质、基本不等式.解析(I )由题意得,即,………………(1分)所以且,解得.所以,…………………………………………………………………………………(3分)则在上单调递增,在上单调递减,又,所以在区间上的值域为.…………………………………………………………(6分)(II ),(),()y f x y g x ==2x 24m =222ln x x +2ln (),0x h x x x +=>21ln ()x h x x '--=()0h x '>10e x <<()0h x '<1ex >()h x 10,e ⎛⎫ ⎪⎝⎭1,e ⎛⎫+∞ ⎪⎝⎭max 1()e e h x h ⎛⎫== ⎪⎝⎭()0h x =21ex =0x →0x >()h x →-∞x →+∞()0h x >()0h x →()h x 20e 4m <<0m <<22(1)(1)2ax bx a x b x x +-+-+=22ax a b x ---=22a -=0a b +=1,1a b =-=2()f x x x =-+()f x 10,2⎛⎫ ⎪⎝⎭1,12⎛⎫ ⎪⎝⎭11(0)(1)0,24f f f ⎛⎫===⎪⎝⎭()f x (0,1)10,4⎛⎤ ⎥⎝⎦22111111x y x f x x x ===-⎛⎫- ⎪⎝⎭当时,,由(I )知,所以,即.……………………………………(9分)所以,……(12分)当且仅当时等号成立.所以的最小值为1.…………………………………………………………………………(13分)16.命题意图本题考查利用导数研究函数的性质.解析(I )因为,所以,所以,………………………………………………………………(3分)又因为的图象的对称中心为,所以…………………………………………………………………(5分)即解得…………………………………………………………………………(7分)(II )由(I )知,,所以,…………………………………………………………(9分)令,得或,……………………………………………………………………(10分)当变化时,的变化情况如下表:-31+0-0+↗14↘-18↗所以的极大值为,极小值为,…………………………………………(13分)1x >101x<<110,4f x ⎛⎫⎛⎤∈⎪ ⎥⎝⎭⎝⎦1[4,)1f x ∈+∞⎛⎫ ⎪⎝⎭4M =11111141(4)2(22)1444444m m m m m m m m m m -⎛⎫⎛⎫+=-++=++⨯+= ⎪ ⎪---⎝⎭⎝⎭…2m =11M m m+-32()913f x mx nx x =+--2()329f x mx nx '=+-()622(3)f x mx n mx n ''=+=+()f x (1,2)--(1)2(3)0,(1)9132,f m n f m n ''⎧-=-+=⎨-=-++-=-⎩30,2,m n m n -+=⎧⎨-+=⎩1,3.m n =⎧⎨=⎩32()3913f x x x x =+--2()3693(3)(1)f x x x x x '=+-=+-()0f x '=3x =-1x =x (),()f x f x 'x (,3)-∞-(3,1)-(1,)+∞()f x '()f x ()f x (3)14f -=(1)18f =-又,所以有3个零点.………………………………………………………………………………(15分)17.命题意图本题考查利用导数研究函数性质.解析(I )若,则,所以.…………(2分)由得,由得,所以在上单调递减,在上单调递增,……………………………………………(4分)所以有极小值,也是最小值,且,所以.……………………………………………………………………………………………(6分)(II )由题意得,…………………………………………………(7分)因为,所以令,得,令,得,故在上单调递减,在上单调递增.………………………………………………(9分)若,则在上的最小值为.………………………………(10分)要使条件成立,只需,解得.…………………………………(12分)若,则在上的最小值为,………………………………………(13分)令,无解.……………………………………………………………………………(14分)故的取值范围为.……………………………………………………………………………(15分)18.命题意图本题考查导数的几何意义及利用导数求函数极值、解决不等式恒成立问题.解析(I )当时,,故曲线在点处的切线方程为.…………………………………………(4分)(II )当时,,则,………………………………(6分)令,得,令,得,(10)6230,(3)140f f -=-<=>()f x 1a =1()ln 1f x x x =+-22111(),0x f x x x x x '-=-=>()0f x '<01x <<()0f x '>1x >()f x (0,1)(1,)+∞()f x min ()(1)0f x f ==()0f x …222()(),0a a a x a f x x x x x '-=-=>0a >()0f x '>x a >()0f x '<0x a <<()f x (0,)a (,)a +∞0e a <<()f x (0,e]()ln 1f a a a a =+-()ln 11f a a a a =+-<-10ea <<e a …()f x (0,e]2(e)1ea f a =+-211ea a +-<-a 10,e ⎛⎫ ⎪⎝⎭2a =-()ln ,()ln ,(e)1,(e)0f x x x x f x x f f ''=-===()y f x =(e,(e))f e y x =-1a =()2ln (0)f x x x x x =+>()3ln f x x '=+()0f x '<30e x -<<()0f x '>3e x ->所以在上单调递减,在上单调递增,………………………………………(8分)所以,无极大值.………………………………………………………(9分)(III )令,由得,…………………………………………………………(10分)令,则在上单调递减,又,故.……………………………………………………………………………………………………(11分)下面证明当时,.易知.……………………………………………(12分)设,则,当时,,当时,,故在上单调递减,在上单调递增,则,即.……(14分)设,则,当时,,当时,,故,则,即.……………………………………………(15分)故,则.故所求的取值范围是.………………………………………………………………………(17分)19.命题意图本题考查利用导数讨论函数的单调性、证明不等式.解析(I )由已知,得.………………………(1分)当时,令,得,令,得,所以在上单调递减,在上单调递增;………………………………………………(2分)当时,令,得,令,得或,所以在上单调递减,在和上单调递增;……………………………(3分)当时,在上恒成立,所以在上单调递增;…………………(4分)()f x ()30,e -()3e ,-+∞()33()e e f x f --==-极小值2()e (1)ln x a g x a x x x x -=-+-+(1)0g …11e(1)1e 0a a a a ---++=-…1()e a q a a -=-()q a R (1)110q =-=1a …1a …()0g x …212e (1)ln e 2ln x a x a x x x x x x x x ---+-+--+…()e 1x p x x =--()e 1x p x '=-(,0)x ∈-∞()0p x '<(0,)x ∈+∞()0p x '>()p x (,0)-∞(0,)+∞()(0)0p x p =…e 1x x +…()ln 1(0)t x x x x =-+>11()1x t x x x '-=-=(0,1)x ∈()0t x '>(1,)x ∈+∞()0t x '<max ()(1)0t x t ==ln 10x x -+…ln 1x x -…121e 2ln e 2(ln )20x x x x x x x x x x x x x ----+=-+--+=…()0g x …a (,1]-∞()222(1)e e e (),0x x x x m x m m f x x x x x x '---=-+=>1m …()0f x '<01x <<()0f x '>1x >()f x (0,1)(1,)+∞1e m <<()0f x '<ln 1m x <<()0f x '>1x >0ln x m <<()f x (ln ,1)m (0,ln )m (1,)+∞e m =()0f x '…(0,)+∞()f x (0,)+∞当时,令,得,令,得或,所以在上单调递减,在和上单调递增.……………………………(5分)(II )(i )由题可知,即证当时,.令,则.………………………………(7分)令,则.令,则,易知在上单调递增.………(8分)所以,则在上单调递增,所以,则在上单调递增,……………………………………(9分)所以,则在上单调递增,所以,原不等式得证.…………………………………………………………………………………………(10分)(ii )当时,,由(I )知在上单调递减,在上单调递增,所以,当且时,,由(i )可知当时,,由方程有两个不同的实数根,得.………………………………………(12分)不妨设,则,要证,即证,又在上单调递增,所以只需证,即证.………………………………………………………………………………(13分)设,则.…………………………………………(14分)e m >()0f x '<1ln x m <<()0f x '>ln x m >01x <<()f x (1,ln )m (0,1)(ln ,)m +∞2x …e 1ln 0x x x x x--->e 1()ln ,2x s x x x x x x =---…()22e (1)1()x x x x s x x '--+-=()2()e (1)1,2x t x x x x x =--+-…()e 21x t x x x '=--()e 21,2x n x x x x =--…()(1)e 2x n x x '=+-()n x '[2,)+∞2()(2)3e 20n x n ''=->…()n x [2,)+∞2()(2)2e 50n x n =->…()t x [2,)+∞2()(2)e 50t x t =->…()0,()s x s x '>[2,)+∞2e 57.4()(2)ln 20.7 2.50.50222s x s =--≈--=>…1m =e 1()ln x f x x x x =--()f x (0,1)(1,)+∞min ()(1)e 1f x f ==-0x >0x →()f x →+∞x →+∞()f x →+∞()f x a =12,x x e 1a >-12x x <121(0,1),(1,),2(1,2)x x x ∈∈+∞-∈122x x +>212x x >-()f x (1,)+∞()()212f x f x >-()()112f x f x >-()()(2)g x f x f x =--222e 1e 1()()(2)(1)(2)x x g x f x f x x x x -'''⎡⎤--=+-=--⎢⎥-⎣⎦设,则,设,则,当时,单调递减,当时,单调递增,又因为,所以存在,使得,………………………………………………………………(15分)当时,,即,当时,,即,所以在上单调递减,在上单调递增.…………………………………………(16分)又因为,所以当时,,当时,,所以当时,单调递减,因为,所以,所以,故原命题得证.…………………………………………………………(17分)2e 1()x h x x -=3(2)e 2()x x h x x '-+=()(2)e 2x u x x =-+()(1)e xu x x '=-01x <<()0,()u x u x '<1x >()0,()u x u x '>(0)0,(1)2e 0,(2)2u u u ==-<=0(1,2)x ∈()00u x =00x x <<()0u x <()0h x '<0x x >()0u x >()0h x '>()h x ()00,x ()0,x +∞2e 1(1)e 1,(2)e 14h h -=-=<-01x <<()e 1h x >-12x <<()e 1h x <-01x <<()(1)[()(2)]0,()g x x h x h x g x '=---<1(0,1)x ∈()1(1)(1)(1)0g x g f f >=-=()()112f x f x >-。
2024-2025年度河南省高三年级联考(二)数学注意事项:1.答题前,考生务必将自己的姓名、考生号、考场号、座位号填写在答题卡上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.4.本试卷主要考试内容:集合与常用逻辑用语,函数与导数,三角函数,平面向量,数列,不等式.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}21A x x =-<,{}3B x a x a =<<+.,若{}15A B x x =<< ,则a =()A.0B.1C.2D.32.已知符号)(表示不平行,向量(1,2)a =--,(,7)b m m =+ .设命题:(0,)p m ∀∈+∞,a )(b ,则()A.:(0,)p m ⌝∃∈+∞,//a b,且p ⌝为真命题B.:(0,)p m ⌝∀∈+∞,//a b,且p ⌝为真命题C.:(0,)p m ⌝∃∈+∞,//a b,且p ⌝为假命题D.:(0,)p m ⌝∀∈+∞,//a b,且p ⌝为假命题3.若||0a b >>,则下列结论一定成立的是()A.22a b ab> B.2211ab a b> C.33a b< D.a c c b->-4.已知等比数列{}n a 的前n 项和为n S ,且31S ma =,则“7m =”是“{}n a 的公比为2”的()A.必要不充分条件B.充分不必要条件C.充要条件D.既不充分也不必要条件5.已知函数3()log f x x =,若0b a >>,且a ,b 是()f x 的图像与直线(0)y m m =>的两个交点对应的横坐标,则4a b +的最小值为()A.2B.4C.6D.86.三角板主要用于几何图形的绘制和角度的测量,在数学、工程制图等领域被广泛应用.如图,这是由两块直角三角板拼出的一个几何图形,其中||||AB AC = ,||||BD BC =,0BD BC ⋅= .连接AD ,若AD x AB y AC =+,则x y -=()A.1B.2D.327.若0a ≠,()2ππsin 066x ax bx c ⎛⎫-++≥ ⎪⎝⎭对[0,8]x ∈恒成立,则()A.0a > B.0bc +> C.0c > D.16b c a-=-8.已知A 是函数()e 3xf x x =+图象上的一点,点B 在直线:30l x y --=上,则||AB 的最小值是()A.72e 22e- B.3C. D.二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.设数列{}n a ,{}n b 的前n 项和分别为n S ,n T ,且3n an b =,则下列结论不正确的是()A.若{}n a 是递增数列,则{}n S 是递增数列B.若{}n a 是递减数列,则{}n S 是递减数列C.若{}n a 是递增数列,则{}n T 是递增数列D.若{}n a 是递减数列,则{}n T 是递减数列10.已知(31)f x +为奇函数,(3)1f =,且对任意x ∈R ,都有(2)(4)f x f x +=-,则必有()A.(11)1f =-B.(23)0f =C.(7)1f =- D.(5)0f =11.已知函数()sin sin 3f x x x =+,则()A.()f x 的图象关于点(π,0)中心对称B.()f x 的图象关于直线π4x =对称C.()f x 的值域为⎡⎢⎣⎦D.()f x 在π3π,24⎡⎤⎢⎥⎣⎦上单调递增三、填空题:本题共3小题,每小题5分,共15分.12.在ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,且1a =,3b =,1cos 3C =,则ABC △外接圆的面积是__________.13.已知某种污染物的浓度C (单位:摩尔/升)与时间t (单位:天)的关系满足指数模型(1)0ek t C C -=,其中0C 是初始浓度(即1t =时该污染物的浓度),k 是常数.第2天(即2t =)测得该污染物的浓度为5摩尔/升,第4天测得该污染物的浓度为15摩尔/升,若第n 天测得该污染物的浓度变为027C ,则n =__________.14.1796年,年仅19岁的高斯发现了正十七边形的尺规作图法.要用尺规作出正十七边形,就要将圆十七等分.高斯墓碑上刻着如图所示的图案.设将圆十七等分后每等份圆弧所对的圆心角为α,则162121tan2k k α==+∑__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)在ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,4cos 5A =,2cos 3cos a C c A =.(1)求sin C 的值;(2)若3a =,求ABC △的周长.16.(15分)已知函数()sin()(0,0,0π)f x A x b A ωϕωϕ=++>><<的部分图象如图所示.(1)求()f x 的解析式;(2)求()f x 的零点;(3)将()f x 图象上的所有点向右平移π12个单位长度,得到函数()g x 的图象,求()g x 在7π0,12⎡⎤⎢⎥⎣⎦上的值域.17.(15分)已知函数3()33xx a f x ⋅=+,且()()66log 3log 122f f +=.(1)求a 的值;(2)求不等式()22310f x x +->的解集.18.(17分)已知函数2()(2)ln(1)2f x ax x x x =++--.(1)当0a =时,求()f x 的单调区间与极值;(2)当0x ≥时,()0f x ≤恒成立,求a 的取值范围.19.(17分)设数列{}n a 的前n 项和为n S ,若对任意的n +∈N ,都有2n n S kS =(k 为非零常数),则称数列{}n a 为“和等比数列”,其中k 为和公比.(1)若23n a n =-,判断{}n a 是否为“和等比数列”.(2)已知{}n b 是首项为1,公差不为0的等差数列,且{}n b 是“和等比数列”,2n b nc =,数列{}n c 的前n 项和为n T .①求{}n b 的和公比;②求n T ;③若不等式2134(1)22nn n n T m -+->--对任意的n +∈N 恒成立,求m 的取值范围.2024-2025年度河南省高三年级联考(二)数学参考答案1.C 由题意可得{}13A x x =<<.因为{}15A B x x =<< ,所以1,35a a ≥⎧⎨+=⎩,解得2a =.2.A :(0,)p m ⌝∃∈+∞,//a b ,当(7)2m m -+=-,即7m =时,//a b,所以p ⌝为真命题.3.B 当3a =,2b =-时,2218,12a b ab =-=,此时22a b ab <,则A 错误.因为||0a b >>,所以a b >,且0ab ≠,所以2210a b >,所以2211ab a b>,则B 正确.当2a =,1b =-时,338,1a b ==-,此时33a b >,则C 错误.当2a =,1b =,3c =时,1a c -=-,2c b -=,此时a c c b -<-,则D 错误.4.A 设{}n a 的公比为q ,则()23123111S a a a q q a ma =++=++=.因为10a ≠,所以21q q m ++=.由7m =,得217q q ++=,即260q q +-=,解得2q =或3q =-.由2q =,得7m =,则“7m =”是“{}n a 的公比为2”的必要不充分条件.5.B 由题意可得01a b <<<,1b a=,则44a b +≥,当且仅当42a b ==时,等号成立.故4a b +的最小值为4.6.A 如图,以A 为原点,AB ,AC的方向分别为x ,y 轴的正方向,建立直角坐标系,设1AB =,则(0,0)A ,(1,0)B ,(0,1)C ,故(1,0)AB = ,(0,1)AC =.作DF AB ⊥,交AB 的延长线于点F .设||1AB = ,则||||1BF DF ==,所以(2,1)D ,所以(2,1)AD = .因为AD x AB y AC =+,所以2,1x y ==,则1x y -=.7.B 因为[0,8]x ∈,所以πππ7π,6666x ⎡⎤-∈-⎢⎥⎣⎦.当[0,1)x ∈时,ππsin 066x ⎛⎫-< ⎪⎝⎭;当()1,7x ∈时,ππsin 066x ⎛⎫-> ⎪⎝⎭;当(7,8]x ∈时,ππsin 066x ⎛⎫-< ⎪⎝⎭.因为()2ππsin 066x ax bx c ⎛⎫-++≥ ⎪⎝⎭对[0,8]x ∈恒成立,所以1,7是20ax bx c ++=的两根,且0a <,则17,17,b ac a ⎧+=-⎪⎪⎨⎪⨯=⎪⎩故80b a =->,70c a =<,15b c a -=-,0b c a +=->.8.D由题意可得()(1)e x x f x +'=.设()()g x f x '=,则()(2)e xg x x '=+,当1x <-时,()0f x '<,当1x >-时,()0g x '>,()f x '单调递增.因为(0)1f '=,所以()(1)e 1xf x x '=+=,得0x =,此时(0,3)A ,故min ||AB ==.9.ABD当7n a n =-时,{}n a 是递增数列,此时{}n S 不是递增数列,则A 错误.当12n a n =-+时,{}n a 是递减数列,此时{}n S 不是递减数列,则B 错误.由{}n a 是递增数列,得{}n b 是递增数列,且0n b >,则{}n T 是递增数列,故C 正确.由{}n a 是递减数列,得{}n b 是递减数列,且0n b >,则{}n T 是递增数列,故D 错误.10.CD由(31)f x +为奇函数,可得(31)(31)f x f x -+=-+,则()f x 的图象关于点(1,0)对称.又(2)(4)f x f x +=-,所以()f x 的图象关于直线3x =对称,则()f x 是以8为周期的周期函数,所以(7)(3)1f f =-=-,(5)(1)0f f ==,(11)(3)1f f ==,(23)(7)1f f ==-,故选CD.11.ACD因为(π)(π)sin(π)sin 3(π)sin(π)sin 3(π)0f x f x x x x x ++-=++++-+-=,所以()f x 的图象关于点(π,0)中心对称,则A 正确.由题意可得()sin sin 32sin 2cos f x x x x x =+=,则ππππ2sin 2cos 2cos 2cos 4244f x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫+=++=+ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,ππππ2sin 2cos 2cos 2cos 4244f x x x x x ⎛⎫⎛⎫⎛⎫⎛⎫-=--=- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,所以ππ44f x f x ⎛⎫⎛⎫+≠- ⎪ ⎪⎝⎭⎝⎭,所以()f x 的图象不关于直线π4x =对称,则B 错误.由题意可得3()2sin 2cos 4sin 4sin f x x x x x ==-.设sin [1,1]t x =∈-,则3()44y g t t t ==-+,故()22()124431g t t t '=-+=--.由()0g t '>,得3333t -<<;由()0g t '<,得313t -≤<-或313t <≤,则()g t 在31,3⎡⎫--⎪⎢⎣⎭和3,13⎛⎤⎥⎝⎦上单调递减,在33,33⎛⎫- ⎪⎝⎭上单调递增.因为(1)(1)0g g -==,38339g ⎛⎫-=- ⎪⎝⎭,38339g ⎛⎫=⎪⎝⎭,所以8383()99g t ⎡∈-⎢⎣⎦,即()f x 的值域是838399⎡-⎢⎣⎦,则C 正确.当π3π,24x ⎡⎤∈⎢⎥⎣⎦时,2sin 2t x ⎤=∈⎥⎣⎦.因为sin t x =在π3π,24⎡⎤⎢⎥⎣⎦上单调递减,且()g t在,13⎤⎥⎣⎦上单调递减,所以()f x 在π3π,24⎡⎤⎢⎥⎣⎦上单调递增,则D 正确.12.9π4由余弦定理可得22212cos 1921383c a b ab C =+-=+-⨯⨯⨯=,则c =因为1cos 3C =,所以22sin 3C =,则ABC △外接圆的半径32sin 2c R C ==,故ABC 外接圆的面积为29ππ4R =.13.7由题意可得030e 5,e 15,k kC C ⎧=⎨=⎩则2e 3k =,解得ln32k =.因为(1)00e 27k n C C -=,即3ln(1)200e 27n C C -=,所以ln 3(1)2e 27n -=,所以ln 3(1)ln 273ln 32n -==,解得7n =.14.15由题可知2π17α=,则222π11tan 1tan π217cos 17k k k α+=+=,则161616162211112π2π2π2cos 1cos 16cos 1717171tan 2k k k k k k k k α====⎛⎫==+=+ ⎪⎝⎭+∑∑∑∑.由161611π2π(21)π(21)π33πππ2sin cos sin sin sin sin 2sin 17171717171717k k k k k ==+-⎡⎤⋅=-=-=-⎢⎥⎣⎦∑∑,得1612πcos117k k ==-∑,故原式16115=-=.15.解:(1)因为4cos 5A =,且0πA <<,所以3sin 5A ==.因为2cos 3cos a C c A =,所以2sin cos 3sin cos A C C A =,所以342cos 3sin 55C C ⨯=⨯,即cos 2sin C C =.因为22sin cos 1C C +=,所以21sin 5C =.因为0πC <<,所以5sin 5C =.(2)由(1)可知3sin 5A =,4cos 5A =,5sin 5C =,25cos 5C =,则3254525sin sin()sin cos cos sin 55555B AC A C A C =+=+=⨯+⨯=.由正弦定理可得sin sin sin a b cA B C==,则sin sin a B b A ==sin sin a Cc A==,故ABC △的周长为3a b c ++=+.16.解:(1)由图可知3(1)22A --==,3(1)12b +-==,()f x 的最小正周期7ππ2π1212T ⎛⎫=-= ⎪⎝⎭.因为2π||T ω=,且0ω>,所以2ω=.因为()f x 的图象经过点π,312⎛⎫⎪⎝⎭,所以ππ2sin 2131212f ϕ⎛⎫⎛⎫=⨯++= ⎪ ⎪⎝⎭⎝⎭,即πsin 16ϕ⎛⎫+=⎪⎝⎭,所以ππ2π()62k k ϕ+=+∈Z ,即π2π()3k k ϕ=+∈Z .因为0πϕ<<,所以π3ϕ=.故π()2sin 213f x x ⎛⎫=++ ⎪⎝⎭.(2)令()0f x =,得π1sin 232x ⎛⎫+=- ⎪⎝⎭,则ππ22π()36x k k +=-∈Z 或π5π22π()36x k k +=-∈Z ,解得ππ4x k =-或7ππ()12k k -∈Z ,故()f x 的零点为ππ4k -或7ππ()12k k -∈Z .(3)由题意可得πππ()2sin 212sin 211236g x x x ⎡⎤⎛⎫⎛⎫=-++=++ ⎪ ⎪⎢⎝⎭⎝⎭⎣⎦.因为7π0,12x ⎡⎤∈⎢⎥⎣⎦,所以ππ4π2,663x ⎡⎤+∈⎢⎥⎣⎦.当ππ262x +=,即π6x =时,()g x 取得最大值π36g ⎛⎫= ⎪⎝⎭;当π4π263x +=,即7π12x =时,()g x 取得最小值7π112g ⎛⎫=- ⎪⎝⎭.故()g x 在7π0,12⎡⎤⎢⎥⎣⎦上的值域为1⎡⎤⎣⎦.17.解:(1)因为3()33x x a f x ⨯=+,所以221393(2)333933x x x x a a af x --+⨯-===+++,则33()(2)3333x xx a a f x f x a ⨯+-=+=++.又666log 3log 12log 362+==,所以()()66log 3log 12f f a +=,从而2a =.(2)由(1)可知236()23333x x x f x ⨯==-++,显然()f x 在R 上单调递增.因为1(0)2f =,所以由()22310f x x +->,可得()23(0)f x x f +>,则230x x +>,解得3x <-或0x >,故不等式()22310f x x +->的解集为(,3)(0,)-∞-+∞ .18.解:(1)当0a =时,2()2ln(1)2f x x x x =+--,其定义域为(1,)-+∞,则()222(2)22111x x x x f x x x x x ---+'=--==+++.当(1,0)x ∈-时,()0f x '>,()f x 的单调递增区间为(1,0)-,当(0,)x ∈+∞时,()0f x '<,()f x 的单调递减区间为(0,)+∞,故()f x 的极大值为(0)0f =,无极小值.(2)设1t x =+,[1,)t ∈+∞,2()(2)ln 1g t at a t t =+--+,[1,)t ∈+∞,则2()ln 2at a t t a tg -=+-+'.设()()h t g t '=,则222222()2a a t at a h t t t t --++-'=--=.设2()22m t t at a =-++-,则函数()m t 的图象关于直线4at =对称.①当2a ≤时,()m t 在[1,)+∞上单调递减.因为(1)240m a =-≤,所以2()220m t t at a =-++-≤在[1,)+∞上恒成立,即()0h t '≤在[1,)+∞上恒成立,则()h t 在[1,)+∞上单调递减,即()g t '在[1,)+∞上单调递减,所以()(1)0g t g ''≤=,所以()g t 在[1,)+∞上单调递减,则()(1)0g t g ≤=,即()0f x ≤在[0,)+∞上恒成立,故2a ≤符合题意.②当2a >时,()m t 在[1,)+∞上单调递减或在[1,)+∞上先增后减,因为(1)240m a =->,所以存在01t >,使得()00m t =.当()01,t t ∈时,()0m t >,即()0h t '>,所以()g t '在()01,t 上单调递增.因为(1)0g '=,所以()0g t '>在()01,t 上恒成立,所以()g t 在()01,t 上单调递增,则()0(1)0g t g >=,故2a >不符合题意.综上,a 的取值范围为(,2]-∞.19.解:(1)因为23n a n =-,所以121n a n +=-,所以12n n a a +-=.因为11a =-,所以{}n a 是首项为-1,公差为2的等差数列,则22n S n n =-,所以2244n S n n =-,所以222444422n n S n n n S n n n --==--.因为442n n --不是常数,所以{}n a 不是“和等比数列”.(2)①设等差数列{}n b 的公差为d ,前n 项和为n S ,则21(1)1222n n n d d S nb d n n -⎛⎫=+=+- ⎪⎝⎭,所以222(2)n S dn d n =+-.因为{}n b 是“和等比数列”,所以2n n S kS =,即222(2)22kd kd dn d n n k n ⎛⎫+-=+- ⎪⎝⎭,所以2,22,2kd d kd d k ⎧=⎪⎪⎨⎪-=-⎪⎩解得4,2,k d =⎧⎨=⎩即{}n b 的和公比为4.②由①可知12(1)21n b n n =+-=-,则212n n n c -=,所以35211232222n n n T -=++++ ,所以2352121112122222n n n n nT -+-=++++ ,所以235212121211122311111422222212nn n n n n n T -++⎡⎤⎛⎫⨯-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦=++++-=- ,即2132344332n n n T ++=-⨯,所以21834992nn n T -+=-⨯.③设2121212134834348103429922992n n n n n n n n n n P T ----++++=-=--=-⨯⨯,12121103710345(1)092924n n n n nn n n P P ++-+++-=-⨯+⨯=>.不等式2134(1)22n n n n T m -+->--对任意的n +∈N 恒成立,即不等式(1)2n n P m >--对任意的n +∈N 恒成立.当n 为奇数时,()1min 23n m P P --<==-,则1m >;当n 为偶数时,()2min 122n m P P -<==-,则32m <.综上,m 的取值范围是31,2⎛⎫⎪⎝⎭.。
安徽省全国示范高中名校2020届高三上学期10月联考物理试题注意事项:1.答题前填写好自己的姓名、班级、考号等信息; 2.请将答案正确填写在答题卡上。
第I 卷(选择题)一、单选题1.如图所示,绕过定滑轮的细线连着两个小球,小球a 、b 分别套在水平和竖直杆上。
某时刻连接两球的细线与竖直方向的夹角均为37°,此时a 、b 两球的速度大小之比abv v 为(已知sin37°=0.6,cos37°=0.8) ( ) A .43B .34C .259D .25162.如图所示,为某质点做直线运动的v -t 图像,则下列说法正确的是( ) A .t =1.5s 时质点的速度为零 B .t =4s 时质点的运动方向发生改变 C .0~4s 内质点的平均速度为2m/sD .0~4s 内质点的加速度为1m/s 23.已知地球的半径为R ,地球的同步卫星离地面的距离为h ,赤道上物体的线速度大小为 ,则地球的第一宇宙速度大小为( )A.B .C .D .4.如图所示,物块在倾角为θ=37°的斜面上,若只用沿斜面向上的推力F 1,可以使物块能沿斜面向上做匀速直线运动,此时F 1的大小等于物块重力的0.8倍;若只用水平向右的推力F 2,也能使物块沿斜面向上做匀速直线运动,物块与斜面间的动摩擦因素处处相同,则12F F 为(已知sin37°=0.6,cos37°=0.8) ( )A .12B .1320 C .43D .535.有甲、乙两只船,它们在静水中航行速度分别为v 1、v 2且21v ,现在两船从同一渡口向河对岸开去,已知甲船用最短时间渡河,乙船以最短航程渡河,结果两船抵达对岸的地点恰好相同。
则甲、乙两船渡河所用时间之比t 1:t 2为( ) A .1B1C .1:3D .3:16.如图所示,在平直公路上有两辆同向匀速行驶的A 、B 汽车,A 车的速度为10m/s ,B 车的速度为12m/s 。
江淮十校2020届高三第一次联考数学(理科) 2019.8命题单位:阜阳一中 命题人:孙晓林 杨敏 王小云审题人:肖璐洋注意事项:1. 答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上。
2. 回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3. 考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合1,0A y y x x x ⎧⎫==+≠⎨⎬⎩⎭,集合{}240B x x =-≤,若A B P =I ,则集合P 的子集个数为A.2B.4C.8D.162.复数z 满足342z i ++=,则z z ⋅的最大值是A.7B.49C.9D.813.设a ,b ,c 为正数,则“a b c +>”是“222a b c +>”的A.充分不必要条件B.必要不充分条件C.充要条件 D 既不充分也不必要条件.4.已知向量a r ,b r 均为非零向量,()2a b a -⊥r r r ,a b =r r,则a r ,b r 的夹角为A.6πB.3π C.23π D.56π 5.已知ln x π=,13y e-=,13log z π=,则A.x y z <<B.z x y <<C.z y x <<D.y z x <<6.勒洛三角形是具有类似圆的“定宽性”的面积最小的曲线,它由德国机械工程专家,机构运动学家勒洛首先发现,其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形.现在勒洛三角形中随机取一点,则此点取自正三角形外的概率为A.()23323ππ-- B.()323π- C.()323π+ D.()23323ππ-+7.如图,在正方体1111ABCD A B C D -中,F 是棱11A D 上的动点,下列说法正确的是A.对任意动点F ,在平面11ADD A 内不存在...与平面CBF 平行的直线B.对任意动点F ,在平面ABCD 内存在..与平面CBF 垂直的直线C.当点F 从1A 运动到1D 的过程中,FC 与平面ABCD 所成角变大..D.当点F 从1A 运动到1D 的过程中,点D 到平面CBF 的距离逐渐变小..8.某创业公司共有36名职工,为了了解该公司职工年龄构成情况,随机采访了9位代表,将数据制成茎叶图如图.若用样本估计总体,年龄在(),x s x s -+内的人数占公司总人数的百分比是(其中x 为平均数,s 为标准差,结果精确到1%)A.56%B.14%C.25%D.67%9.将余弦函数的图像向右平移2π个单位后,再保持图像上点的纵坐标不变,横坐标变为原来的一半,得到函数()f x 的图像,下列关于()f x 的叙述正确的是A.最大值为1,且关于3,04π⎛⎫⎪⎝⎭对称B.周期为π,关于直线2x π=对称C.在,68ππ⎛⎫-⎪⎝⎭上单调递增,且为奇函数 D.在0,4π⎛⎫⎪⎝⎭上单调递减,且为偶函数 10.对任意实数x ,恒有10xe ax --≥成立,关于x 的方程()ln 10x a x x ---=有两根为1x ,2x (12x x <),则下列结论正确的为A.122x x +=B.121x x ⋅=C.122x x =D.12xx e =11.已知双曲线2222:1x y C a b-=的两条渐近线分别为1l 与2l ,A 与B 为1l 上关于坐标原点对称的两点,M 为2l 上一点且AM BM k k e ⋅=,则双曲线离心率e 的值为A.B.12C.212.在四面体ABCD 中,若1AD DB AC CB ====,则当四面体ABCD 的体积最大时其外接球表面积为A.53πB.43πC.πD.2π二、填空题:本题共4小题,每小题5分,共20分13.已知实数x ,y 满足210020x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则目标函数2z x y =+的最小值为14.已知()()512x x a ++的展开式中各项系数和为2,则其展开式中含2x 项的系数是15.关于x 的方程sin 2cos 0x x a ++=在0,2π⎛⎫⎪⎝⎭内有解,则实数a 的取值范围是16.已知抛物线2:4C x y =的焦点为F ,过F 作直线l 交抛物线于A ,B 两点,且2AF FB λ=u u u r u u u r (λ为非零常数).以A 为切点作抛物线C 的切线交直线1y =-于M 点,则MF 的长度为 (结果用含λ式子表示).三、解答题:共70分。
安徽皖南八校2020届高三上学期第二次联考数学理一、单选题1.已知集合2A x x ,03B x x ,则()R AC B ()A .[2,)B .(3,)C .[0,3]D .(,2)[2,)【答案】B2.已知12i zi ,则z()A .1355iB .1355iC .1355iD .1355i【答案】B 3.某地某所高中2019年的高考考生人数是2016年高考考生人数的1.2倍,为了更好地对比该校考生的升学情况,统计了该校2016年和2019年的高考升学情况,得到如图所示:则下列结论正确的()A .与2016年相比,2019年一本达线人数有所减少B .与2016年相比,2019年二本达线人数增加了1倍C .与2016年相比,2019年艺体达线人数相同D .与2016年相比,2019年不上线的人数有所增加【答案】D4.已知两个单位向量12,e e 满足12|2|7e e ,则12,e e 的夹角为()A .23B .34C .3D .4【答案】A5.函数22sin ()cos x x f x xx 在[2,2]上的图象大致为()A .B .C .D .【答案】D6.已知斐波那契数列的前七项为:1、1、2、3、5、8,13.大多数植物的花,其花瓣数按层从内往外都恰是斐波那契数,现有层次相同的“雅苏娜”玫瑰花3朵,花瓣总数为99,假设这种"雅苏娜”玫瑰花每层花瓣数由内向外构成斐波那契数列,则一朵该种玫瑰花最可能有()层.A .5B .6C .7D .8【答案】C 7.如图,正方体1111ABCDA B C D 中,点E ,F 分别是,AB AD 的中点,O 为正方形ABCD 的中心,则()A .直线EF ,AO 是异面直线B .直线EF ,1BB 是相交直线C .直线EF 与1BC 所成的角为30D .直线EF ,1BB 所成角的余弦值为33【答案】C8.执行如图所示的程序框图,输出的S 的值为()A .0B .2C .4D .2【答案】B 9.已知定义在R 上的奇函数()f x 满足(2)()f xf x ,且在区间[1,2]上是减函数,令ln 2a,121()4b,12log 2c,则(),(),()f a f b f c 的大小关系为()A .()()()f b f c f aB .()()()f a f c f bC .()()()f c f b f a D .()()()f c f a f b 【答案】C10.已知2F 是双曲线22:193xyC 的右焦点,动点A 在双曲线左支上,点B 为圆22:(2)1E xy上一点,则2ABAF 的最小值为()A .9B .8C .53D .63【答案】A 11.关于函数()cos sin f x x x 有下述四个结论:①()f x 的最小值为2;②()f x 在[,2]上单调递增;③函数()1yf x 在[,]上有3个零点;④曲线()yf x 关于直线x对称.其中所有正确结论的编号为()A .①②B .②③C .②④D .③④【答案】D 12.已知三棱锥PABC 满足PA底面ABC ,在ABC 中,6AB ,8AC ,AB AC ,D 是线段AC 上一点,且3AD DC ,球O 为三棱锥P ABC 的外接球,过点D 作球O 的截面,若所得截面圆的面积的最小值与最大值之和为40,则球O 的表面积为()A .72πB .86C .112D .128【答案】C二、填空题13.已知曲线()(1)ln f x ax x 在点(1,0)处的切线方程为1yx ,则实数a 的值为_______.【答案】214.已知正项等比数列n a 的前n 项和为n S ,若22S ,410S ,则5a _______.【答案】32315.《易经》是中国传统文化中的精髓,如图是易经八卦(含乾、坤、巽、震、坎、离、艮、兑八卦),每一卦由三根线组成(""表示一根阳线,""表示一根阴线),从八卦中任取两卦,这两卦的六根线中恰有两根阳线,四根阴线的概率为_______.【答案】31416.点,A B 是抛物线2:2(0)C ypx p上的两点,F 是抛物线C 的焦点,若120AFB,AB 中点D 到抛物线C 的准线的距离为d ,则||dAB 的最大值为_______.【答案】33三、解答题17.在ABC 中,,,a b c 分别为角,,A B C 所对的边,cos 2cos 22sin (C BA sin Asin )C .(1)求角B 的大小;(2)若1c ,ABC 的面积为332,求b .【答案】(1)3;(2)31.18.如图(1),在平面四边形ABCD 中,AC 是BD 的垂直平分线,垂足为E ,AB 中点为F ,3AC,2BD,90BCD,沿BD 将BCD 折起,使C 至C 位置,如图(2).(1)求证:AC BD ;(2)当平面BC D平面ABD 时,求直线AC 与平面C DF 所成角的正弦值.【答案】(1)证明见解析;(2)48585.19.设椭图2222:1(0)x y C abab的左焦点为1F ,右焦点为2F ,上顶点为B ,离心率为33,O 是坐标原点,且1 6.OB F B(1)求椭圆C 的方程;(2)已知过点1F 的直线l 与椭圆C 的两交点为M ,N ,若22MF NF ,求直线l 的方程.【答案】(1)22132xy;(2)210xy 或210xy .20.已知函数1()4cos()23xf x xe,()f x 为()f x 的导函数,证明:(1)()f x 在区间[,0]上存在唯一极大值点;(2)()f x 在区间[,0]上有且仅有一个零点.【答案】(1)证明见解析;(2)证明见解析.21.11月,2019全国美丽乡村篮球大赛在中国农村改革的发源地-安徽凤阳举办,其间甲、乙两人轮流进行篮球定点投篮比赛(每人各投一次为一轮),在相同的条件下,每轮甲乙两人在同一位置,甲先投,每人投一次球,两人有1人命中,命中者得1分,未命中者得-1分;两人都命中或都未命中,两人均得0分,设甲每次投球命中的概率为12,乙每次投球命中的概率为23,且各次投球互不影响.(1)经过1轮投球,记甲的得分为X ,求X 的分布列;(2)若经过n 轮投球,用i p 表示经过第i 轮投球,累计得分,甲的得分高于乙的得分的概率.①求,,p p p ;②规定p ,经过计算机计算可估计得11(1)i ii i p ap bp cp b ,请根据①中,,p p p的值分别写出a ,c 关于b 的表达式,并由此求出数列n p 的通项公式.【答案】(1)分布列见解析;(2)①1231743,,636216p p p ;②116177iiip p p ,11156nnp .【解析】(1)经过1轮投球,甲的得分X 的取值为1,0,1,记一轮投球,甲投中为事件A ,乙投中为事件B ,,A B 相互独立,计算概率后可得分布列;(2)由(1)得1p ,由两轮的得分可计算出2p ,计算3p 时可先计算出经过2轮后甲的得分Y 的分布列(Y 的取值为2,1,0,1,2),然后结合X 的分布列和Y 的分布可计算3p ,由0p ,代入11(1)iii i p ap bp cp b,得两个方程,解得,a c ,从而得到数列{}n p 的递推式,变形后得1{}nn p p 是等比数列,由等比数列通项公式得1nn p p ,然后用累加法可求得n p .【详解】(1)记一轮投球,甲命中为事件A ,乙命中为事件B ,,A B 相互独立,由题意1()2P A ,2()3P B ,甲的得分X 的取值为1,0,1,(1)()P XP AB 121()()(1)233P A P B ,(0)()()()()()()P X P AB P AB P A P B P A P B 12121(1)(1)23232,121(1)()()()(1)236P XP AB P A P B ,∴X 的分布列为:X-11P131216(2)由(1)116p ,2(0)(1)(1)((0)(1))p P X P XP XP XP X111117()2662636,同理,经过2轮投球,甲的得分Y 取值2,1,0,1,2:记(1)P Xx ,(0)P X y ,(1)P X z ,则2(2)P Y x ,(1)P Yxyyx ,2(0)P Yxzzxy ,(1)P Yyzzy ,2(2)P Yz由此得甲的得分Y 的分布列为:Y-2-112P1913133616136∴3111111131143()()3362636636636216p ,∵11(1)iii i p ap bp cp b,00p ,∴1212321p ap bp p ap bp cp ,71136664371721636636a b a bc,∴6(1)717b a b c,代入11(1)i ii i p ap bp cp b得:116177iiip p p ,∴111()6iii i p p p p ,∴数列1{}n n p p 是等比数列,公比为16q,首项为1016p p ,∴11()6n n np p .∴11210()()()n nn nn p p p p p p p 111111()()(1)66656n n n .22.在直角坐标系xOy 中,曲线C 的参数方程为2cos sin xy(为参数),以O 为极点,x 轴正半轴为极轴,建立极坐标系,直线l 的极坐标方程为cos()14.(1)求曲线C 的普通方程和直线l 的直角坐标方程;(2)设直线l 与x 轴的交点为A ,与y 轴的交点为B ,P 是曲线C 上一点,求PAB 面积的最大值.【答案】(1)2221x y,2x y;(2)2.23.已知0,0a b,2 3.ab证明:(1)2295ab;(2)33814.16a bab【答案】(1)证明见解析;(2)证明见解析.。
绝密★考试结束前2024学年第一学期江浙皖高中(县中)发展共同体高三年级10月联考(浙江卷)地理(答案在最后)命题:考生须知:1.本卷满分100分,考试时间90分钟;2.答题前,在答题卷指定区域填写班级、姓名、考场、座位号及准考证号并核对条形码信息;3.所有答案必须写在答题卷上,写在试卷上无效,考试结束后,只需上交答题卷;4.参加联批学校的学生可关注“启望教育”公众号查询个人成绩分析。
一、选择题(本大题共25题,每小题2分,共50分。
每小题列出的四个备选项中只有一个是符合题目要求的,不选、多选、错选均不得分)东北平原土壤肥沃,但近年来,土地退化严重。
政府部门利用遥感与物联网等多种设备和手段对黑土进行多维监测,加强对黑土的精准保护。
据此完成下面小题。
1.影响黑土有机质含量高的主要因素是()A.岩石生物B.气候生物C.地形气候D.时间地形2.利用遥感技术可()A.测算土壤有机碳含量B.开具精准施肥处方C.监测农作物生长趋势D.优化作物种植结构【答案】1.B 2.C【解析】【1题详解】影响东北黑土有机质含量高的要素主要是气候和生物。
湿冷的气候,土壤微生物分解慢,有机质积累多,土壤肥沃,B对;岩石主要影响土壤的矿物组成和理化性质,A错;地形虽然是土壤形成一个影响因素,但相比气候、植被和微生物活动等因素,其对黑土有机质含量的影响较小,CD错。
故选B。
【2题详解】土壤有机碳含量需要地面采样,A错;遥感直接的功能为监测面状地理事物,可以监测农作物生长趋势,C 对;只依靠遥感技术不能开具精准施肥处方和优化作物种植结构,BD错。
故选C。
【点睛】影响土壤形成的因素包括成土母质、气候、生物、地形、时间和人类活动。
东印度洋——西太平洋海区是全球重要的热量和水汽源区。
与南赤道太平洋水体相比,北赤道太平洋水体温度较低。
晚中新世以来,受周边地区强烈构造运动的影响,该海区的洋流系统发生了明显的变化。
下图为构造运动前后该海区及洋流模式示意图。
2024届高三10月大联考(新课标II 卷)(辽宁专用) 数学·全解全析及评分标准一、选择题:本题共8小题,每小题5分,共40分。
在每小题给出的四个选项中,只有一个选项是符合题目要求的。
1.B 【解析】由题意,知{|44}{4,3,2,1,0,1,2,3,4}A x x Z .又{|14}B x x ,所以{1,0,1,2,3}A B ,所以()A A B {4,3,2,4} .故选B .2.A 【解析】若“ 是第二象限角”,则sin 0,tan 0 ,所以sin tan 0 ,所以“ 是第二象限角”是“sin tan 0 ”的充分条件;若sin tan 0 ,则sin 0,tan 0 或sin 0,tan 0 ,所以θ是第二象限角或第三象限角,则“ 是第二象限角”不是“sin tan 0 ”的必要条件,故选A . 3.D 【解析】方法一:由题意,知函数242()log 2xf x x x的定义域为(2,2) ,关于原点对称,且242()()log ()2xf x x f x x,所以函数()f x 是奇函数,其图象关于原点对称,故排除B ,C ; 当(0,2)x 时,212x x ,即42log 02xx,因此()0f x ,故排除A .故选D . 方法二:由方法一,知函数()f x 是奇函数,其图象关于原点对称,故排除B ,C ; 又21(1)log 302f ,所以排除A .故选D .4.B【解析】方法一:因为||||2,||NO MO MN ,所以π6OMN,||3MP ,所以2()MO OP MO MP MO MO MP MOπ2cos 424236 .故选B .方法二:如图,设MN 的中点为Q ,连接OQ ,则OQ MN .由||||2NO MO,||MN得||MQ ||1OQ ,所以π6OMQ,||3MP ,所以||3PQ ,所以π6POQ ,所以π6POM,||OP ,所以π||||cos 226MO OP OM OP OM OP .故选B .5.C 【解析】令 4.60.1100e 60x y ,得0.1 4.6ln 400.9,x 解得9x ,故至少需要10个月,总质量为 100g 的PBAT 才会被分解为对环境无害的物质.故选C .6.D 【解析】设圆的半径为R ,依题意,由余弦定理,得2222crd (45)2cos 45(2R R R R R ,所以crd(45) .故选D.7.A 【解析】因为1cos (cos cos )sin (sin sin )5,所以11cos()5 ,所以4cos()5.因为(0,2) ,, ,所以π02 ,所以3sin()5 ,所以3sin cos cos sin 5 .又7sin cos 10,所以1cos sin 10 ,所以714sin()sin cos cos sin 10105.故选A . 8.B 【解析】易知2()cos (1)x x f x a a x x a 是偶函数,()()ln 2sin x x f x a a a x x ,当0x 时, 因为1a ,所以ln 0a ,0x x a a .令()2sin x x x ,0x ,则()2cos 0'x x ,所以()x 单调 递增,所以()(0)0x ,所以()0f x ,()f x 在(0,) 上单调递增.构造函数ln ()xg x x,则 ()g'x21ln xx .令()0g'x ,得0e x ,令()0g'x ,得e x ,所以()g x 在区间(0,e)上单调递增,在 区间(e,) 上单调递减.又ln 2ln 424 ,所以(4)(π)(e)g g g ,所以ln 2ln 4ln πln e24πe,所以 111πe22πe ,所以111πee(π)(e )(e )f f f f ,即11πe(π)(e )f f f .故选B.二、选择题:本题共4小题,每小题5分,共20分。
【方法综述】导数中的参数问题主要指的是形如“已知不等式恒成立、存在性、方程的根、零点等条件,求解参数的取值或取值范围”.这类问题在近几年的高考中,或多或少都有在压轴选填题或解答题中出现,属于压轴常见题型。
而要解决这类型的题目的关键,突破口在于如何处理参数,本专题主要介绍分离参数法、分类讨论法及变换主元法等,从而解决常见的导数中的参数问题。
【解答策略】一.分离参数法分离参数法是处理参数问题中最常见的一种手段,是把参数和自变量进行分离,分离到等式或不等式的两边(当然部分题目半分离也是可以的),从而消除参数的影响,把含参问题转化为不含参数的最值、单调性、零点等问题,当然使用这种方法的前提是可以进行自变量和参数的分离. 1.形如()()af x g x =或()()af x g x <(其中()f x 符号确定)该类题型,我们可以把参数和自变量进行完全分离,从而把含参数问题转化为不含参数的最值、单调性或图像问题.例1.已知函数432121()ln 432e f x x x ax x x x =-++-在(0,)+∞上单调递增,则实数a 的取值范围是 A .21[,)e e++∞B .(0,]eC .21[2,)e e--+∞ D .[21,)e -+∞【来源】广东省茂名市五校2020-2021学年高三上学期第一次(10月)联考数学(理)试题 【举一反三】1.(2020·宣威市第五中学高三(理))若函数()f x 与()g x 满足:存在实数t ,使得()()f t g t '=,则称函数()g x 为()f x 的“友导”函数.已知函数21()32g x kx x =-+为函数()2ln f x x x x =+的“友导”函数,则k 的最小值为( ) A .12B .1C .2D .522.(2020·广东中山纪念中学高三月考)若函数()()()2ln 2010a x x x f x x a x x ⎧-->⎪=⎨++<⎪⎩的最大值为()1f -,则实数a 的取值范围为( )导数中的参数问题A .20,2e ⎡⎤⎣⎦B .30,2e ⎡⎤⎣⎦ C .(20,2e ⎤⎦D .(30,2e ⎤⎦3.(2020湖南省永州市高三)若存在,使得成立,则实数的取值范围是( )A .B .C .D .2.形如()(),f x a g x =或()()af x g x <(其中(),f x a 是关于x 一次函数)该类题型中,参数与自变量可以半分离,等式或不等式一边是含有参数的一次函数,参数对一次函数图像的影响是比较容易分析的,故而再利用数形结合思想就很容易解决该类题目了.【例2】已知函数2ln 1()x mx f x x+-=有两个零点a b 、,且存在唯一的整数0(,)x a b ∈,则实数m 的取值范围是( ) A .0,2e ⎛⎫ ⎪⎝⎭B .ln 2,14e ⎡⎫⎪⎢⎣⎭C .ln 3,92e e ⎡⎫⎪⎢⎣⎭D .ln 2e 0,4⎛⎫⎪⎝⎭【举一反三】1.(2020·重庆市第三十七中学校高三(理))已知函数32()32f x x x ax a =-+--,若刚好有两个正整数(1,2)i x i =使得()0i f x >,则实数a 的取值范围是( )A .20,3⎡⎫⎪⎢⎣⎭B .20,3⎛⎤ ⎥⎦⎝C .2,13⎡⎫⎪⎢⎣⎭D .1,13⎡⎫⎪⎢⎣⎭2(2020济宁市高三模拟)已知当时,关于的方程有唯一实数解,则所在的区间是( ) A .(3,4)B .(4,5)C .(5,6)D .(6.7) 3.(2020蚌埠市高三)定义在上的函数满足,且,不等式有解,则正实数的取值范围是( )A .B .C .D .二.分类讨论法分类讨论法是指通过分析参数对函数相应性质的影响,然后划分情况进行相应分析,解决问题的方法,该类方法的关键是找到讨论的依据或分类的情况,该方法一般在分离参数法无法解决问题的情况下,才考虑采用,常见的有二次型和指对数型讨论. 1.二次型根的分布或不等式解集讨论该类题型在进行求解过程,关键步骤出现求解含参数二次不等式或二次方程, 可以依次考虑依次根据对应定性(若二次项系数含参),开口,判别式,两根的大小(或跟固定区间的端点比较)为讨论的依据,进行分类讨论,然后做出简图即可解决.【例3】(2020·全国高三专题)函数()()23xf x x e =-,关于x 的方程()()210f x mf x -+=恰有四个不同实数根,则正数m 的取值范围为( ) A .()0,2 B .()2,+∞C .3360,6e e ⎛⎫+ ⎪⎝⎭D .336,6e e ⎛⎫++∞ ⎪⎝⎭【举一反三】1.(2020·湖南衡阳市一中高三月考(理))已知函数()f x kx =,ln ()x g x x=,若关于x 的方程()()f x g x =在区间1[,]e e 内有两个实数解,则实数k 的取值范围是( )A .211[,)2e eB .11(,]2e eC .21(0,)eD .1(,)e+∞2.(2020扬州中学高三模拟)已知函数有两个不同的极值点,,若不等式恒成立,则实数的取值范围是_______.2.指数对数型解集或根的讨论该类题型在进行求解过程,关键步骤出现求解含参指对数型不等式或方程, 可以依次考虑依次根据对应指对数方程的根大小(或与固定区间端点的大小)为讨论的依据,进行分类讨论. 即可解决.【例4】(2020•泉州模拟)已知函数f (x )=ae x ﹣x ﹣ae ,若存在a ∈(﹣1,1),使得关于x 的不等式f (x ) ﹣k ≥0恒成立,则k 的取值范围为( ) A .(﹣∞,﹣1] B .(﹣∞,﹣1)C .(﹣∞,0]D .(﹣∞,0)【举一反三】1.函数()()211,12x f x x e kx k ⎛⎫⎛⎤=--∈ ⎪⎥⎝⎦⎝⎭,则()f x 在[]0,k 的最大值()h k =( )A . ()32ln22ln2--B . 1-C . ()22ln22ln2k -- D . ()31k k e k -- 2.(2020·浙江省杭州第二中学高三期中)已知函数()f x 的图象在点()00,x y 处的切线为():l y g x =,若函数()f x 满足x I ∀∈(其中I 为函数()f x 的定义域,当0x x ≠时,()()()00f x g x x x -->⎡⎤⎣⎦恒成立,则称0x 为函数()f x 的“转折点”,已知函数()2122xf x e ax x =--在区间[]0,1上存在一个“转折点”,则a 的取值范围是 A .[]0,eB .[]1,eC .[]1,+∞D .(],e -∞ 【强化训练】1.(2020·重庆南开中学高三)已知函数1()ln f x x a x=++,()f x '是()f x 的导函数,若关于x 的方程(1)()()x f x f x '+=有两个不等的根,则实数a 的取值范围是( )A .1,ln 22⎛⎫-∞- ⎪⎝⎭ B .10,ln 22⎛⎫- ⎪⎝⎭C .1,ln 24⎛⎫-∞- ⎪⎝⎭D .10,ln 24⎛⎫- ⎪⎝⎭2.(2019·重庆万州外国语学校天子湖校区高三开学考试(理))对于任意的正实数x ,y 都有(2x y e -)ln y x xme ≤成立,则实数m 的取值范围为 A .1(,1]e B .21(,1]e C .21(,]e eD .(10,]e3.当0x ≥时,()ln 11xxe a x x ≥++恒成立,则a 的取值范围为( ) A . (],1-∞ B . (],e -∞ C . 1,e⎛⎤-∞ ⎥⎝⎦D . (],0-∞4.(2020四川省成都外国语学校)已知函数 恰好有两个极值点,则的取值范围是( )A .B .C .D .5.(2020·天津耀华中学高三月考)若函数()(sin cos )x f x e x a x =+在(,)42ππ上单调递增,则实数a 的取值范围是( ) A .(,1]-∞B .(,1)-∞C .[1,)+∞D .(1,)+∞6.(2020高三第一次全国大联考)若函数恰有三个零点,则的取值范围为( )A .B .()C .D .()7.(2020·重庆巴蜀中学高三期末)已知关于x 的不等式2(2)1x x m x x e e -+在(-∞,0]上恒成立,则实数m 的取值范围是( ) A .1,2⎡⎫-+∞⎪⎢⎣⎭B .[)0,+∞C .1,3⎡⎫+∞⎪⎢⎣⎭D .[)1,+∞8.(2020·南昌县莲塘第一中学高三期末(理))已知函数()()()2ln 20f x x ax a x a =+++<,()2x xg x e=-,对任意的(]00,2x ∈,关于x 的方程()()0f x g x =在(]0,e 上有实数根,则实数a 的取值范围为( )(其中 2.71828e =为自然对数的底数).A .1,0e ⎡⎫-⎪⎢⎣⎭B .1,e⎛⎤-∞- ⎥⎝⎦C .[),0e -D .(],e -∞-9.(2020广州模拟)已知函数,对任意,,都有,则实数a 的取值范围是A .B .C .D .10.(2020·重庆一中高三期末)定义在R 上且周期为4的函数()f x 满足:当[)1,3x ∈-时,()1,102ln 2,03xx f x x x ⎧⎛⎫-≤≤⎪ ⎪=⎨⎝⎭⎪+<<⎩,若在区间[]0,4上函数()()1g x f x ax =--恰有三个不同的零点,则实数a 的取值范围是( ) A .1ln 310,,143+⎡⎤⎛⎫⋃⎪⎢⎥⎣⎦⎝⎭B .1ln 310,,133+⎡⎤⎛⎫⋃⎪⎢⎥⎣⎦⎝⎭C .1ln 310,,243+⎡⎤⎛⎫⋃⎪⎢⎥⎣⎦⎝⎭D .1ln 310,,233+⎡⎤⎛⎫⋃⎪⎢⎥⎣⎦⎝⎭11.(2020重庆市南开模拟)已知函数,若不等式对任意上恒成立,则实数的取值范围为( )A .B .C .D .12.(2020·广东高三(理))已知函数()21,1ln ,1ax ax x f x x a x x ⎧-+≤=⎨->⎩()a R ∈,若函数()f x 有四个零点,则a 的取值范围是( )A .(),0-∞B .(),e +∞C .()4,+∞D .()24,e13.若对任意的1x ,[)22,0x ∈-,12x x <,122112x x x e x e a x x -<-恒成立,则a 的最小值为( ) A .23e -B .22e -C .21e -D .1e-【来源】安徽省芜湖市芜湖县一中2020届高三下学期仿真模拟理科数学试题 14.若函数()()()1cos 23sin cos 212f x x a x x a x =+++-在0,2π⎡⎤⎢⎥⎣⎦上单调递减,则实数a 的取值范围为 A .11,5⎡⎤-⎢⎥⎣⎦B .1,15⎡⎤-⎢⎥⎣⎦C .[)1,1,5⎛⎤-∞-⋃+∞ ⎥⎝⎦D .(]1,1,5⎡⎫-∞-⋃+∞⎪⎢⎣⎭15.已知函数()(3)(2ln 1)x f x x e a x x =-+-+在(1,)+∞上有两个极值点,且()f x 在(1,2)上单调递增,则实数a 的取值范围是 A .(,)e +∞ B .2(,2)e e C .2(2,)e +∞D .22(,2)(2,)e e e +∞【来源】黑龙江省大庆实验中学2020届高三综合训练(五)数学(文)试题16.若函数sin ()cos a x f x x-=在区间ππ(,)63上单调递增,则实数a 的取值范围是A .(,2)-∞B .(1,2]-C .[2,)+∞D .(2,)+∞17.设0k >,若存在正实数x ,使得不等式14log 20kx x k --⋅≥成立,则k 的最大值为 ( )A .1ln 2e B .ln 2eC .ln 2e D .ln 22【来源】四川省雅安市2021届高三三摸数学(理)试题18.在关于的不等式()2222e e 4e e 4e 0x x x a x a -+++>(其中 2.71828e =为自然对数的底数)的解集中,有且仅有一个大于2的整数,则实数的取值范围为( ) A .4161,5e 2e ⎛⎤⎥⎝⎦ B .241,32e e ⎡⎫⎪⎢⎣⎭C .42164,5e 3e ⎛⎤⎥⎝⎦ D .3294,43e e ⎡⎫⎪⎢⎣⎭ 【来源】四川省攀枝花市2021届高三一模考试数学(理)试题19.若曲线()()2ln 11()f x a x a x a R =+++∈在点()()1,1f 处的切线与直线720x y +-=平行,且对任意的()1212,0,,x x x x ∈+∞≠,不等式()()1212f x f x m x x ->-恒成立,则实数m 的最大值为( ) AB.C.D.【来源】安徽省安庆市2021届高三下学期二模文科数学试题 20.已知函数()()32012xa f x ae x ax a =--->,若函数()y f x =与()()y f f x =有相同的最小值,则a 的最大值为( ).A .1B .2C .3D .421.已知函数21,1()ln 25,1xx f x x x x x ⎧->⎪=⎨⎪--+≤⎩,若函数2()()(12)()1F x f x a f x =+-+恰有5个零点,则实数a 的取值范围是( ) A .743,412⎡⎫⎪⎢⎣⎭B .37,24⎛⎤⎥⎝⎦C .343,212⎛⎫⎪⎝⎭D .1,2⎛⎫-∞-⎪⎝⎭【来源】湖南省常德市2021届高三下学期一模数学试题22.已知函数()()222ln 1f x a x x a a =+->,()2ln xg x e x =--,若()f x 的图象与()g x 的图象在[1,)+∞上恰有两对关于x 轴对称的点,则实数a 的取值范围是( )A .,2e ⎛⎫+∞⎪⎝⎭B .[,)e +∞C .,2e e ⎛⎤⎥⎝⎦D .1,2e ⎛⎫⎪⎝⎭【来源】山西省太原市2021届高三二模数学(理)试题 23.已知函数ln ()xf x x=,若2()()10f x mf x m --->仅有3个整数解,则实数m 的取值范围是( ) A .ln5ln 2(1,1)52-- B .ln5ln 2(1,1]52-- C .ln5ln 2[1,1]52-- D .ln5ln 2[1,1)52-- 24.已知2()2(ln )x e f x t x x x x=-++恰有一个极值点为1,则t 的取值范围是( )A .1(]46e ⎧⎫-∞⋃⎨⎬⎩⎭,B .10,4⎡⎤⎢⎥⎣⎦C .1[0]46e ⎧⎫⋃⎨⎬⎩⎭, D .1(,]4-∞二、填空题25.(2020河北省沧州市模拟)直线与曲线有两个公共点,则实数的取值范围是_____.26.(2020·四川高三期末(理))已知当x ∈R 时,均有不等式()()20xxae aex -+≥成立,则实数a 的取值范围为______.27.(2020·广东金山中学高三期末(理))已知函数()23,11,1x x x f x x x ⎧-+>=⎨-≤⎩,若函数()()1y f x a x =--恰有三个零点,则实数a 的取值范围是____________.28.(2020·江苏高三模拟)已知关于x 的不等式2(1)0x x k e e --+<有且仅有三个整数解,则实数k 的取值范围是______.29.(2020·四川绵阳中学高三(理))若函数21()(ln )2f x x m x x x =+--有且仅有1个零点,则实数m 的取值范围为________.30.(2020·吉林高三(理))已知函数()22ln f x ax x x =-+有两个不同的极值点12,x x ,且不等式()()1212f x f x x x t +<++恒成立,则t 的取值范围是__________.参考答案一.分离参数法分离参数法是处理参数问题中最常见的一种手段,是把参数和自变量进行分离,分离到等式或不等式的两边(当然部分题目半分离也是可以的),从而消除参数的影响,把含参问题转化为不含参数的最值、单调性、零点等问题,当然使用这种方法的前提是可以进行自变量和参数的分离. 1.形如()()af x g x =或()()af x g x <(其中()f x 符号确定)该类题型,我们可以把参数和自变量进行完全分离,从而把含参数问题转化为不含参数的最值、单调性或图像问题.例1.已知函数432121()ln 432e f x x x ax x x x =-++-在(0,)+∞上单调递增,则实数a 的取值范围是 A .21[,)e e++∞B .(0,]eC .21[2,)e e--+∞ D .[21,)e -+∞【来源】广东省茂名市五校2020-2021学年高三上学期第一次(10月)联考数学(理)试题 【答案】A【解析】32()2ln 0f x x ex ax x '=-+-≥在(0,)+∞上恒成立2ln 2xa ex x x⇔≥+-, 设2ln ()2x p x ex x x =+-,221ln 2()()x e x x p x x-+-'=, 当0x e <<时,()0p x '>;当x e >时,()0p x '<;()p x ∴在(0,)e 单调递增,在(,)e +∞单调递减,21()()p x p e e e∴≤=+,21a e e ∴≥+.故选:A . 【举一反三】1.(2020·宣威市第五中学高三(理))若函数()f x 与()g x 满足:存在实数t ,使得()()f t g t '=,则称函数()g x 为()f x 的“友导”函数.已知函数21()32g x kx x =-+为函数()2ln f x x x x =+的“友导”函数,则k 的最小值为( ) A .12B .1C .2D .52【答案】C【解析】()1g x kx '=-,由题意,()g x 为函数()f x 的“友导”函数,即方程2ln 1x x x kx +=-有解,故1ln 1k x x x=++, 记1()ln 1p x x x x =++,则22211()1ln ln x p x x x x x-'=+-=+, 当1x >时,2210x x ->,ln 0x >,故()0p x '>,故()p x 递增; 当01x <<时,2210x x-<,ln 0x <,故()0p x '<,故()p x 递减, 故()(1)2p x p ≥=,故由方程1ln 1k x x x=++有解,得2k ≥,所以k 的最小值为2.故选:C. 2.(2020·广东中山纪念中学高三月考)若函数()()()2ln 2010a x x x f x x a x x ⎧-->⎪=⎨++<⎪⎩的最大值为()1f -,则实数a 的取值范围为( )A .20,2e ⎡⎤⎣⎦B .30,2e ⎡⎤⎣⎦C .(20,2e ⎤⎦D .(30,2e ⎤⎦【答案】B【解析】由12f a -=-+() ,可得222alnx x a --≤-+ 在0x > 恒成立, 即为a (1-lnx )≥-x 2,当x e = 时,0e -> 2显然成立;当0x e << 时,有10lnx -> ,可得21x a lnx ≥-,设201x g x x e lnx =-(),<<,222(1)(23)(1)(1)x lnx x x lnx g x lnx lnx (),---'==-- 由0x e << 时,223lnx << ,则0g x g x ()<,()'在0e (,)递减,且0g x ()< , 可得0a ≥ ;当x e > 时,有10lnx -< ,可得21x a lnx ≤- , 设22(23)1(1)x x lnx g x x e g x lnx lnx -='=--(),>,(), 由32 e x e << 时,0g x g x ()<,()' 在32 e e (,)递减, 由32x e >时,0gx g x '()>,() 在32 ,x e ⎛⎫+∞ ⎪⎝⎭递增, 即有)g x ( 在32x e = 处取得极小值,且为最小值32e , 可得32a e ≤ ,综上可得302a e ≤≤ .故选B .3.(2020湖南省永州市高三)若存在,使得成立,则实数的取值范围是( )A .B .C .D .【答案】D 【解析】原不等式等价于:令,则存在,使得成立又 当时,,则单调递增;当时,,则单调递减,,即当且仅当,即时取等号,即,本题正确选项:2.形如()(),f x a g x =或()()af x g x <(其中(),f x a 是关于x 一次函数)该类题型中,参数与自变量可以半分离,等式或不等式一边是含有参数的一次函数,参数对一次函数图像的影响是比较容易分析的,故而再利用数形结合思想就很容易解决该类题目了.【例2】已知函数2ln 1()x mx f x x+-=有两个零点a b 、,且存在唯一的整数0(,)x a b ∈,则实数m 的取值范围是( ) A .0,2e ⎛⎫ ⎪⎝⎭B .ln 2,14e ⎡⎫⎪⎢⎣⎭C .ln 3,92e e ⎡⎫⎪⎢⎣⎭ D .ln 2e 0,4⎛⎫⎪⎝⎭【答案】B【解析】由题意2ln 1()0x mx f x x+-==,得2ln 1x m x +=, 设2ln 1()(0)x h x x x +=>,求导4332(ln 1)12(ln 1)(2ln 1)()x x x x x h x x x x -+-+-+'=== 令()0h x '=,解得12x e -= 当120x e -<<时,()0h x '>,()h x 单调递增;当12x e->时,()0h x '<,()h x 单调递减;故当12x e -=时,函数取得极大值,且12()2e h e -=又1=x e时,()0h x =;当x →+∞时,2ln 10,0x x +>>,故()0h x →; 作出函数大致图像,如图所示:又(1)1h =,ln 21ln 2(2)44eh +==因为存在唯一的整数0(,)x a b ∈,使得y m =与2ln 1()x h x x+=的图象有两个交点, 由图可知:(2)(1)h m h ≤<,即ln 214em ≤< 故选:B.【方法点睛】已知函数有零点(方程有根)求参数值(取值范围)常用的方法: (1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解. 【举一反三】1.(2020·重庆市第三十七中学校高三(理))已知函数32()32f x x x ax a =-+--,若刚好有两个正整数(1,2)i x i =使得()0i f x >,则实数a 的取值范围是( )A .20,3⎡⎫⎪⎢⎣⎭B .20,3⎛⎤ ⎥⎦⎝C .2,13⎡⎫⎪⎢⎣⎭D .1,13⎡⎫⎪⎢⎣⎭【答案】A【解析】令32()3,()(2)()()()g x x x h x a x f x g x h x =-+=+∴=-,且2'()36g x x x =-+, 因为刚好有两个正整数(1,2)i x i =使得()0i f x >,即()()i i g x h x >, 作出(),()g x h x 的图象,如图所示,其中()h x 过定点(2,0)-,直线斜率为a ,由图可知,203a ≤≤时, 有且仅有两个点()()1,2,2,4满足条件, 即有且仅有121,2x x ==使得()0i f x >.实数a的取值范围是20,3⎛⎤⎥⎦⎝,故选:A2(2020济宁市高三模拟)已知当时,关于的方程有唯一实数解,则所在的区间是( )A.(3,4) B.(4,5) C.(5,6) D.(6.7)【答案】C【解析】由xlnx+(3﹣a)x+a=0,得,令f(x)(x>1),则f′(x).令g(x)=x﹣lnx﹣4,则g′(x)=10,∴g(x)在(1,+∞)上为增函数,∵g(5)=1﹣ln5<0,g(6)=2﹣ln6>0,∴存在唯一x0∈(5,6),使得g(x0)=0,∴当x∈(1,x0)时,f′(x)<0,当x∈(x0,+∞)时,f′(x)>0.则f(x)在(1,x0)上单调递减,在(x0,+∞)上单调递增.∴f(x)min=f(x0).∵﹣4=0,∴,则∈(5,6).∴a所在的区间是(5,6).故选:C3.(2020蚌埠市高三)定义在上的函数满足,且,不等式有解,则正实数的取值范围是()A.B.C.D.【解析】因为,故,因,所以即.不等式有解可化为即在有解.令,则, 当时,,在上为增函数;当时,,在上为减函数;故,所以,故选C.二.分类讨论法分类讨论法是指通过分析参数对函数相应性质的影响,然后划分情况进行相应分析,解决问题的方法,该类方法的关键是找到讨论的依据或分类的情况,该方法一般在分离参数法无法解决问题的情况下,才考虑采用,常见的有二次型和指对数型讨论. 1.二次型根的分布或不等式解集讨论该类题型在进行求解过程,关键步骤出现求解含参数二次不等式或二次方程, 可以依次考虑依次根据对应定性(若二次项系数含参),开口,判别式,两根的大小(或跟固定区间的端点比较)为讨论的依据,进行分类讨论,然后做出简图即可解决.【例3】(2020·全国高三专题)函数()()23xf x x e =-,关于x 的方程()()210f x mf x -+=恰有四个不同实数根,则正数m 的取值范围为( ) A .()0,2 B .()2,+∞C .3360,6e e ⎛⎫+ ⎪⎝⎭D .336,6e e ⎛⎫++∞ ⎪⎝⎭【答案】D【分析】利用导函数讨论函数单调性与极值情况,转化为讨论210t mt -+=的根的情况,结合根的分布求解.【详解】()()()()22331xxx x e x f e x x =+-=+-',令()0f x '=,得3x =-或1x =,当3x <-时,()0f x '>,函数()f x 在(),3-∞-上单调递增,且()0f x >; 当31x -<<时,()0f x '<,函数()f x 在()3,1-上单调递减; 当1x >时,()0f x '>,函数()f x 在()1,+∞上单调递增. 所以极大值()363f e -=,极小值()12f e =-,作出大致图象:令()f x t =,则方程210t mt -+=有两个不同的实数根, 且一个根在360,e ⎛⎫ ⎪⎝⎭内,另一个根在36,e ⎛⎫+∞ ⎪⎝⎭内, 或者两个根都在()2,0e -内.因为两根之和m 为正数,所以两个根不可能在()2,0e -内.令()21g x x mx =-+,因为()010g =>,所以只需360g e ⎛⎫< ⎪⎝⎭,即6336610m e e -+<,得3366e m e >+,即m 的取值范围为336,6e e ⎛⎫++∞ ⎪⎝⎭.故选:D【举一反三】1.(2020·湖南衡阳市一中高三月考(理))已知函数()f x kx =,ln ()xg x x=,若关于x 的方程()()f x g x =在区间1[,]e e 内有两个实数解,则实数k 的取值范围是( )A .211[,)2e eB .11(,]2e eC .21(0,)eD .1(,)e+∞【答案】A【解析】易知当k ≤0时,方程只有一个解,所以k >0.令2()ln h x kx x =-,2121(21)(21)()2kx k x k x h x kx x x --+=-==', 令()0h x '=得2x k =,2x k=为函数的极小值点, 又关于x 的方程()f x =()g x 在区间1[,]e e内有两个实数解,所以()01()0()0212h e h eh k e ek ≥⎧⎪⎪≥⎪⎪⎨<⎪⎪⎪<<⎪⎩,解得211[,)2k e e ∈,故选A.2.(2020扬州中学高三模拟)已知函数有两个不同的极值点,,若不等式恒成立,则实数的取值范围是_______. 【答案】【解析】∵,∴.∵函数有两个不同的极值点,,∴,是方程的两个实数根,且,∴,且,解得.由题意得.令,则,∴在上单调递增,∴.又不等式恒成立,∴,∴实数的取值范围是.故答案为.2.指数对数型解集或根的讨论该类题型在进行求解过程,关键步骤出现求解含参指对数型不等式或方程,可以依次考虑依次根据对应指对数方程的根大小(或与固定区间端点的大小)为讨论的依据,进行分类讨论.即可解决.【例4】(2020•泉州模拟)已知函数f(x)=ae x﹣x﹣ae,若存在a∈(﹣1,1),使得关于x的不等式f(x)﹣k≥0恒成立,则k的取值范围为()A.(﹣∞,﹣1]B.(﹣∞,﹣1)C.(﹣∞,0]D.(﹣∞,0)【答案】A【解析】不等式f(x)﹣k≥0恒成立,即k≤f(x)恒成立;则问题化为存在a ∈(﹣1,1),函数f (x )=ae x ﹣x ﹣ae 有最小值,又f ′(x )=ae x ﹣1,当a ∈(﹣1,0]时,f ′(x )≤0,f (x )是单调减函数,不存在最小值; 当a ∈(0,1)时,令f ′(x )=0,得e x =,解得x =﹣lna , 即x =﹣lna 时,f (x )有最小值为f (﹣lna )=1+lna ﹣ae ; 设g (a )=1+lna ﹣ae ,其中a ∈(0,1),则g ′(a )=﹣e ,令g ′(a )=0,解得a =,所以a ∈(0,)时,g ′(a )>0,g (a )单调递增;a ∈(,1)时,g ′(a )<0,g (a )单调递减;所以g (a )的最大值为g ()=1+ln ﹣•e =﹣1; 所以存在a ∈(0,1)时,使得关于x 的不等式f (x )﹣k ≥0恒成立,则k 的取值范围是(﹣∞,﹣1].故选:A . 【举一反三】1.函数()()211,12x f x x e kx k ⎛⎫⎛⎤=--∈ ⎪⎥⎝⎦⎝⎭,则()f x 在[]0,k 的最大值()h k =( )A . ()32ln22ln2--B . 1-C . ()22ln22ln2k -- D . ()31k k e k -- 【答案】D2.(2020·浙江省杭州第二中学高三期中)已知函数()f x 的图象在点()00,x y 处的切线为():l y g x =,若函数()f x 满足x I ∀∈(其中I 为函数()f x 的定义域,当0x x ≠时,()()()00f x g x x x -->⎡⎤⎣⎦恒成立,则称0x 为函数()f x 的“转折点”,已知函数()2122xf x e ax x =--在区间[]0,1上存在一个“转折点”,则a的取值范围是 A .[]0,e B .[]1,eC .[]1,+∞D .(],e -∞ 【答案】B【解析】由题可得()2xf x e ax =--',则在()00,x y 点处的切线的斜率()0002xk f x e ax ==--',0200122x y e ax x =--,所以函数()f x 的图象在点()00,x y 处的切线方程为:00200001(2)(2)()2x x y e ax x e ax x x ---=---,即切线()00200001:=(2)()+22x x l y g x e ax x x e ax x =-----,令()()()h x f x g x =-,则002200011()2(2)()222x x xh x e ax x e ax x x e ax x =-------++,且0()0h x = 0000()2(2)=+x x x x h x e ax e ax e ax e ax =-------',且0()0h x '=,()x h x e a ='-',(1)当0a ≤时,()0x h x e a =-'>',则()h x '在区间[]0,1上单调递增,所以当[)00,x x ∈,0()()0h x h x ''<=,当(]0,1x x ∈,0()()0h x h x ''>=,则()h x 在区间[)00,x 上单调递减,0()()0h x h x >=,在(]0,1x 上单调递增,0()()0h x h x >=所以当[)00,x x ∈时,0()()0h x x x -<,不满足题意,舍去,(2)当01a <<时, ()0x h x e a =-'>'([]0,1x ∈),则()h x '在区间[]0,1上单调递增,所以当[)00,x x ∈,0()()0h x h x ''<=,当(]0,1x x ∈,0()()0h x h x ''>=,则()h x 在区间[)00,x 上单调递减,0()()0h x h x >=,在(]0,1x 上单调递增,0()()0h x h x >=,所以当[)00,x x ∈时,0()()0h x x x -<,不满足题意,舍去, (3)当1a =,()10x h x e =-'≥'([]0,1x ∈),则()h x '在区间[]0,1上单调递增,取00x =,则()10x h x e x =-->',所以()h x 在区间(]0,1上单调递增,0()()0h x h x >=,当00x x ≠=时,0()()0h x x x ->恒成立,故00x =为函数()2122x f x e ax x =--在区间[]0,1上的一个“转折点”,满足题意。
江淮十校2020届高三第一次联考数学(理科) 2019.8命题单位:阜阳一中 命题人:孙晓林 杨敏 王小云审题人:肖璐洋注意事项:1. 答题前,考生务必将自己的姓名、考生号填写在试卷和答题卡上。
2. 回答选择题时,选出每小题答案后,用铅笔把答题卡对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
回答非选择题时,将答案写在答题卡上。
写在本试卷上无效。
3. 考试结束后,将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知集合1,0A y y x x x ⎧⎫==+≠⎨⎬⎩⎭,集合{}240B x x =-≤,若A B P =,则集合P 的子集个数为A.2B.4C.8D.162.复数z 满足342z i ++=,则z z ⋅的最大值是A.7B.49C.9D.813.设a ,b ,c 为正数,则“a b c +>”是“222a b c +>”的A.充分不必要条件B.必要不充分条件C.充要条件 D 既不充分也不必要条件.4.已知向量a ,b 均为非零向量,()2a b a -⊥,a b =,则a ,b 的夹角为A.6πB.3π C.23π D.56π 5.已知ln x π=,13y e-=,13log z π=,则A.x y z <<B.z x y <<C.z y x <<D.y z x <<6.勒洛三角形是具有类似圆的“定宽性”的面积最小的曲线,它由德国机械工程专家,机构运动学家勒洛首先发现,其作法是:以等边三角形每个顶点为圆心,以边长为半径,在另两个顶点间作一段弧,三段弧围成的曲边三角形就是勒洛三角形.现在勒洛三角形中随机取一点,则此点取自正三角形外的概率为A.7.如图,在正方体1111ABCD A B C D -中,F 是棱11A D 上的动点,下列说法正确的是A.对任意动点F ,在平面11ADD A 内不存在...与平面CBF 平行的直线B.对任意动点F ,在平面ABCD 内存在..与平面CBF 垂直的直线C.当点F 从1A 运动到1D 的过程中,FC 与平面ABCD 所成角变大..D.当点F 从1A 运动到1D 的过程中,点D 到平面CBF 的距离逐渐变小..8.某创业公司共有36名职工,为了了解该公司职工年龄构成情况,随机采访了9位代表,将数据制成茎叶图如图.若用样本估计总体,年龄在(),x s x s -+内的人数占公司总人数的百分比是(其中x 为平均数,s 为标准差,结果精确到1%)A.56%B.14%C.25%D.67%9.将余弦函数的图像向右平移2π个单位后,再保持图像上点的纵坐标不变,横坐标变为原来的一半,得到函数()f x 的图像,下列关于()f x 的叙述正确的是A.最大值为1,且关于3,04π⎛⎫⎪⎝⎭对称B.周期为π,关于直线2x π=对称C.在,68ππ⎛⎫-⎪⎝⎭上单调递增,且为奇函数 D.在0,4π⎛⎫⎪⎝⎭上单调递减,且为偶函数 10.对任意实数x ,恒有10xe ax --≥成立,关于x 的方程()ln 10x a x x ---=有两根为1x ,2x (12x x <),则下列结论正确的为A.122x x +=B.121x x ⋅=C.122x x =D.12xx e =11.已知双曲线2222:1x y C a b-=的两条渐近线分别为1l 与2l ,A 与B 为1l 上关于坐标原点对称的两点,M 为2l 上一点且AM BM k k e ⋅=,则双曲线离心率e 的值为A.C.212.在四面体ABCD 中,若1AD DB AC CB ====,则当四面体ABCD 的体积最大时其外接球表面积为A.53πB.43πC.πD.2π二、填空题:本题共4小题,每小题5分,共20分13.已知实数x ,y 满足210020x x y x y -≥⎧⎪-≤⎨⎪+-≤⎩,则目标函数2z x y =+的最小值为14.已知()()512x x a ++的展开式中各项系数和为2,则其展开式中含2x 项的系数是15.关于x 的方程sin 2cos 0x x a ++=在0,2π⎛⎫⎪⎝⎭内有解,则实数a 的取值范围是16.已知抛物线2:4C x y =的焦点为F ,过F 作直线l 交抛物线于A ,B 两点,且2AF FB λ=(λ为非零常数).以A 为切点作抛物线C 的切线交直线1y =-于M 点,则MF 的长度为 (结果用含λ式子表示).三、解答题:共70分。
平面解析几何1.[湖北省武汉市部分学校2020届高三上学期起点质量监测数学(理)试题] 已知双曲线222:116x y E m-=的离心率为54,则双曲线E 的焦距为A .4B .5C .8D .10【答案】D 【解析】 【分析】通过离心率和a 的值可以求出c ,进而可以求出焦距. 【详解】由已知可得54c a =,又4a =,5c ∴=,∴焦距210c =,故选D.【点睛】本题考查双曲线特征量的计算,是一道基础题.2.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学]若椭圆2221x y a +=经过点1,3P ⎛ ⎝⎭,则椭圆的离心率e =A .2 B 1C D [来 【答案】D3.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] 已知直线l 过抛物线28y x =的焦点F ,与抛物线交于A ,B 两点,与其准线交于点C .若点F 是AC 的中点,则线段BC 的长为A .83B .3C .163D .6【答案】C4.[陕西省汉中市2020届高三教学质量第一次检测考试理科数学试题]若双曲线2222:1(0,0)x y C a b a b-=>>的一条渐近线被曲线22420x y x +-+=所截得的弦长为2,则双曲线C 的离心率为A BC D 【答案】B5.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 椭圆22221(0)x y a b a b+=>>的左、右焦点分别是1F 、2F ,以2F 为圆心的圆过椭圆的中心,且与椭圆交于点P ,若直线1PF 恰好与圆2F 相切于点P ,则椭圆的离心率为A 1B .12C .2D 【答案】A 【解析】 【分析】根据12PF PF ⊥及椭圆的定义可得12PF a c =-,利用勾股定理可构造出关于,a c 的齐次方程,得到关于e 的方程,解方程求得结果.【详解】由题意得:12PF PF ⊥,且2PF c =, 又122PF PF a +=,12PF a c ∴=-,由勾股定理得()222224220a c c c e e -+=⇒+-=,解得1e =. 故选A.6.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 如图,12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的左、右焦点,过2F 的直线与双曲线C 交于,A B 两点.若11::3:4:5AB BF AF =,则双曲线的渐近线方程为A .23y x =±B .22y x =±C .3y x =D .2y x =【答案】A 【解析】 【分析】设1123,4,5,AB BF AF AF x ====,利用双曲线的定义求出3x =和a 的值,再利用勾股定理求c ,由by x a=±得到双曲线的渐近线方程. 【详解】设1123,4,5,AB BF AF AF x ====,由双曲线的定义得:345x x +-=-,解得3x =, 所以2212||46413F F =+=13c ⇒= 因为2521a x a =-=⇒=,所以3b =所以双曲线的渐近线方程为23by x x a=±=±.【点睛】本题考查双曲线的定义、渐近线方程,解题时要注意如果题干出现焦半径,一般会用到双曲线的定义,考查运算求解能力.7.[河南省新乡市高三第一次模拟考试(理科数学)]P 为椭圆19110022=+y x 上的一个动点,N M ,分别为圆1)3(:22=+-y x C 与圆)50()3(:222<<=++r r y x D 上的动点,若||||PN PM +的最小值为17,则=r A .1 B .2 C .3 D .4【答案】B 【解析】8.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学] 如果123,,,P P P 是抛物线2:4C y x =上的点,它们的横坐标123,,,x x x ,F 是抛物线C 的焦点,若12201820x x x +++=,则12||||PF P F + 2018||P F ++=A .2028B .2038C .4046D .4056【答案】B9.[湖南省衡阳县2020届高三12月联考数学(理)试题]【答案】C 【解析】10.[湖北省武汉市部分学校2020届高三上学期起点质量监测数学(理)试题]已知P 是椭圆22:14x y E m+=上任意一点,M ,N 是椭圆上关于坐标原点对称的两点,且直线PM ,PN 的斜率分别为1k ,()2120k k k ≠,若12k k +的最小值为1,则实数m 的值为 A .1 B .2 C .1或16D .2或8【答案】A 【解析】 【分析】先假设出点M ,N ,P 的坐标,然后表示出两斜率的关系,再由12k k +最小值为1运用基本不等式的知识求最小值,进而可以求出m . 【详解】设''0000(,),(,),(,)M x y N x y P x y --,''00'0012',y y y k x x x k y x -+==-+''''0000''''0020102y y y y y y y y x x x x x x k x x k +=+-++-⨯-+-+≥ '220'220y y x x -=-2'20'220(1)(1)442x x x m x m --=-- 4m=,1m ∴=. 故选A. 【点睛】本题大胆设点,表示出斜率,运用基本不等式求参数的值,是一道中等难度的题目.11.[四川省成都外国语学校2019-2020学年高三(上)期中数学试卷(理科)]已知双曲线22221(0,x y a a b-=>0)b >的左、右焦点分别为1F ,2F ,过1F 作圆222x y a +=的切线,交双曲线右支于点M ,若12F MF ∠45=︒,则双曲线的离心率为 A .3 B .2 C .2D .5【答案】A 【解析】 【分析】设切点为N ,连接ON ,过2F 作2F N MN ⊥,垂足为A ,由ON a =,得到12F A b =,在2Rt MF A △中,可得222MF a =,得到122MF b a =+,再由双曲线的定义,解得2b a =,利用双曲线的离心率的定义,即可求解. 【详解】设切点为N ,连接ON ,过2F 作2F N MN ⊥,垂足为A ,由ON a =,且ON 为12F F A △的中位线,可得22212,F A a F N c a b ==-=, 即有12F A b =,在2Rt MF A △中,可得222MF a =,即有122MF b a =+,由双曲线的定义可得1222222MF MF b a a a -=+-=,可得2b a =, 所以223c a b a =+=,所以3==ce a. 故选A.【点睛】本题考查了双曲线的几何性质——离心率的求解,其中求双曲线的离心率(或离心率的取值范围),常见有两种方法:①求出,a c ,代入公式ce a=;②只需要根据一个条件得到关于,,a b c 的齐次式,转化为,a c 的齐次式,然后转化为关于e 的方程(不等式),解方程(不等式),即可得e (e 的取值范围).12.[安徽省2020届高三期末预热联考理科数学]【答案】C13.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学]双曲线2212516y x -=的渐近线方程为_____________.【答案】54y x =±14.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] 双曲线22221(0,0)x y a b a b-=>>的一条渐近线方程为2y x =,则离心率等于 . 515.[陕西省汉中市2020届高三教学质量第一次检测考试理科数学试题] 已知圆02222=--+by ax y x )0,0(>>b a 关于直线022=-+y x 对称,则ba 21+的最小值为________.【答案】2916.[江苏省南通市2020届高三第一学期期末考试第一次南通名师模拟试卷数学试题]已知AB 是圆C :222x y r +=的直径,O 为坐标原点,直线l :2r x c=与x轴垂直,过圆C 上任意一点P (不同于,A B )作直线PA 与PB 分别交直线l 于,M N 两点, 则2OM ONr ⋅的值为 ▲ .【答案】1【解析】设直线,PA PB 的倾斜角分别为,αβ,则2παβ+=,∴tan tan 1αβ=,记直线l :2r x c=与x 轴的交点为H ,如图,()()OM ON OH HM OH HN ⋅=+⋅+,则2(,0)r H c ,0,0OH HN OH HM ⋅=⋅=,∴22||||OM ON OH HM HN OH HM HN ⋅=+⋅=-⋅22422|||||||tan ||||tan |()()r r r HM HN AH BH r r r c c c αβ⋅==+-=-∴242222()()r r OM ON r r c c⋅=--=.即2OM ON r ⋅的值为1. 17.[四川省宜宾市第四中学高2020届一诊模拟考试理科数学]已知椭圆2222:1(0)x y C a b a b+=>>的左、右焦点分别是12F F ,,,A B 是其左、右顶点,点P 是椭圆C 上任一点,且12PF F △的周长为6,若12PF F △面积的最大值为3(1)求椭圆C 的方程;(2)若过点2F 且斜率不为0的直线交椭圆C 于,M N 两个不同点,证明:直线AM 于BN 的交点在一条定直线上.【解析】(1)由题意得222226,123,2,a c bc a b c +=⎧⎪⎪⨯=⎨⎪=+⎪⎩1,3,2,c b a =⎧⎪∴=⎨⎪=⎩∴椭圆C 的方程为22143x y +=; (2)由(1)得()2,0A -,()2,0B ,()21,0F ,设直线MN 的方程为1x my =+,()11,M x y ,()22,N x y ,由221143x mx x y =+⎧⎪⎨+=⎪⎩,得()2243690m y my ++-=,122643m y y m ∴+=-+,122943y y m =-+,()121232my y y y ∴=+, 直线AM 的方程为()1122y y x x =++,直线BN 的方程为()2222y y x x =--, ()()12122222y yx x x x ∴+=-+-, ()()2112212121232322y x my y y x x y x my y y +++∴===---, 4x ∴=,∴直线AM 与BN 的交点在直线4x =上.18.[安徽省合肥一中、安庆一中等六校教育研究会2020届高三上学期第一次素质测试数学(理)试题] 已知B 是抛物线2118y x =+上任意一点,()0,1A -,且点P 为线段AB 的中点. (1)求点P 的轨迹C 的方程;(2)若F 为点A 关于原点O 的对称点,过F 的直线交曲线C 于M 、N 两点,直线OM 交直线1y =-于点H ,求证:NF NH =. 【解析】 【分析】(1)设(),P x y ,()00,B x y ,根据中点坐标公式可得00221x xy y =⎧⎨=+⎩,代入曲线方程即可整理得到所求的轨迹方程;(2)设:1MN y kx =+,()11,M x y ,()22,N x y ,将直线MN 与曲线C 联立,可得124x x =-;由抛物线定义可知,若要证得NF NH =,只需证明HN 垂直准线1y =-,即HN y ∥轴;由直线OM 的方程可求得11,1x H y ⎛⎫-- ⎪⎝⎭,可将H 点横坐标化简为121x x y -=,从而证得HN y ∥轴,则可得结论.【详解】(1)设(),P x y ,()00,B x y ,P 为AB 中点,00221x xy y =⎧∴⎨=+⎩, B 为曲线2118y x =+上任意一点,200118y x ∴=+,代入得24x y =,∴点P 的轨迹C 的方程为24x y =.(2)依题意得()0,1F ,直线MN 的斜率存在,其方程可设为:1y kx =+, 设()11,M x y ,()22,N x y ,联立214y kx x x=+⎧⎨=⎩得:2440x kx --=,则216160k ∆=+>,124x x ∴=-,直线OM 的方程为11y y x x =,H 是直线与直线1y =-的交点, 11,1x H y ⎛⎫∴-- ⎪⎝⎭,根据抛物线的定义NF 等于点N 到准线1y =-的距离,H 在准线1y =-上,∴要证明NF NH =,只需证明HN 垂直准线1y =-, 即证HN y ∥轴,H 的横坐标:111222111144x x x x x x y x x --=-===, ∴HN y ∥轴成立,NF NH ∴=成立. 【点睛】本题考查圆锥曲线中轨迹方程的求解、直线与圆锥曲线综合应用中的等量关系的证明问题;证明的关键是能够利用抛物线的定义将所证结论转化为证明HN y ∥轴,通过直线与抛物线联立得到韦达定理的形式,利用韦达定理的结论证得HN y ∥轴.19.[河南省新乡市高三第一次模拟考试(理科数学)]在直角坐标系xOy 中,点)0,2(-M ,N 是曲线2412+=y x 上的任意一点,动点C 满足MC NC +=0. (1)求点C 的轨迹方程;(2)经过点)0,1(P 的动直线l 与点C 的轨迹方程交于B A ,两点,在x 轴上是否存在定点D (异于点P ),使得BDP ADP ∠=∠?若存在,求出D 的坐标;若不存在,请说明理由.20.[四川省成都外国语学校2019-2020学年高三(上)期中数学试卷(理科)]已知椭圆22212x y C a :+=过点P (2,1). (1)求椭圆C 的方程,并求其离心率;(2)过点P 作x 轴的垂线l ,设点A 为第四象限内一点且在椭圆C 上(点A 不在直线l 上),点A 关于l 的对称点为A ',直线A 'P 与C 交于另一点B .设O 为原点,判断直线AB 与直线OP 的位置关系,并说明理由. 【解析】 【分析】(1)将点P 代入椭圆方程,求出a ,结合离心率公式即可求得椭圆的离心率;(2)设直线():12PA y k x -=-,():12PB y k x -=--,设点A 的坐标为()11x y ,,()22B x y ,,分别求出12x x -,12y y -,根据斜率公式,以及两直线的位置关系与斜率的关系即可得结果.【详解】(1)由椭圆22212x y C a +=: 过点P (2,1),可得28a =.所以222826c a =-=-=,所以椭圆C 的方程为28x +22y =1,则离心率e 622=3(2)直线AB 与直线OP 平行.证明如下: 设直线():12PA y k x -=-,():12PB y k x -=--,设点A (x 1,y 1),B (x 2,y 2),由2218221x y y kx k ⎧+=⎪⎨⎪=-+⎩得()()22241812161640k x k k x k k ++-+--=, ∴21216164241k k x k -+=+,∴21288214k k x k --=+, 同理22288241k k x k +-=+,所以1221641kx x k -=-+, 由1121y kx k =-+,2121y kx k =-++, 有()121228441ky y k x x k k -=+-=-+, ∵A 在第四象限,∴0k ≠,且A 不在直线OP 上, ∴121212AB y y k x x -==-, 又12OP k =,故AB OP k k =, 所以直线AB 与直线OP 平行.【点睛】本题考查椭圆的简单性质,考查了直线与椭圆位置关系的应用,训练了斜率和直线平行的关系,是中档题.21.[陕西省汉中市2020届高三教学质量第一次检测考试理科数学试题]双曲线2215x y -=焦点是椭圆C :22221(0)x y a b a b+=>>顶点,且椭圆与双曲线的离心率互为倒数. (1)求椭圆C 的方程;(2)设动点N M ,在椭圆C上,且3MN =,记直线MN 在y 轴上的截距为m ,求m 的最大值.【解析】(1)双曲线2215x y -=的焦点坐标为().因为双曲线2215x y -=的焦点是椭圆C :22221(0)x y a b a b+=>>的顶点,且椭圆与双曲线的离心率互为倒数,所以a ==1b =. 故椭圆C 的方程为2216x y +=.(2)因为23MN =>,所以直线MN 的斜率存在. 因为直线MN 在y 轴上的截距为m ,所以可设直线MN 的方程为y kx m =+.代入椭圆方程2216x y +=,得()()2221612610k x kmx m +++-=.因为()()()2221224161km k m ∆=-+-()2224160k m =+->,所以2216m k <+. 设()11,M x y ,()22,N x y ,根据根与系数的关系得1221216kmx x k -+=+,()21226116m x x k -=+.则12MN x =-==因为MN == 整理得()42221839791k k m k -++=+. 令211k t +=≥,则21k t =-.所以221875509t t m t -+-=15075189t t ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦75230593-⨯≤=.等号成立的条件是53t =, 此时223k =,253m =,满足2216m k <+,符合题意.故m. 22.[【全国百强校首发】四川省棠湖中学2020届高三一诊模拟考试数学(理)试题] )已知椭圆C 的两个焦点分别为()()121,0,1,0F F -,长轴长为 (1)求椭圆C 的标准方程及离心率;(2)过点()0,1的直线l 与椭圆C 交于A ,B 两点,若点M 满足MA MB MO ++=0,求证:由点M 构成的曲线L 关于直线13y =对称.【解析】(1)由已知,得1a c ==,所以3c e a ===, 又222a b c =+,所以b =所以椭圆C 的标准方程为22132x y +=,离心率3e =.(2)设()11,A x y ,()22,B x y ,(),m m M x y ,①直线l 与x 轴垂直时,点,A B的坐标分别为(0,,(.因为()0,m m MA x y =-,()0m m MB x y =-,()0,0m m MO x y =--, 所以()3,3m m MA MB MC x y ++=--=0. 所以0,0m m x y ==,即点M 与原点重合;②当直线l 与x 轴不垂直时,设直线l 的方程为1y kx =+,由221321x y y kx ⎧+=⎪⎨⎪=+⎩ 得()2232630k x kx ++-=, ()22236123272240k k k ∆=++=+>.所以122632kx x k -+=+,则1224032y y k +=>+, 因为()11,m m MA x x y y =--,()22,m m MB x x y y =--,(),m m MO x y =--, 所以()121203,03m m MA MB MO x x x y y y ++=++-++-=0. 所以123m x x x +=,123m y y y +=.2232m k x k -=+,243032m y k =>+,消去k ,得()2223200m m m m x y y y +-=>.综上,点M 构成的曲线L 的方程为222320x y y +-=. 对于曲线L 的任意一点(),M x y ,它关于直线13y =的对称点为2,3M x y ⎛⎫'- ⎪⎝⎭.把2,3M x y ⎛⎫'- ⎪⎝⎭的坐标代入曲线L 的方程的左端:2222222244232243223203333x y y x y y y x y y ⎛⎫⎛⎫+---=+-+-+=+-= ⎪ ⎪⎝⎭⎝⎭.所以点M '也在曲线L 上.所以由点M 构成的曲线L 关于直线13y =对称.。
绝密★启用前2024届高三10月大联考(全国乙卷)文科数学本卷满分150分,考试时间120分钟.注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}215,1,1,3A x x B =∈+<=-Z∣,则A B ⋃中元素的个数为()A.3B.4C.5D.62.已知命题200:p x x ∃≥>,则命题p 的否定为()A.200x x ∃<≤ B.2x x ∀≥<C.2x x ∀<> D.2x x ∀≥≤3.若不等式2510x ax -+<的解集为1,a a ⎛⎫⎪⎝⎭,则a =()A.12-B.12C.14-D.144.若函数()e ,3ln 2,3x x x f x x x ⎧-≤=⎨->⎩,则()()2ef f =()A.-1B.-2C.1D.ln22-5.已知54:1,:log 2(033a p a q a <<>>且1)a ≠,则p 是q 的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件6.函数()242log 2xf x x x+=-的大致图象是()A. B.C. D.7.白色污染是人们对难降解的塑料垃圾(多指塑料袋)污染环境现象的一种形象称谓,经过长期研究,一种全生物可降解塑料(简称PBAT )逐渐被应用于超市购物袋、外卖包装盒等产品.研究表明,在微生物的作用下,PBAT 最终可被完全分解为二氧化碳和水进入大自然,当其分解率(100%=⨯已分解质量分解率总质量)超过60%时,就会成为对环境无害的物质.为研究总质量为100g 的PBAT 的已分解质量y (单位:g )与时间x (单位:月)之间的关系,某研究所人员每隔1个月测量1次PBAT 的已分解质量,对通过实验获取的数据做计算处理,研究得出已分解质量y 与时间x 的函数关系式为 4.60.1100e x y -=-.据此研究结果可以推测,总质量为100g 的PBAT 被分解为对环境无害的物质的时间至少为()(参考数据:ln40 3.7≈)A.8个月B.9个月C.10个月D.11个月8.已知,0,,2παβαβ⎛⎫∈> ⎪⎝⎭,且()()17cos cos cos sin sin sin ,sin cos 510ααβααβαβ-+-==,则()sin αβ+=()A.45B.35 C.25D.3109.已知O 是ABC 所在平面内一点,若0,,,,,OA OB OC AM xAB AN y AC MO ON x y λ++====均为正数,则xy 的最小值为()A.12B.49C.1D.4310.若函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭∣的部分图象如图所示,则下列说法正确的个数为()①2ω=;②6πϕ=-;③()f x 在5,26ππ⎛⎫⎪⎝⎭上单调递减;④32f π⎛⎫-= ⎪⎝⎭.A.1B.2C.3D.411.已知函数()f x 是偶函数,当0x >时,()2log 1f x x =-,则不等式()()102x f x f x -≥--的解集是()A.11,00,22⎛⎫⎛⎫-⋃ ⎪ ⎪⎝⎭⎝⎭B.][()2,11,2--⋃C.112,0,22⎛⎫⎛⎫--⋃ ⎪ ⎪⎝⎭⎝⎭D.()[)11,2,00,1,222∞⎛⎫⎛⎫--⋃-⋃⋃ ⎪ ⎪⎝⎭⎝⎭12.已知函数()2cos (1)xxf x a ax x a -=+++>,则11e 2,e ,ff fππ⎛⎫⎛⎫- ⎪ ⎪⎝⎭⎝⎭的大小关系为()A.11e e 2f f f ππ⎛⎫⎛⎫<-< ⎪ ⎪⎝⎭⎝⎭.B.11e 2e ff f ππ⎛⎫⎛⎫<<- ⎪ ⎪⎝⎭⎝⎭C.11e2e f ff ππ⎛⎫⎛⎫<<- ⎪ ⎪⎝⎭⎝⎭D.11e e 2f f f ππ⎛⎫⎛⎫-<< ⎪ ⎪⎝⎭⎝⎭二、填空题:本题共4小题,每小题5分,共20分.13.已知向量()()1,2,2,a b x =-= ,若a b ⊥ ,则实数x =__________.14.请写出一个满足对任意的()12,0,x x ∞∈+;都有()()()1212f x x f x f x =的函数__________.15.《海岛算经》是魏晋时期数学家刘徽所著的测量学著作,书中有一道测量山上松树高度的题目,受此题启发,小李同学打算用学到的解三角形知识测量某建筑物上面一座信号塔的高度.如图,把塔底与塔顶分别看作点C ,D ,CD 与地面垂直,小李先在地面上选取点A ,B (点,A B 在建筑物的同一侧,且点,,,A B C D 位于同一个平面内),测得AB =,在点A 处测得点,C D 的仰角分别为30,67 ,在点B 处测得点D 的仰角为33.5 ,则塔高CD 为__________m .(参考数据:3sin375≈)16.已知函数()()ln 2f x x a x x =+-在定义域上单调递增,则实数a 的取值范围为__________.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)已知向量()()sin cos ,1,2cos ,1a x x b x =+=- ,函数()f x a b =⋅,将函数()f x 的图象向右平移6π个单位长度,得到函数()g x 的图象.(1)求函数()f x 的最小正周期和单调递增区间;(2)解方程()0g x =.18.(12分)如图,在平行四边形ABCD 中,13AM AD = ,令,AB a AC b ==.(1)用,a b表示,,AM BM CM ;(2)若2AB AM ==,且10AC BM ⋅= ,求cos ,a b.19.(12分)某公园池塘里浮萍的面积y (单位:2m )与时间t (单位:月)的关系如下表所示:时间/t 月1234浮萍的面积2/m y 35917现有以下三种函数模型可供选择:①y kt b =+,②t y p a q =⋅+,③log a y m t n =⋅+,其中,,,,,,k b p q m n a 均为常数,0a >且1a ≠.(1)直接选出你认为最符合题意的函数模型,并求出y 关于t 的函数解析式;(2)若该公园池塘里浮萍的面积蔓延到22215m ,31m ,211m 所经过的时间分别为123,,t t t ,写出一种123,,t t t 满足的等量关系式,并说明理由.20.(12分)在ABC 中,内角,,A B C 所对的边分别为,,a b c ,且__________.1cossin C A -=;②sin sin sin sin A C A Bbc ab ac --=两个条件中任选一个,填入上面横线处,并解决下列问题.(1)求C ;(2)若ABC 外接圆的半径为ABC 的面积为ABC 的周长.注:若选择不同的条件分别解答,则按第一个解答计分.21.(12分)已知函数()2e 1xf x ax x =-+-.(1)当1a =时,求曲线()y f x =在1x =处的切线方程;(2)若()0f x =有两个不等的实根,求实数a 的取值范围.22.(12分)已知函数()ln 4,f x x a x a =--∈R .(1)讨论函数()f x 的单调性;(2)当1a =时,令()()()2e xF x x f x =--,若0x x =为()F x 的极大值点,证明:()001F x <<.2024届高三10月大联考(全国乙卷)文科数学•全解全析及评分标准一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.B 【解析】因为{}{}221541,0,1,1,1,3A x x x x B =∈+<=∈<=-=-ZZ ∣∣,所以{}1,0,1,3A B ⋃=-,有4个元素,故选B.2.D 【解析】根据特称命题的否定为全称命题,知命题“200x x ∃≥>”的否定是“2x x ∀≥”,故选D.3.A 【解析】因为不等式2510x ax -+<的解集为1,a a ⎛⎫⎪⎝⎭,所以15a a a +=,解得12a =±.又1a a >,所以1a >或0a <,所以12a =-(12a =不满足题意,舍去),当12a =-时,2(5)40a -->,故选A.4.C 【解析】因为2e 3>,所以()22e lne20f =-=,所以()()()2e 0e01f f f ==-=,故选C.5.B 【解析】对于q ,若4log 23a>,则24log log 3a a a >.当01a <<时,243a >,无解.当1a >时,243a <,得2313a <<,即不等式4log 23a >的解集为1,3⎛⎫ ⎪ ⎪⎝⎭.因为1,3⎛⎫ ⎪ ⎪⎝⎭⫋51,3⎛⎫⎪⎝⎭,所以p 是q 的必要不充分条件,故选B.6.D【解析】方法一:由题意,知函数()242log 2xf x x x+=-的定义域为()2,2-,关于原点对称,且()()242()log 2xf x x f x x --=-=-+,所以函数()f x 是奇函数,其图象关于原点对称,故排除B,C ;当()0,2x ∈时,212x x +>-,即42log 02xx +>-,因此()0f x >,故排除A.故选D.方法二:由方法一,知函数()f x 是奇函数,其图象关于原点对称,故排除B,C ;又()211log 302f =>,所以排除A.故选D.7.C 【解析】令 4.60.1100e 60x y -=->,得0.1 4.6ln400.9x >-≈,解得9x >,故至少需要10个月,总质量为100g 的PBAT 才会被分解为对环境无害的物质.故选C.8.A【解析】因为()()1cos cos cos sin sin sin 5ααβααβ-+-=,所以()11cos 5αβ--=,所以()4cos 5αβ-=.因为,0,,2παβαβ⎛⎫∈> ⎪⎝⎭,所以02παβ<-<,所以()3sin 5αβ-=,所以3sin cos cos sin 5αβαβ-=.又7sin cos 10αβ=,所以1cos sin 10αβ=,所以()714sin sin cos cos sin 10105αβαβαβ+=+=+=.故选A.9.B 【解析】因为0OA OB OC ++=,所以点O 是ABC 的重心,所以()()211323AO AB AC AB AC =⨯+=+ .因为,AM xAB AN y AC ==,所以11,AB AM AC AN x y == ,所以1133AO AM AN x y=+ .因为MO ON λ=,所以,,M O N 三点共线,所以11133x y +=,即113x y+=.因为,x y 均为正数,所以11x y +≥32≤,所以49xy ≥1132x y ==,即23x y ==时取等号),所以xy 的最小值为49.故选B.10.C 【解析】由题图,得2A =,最小正周期54126T πππ⎛⎫=⨯-= ⎪⎝⎭.又2T ππω==,所以2ω=,故①正确;()()2sin 2f x x ϕ=+,又()f x 的图象过点5,212π⎛⎫⎪⎝⎭,所以522122k k ππϕπ⨯+=+∈Z ,所以2,3k k πϕπ=-∈Z .又2πϕ<,所以3πϕ=-,故②错误;()2sin 23f x x π⎛⎫=- ⎪⎝⎭,令23t x π=-,当526x ππ<<时,2433t ππ<<,函数sin y t =在24,33ππ⎛⎫⎪⎝⎭上单调递减,故③正确;2sin23f πππ⎛⎫⎛⎫-=--= ⎪ ⎪⎝⎭⎝⎭.故选C.11.D【解析】根据题意,作出函数()y f x =的图象,如图所示.因为函数()y f x =是偶函数,所以()()f x f x -=.由()()102x f x f x -≥--,得()10x f x -≥-,所以()10x f x -≤,所以()()()100f x x f x ⎧-≤⎪⎨≠⎪⎩,所以()100x f x -≥⎧⎨<⎩或()100x f x -≤⎧⎨>⎩,观察图象,得12x ≤<或102x <<或102x -<<或2x <-,故选D.12.B 【解析】易知()2cos (1)xxf x a ax x a -=+++>是偶函数,()()ln 2sin x x f x a a a x x -=-+-',当0x >时,因为1a >,所以ln 0,0x x a a a ->->.令()2sin ,0x x x x ϕ=->,则()2cos 0x x ϕ=->',所以()x ϕ单调递增,所以()()00x ϕϕ>=,所以()()0,f x f x '>在()0,∞+上单调递增.构造函数()ln xg x x=,则()21ln xg x x-='.令()0g x '>,得0e x <<,令()0g x '<,得e x >,所以()g x 在区间()0,e 上单调递增,在区间()e,∞+上单调递减.又ln2ln424=,所以()()()4e g g g π<<,所以ln2ln4ln lne24e ππ=<<,所以111e22e ππ<<,所以111e ee e ff f f ππ⎛⎫⎛⎫⎛⎫<<=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即11ee f f f ππ⎛⎫⎛⎫<<- ⎪ ⎪⎝⎭⎝⎭.故选B .二、填空题:本题共4小题,每小题5分,共20分.13.1【解析】因为a b ⊥ ,所以()1220x ⨯+-=,解得1x =.故填1.14.()12f x x-=(答案不唯一)【解析】任意定义域为()0,∞+的幂函数均可,例如()12f x x-=,()()()()()111122221212121212,f x x x x f x f x x x x x ----==⋅=,即()()()1212f x x f x f x =成立.故可填()12f x x-=.15.24【解析】如图,延长DC 与BA 的延长线交于点E ,则67,30,33.5DAE CAE DBA ∠∠∠=== ,所以33.5ADB ∠= ,所以AD AB ==在ACD 中,37,120CAD ACD ∠∠==,由正弦定理,得3sin37524sin120AD CD =≈=.故填24.16.[)1,∞+【解析】()()ln 2f x x a x x =+-的定义域为()0,∞+,由()()ln 2f x x a x x =+-在定义域上单调递增,得()ln 10af x x x=+-≥'在()0,∞+上恒成立,即ln a x x x ≥-在()0,∞+上恒成立.设()ln (0)g x x x x x =->,所以只需()max (),ln a g x g x x -'≥=,当01x <<时,()0g x '>,当1x >时,()0g x '<,所以()g x 在()0,1上单调递增,在()1,∞+上单调递减,所以()max ()11g x g ==,所以1a ≥,所以实数a 的取值范围为[)1,∞+.故填[)1,∞+.三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)【解析】(1)由已知,得()f x a b =⋅()2cos sin cos 1x x x =+-sin 2cos 2x x=+24x π⎛⎫=+ ⎪⎝⎭所以函数()f x 的最小正周期222T πππω===.由222242k x k k πππππ-≤+≤+∈Z ,解得3,88k x k k ππππ-≤≤+∈Z ,所以函数()f x 的单调递增区间为3,,88k k k ππππ⎡⎤-+∈⎢⎥⎣⎦Z .(2)将函数()f x 的图象向右平移6π个单位长度,得到函数()226412g x x x πππ⎡⎤⎛⎫⎛⎫=-+=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦的图象.令()2012g x x π⎛⎫=-= ⎪⎝⎭,得2,12x k k ππ-=∈Z ,解得,224k x k ππ=+∈Z ,所以方程()0g x =的解集为,224k x x k ππ⎧⎫=+∈⎨⎬⎩⎭Z ∣.18.(12分)【解析】(1)因为,AB a AC b ==,所以BC AC AB b a =-=-,所以()11,33AM BC b a ==-所以()114333BM AM AB b a a b a =-=--=- ,所以()14123333CM BM BC b b a a b =-=---=-- .(2)方法一:由(1)知()114,333AM b a BM =-=-.又,10,2AC b AC BM AB AM =⋅===,所以()14110,2,2333b b a b a a ⎛⎫⋅-=-== ⎪⎝⎭,即222430,236b a b b a a b -⋅=+-⋅=,解得1,a b b ⋅==所以34cos ,68a b a b a b⋅〈〉==.方法二:因为1,23AM AD AM ==,所以6AD =,所以6BC =.因为()22121333AC BM BC BA BA BC BA BA BC BC ⎛⎫⋅=-⋅+=-+⋅+ ⎪⎝⎭,且10AC BM ⋅= ,所以2221262cos 61033ABC ∠-+⨯⨯⨯+=,解得1cos 4ABC ∠=,所以()()22126214a b BA BC BA BA BC BA ⋅=-⋅-=-⋅+=-⨯⨯= .又2,a b ===,所以cos ,68a b a b a b⋅〈〉==.19.(12分)【解析】(1)应选择函数模型②t y p a q =⋅+.依题意,得12335,9p a q p a q p a q ⎧⨯+=⎪⨯+=⎨⎪⨯+=⎩解得12,1p a q =⎧⎪=⎨⎪=⎩所以y 关于t 的函数解析式为21t y =+.(2)1231t t t +=+.理由:依题意,得3122115,2131,21211t t t +=+=+=,所以312214,230,2210t t t ===,所以1222420,t t ⋅=所以3312121222420222t t t t t t ++⋅===⨯=,所以1231t t t +=+.20.(12分)【解析】(11cossin C A -=及正弦定理,得()sin sin 1cos C A A C =-.sin 0,sin A C C ≠∴+= ,sin 32C π⎛⎫∴+= ⎪⎝⎭.又40,333C C ππππ<<∴<+<,2,333C C πππ∴+=∴=.若选②:由sin sin sin sin A C A B bc ab ac --=,得sin sin sin sin a A c C b A b B -=-.由正弦定理,得222a b c ab +-=.由余弦定理,得2221cos 222a b c ab C ab ab +-===.因为()0,C π∈,所以3C π=.(2)设ABC 外接圆的半径为R ,由正弦定理,得2sin 2sin63c R C π==⨯=.又113sin 222ABC S ab C ab ==⨯= ,所以4ab =.由222212cos ()222c a b ab C a b ab ab =+-=+--⨯,可得236()12a b =+-,解得a b +=,所以ABC 的周长为6a b c ++=.21.(12分)【解析】(1)当1a =时,()()2e 1,e 21x xf x x x f x x =-+-'=-+,()()1e 1,1e 1,f f =-=-'所以曲线()y f x =在1x =处的切线方程为()()()e 1e 11y x --=--,即()e 10x y --=.(2)显然()00f =,要使方程()0f x =有两个不等的实根,只需当0x ≠时,()0f x =有且仅有一个实根,当0x ≠时,由方程()0f x =,得2e 1x x a x+-=.令()()2e 10x x g x x x +-=≠,则直线y a =与()()2e 10x x g x x x +-=≠的图象有且仅有一个交点.()()()()()243e 12e 12e1x x x x x x x g x x x +-+---=='.又当0x <时,()()0,g x g x '<单调递减,当02x <<时,()()0,g x g x '<单调递减,当2x >时,()()0,g x g x '>单调递增,所以当2x =时,()g x 取得极小值()2e 124g +=,又当0x <时,e 1x <,所以e 10x x +-<,即()0g x <,当0x >时,e 1,e 10x x x >+->,即()0g x >,所以作出()g x 的大致图象如图所示.由图象,知要使直线y a =与()()2e 10x x g x x x +-=≠的图象有且仅有一个交点,只需0a <或2e 14a +=.综上,若()0f x =有两个不等的实根,则a 的取值范围为()2e 1,04∞⎧⎫+-⋃⎨⎬⎩⎭.22.(12分)【解析】(1)函数()f x 的定义域为()()0,,1a x a f x x x∞-+=-=',①当0a ≤时,()0f x '>,函数()f x 在()0,∞+上单调递增;②当0a >时,由()0f x '>,得x a >,由()0f x '<,得0x a <<,所以,函数()f x 在(),a ∞+上单调递增,在()0,a 上单调递减.综上,当0a ≤时,函数()f x 在()0,∞+上单调递增;当0a >时,函数()f x 在(),a ∞+上单调递增,在()0,a 上单调递减.(2)当1a =时,()()()()()112e ln 4,1e 11e x x x F x x x x F x x x x x ⎛⎫=--++=--+=-- ⎪⎝⎭',设()1e x g x x =-,则()21e x g x x =+',当0x >时,()0g x '>,所以()g x 在()0,∞+上单调递增,又()120,1e 102g g ⎛⎫=-<=-> ⎪⎝⎭,所以存在01,12x ⎛⎫∈ ⎪⎝⎭,使得()00g x =,所以当00x x <<时,()0F x '>,当01x x <<时,()0F x '<,当1x >时,()0F x '>,所以()F x 在()00,x 上单调递增,在()0,1x 上单调递减,在()1,∞+上单调递增,所以当0x x =时,()F x 取得极大值,且001e 0xx -=,所以00001e ,ln x x x x ==-,()()00000000000212e ln 4452x x F x x x x x x x x x ⎛⎫-=--++=--+=-+ ⎪⎝⎭.因为01,12x ⎛⎫∈ ⎪⎝⎭,所以()001F x <<.。
皖中名校联盟2020届高三10月联考物理试题卷考试说明:1.考查范围:必修1、必修22.试卷结构:分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题);试卷分值:100分,考试时间:90分钟。
3.所有答案均要答在答题卷上,否则无效。
考试结束后只交答题卷。
第Ⅰ卷(选择题共40分)一、选择题(本题共10小题,每小题4分。
其中1-7小题只有一个选项符合题意,8-10小题有多个选择符合题意。
答案填涂到答题卡上。
)1.下列说法正确的是()A.牛顿认为力是维持物体运动的原因B.牛顿第一定律、牛顿第二定律都可以通过实验来验证C.国际单位制中,kg、m、N是三个基本单位D.根据速度定义式,当△t→0时,就可以表示物体在t时刻的瞬时速度。
2.一名宇航员在某星球上完成自由落体运动实验,让一个质量为2 kg的小球从一定的高度自由下落,测得在第4s内的位移是42 m,则()A.小球在2 s末的速度是16m/sB.该星球上的重力加速度为12m/s2C.小球在第4 s末的的速度是42 m/sD.小球在4s内的位移是80m3.如图所示,在一张白纸上,用手平推直尺沿纵向匀速移动,同时让铅笔尖靠着直尺沿横向匀加速移动,则笔尖画出的轨迹应为()A. B. C. D.4.如图所示,半圆形框架竖直放置在粗糙的水平地面上,光滑的小球P在水平外力F的作用下处于静止状态,P与圆心O的连线与水平面的夹角为θ,将力F在竖直面内沿顺时针方向缓慢地转过90°,框架与小球始终保持静止状态。
在此过程中下列说法正确的是()A.框架对小球的支持力先减小后增大B.拉力F的最小值为mgsi nθC.地面对框架的摩擦力减小D.框架对地面的压力先增大后减小5.嫦娥三号的飞行轨道示意图如图所示。
假设嫦娥三号在环月段圆轨道和椭圆轨道上运动时,只受到月球的万有引力,则( )A.若已知嫦娥三号环月段圆轨道的半径、运动周期和引力常量,则可算出月球的密度B.嫦娥三号由环月段圆轨道变轨进入环月段椭圆轨道时,应让发动机点火使其加速C.嫦娥三号在环月段椭圆轨道上P点的速度大于Q点的速度D.嫦娥三号在动力下降段,处于超重状态6.如图所示为一皮带传动装置,右轮的半径为r,a是它边缘上的一点,左侧是一轮轴,大轮的半径为4r,小轮的半径为2r,b点在小轮上,到小轮中心的距离为r,c点和d点分别位于小轮和大轮的边缘上,若在传动过程中,皮带不打滑,则下列叙述错误的是()A. a点与d点的线速度大小之比为1:2B. a点与b点的角速度大小相等C. a点与c点的线速度大小相等D. a点与d点的向心加速度大小之比为1:17.如图甲所示,在倾角为37°的粗糙且足够长的斜面底端,一质量m=2 kg可视为质点的滑块压缩一轻弹簧并锁定,滑块与弹簧不相连.t=0时解除锁定,计算机通过传感器描绘出滑块的速度—时间图象如图乙所示,其中Ob段为曲线,bc段为直线,g取10 m/s2,sin37°=0.6,cos37°=0.8.则下列说法正确的是( )A. 0.1 s前加速度一直在减小B.滑块在0.1~0.2 s时间间隔内沿斜面向下运动C.滑块与斜面间的动摩擦因数μ=0.25D.在滑块与弹簧脱离之前,滑块一直在做加速运动8.引力波探测于2020年获得诺贝尔物理学奖。
2020~2020年度高三全国Ⅰ卷五省优创名校联考数学(理科)第Ⅰ卷一、选择题:本大题共12小题.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U=R,集合M={x|3x2-13x-10<0}和N={x|x=2k,k∈Z}的关系的韦恩(Venn)图如图所示,则阴影部分所示的集合的元素共有A.1个B.2个C.3个D.无穷个2.34i34i 12i12i +--= -+A.-4B.4C.-4iD.4i3.如图1为某省2020年1~4月快递业务量统计图,图2是该省2020年1~4月快递业务收入统计图,下列对统计图理解错误的是A.2020年1~4月的业务量,3月最高,2月最低,差值接近2000万件B.2020年1~4月的业务量同比增长率均超过50%,在3月最高C.从两图来看,2020年1~4月中的同一个月的快递业务量与收入的同比增长率并不完全一致D.从1~4月来看,该省在2020年快递业务收入同比增长率逐月增长4.设x,y满足约束条件60330x yxx y-+⎧⎪⎨⎪+-⎩≥≤≥,则11x yzx++=+的取值范围是A.(-∞,-8]∪[1,+∞)B.(-∞,-10]∪[-1,+∞)C.[-8,1]D.[-10,-1]5.某几何体的三视图如图所示,其中,正视图中的曲线为圆弧,则该几何体的体积为A.4643π-B.64-4πC.64-6πD.64-8π6.有一程序框图如图所示,要求运行后输出的值为大于1000的最小数值,则在空白的判断框内可以填入的是A.i<6 B.i<7 C.i<8 D.i<97.在直角坐标系xOy中,F是椭圆C:22221x ya b+=(a>b>0)的左焦点,A,B分别为左、右顶点,过点F作x轴的垂线交椭圆C于P,Q两点,连接PB交y轴于点E,连接AE交PQ 于点M,若M是线段PF的中点,则椭圆C的离心率为A.2 2B.1 2C.1 3D.1 48.已知f(x)为定义在R上的奇函数,g(x)=f(x)-x,且当x∈(-∞,0]时,g(x)单调递增,则不等式f(2x-1)-f(x+2)≥x-3的解集为A.(3,+∞)B.[3,+∞)C.(-∞,3]D.(-∞,3)9.函数f(x)=ln|x|+x2-x的图象大致为A.B.C.D.10.用0与1两个数字随机填入如图所示的5个格子里,每个格子填一个数字,并且从左到右数,不管数到哪个格子,总是1的个数不少于0的个数,则这样填法的概率为A .532 B .516C .1132D .111611.已知函数f (x )=3sin (ωx+φ)(ω>0,0<φ<π),()03f π-=,对任意x ∈R 恒有()|()|3f x f π≤,且在区间(15π,5π)上有且只有一个x 1使f (x 1)=3,则ω的最大值为A .574 B .1114C .1054D .117412.设函数f (x )在定义域(0,+∞)上是单调函数,且(0,)x ∀∈+∞,f[f (x )-e x+x]=e .若不等式f (x )+f′(x )≥ax 对x ∈(0,+∞)恒成立,则a 的取值范围是 A .(-∞,e -2] B .(-∞,e -1] C .(-∞,2e -3] D .(-∞,2e -1]第Ⅱ卷二、填空题:本大题共4小题.将答案填在答题卡中的横线上. 13.已知单位向量a ,b 的夹角为60°,则|2|________|3|+=-a b a b .14.已知正三棱柱ABC —A 1B 1C 1的高为6,AB =4,点D 为棱BB 1的中点,则四棱锥C —A 1ABD的表面积是________.15.在(x2-2x-3)4的展开式中,含x6的项的系数是________.16.已知双曲线C:22221 x yab-=(a>0,b>0),圆M:222()4bx a y-+=.若双曲线C的一条渐近线与圆M相切,则当22224149aaa b-+取得最大值时,C的实轴长为________.三、解答题:解答应写出文字说明、证明过程或演算步骤.第17~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.(一)必考题.17.设数列{a n}的前n项和为S n,a1=3,且S n=na n+1-n2-n.(1)求{a n}的通项公式;(2)若数列{b n}满足22121(1)nnnbn a++=-,求{b n}的前n项和T n.18.△ABC的内角A,B,C所对的边分别为a,b,c.已知22()23sina cb ab C+=+.(1)求B的大小;(2)若b=8,a>c,且△ABC的面积为33,求a.19.如图所示,在四棱锥S—ABCD中,SA⊥平面ABCD,底面ABCD为直角梯形,其中AB∥CD,∠ADC=90°,AD=AS=2,AB=1,CD=3,且CE CSλ=u u u r u u u r.(1)若23λ=,证明:BE⊥CD;(2)若13λ=,求直线BE与平面SBD所成角的正弦值.20.在直角坐标系xOy中,动圆P与圆Q:(x-2)2+y2=1外切,且圆P与直线x=-1相切,记动圆圆心P的轨迹为曲线C.(1)求曲线C的轨迹方程;(2)设过定点S(-2,0)的动直线l与曲线C交于A,B两点,试问:在曲线C上是否存在点M(与A,B两点相异),当直线MA,MB的斜率存在时,直线MA,MB的斜率之和为定值?若存在,求出点M的坐标;若不存在,请说明理由.21.已知函数f(x)=e x+ax2,g(x)=x+blnx.若曲线y=f(x)在点(1,f(1))处的切线与曲线y=g(x)在点(1,g(1))处的切线相交于点(0,1).(1)求a,b的值;(2)求函数g(x)的最小值;(3)证明:当x>0时,f(x)+xg(x)≥(e-1)x+1.(二)选考题:请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.22.[选修4—4:坐标系与参数方程]已知直线l的参数方程为,2x my⎧=⎪⎪⎨⎪=⎪⎩(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,椭圆C的极坐标方程为ρ2cos2θ+3ρ2sin2θ=48,其左焦点F在直线l上.(1)若直线l与椭圆C交于A,B两点,求|FA|+|FB|的值;(2)求椭圆C的内接矩形面积的最大值.23.[选修4—5:不等式选讲]已知函数f(x)=|x+2|-|ax-2|.(1)当a=2时,求不等式f(x)≥2x+1的解集;(2)若不等式f(x)>x-2对x∈(0,2)恒成立,求a的取值范围.2020~2020年度高三全国Ⅰ卷五省优创名校联考数学参考答案(理科)1.C 2.D 3.D 4.A 5.B 6.B 7.C 8.B 9.C 10.B 11.C 12.D 13.114.36 15.121617.解:(1)由条件知S n =na n +1-n 2-n ,① 当n =1时,a 2-a 1=2;当n≥2时,S n -1=(n -1)a n -(n -1)2-(n -1),② ①-②得a n =na n +1-(n -1)a n -2n , 整理得a n +1-a n =2.综上可知,数列{a n }是首项为3、公差为2的等差数列,从而得a n =2n +1. (2)由(1)得222221111[](22)4(1)n n b n n n n +==-++, 所以22222221111111111[(1)()()][1]4223(1)4(1)44(1)n T n n n n =-+-++-=-=-+++L .18.解:(1)由22()sin a c b C +=+得2222sin a c ac b C ++=+,所以2222sin a c b ac C +-+=,即2(cos 1)sin ac B C +=,所以有sin (cos 1)sin C B B C +=,因为C ∈(0,π),所以sinC >0,所以cos 1B B +=,cos 2sin()16B B B π-=-=,所以1sin()62B π-=.又0<B <π,所以666B ππ5π-<-<,所以66B ππ-=,即3B π=.(2)因为11sin 222ac B ac =⋅=ac =12. 又b 2=a 2+c 2-2accosB =(a +c )2-3ac =(a +c )2-36=64, 所以a +c =10,把c =10-a 代入到ac =12(a >c )中,得5a =. 19.(1)证明:因为23λ=,所以23CE CS =,在线段CD 上取一点F 使23CF CD =,连接EF ,BF ,则EF ∥SD 且DF =1. 因为AB =1,AB ∥CD ,∠ADC =90°, 所以四边形ABFD 为矩形,所以CD ⊥BF . 又SA ⊥平面ABCD ,∠ADC =90°, 所以SA ⊥CD ,AD ⊥CD .因为AD∩SA=A ,所以CD ⊥平面SAD . 所以CD ⊥SD ,从而CD ⊥EF .因为BF∩EF=F ,所以CD ⊥平面BEF . 又BE ⊂平面BEF ,所以CD ⊥BE .(2)解:以A 为原点,AD u u u r的正方向为x 轴的正方向,建立空间直角坐标系A —xyz ,则A (0,0,0),B (0,1,0),D (2,0,0),S (0,0,2),C (2,3,0),所以142(,1,)333BE BC CE BC CS =+=+=u u u r u u u r u u u r u u u r u u u r ,(0,1,2)SB =-u u r ,(2,0,2)SD =-u u u r .设n =(x ,y ,z )为平面SBD 的法向量,则0SB SD ⎧⋅=⎪⎨⋅=⎪⎩u u r u u u rn n , 所以20y z x z -=⎧⎨-=⎩,令z =1,得n =(1,2,1).设直线BE 与平面SBD 所成的角为θ,则||2174sin |cos ,|||||BE BE BE θ⋅===u u u ru u u r u u u r n n n .20.解:(1)设P (x ,y ),圆P 的半径为r ,因为动圆P 与圆Q :(x -2)2+y 2=1外切,1r =+,①又动圆P 与直线x =-1相切,所以r =x +1,②由①②消去r 得y 2=8x ,所以曲线C 的轨迹方程为y 2=8x .(2)假设存在曲线C 上的点M 满足题设条件,不妨设M (x 0,y 0),A (x 1,y 1),B (x 2,y 2),则2008y x =,2118y x =,2228y x =, 1010108MA y y k x x y y -==-+,2020208MB y y k x x y y -==-+, 所以120210*********(2)88()MA MB y y y k k y y y y y y y y y y +++=+=+++++,③ 显然动直线l 的斜率存在且非零,设l :x =ty -2,联立方程组282y x x ty ⎧=⎨=-⎩,消去x 得y 2-8ty +16=0,由Δ>0得t >1或t <-1,所以y 1+y 2=8t ,y 1y 2=16,且y 1≠y 2, 代入③式得02008(82)816MA MB t y k k y ty ++=++,令02008(82)816t y m y ty +=++(m 为常数), 整理得2000(864)(1616)0my t my y m -+-+=,④因为④式对任意t ∈(-∞,-1)∪(1,+∞)恒成立,所以0200864016160my my y m -=⎧⎪⎨-+=⎪⎩, 所以024m y =⎧⎨=⎩或024m y =-⎧⎨=-⎩,即M (2,4)或M (2,-4), 即存在曲线C 上的点M (2,4)或M (2,-4)满足题意.21.(1)解:因为f′(x )=e x+2ax ,所以f′(1)=e +2a ,切点为(1,e +a ),所以切线方程为y =(e +2a )(x -1)+(e +a ),因为该切线过点(0,1),所以a=-1.又()1bg xx'=+,g′(1)=1+b,切点为(1,1),所以切线方程为y=(1+b)(x-1)+1,同理可得b=-1.(2)解:由(1)知,g(x)=x-lnx,11 ()1xg xx x-'=-=,所以当0<x<1时,g′(x)<0;当x>1时,g′(x)>0,所以当x=1时,g(x)取极小值,同时也是最小值,即g(x)min=g(1)=1.(3)证明:由(1)知,曲线y=f(x)在点(1,f(1))处的切线方程为y=(e-2)x +1.下面证明:当x>0时,f(x)≥(e-2)x+1.设h(x)=f(x)-(e-2)x-1,则h′(x)=e x-2x-(e-2),再设k(x)=h′(x),则k′(x)=e x-2,所以h′(x)在(0,ln2)上单调递减,在(ln2,+∞)上单调递增.又因为h′(0)=3-e,h′(1)=0,0<<ln2<1,所以h′(ln2)<0,所以存在x0∈(0,1),使得h′(x0)=0,所以,当x∈(0,x0)∪(1,+∞)时,h′(x)>0;当x∈(x0,1)时,h′(x)<0.故h(x)在(0,x0)上单调递增,在(x0,1)上单调递减,在(1,+∞)上单调递增.又因为h(0)=h(1)=0,所以h(x)=f(x)-(e-2)x-1≥0,当且仅当x=1时取等号,所以e x-(e-2)x-1≥x2.由于x>0,所以e(e2)1x xxx---≥.又由(2)知,x-lnx≥1,当且仅当x=1时取等号,所以,e(e2)11lnx xx xx---+≥≥,所以e x-(e-2)x-1≥x(1+lnx),即e x-x2+x(x-lnx)≥(e-1)x+1,即f(x)+xg(x)≥(e-1)x+1.22.解:(1)将cos,sinxyρθρθ=⎧⎨=⎩代入ρ2cos2θ+3ρ2sin2θ=48,得x2+3y2=48,即221 4816x y+=,因为c 2=48-16=32,所以F的坐标为(-,0), 又因为F 在直线l上,所以m =-把直线l的参数方程22x y t ⎧=-⎪⎪⎨⎪=⎪⎩代入x 2+3y 2=48,化简得t 2-4t -8=0,所以t 1+t 2=4,t 1t 2=-8,所以12||||||FA FB t t +=-=== (2)由椭圆C 的方程2214816x y +=,可设椭圆C 上在第一象限内的任意一点M 的坐标为(θ,4sinθ)(02θπ<<),所以内接矩形的面积8sin 2S θθθ=⋅=, 当4θπ=时,面积S取得最大值 23.解:(1)当a =2时,4,2()|2||22|3,214,1x x f x x x x x x x --⎧⎪=+--=-<<⎨⎪-+⎩≤≥,当x≤-2时,由x -4≥2x+1,解得x≤-5;当-2<x <1时,由3x≥2x+1,解得x ∈∅;当x≥1时,由-x +4≥2x+1,解得x =1.综上可得,原不等式的解集为{x|x≤-5或x =1}.(2)因为x ∈(0,2),所以f (x )>x -2等价于|ax -2|<4, 即等价于26a x x-<<, 所以由题设得26a x x-<<在x ∈(0,2)上恒成立, 又由x ∈(0,2),可知21x -<-,63x >, 所以-1≤a≤3,即a 的取值范围为[-1,3].。
安徽省2020届高三数学上学期10月联考试题 理
时间:120分钟 满分:150分
一、选择题:本大题共12小题,每小题5分,共60分。
每一小题给出的四个选项中只有一项是符合题目要求的。
1.复数22(1)1i i
-++共轭复数是 A.1-3i B.1+3i C.-1-3i D.-1+3i
2.已知集合1{0},{lg(21)}x A x
B x y x x
-=≥==-,则A B = A.(0,12) B.(12,1) C.(12,1] D.[12,1] 3.角θ的终边上有-点A(-3,2),则sin2θ= A.1213
- B.513 C.513- D.1213 4.如图所示,在平行四边形ABCD 中,M 为BC 边的中点,N 为线段AM 上靠近M 点的三等分点,则DN =
A.1233AB AD -+
B.1233AB AD -
C.2233AB AD -
D.1536
AB AD - 5.已知等差数列{a n }的前n 项和为S n ,a 1=1,公差d ≠0,a 1、a 2、a 5成等比数列,则S 5=
A.15
B.20
C.21
D.25
6.己知命题p :2
,2sin 10x R x x θ∀∈-+≥,命题q :(0,),sin x x x ∃∈+∞>,则下列命题为真命题的是(
A.(⌝p)∧q
B.⌝(p ∨q)
C.(⌝p)∨q
D.p ∧(⌝q) 7.函数1()cos 1
x x e f x x e -=+的部分图像大致为
8.己知函数()2cos 2f x x x =+,把函数f(x)的图像沿x 轴向左平移
6
π个单位,得到函数g(x)的图像,关于函数g(x),下列说法正确的是 A.在[
4π,2π]上是增函数 B.其图像关于直线x =-4
π对称 C.函数g(x)是奇函数 D.在区间[6π,23π]上的值域为[-2,1] 9.在四棱锥P -ABCD 中,PA ⊥平面ABCD ,底面ABCD 为矩形,AB =1,AD =2,PC =3,则该四棱锥的外接球体积为
B.92π D.43
π 10.函数f(x)=
12
ax 2-2ax +lnx 在(1,3)上不单调,则实数a 的取值范围为 A.(-∞,-13) B.(1,+∞) C.(-∞,-13)∪(1,+∞) D.(-∞,-12)∪ (2,+∞)
11.已知函数f(x)=x 3
+sinx(x ∈R),函数g(x)满足g(x)+g(2-x)=0(x ∈R),若函数h(x)=f(x -1)-g(x)恰有2019个零点,则所有这些零点之和为
A.2017
B.2018
C.2019
D.2020 12.己知函数f(x)=
12
sin2x -cosx -mx 在(0,π)上有两个极值点,则实数m 的取值范围为 A.(0,1] B.(1,98] C.(0,+∞) D.(-∞,98) 二、填空题:本大题共4小题,每小题5分,共20分。
请将答案填写在答题卷相应位置上。
13.己知向量a =(1,1),2a +b =(4,3),c =(x ,-2),若b //c ,则x 的值为 。
14.2
22(1sin )x x x dx --+=⎰ 。
15.大雁塔作为现存最早、规模最大的唐代四方楼阁式砖塔,是凝聚了中国古代劳动人民智慧结晶的标志性建筑。
如图所示,已知∠ABE =α,∠ADE =β,垂直放置的标杆BC 的高度h =4米,大雁塔高度H =64米。
某数学兴趣小组准备用数学知识探究大雁塔的高度与α,β的关系。
该小组测得α,β的若干数据并分析测得的数据后,发现适当调整标杆到大雁塔的距离
d ,使α与β的差较大时,可以提高测量精确度,当α-β最大时,标杆到大雁塔的距离d 为 米。
16.已知函数1()ln
1x f x x -=+,若x ,y 满足1()()02f x f y +-≥,则3y x +的取值范围是 。
三、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤。
17.(本小题满分10分)
已知数列{a n }中,*11111,1()322n n
a n N a a +==+∈。
(1)求证:数列{1n
a }是等差数列,并求{a n }的通项公式; (2)若1223117
n n a a a a a a +⋅+⋅+⋅⋅⋅+⋅>
,求n 的取值范围。
18.(本小题满分12分) 在锐角△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c
cos sin 0A a C -=。
(1)求角A 的大小;
(2)若△ABC
的面积3S b ==,求sinC 的值。
19.(本小题满分12分)
如图所示,在四棱锥P -ABCD 中,底面ABCD 为矩形,平面PBC ⊥平面ABCD ,PB ⊥PD 。
(1)证明:PB ⊥平面PCD ;
(2)若PB =PC ,E 为棱CD 的中点,∠PEA =900
,BC =2,求二面角B -PA -E 的正弦值。
20.(本小题满分12分)
已知函数f(x)=2x ,g(x)=x 2+2ax 。
(1)当a =-l 时,求函数y =f(g(x))(-2≤x ≤3)的值域;
(2)设函数(),()(),f x x b h x g x x b
≥⎧=⎨<⎩,若ab>0,且h(x),求实数a 的取值范围。
21.(本小题满分12分) 已知函数2()2ln x b f x x x -=-+。
(1)函数2()(2)x y f x x
=--在(0,1)内有两个不同零点x 1,x 2 (x 1<x 2),求b 的取值范围;
(2)在第(1)问的条件下判断当X ∈(x 2,1)时,曲线y =f(x)是否位于x 轴下方,并说明理由。
22.(本小题满分12分)
己知椭圆C :22
221(0)x y a b a b
+=>>四个顶点中的三个是边长为 (1)求椭圆C 的方程;
(2)设线y =kx +m 与圆O :2
22
23b x y +=相切且交椭圆C 于两点M ,N ,求线段|MN|的最大值。