备考2020版高考物理复习攻略之方法汇总专题09微元累积法(含解析)
- 格式:docx
- 大小:479.27 KB
- 文档页数:11
高考物理高考物理微元法解决物理试题技巧和方法完整版及练习题一、微元法解决物理试题1.如图甲所示,静止于光滑水平面上的小物块,在水平拉力F的作用下从坐标原点O开始沿x轴正方向运动,F随物块所在位置坐标x的变化关系如图乙所示,图线右半部分为四分之一圆弧,则小物块运动到2x0处时的动能可表示为()A.0 B.12F m x0(1+π)C.12F m x0(1+2π)D.F m x0【答案】C 【解析】【详解】F-x图线围成的面积表示拉力F做功的大小,可知F做功的大小W=12F m x0+14πx02,根据动能定理得,E k=W=12F m x0+14πx02 =01122mF xπ⎛⎫+⎪⎝⎭,故C正确,ABD错误。
故选C。
2.超强台风“利奇马”在2019年8月10日凌晨在浙江省温岭市沿海登陆,登陆时中心附近最大风力16级,对固定建筑物破坏程度非常大。
假设某一建筑物垂直风速方向的受力面积为s,风速大小为v,空气吹到建筑物上后速度瞬间减为零,空气密度为ρ,则风力F 与风速大小v关系式为( )A.F =ρsv B.F =ρsv2C.F =ρsv3D.F=12ρsv2【答案】B【解析】【分析】【详解】设t时间内吹到建筑物上的空气质量为m,则有:m=ρsvt根据动量定理有:-Ft=0-mv=0-ρsv2t 得:F=ρsv2 A.F =ρsv,与结论不相符,选项A错误;B .F =ρsv 2,与结论相符,选项B 正确;C .F =ρsv 3,与结论不相符,选项C 错误;D .F =12ρsv 2,与结论不相符,选项D 错误; 故选B 。
3.2019年8月11日超强台风“利奇马”登陆青岛,导致部分高层建筑顶部的广告牌损毁。
台风“利奇马”登陆时的最大风力为11级,最大风速为30m/s 。
某高层建筑顶部广告牌的尺寸为:高5m 、宽20m ,空气密度31.2kg/m ρ=,空气吹到广告牌上后速度瞬间减为0,则该广告牌受到的最大风力约为( ) A .33.610N ⨯ B .51.110N ⨯C .41.010N ⨯D .49.010N ⨯【答案】B 【解析】 【分析】 【详解】 广告牌的面积S =5×20m 2=100m 2设t 时间内吹到广告牌上的空气质量为m ,则有m =ρSvt根据动量定理有-Ft =0-mv =0-ρSv 2t得251.110N F Sv ρ≈⨯=故选B 。
高考物理微元法解决物理试题技巧和方法完整版及练习题含解析一、微元法解决物理试题1.如图所示,某个力F =10 N 作用在半径为R =1 m 的转盘的边缘上,力F 的大小保持不变,但方向保持在任何时刻均与作用点的切线一致,则转动一周这个力F 做的总功为( )A .0B .20π JC .10 JD .10π J【答案】B 【解析】本题中力F 的大小不变,但方向时刻都在变化,属于变力做功问题,可以考虑把圆周分割为很多的小段来研究.当各小段的弧长足够小时,可以认为力的方向与弧长代表的位移方向一致,故所求的总功为W =F ·Δs 1+F ·Δs 2+F ·Δs 3+…=F (Δs 1+Δs 2+Δs 3+…)=F ·2πR =20πJ ,选项B 符合题意.故答案为B .【点睛】本题应注意,力虽然是变力,但是由于力一直与速度方向相同,故可以直接由W =FL 求出.2.水刀切割具有精度高、无热变形、无毛刺、无需二次加工以及节约材料等特点,得到广泛应用.某水刀切割机床如图所示,若横截面直径为d 的水流以速度v 垂直射到要切割的钢板上,碰到钢板后水的速度减为零,已知水的密度为ρ,则钢板受到水的冲力大小为A .2d v πρB .22d v πρC .214d v πρD .2214d v πρ【答案】D 【解析】 【分析】 【详解】设t 时间内有V 体积的水打在钢板上,则这些水的质量为:214m V Svt d vt ρρπρ===以这部分水为研究对象,它受到钢板的作用力为F ,以水运动的方向为正方向,由动量定理有:Ft =0-mv解得:2214mv F d v t πρ=-=- A. 2d v πρ与分析不符,故A 错误. B. 22d v πρ与分析不符,故B 错误. C. 214d v πρ与分析不符,故C 错误. D.2214d v πρ与分析相符,故D 正确.3.超强台风“利奇马”在2019年8月10日凌晨在浙江省温岭市沿海登陆, 登陆时中心附近最大风力16级,对固定建筑物破坏程度非常大。
核心素养提升——科学思维系列(九)分析带电粒子在匀强磁场中运动的三种特殊方法方法1动态放缩法当带电粒子射入磁场的方向确定,但射入时速度v的大小或磁感应强度B变化时,粒子做圆周运动的轨道半径r随之变化.在确定粒子运动的临界情景时,可以以入射点为定点,作出半径不同的一系列轨迹,从而探索出临界条件,如图所示为粒子进入矩形边界磁场的情景.(多选)如图所示,正方形abcd区域内有垂直于纸面向里的匀强磁场,O 点是cd边的中点,一个带正电的粒子(重力忽略不计),若从O点沿纸面以垂直于cd 边的速度射入正方形内,经过时间t0刚好从c点射出磁场.现设法使该带电粒子从O 点沿纸面以与Od成30°的方向(如图中虚线所示),以各种不同的速率射入正方形内,那么下列说法中正确的是()A.该带电粒子不可能刚好从正方形的某个顶点射出磁场B.若该带电粒子从ab边射出磁场,它在磁场中经历的时间可能是2 3t0C .若该带电粒子从bc 边射出磁场,它在磁场中经历的时间可能是t 0D .若该带电粒子从cd 边射出磁场,它在磁场中经历的时间可能是43t 0【解析】 本题考查带电粒子在有界磁场中的运动,粒子同向不同速.由题,带电粒子以垂直于cd 边的速度射入正方形内,经过时间t 0刚好从c 点射出磁场,则知带电粒子的运动周期为T =2t 0.A .作出粒子恰好从各边射出的轨迹,发现粒子不可能经过正方形的某顶点,故A 正确.B .作出粒子恰好从ab 边射出的轨迹,由几何关系知圆心角不大于150°,在磁场中经历的时间不大于512个周期,即5t 06.圆心角不小于60°,在磁场中经历的时间不小于16个周期,即t 03.故B 正确. C .作出粒子恰好从bc 边射出的轨迹,由几何关系知圆心角不大于240°,在磁场中经历的时间不大于23个周期,即4t 03.圆心角不小于150°,在磁场中经历的时间不小于512个周期,即5t 06.故C 正确. D .若该带电粒子在磁场中经历的时间是56个周期,即5t 03.粒子轨迹的圆心角为θ=5π3,速度的偏向角也为5π3,根据几何知识得知,粒子射出磁场时与磁场边界的夹角为30°,必定从cd 边射出磁场.故D 错误.【答案】 ABC 方法2 定圆旋转法当带电粒子射入磁场时的速率v 大小一定,但射入的方向变化时,可以以入射点为定点,将轨迹圆旋转,作出一系列轨迹,从而探索出临界条件,如图所示为粒子进入单边有界磁场时的情景.(2019·江西上饶六校一联)如图所示,平行边界MN、PQ间有垂直纸面向里的匀强磁场,磁场的磁感应强度大小为B,两边界的间距为d,MN上有一粒子源A,可在纸面内沿各个方向向磁场中射入质量均为m、电荷量均为+q的粒子,粒子射入磁场的速度大小v=2qBd3m,不计粒子的重力,则粒子能从PQ边界射出的区域长度与能从MN边界射出的区域长度之比为()A.1 1 B.2 3C.3 2D.3 3【解析】粒子在磁场中运动时,Bq v=m v2R,粒子运动轨迹半径R=m vBq=23d;由左手定则可得:粒子沿逆时针方向偏转,做圆周运动;粒子沿AN方向进入磁场时,到达PQ边界的最下端距A点的竖直距离L1=R2-(d-R)2=33d;运动轨迹与PQ相切时,切点为到达PQ边界的最上端,距A点的竖直距离L2=R2-(d-R)2=33d,所以粒子在PQ边界射出的区域长度为:L=L1+L2=233d;因为R<d,所以粒子在MN边界射出区域的长度为L′=2R=43d.故两区域长度之比为L L′=233d43d=32,故C项正确,A、B、D错误.【答案】 C方法3平移圆法粒子发射速度大小、方向不变,但入射点沿一直线移动时,轨迹圆在平移,但圆心在同一直线上.(多选)如图所示,在Ⅰ、Ⅱ两个区域内存在磁感应强度大小均为B的匀强磁场,磁场方向分别垂直于纸面向外和向里,AD、AC边界的夹角∠DAC=30°,边界AC与边界MN平行,Ⅱ区域宽度为d.质量为m、电荷量为+q的粒子可在边界AD上的不同点射入,入射速度垂直AD且垂直磁场,若入射速度大小为qBdm,不计粒子重力,则()A .粒子在磁场中的运动半径为d2B .粒子在距A 点0.5d 处射入,不会进入Ⅱ区域C .粒子在距A 点1.5d 处射入,在Ⅰ区内运动的时间为πmqB D .能够进入Ⅱ区域的粒子,在Ⅱ区域内运动的最短时间为πm 3qB【解析】 带电粒子在磁场中的运动半径r =m vqB =d ,选项A 错误;设从某处E 进入磁场的粒子,其轨迹恰好与AC 相切(如图所示),则E 点距A 点的距离为2d -d =d ,粒子在距A 点0.5d 处射入,会进入Ⅱ区域,选项B 错误;粒子在距A 点1.5d 处射入,不会进入Ⅱ区域,在Ⅰ区域内的轨迹为半圆,运动的时间为t =T 2=πmqB ,选项C 正确;进入Ⅱ区域的粒子,弦长最短的运动时间最短,且最短弦长为d ,对应圆心角为60°,最短时间为t min =T 6=πm3qB,选项D 正确.【答案】 CD。
高考物理微元法解决物理试题解题技巧和训练方法及练习题一、微元法解决物理试题1.如图所示,某个力F =10 N 作用在半径为R =1 m 的转盘的边缘上,力F 的大小保持不变,但方向保持在任何时刻均与作用点的切线一致,则转动一周这个力F 做的总功为( )A .0B .20π JC .10 JD .10π J【答案】B 【解析】本题中力F 的大小不变,但方向时刻都在变化,属于变力做功问题,可以考虑把圆周分割为很多的小段来研究.当各小段的弧长足够小时,可以认为力的方向与弧长代表的位移方向一致,故所求的总功为W =F ·Δs 1+F ·Δs 2+F ·Δs 3+…=F (Δs 1+Δs 2+Δs 3+…)=F ·2πR =20πJ ,选项B 符合题意.故答案为B .【点睛】本题应注意,力虽然是变力,但是由于力一直与速度方向相同,故可以直接由W =FL 求出.2.解放前后,机械化生产水平较低,人们经常通过“驴拉磨”的方式把粮食颗粒加工成粗面来食用.如图,一个人推磨,其推磨杆的力的大小始终为F ,方向与磨杆始终垂直,作用点到轴心的距离为r ,磨盘绕轴缓慢转动,则在转动一周的过程中推力F 做的功为A .0B .2πrFC .2FrD .-2πrF【答案】B 【解析】 【分析】cos W Fx α=适用于恒力做功,因为推磨的过程中力方向时刻在变化是变力,但由于圆周运动知识可知,力方向时刻与速度方向相同,根据微分原理可知,拉力所做的功等于力与路程的乘积; 【详解】由题可知:推磨杆的力的大小始终为F ,方向与磨杆始终垂直,即其方向与瞬时速度方向相同,即为圆周切线方向,故根据微分原理可知,拉力对磨盘所做的功等于拉力的大小与拉力作用点沿圆周运动弧长的乘积,由题意知,磨转动一周,弧长2L r π=,所以拉力所做的功2W FL rF π==,故选项B 正确,选项ACD 错误. 【点睛】本题关键抓住推磨的过程中力方向与速度方向时刻相同,即拉力方向与作用点的位移方向时刻相同,根据微分思想可以求得力所做的功等于力的大小与路程的乘积,这是解决本题的突破口.3.如图所示,粗细均匀,两端开口的U 形管内装有同种液体,开始时两边液面高度差为h ,管中液柱总长度为4h ,后来让液体自由流动,当两液面高度相等时,右侧液面下降的速度大小是( )A 8gh B 6gh C 4gh D 2gh 【答案】A 【解析】 【分析】 【详解】设U 形管横截面积为S ,液体密度为ρ,两边液面等高时,相当于右管上方2h高的液体移到左管上方,这2h 高的液体重心的下降高度为2h ,这2h高的液体的重力势能减小量转化为全部液体的动能。
专题09 微元累积法目录1.过程微元法 (1)2. 对象微元法 (9)微元法是一种介于初等数学与高等数学之间的一种处理物理模型问题的方法,其要点是:在对物理问题做整体的考察后,选取该问题过程中的某一微小单元进行分析,通过对微元细节的物理分析和描述,找出该微元所具有的物理性质和运动变化规律,从而获得解决该物理问题整体的方法。
微元法按其研究物理模型问题可分为对象微元法、过程微元法。
1.过程微元法过程微元法着眼于研究对象物体所经历的比较复杂的过程,比如,物体的运动不是恒力作用下的匀变速运动,而是变力作用下的变加速运动,这时物体运动的过程复杂,运动过程性规律不甚明了,若从整体着手研究,则难以在高中物理层面展开,不过当我们用过程微元法,把物体的运动过程按其经历的位移或时间等分为多个小量,将每个微元过程近似为高中物理知识所能处理的过程,在得出每个微元过程的相关结果后,再进行数学求和,这样就能得到物体复杂运动过程的规律。
典例1.质量为m 物体从地面以初速度v 0竖直上抛,经过t 1时间达最高点,在运动过程中受到的阻力f=kv (k 是常数),求上升的最大高度。
【解析】物体上升过程ma kv mg =+mkv g a += t m kv g v ∆⎪⎭⎫ ⎝⎛+=∆∑∑ m kH gt v 10+= ()kgt -v m H 10= ① 针对训练1.接上题,上题条件不变,物体从最高点下落,当物体到达地面时速度刚好达到最大,求其下落时间t 2.【解析】到达地面速度最大值为v mm g kv m =②过程中ma kv -mg =③∑∑∆=∆t a v ④ ①②③④得:102t -gv k m t += 【总结与点评】本题上升下落过程受到变化的阻力,加速度变化,需要把物体的运动过程进行微元处理,在每一小段的时间内可以认为加速度一定,再进行时间的累积,就可以求出结果。
典例2.如图所示,顶角045θ=的金属导轨MON 固定在水平面内,导轨处在方向竖直,磁感应强度为B 的匀强磁场中,一根与ON 垂直的导体棒在水平外力作用下的恒定速度0v 沿导轨MON 向右滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均为r ,导体棒与导轨接触点为a 和b ,导体棒在滑动过程中始终保持与导轨良好接触,t =0时,导体棒位于顶角处。
高考物理微元法解决物理试题解题技巧和训练方法及练习题一、微元法解决物理试题1.如图所示,某个力F =10 N 作用在半径为R =1 m 的转盘的边缘上,力F 的大小保持不变,但方向保持在任何时刻均与作用点的切线一致,则转动一周这个力F 做的总功为( )A .0B .20π JC .10 JD .10π J【答案】B 【解析】本题中力F 的大小不变,但方向时刻都在变化,属于变力做功问题,可以考虑把圆周分割为很多的小段来研究.当各小段的弧长足够小时,可以认为力的方向与弧长代表的位移方向一致,故所求的总功为W =F ·Δs 1+F ·Δs 2+F ·Δs 3+…=F (Δs 1+Δs 2+Δs 3+…)=F ·2πR =20πJ ,选项B 符合题意.故答案为B .【点睛】本题应注意,力虽然是变力,但是由于力一直与速度方向相同,故可以直接由W =FL 求出.2.对于同一物理问题,常常可以从宏观与微观两个不同角度进行研究,找出其内在联系,从而更加深刻地理解其物理本质.正方体密闭容器中有大量运动粒子,每个粒子质量为m ,单位体积内粒子数量n 为恒量,为简化问题,我们假定粒子大小可以忽略;其速率均为v ,且与器壁各面碰撞的机会均等;与器壁碰撞前后瞬间,粒子速度方向都与器壁垂直,且速率不变.利用所学力学知识,导出器壁单位面积所受粒子压力f 与mn 、和v 的关系正确的是( )A .216nsmv B .213nmvC .216nmv D .213nmv t ∆【答案】B 【解析】 【详解】一个粒子每与器壁碰撞一次给器壁的冲量2I mv ∆=,如图所示,以器壁上面积为S 的部分为底、v t ∆为高构成柱体,由题设可知,其内有16的粒子在t ∆时间内与器壁上面积为S 的部分发生碰撞,碰撞粒子总数16N n Sv t =⋅∆,t ∆时间内粒子给器壁的冲量21·3I N I nSmv t =∆=∆,由I F t =∆可得213I F nSmv t ==∆,213F f nmv S ==,故选B .3.为估算雨水对伞面产生的平均撞击力,小明在大雨天将一圆柱形水杯置于露台,测得10分钟内杯中水位上升了45mm ,当时雨滴竖直下落速度约为12m/s 。
高考物理物理解题方法:微元法习题知识归纳总结附答案解析一、高中物理解题方法:微元法1.如图所示,半径为R 的1/8光滑圆弧轨道左端有一质量为m 的小球,在大小恒为F 、方向始终与轨道相切的拉力作用下,小球在竖直平面内由静止开始运动,轨道左端切线水平,当小球运动到轨道的末端时,此时小球的速率为v ,已知重力加速度为g ,则( )A .此过程拉力做功为2 2FRB .此过程拉力做功为4FR πC .小球运动到轨道的末端时,拉力的功率为12Fv D .小球运动到轨道的末端时,拉力的功率为22Fv 【答案】B【解析】【详解】 AB 、将该段曲线分成无数段小段,每一段可以看成恒力,可知此过程中拉力做功为1144W F R FR ππ=•=,故选项B 正确,A 错误; CD 、因为F 的方向沿切线方向,与速度方向平行,则拉力的功率P Fv =,故选项C 、D 错误。
2.如图所示,某力10N F =,作用于半径1m R =的转盘的边缘上,力F 的大小保持不变,但方向始终保持与作用点的切线方向一致,则转动一周这个力F 做的总功应为( )A .0JB .20J πC .10JD .20J 【答案】B【解析】【详解】把圆周分成无限个微元,每个微元可认为与力F 在同一直线上,故W F s ∆=∆则转一周中做功的代数和为2π20πJ F R W ⨯==故选B 正确。
故选B 。
3.如图所示,摆球质量为m ,悬线的长为L ,把悬线拉到水平位置后放手设在摆球运动过程中空气阻力F 阻的大小不变,则下列说法正确的是A .重力做功为mgLB .绳的拉力做功为0C .空气阻力做功0D .空气阻力做功为12F L π-阻 【答案】ABD【解析】A 、如图所示,重力在整个运动过程中始终不变,小球在重力方向上的位移为AB 在竖直方向上的投影L ,所以W G =mgL .故A 正确.B 、因为拉力F T 在运动过程中始终与运动方向垂直,故不做功,即W FT =0.故B 正确.C 、F 阻所做的总功等于每个小弧段上F 阻所做功的代数和,即12F 1=()2W F x F x F L π-∆+∆+⋅⋅⋅=阻阻阻阻,故C 错误,D 正确;故选ABD . 【点睛】根据功的计算公式可以求出重力、拉力与空气阻力的功.4.如图所示,摆球质量为m ,悬线长为L ,把悬线拉到水平位置后放手.设在摆球运动过程中空气阻力f 的大小不变,则摆球从A 摆到位置B 的过程中,下列说法正确的是A .重力做功为mgLB .悬线的拉力做功为0C .空气阻力f 做功为-mgLD .空气阻力f 做功为12f L π-【答案】ABD【解析】【详解】A.重力在整个运动过程中始终不变,所以重力做功为 W G =mgL ,故A 正确;B.因为拉力在运动过程中始终与运动方向垂直,故拉力对小球不做功,即W F =0,故B 正确;CD.阻力所做的总功等于每个小弧段上f 所做功的代数和,即 1211(...)ππ22f W f x f x fs f L f L =-∆+∆+=-=-⋅=-,故C 错误,D 正确。
高考物理微元法解决物理试题解题技巧和训练方法及练习题一、微元法解决物理试题1.如图所示,某个力F=10 N作用在半径为R=1 m的转盘的边缘上,力F的大小保持不变,但方向保持在任何时刻均与作用点的切线一致,则转动一周这个力F做的总功为()A.0 B.20π J C.10 J D.10π J【答案】B【解析】本题中力F的大小不变,但方向时刻都在变化,属于变力做功问题,可以考虑把圆周分割为很多的小段来研究.当各小段的弧长足够小时,可以认为力的方向与弧长代表的位移方向一致,故所求的总功为W=F·Δs1+F·Δs2+F·Δs3+…=F(Δs1+Δs2+Δs3+…)=F·2πR=20πJ,选项B符合题意.故答案为B.【点睛】本题应注意,力虽然是变力,但是由于力一直与速度方向相同,故可以直接由W=FL求出.2.如图甲所示,静止于光滑水平面上的小物块,在水平拉力F的作用下从坐标原点O开始沿x轴正方向运动,F随物块所在位置坐标x的变化关系如图乙所示,图线右半部分为四分之一圆弧,则小物块运动到2x0处时的动能可表示为()A.0 B.12F m x0(1+π)C.12F m x0(1+2π)D.F m x0【答案】C 【解析】【详解】F-x图线围成的面积表示拉力F做功的大小,可知F做功的大小W=12F m x0+14πx02,根据动能定理得,E k=W=12F m x0+14πx02 =01122mF xπ⎛⎫+⎪⎝⎭,故C正确,ABD错误。
故选C。
3.估算池中睡莲叶面承受雨滴撞击产生的平均压强,小明在雨天将一圆柱形水杯置于露台,测得1小时内杯中水上升了45mm 。
查询得知,当时雨滴竖直下落速度约为12m/s 。
据此估算该压强约为( )(设雨滴撞击唾莲后无反弹,不计雨滴重力,雨水的密度为1×103kg/m 3) A .0.15Pa B .0.54PaC .1.5PaD .5.1Pa【答案】A 【解析】 【分析】 【详解】由于是估算压强,所以不计雨滴的重力。
高中物理复习:解答物理问题的10种思想方法专题概述现如今,高考物理愈来愈注重考查考生的能力和科学素养,其命题愈加明显地渗透着对物理思想、物理方法的考查.在平时的复习备考过程中,物理习题浩如烟海,千变万化,我们若能掌握一些基本的解题思想,就如同在开启各式各样的“锁”时,找到了一把“多功能的钥匙”.思想方法1:整体法、隔离法1.整体法和隔离法的选用原则(1)如果动力学系统各部分运动状态相同,求解整体的物理量优先考虑整体法;如果要求解系统各部分的相互作用力,再用隔离法.(2)如果系统内部各部分运动状态不同,一般选用隔离法.2.在比较综合的问题中往往两种方法交叉运用,相辅相成,两种方法的取舍,并无绝对的界限,必须具体问题具体分析,灵活运用.如图所示,质量均为m 的斜面体A 、B 叠放在水平地面上,A 、B 间接触面光滑,用一与斜面平行的推力F 作用在B 上,B 沿斜面匀速上升,A 始终静止.若A 的斜面倾角为θ,下列说法正确的是( )A .F =mg tan θB .A 、B 间的作用力为mg cos θC .地面对A 的支持力大小为2mgD .地面对A 的摩擦力大小为F解析:B 以B 为研究对象,在沿斜面方向、垂直于斜面方向根据平衡条件求得F =mg sin θ,支持力N =mg cos θ,故A 错误,B 正确;以整体为研究对象,根据平衡条件可得地面对A 的支持力大小为F N =2mg -F sin θ,地面对A 的摩擦力大小为f =F cos θ,故C 、D 错误.思想方法2:估算与近似计算1.物理估算题,一般是指依据一定的物理概念和规律,运用物理方法和近似计算方法,对所求物理量的数量级或物理量的取值范围,进行大致的、合理的推算.物理估算是一种重要的方法,有的物理问题,在符合精确度的前提下可以用近似的方法便捷处理;有的物理问题,由于本身条件的特殊性,不需要也不可能进行精确计算.在这些情况下,估算就很实用.2.估算时经常用到的近似数学关系(1)角度θ很小时,弦长近似等于弧长.(2)θ很小时,sin θ≈θ,tan θ≈θ,cos θ≈1.(3)a ≫b 时,a +b ≈a ,1a +1b ≈1b. 3.估算时经常用到的一些物理常识数据解题所需数据,通常可从日常生活、生产实际、熟知的基本常数、常用关系等方面获取,如成人体重约600 N ,汽车速度约10~20 m/s ,重力加速度约为10 m/s 2……引体向上是中学生体育测试的项目之一,引体向上运动的吉尼斯世界纪录是53次/分钟.若一个普通中学生在30秒内完成12次引体向上,该学生此过程中克服重力做功的平均功率最接近于( )A .5 WB .20 WC .100 WD .400 W解析:C 学生体重约为50 kg ,每次引体向上上升的高度约为0.5 m ,引体向上一次克服重力做功为W =mgh =50×10×0.5 J =250 J ,全过程克服重力做功的平均功率为P =nW t=12×250 J 30 s=100 W ,故C 正确,A 、B 、D 错误. 思想方法3:控制变量法在比较复杂的物理问题中,某一物理量的变化可能与多个变量均有关,定性分析或定量确定因变量与自变量的关系时,常常需要用到控制变量法,即先保持其中一个量不变,研究因变量与另外一个变量的关系,如研究加速度与质量和合外力的关系时,先保持物体的质量不变,研究加速度与合外力的关系,再保持合外力不变,研究加速度与物体质量的关系,最终通过数学分析,得到加速度与质量和合外力的关系.如果有三个或三个以上的自变量,需要控制不变的量,做到变量每次只能有一个.在研究球形固体颗粒在水中竖直匀速下沉的速度与哪些因素有关的实验中,得到的实验数据记录在下面的表格中(水的密度为ρ0=1.0×103 kg/m 3). 次序固体颗粒的半径 r /(×10-3 m) 固体颗粒的密度 ρ/(×103 kg ·m -3) 匀速下沉的速度 v /(m ·s -1) 10.50 2.0 0.55 21.002.0 2.20 31.502.0 4.95 40.50 3.0 1.10 51.00 3.0 4.40 60.50 4.0 1.65 7 1.00 4.0 6.60 颗粒的半径r 的关系:v 与________(填“r ”或“r 2”)成正比.(2)根据以上1、4、6组实验数据,可知球形固体颗粒在水中匀速下沉的速度v 与水的密度ρ0、固体的密度ρ的关系:v 与________(填“ρ”或“ρ-ρ0”)成正比.(3)综合以上实验数据,推导球形固体颗粒在水中匀速下沉的速度与水的密度、固体的密度、固体颗粒的半径的关系表达式v =________,比例系数可用k 表示.解析:(1)由控制变量法容易得出,当ρ一定时,从表格中1、2、3组数据可以得出结论:v ∝r 2.(2)观察表格中的1、4、6组数据,当r 一定时,v 和ρ的关系难以立即判断,因此需要换个角度考虑.当r 一定时,在每个ρ值后都减去1.0×103 kg/m 3(即水的密度),得到的数值与v 成正比,即v ∝(ρ-ρ0).(3)综合以上实验数据,可推导出球形固体颗粒在水中匀速下沉的速度与水的密度、固体的密度、固体颗粒的半径的关系表达式:v =kr 2(ρ-ρ0),k 为比例系数.答案:(1)r 2 (2)ρ-ρ0 (3)k (ρ-ρ0)r 2思想方法4:对称思想对称是一种美,只要对称,必有相等的某些量存在.对称法是从对称的角度研究、处理物理问题的一种思维方法,时间和空间上的对称,表明物理规律在某种变换下具有不变的性质.用这种思维方法来处理问题可以开拓思路,使复杂问题的求解变得简捷.高中物理中的对称主要有受力对称和运动对称.电场中等量电荷产生的电场具有对称性,带电粒子在匀强有界磁场中的运动轨迹具有对称性,简谐运动和波在时间和空间上具有对称性,光路具有对称性……解题时,要充分利用这些特点.如图所示,挂钩连接三根长度均为L 的轻绳,三根轻绳的另一端与一质量为m 、直径为1.2L 的水平圆环相连,连接点将圆环三等分,在轻绳拉力作用下圆环以加速度a =12g 匀加速上升,已知重力加速度为g ,则每根轻绳上的拉力大小为( )A.512mg B .59mg C.58mg D .56mg 解析:C 设每根轻绳与竖直方向的夹角为θ,由几何关系可知sin θ=0.6,则cos θ=0.8;对圆环进行受力分析,由牛顿第二定律有3T cos θ-mg =ma ,解得T =58mg ,故选C. 思想方法5:分解思想有些物理问题的运动过程、情景较为复杂,在运用一些物理规律或公式不奏效的情况下,将物理过程按照事物发展的顺序分成几段熟悉的子过程来分析,或者将复杂的运动分解成几个简单或特殊的分运动(如匀速直线运动、匀变速直线运动、圆周运动等)来考虑,往往能事半功倍.某弹射管每次弹出的小球速度相等.在沿光滑竖直轨道自由下落过程中,该弹射管保持水平,先后弹出两只小球.忽略空气阻力,两只小球落到水平地面的( )A .时刻相同,地点相同B .时刻相同,地点不同C .时刻不同,地点相同D .时刻不同,地点不同解析:B 弹射管沿光滑竖直轨道自由下落,向下的加速度大小为g ,且下落时保持水平,故先后弹出的两只小球在竖直方向的分速度与弹射管的分速度相同,即两只小球同时落地;又两只小球先后弹出且水平分速度相等,故两只小球在空中运动的时间不同,则运动的水平位移不同,落地点不同,选项B 正确.思想方法6:数形结合的思想数形结合的思想,就是把物体的空间形式和数量关系结合起来进行考查,通过“数”与“形”之间的对应和转化来解决问题的思想,其实质是把抽象的数学语言、数量关系与直观的图形结合起来,把抽象思维和形象思维结合起来.数形结合的思想,一方面可以以“形”助“数”,实现抽象概念与具体形象的联系与转化,化抽象为直观,化难为易;另一方面可以以“数”解“形”,可以由数入手,将有些涉及图形的问题转化为数量关系来研究,对图形做精细的分析,从而使人们对直观图形有更精确、理性的理解.一弹簧秤的秤盘质量为m 1,盘内放一质量为m 2的物体,弹簧质量不计,其劲度系数为k ,系统处于静止状态,如图所示.t 0时刻给物体施加一个竖直向上的力F ,使物体从静止开始向上做加速度为a 的匀加速直线运动,经2 s 物体与秤盘脱离,用F N 表示物体与秤盘间的相互作用力的大小,已知重力加速度大小为g ,则下列F 和F N 随时间变化的关系图像正确的是( )解析:C 对秤盘和物体整体分析,系统处于静止状态时,弹簧形变量为x 0,利用牛顿第二定律得,kx 0=(m 1+m 2)g ,F +kx -(m 1+m 2)g =(m 1+m 2)a ,又x =x 0-12a (t -t 0)2,解上述两式得F =(m 1+m 2)a +12ka (t -t 0)2,所以选项A 、B 错误;以物体为研究对象,物体静止时,F N =m 2g ,运动后对秤盘受力分析,利用牛顿第二定律得kx -m 1g -F N =m 1a ,F N =m 2g -m 1a -12ka (t -t 0)2,所以选项C 正确,D 错误. 思想方法7:特殊值法与极限法在中学物理问题中,有一类问题具有这样的特点,如果从题中给出的条件出发,需经过较复杂的计算才能得到结果的一般形式,并且条件似乎不足,使得结果难以确定,这时我们可以尝试采用极限思维的方法,将其变化过程引向极端的情况,就能把比较隐蔽的条件或临界现象暴露出来,从而有助于结论的迅速取得.对于某些具有复杂运算的题目,还可以通过特殊值验证的方法排除错误选项,提高效率.图示为一个内、外半径分别为R 1和R 2的圆环状均匀带电平面,其单位面积带电量为σ.取环面中心O 为原点,以垂直于环面的轴线为x 轴.设轴上任意点P 到O 点的距离为x ,P 点电场强度的大小为E .下面给出E 的四个表达式(式中k 为静电力常量),其中只有一个是合理的.你可能不会求解此处的场强E ,但是你可以通过一定的物理分析,对下列表达式的合理性做出判断.根据你的判断,E 的合理表达式应为( )A .E =2πk σ⎝ ⎛⎭⎪⎫R 1x 2+R 21-R 2x 2+R 22x B .E =2πk σ⎝ ⎛⎭⎪⎫1x 2+R 21-1x 2+R 22x C .E =2πk σ⎝ ⎛⎭⎪⎫R 1x 2+R 21+R 2x 2+R 22x D .E =2πk σ⎝ ⎛⎭⎪⎫1x 2+R 21+1x 2+R 22x 解析:B 当R 1=0时,带电圆环演变为带电圆面,则中心轴线上任意一点的电场强度的大小E 不可能小于0,而A 项中,E <0,故A 错误;当x →∞时E →0,而C 项中E =2πk σ·⎝ ⎛⎭⎪⎫ R 21x 2x 2+R 21+ R 22x 2x 2+R 22=2πk σ·⎝ ⎛⎭⎪⎪⎫ 11x 2+1R 21+ 11x 2+1R 22,x →∞时,E →2πk σ(R 1+R 2),同理可知D 项中x →∞时,E →4πk σ,故C 、D 错误;所以正确选项只能为B.思想方法8:等效思想1.等效法是科学研究中重要的思维方法之一,所谓等效法就是在保证某方面效果相同的前提下,用熟悉和简单的物理对象、过程、现象替代实际上陌生和复杂的物理对象、过程、现象的方法.例如:合力与分力、合运动与分运动、总电阻与分电阻等.利用等效法不但能将问题、过程由繁变简、由难变易,由具体到抽象,而且能启迪思维,增长智慧,从而提高能力.2.运用等效法解决实际问题时,常见的有:过程等效、概念等效、条件等效、电器元件等效、电路等效、长度等效、场等效等.在运用等效法时,一定要注意必须是在效果相同的前提下,讨论两个不同的物理过程或物理现象的等效及物理意义.若在运用等效法解决问题时,不抓住效果相同这个条件,就会得出错误的结论.近年来,含有等效法思维方式的试题在高考中频频出现,主要考查物理模型等效、过程等效、条件等效、电路等效等.如图所示,在方向水平向左、范围足够大的匀强电场中,固定一由内表面绝缘光滑且内径很小的圆管弯制而成的圆弧BD ,圆弧的圆心为O ,竖直半径OD =R ,B 点和地面上A 点的连线与地面成θ=37°角,AB =R .一质量为m 、电荷量为q 的小球(可视为质点)从地面上A 点以某一初速度沿AB 方向做直线运动,恰好无碰撞地从管口B 进入管道BD 中,到达管中某处C (图中未标出)时恰好与管道间无作用力.已知sin 37°=0.6,cos 37°=0.8,重力加速度大小为g .求:(1)匀强电场的场强大小E 和小球到达C 处时的速度大小v ;(2)小球的初速度大小v 0以及到达D 处时的速度大小v D .解析:(1)小球做直线运动时的受力情况如图甲所示,小球带正电,则qE =mg tan θ,得E =4mg 3q, 小球到达C 处时电场力与重力的合力恰好提供小球做圆周运动的向心力,如图乙所示,OC ∥AB ,则mg sin θ=m v 2R得v = 53gR . (2)小球“恰好无碰撞地从管口B 进入管道BD ”,说明AB ⊥OB小球从A 点运动到C 点的过程,根据动能定理有-mg sin θ·2R =12m v 2-12m v 20得v 0=253gR , 小球从C 处运动到D 处的过程,根据动能定理有mg sin θ(R -R sin θ)=12m v 2D -12m v 2, 得v D =3gR .答案:(1)4mg 3q 53gR (2) 253gR 3gR思想方法9:微元累积法高中物理中有很多复杂模型不能直接用已有知识和方法解决,可以在对问题做整体的考察后,选取该问题过程中的某一微小单元进行分析,通过对微元的物理分析和描述,找出该微元所具有的物理性质和运动变化规律,从而获得解决该物理问题整体的方法.比如,物体做变加速运动时,若从整体着手研究,则难以在高中物理层面展开,不过当我们用过程微元法,把物体的运动过程按其经历的位移或时间等分为多个小量,将每个微元过程近似为高中物理知识所能处理的过程,在得出每个微元过程的相关结果后,再进行数学求和,这样就能得到物体复杂运动过程的规律.再比如研究对象难以选择的情形,可以把实体模型等分为很多很多的等份,变成一个理想化模型,如刚体可以等分成无数个质点、带电体可以等分成很多点电荷来研究,先研究其中一份,再研究个体与整体的关系,运用物理规律,辅以数学方法求解,由此求出整体受力或运动情况,在中学阶段比较常见的有流体或类似流体问题、链条类的连续体模型等.如图所示,空间存在竖直向下的匀强磁场,磁感应强度B =0.5 T .在匀强磁场区域内,同一水平面内有一对足够长的光滑平行金属导轨,导轨间距L =1 m ,电阻可忽略不计.质量均为m =1 kg 、电阻均为R =2.5 Ω的金属导体棒MN 和PQ 垂直放置于导轨上,且与导轨接触良好.先将PQ 暂时锁定,金属棒MN 在垂直于棒的拉力F 作用下,由静止开始以加速度a =0.4 m/s 2向右做匀加速直线运动,5 s 后保持拉力F 的功率不变,直到棒以最大速度v m 做匀速直线运动.(1)求棒MN 的最大速度v m ;(2)当棒MN 达到最大速度v m 时,解除PQ 锁定,同时撤去拉力F ,两棒最终均匀速运动.求解除棒PQ 锁定后,到两棒最终匀速运动的过程中,电路中产生的总焦耳热;(3)若PQ 始终不解除锁定,当棒MN 达到最大速度v m 时,撤去拉力F ,棒MN 继续运动多远后停下来?(运算结果可用根式表示)解析:(1)棒MN 做匀加速直线运动,5 s 时的速度为:v =at 1=2 m/s此时对棒MN 由牛顿第二定律得:F -BIL =ma棒MN 做切割磁感线运动,产生的感应电动势为:E =BL v在两棒组成的回路中,由闭合电路欧姆定律得:I =E 2R联立并代入数据解得:F =0.5 N5 s 时拉力F 的功率为:P =F v联立并代入数据解得:P =1 W棒MN 最终做匀速直线运动,则有:P v m-BI m L =0, 其中I m =BL v m 2R联立并代入数据解得:v m =2 5 m/s.(2)解除棒PQ 锁定后,两棒运动过程中动量守恒,最终两棒以相同的速度做匀速运动,设速度大小为v ′,以水平向右为正方向,则有:m v m =2m v ′设从解除棒PQ 锁定到两棒达到相同速度的过程中,两棒共产生的焦耳热为Q ,由能量守恒定律可得:Q =12m v 2m -12×2m v ′2 联立并代入数据解得:Q =5 J.(3)以棒MN 为研究对象,设某时刻棒中电流为i ,在极短时间Δt 内,由动量定理得:-BiL Δt =m Δv对式子两边求和有:∑(-BiL Δt )=∑(m Δv )而Δq =i Δt联立解得:BLq =m v m又对于电路有:q =It =E 2Rt 设棒MN 继续运动距离为x 后停下来,由法拉第电磁感应定律得:E =BLx t联立得q =BLx 2R代入数据解得:x =2Rq BL =2Rm v m B 2L 2=40 5 m. 答案:(1)2 5 m/s (2)5 J (3)40 5 m思想方法10:守恒思想物理学中最常用的一种思维方法——守恒.高中物理涉及的守恒定律有能量守恒定律、动量守恒定律、机械能守恒定律、质量守恒定律、电荷守恒定律等,它们是我们处理高中物理问题的主要工具.如图所示,长R =0.6 m 的不可伸长的细绳一端固定在O 点,另一端系着质量m 2=0.1 kg 的小球B ,小球B 刚好与水平面相接触.现使质量m 1=0.3 kg 的物块A 沿光滑水平面以v 0=4 m/s 的速度向B 运动并与B 发生弹性正碰,A 、B 碰撞后,小球B 能在竖直平面内做圆周运动.已知重力加速度g =10 m/s 2,A 、B 均可视为质点,试求:(1)在A 与B 碰撞后瞬间,小球B 的速度v 2的大小;(2)小球B 运动到最高点时对细绳的拉力.解析:(1)物块A 与小球B 碰撞时,由动量守恒定律和机械能守恒定律有: m 1v 0=m 1v 1+m 2v 212m 1v 20=12m 1v 21+12m 2v 22 解得碰撞后瞬间物块A 的速度v 1=m 1-m 2m 1+m 2v 0=2 m/s 小球B 的速度v 2=2m 1m 1+m 2v 0=6 m/s (2)碰撞后,设小球B 运动到最高点时的速度为v ,则由机械能守恒定律有: 12m 2v 22=12m 2v 2+2m 2gR 又由向心力公式有:F +m 2g =m 2v 2R联立解得F =1 N ,由牛顿第三定律知小球B 对细绳的拉力F ′=F =1 N.答案:(1)6 m/s (2)1 N。
高考物理物理解题方法:微元法压轴难题知识归纳总结及答案解析一、高中物理解题方法:微元法1.下雨天,大量雨滴落在地面上会形成对地面的平均压强。
某次下雨时用仪器测得地面附近雨滴的速度约为10m/s 。
查阅当地气象资料知该次降雨连续30min 降雨量为10mm 。
又知水的密度为33110kg/m ⨯。
假设雨滴撞击地面的时间为0.1s ,且撞击地面后不反弹。
则此压强为( ) A .0.06Pa B .0.05PaC .0.6PaD .0.5Pa【答案】A 【解析】 【详解】取地面上一个面积为S 的截面,该面积内单位时间降雨的体积为31010m 3060sh V S S t -⨯=⋅=⋅⨯则单位时间降雨的质量为m V ρ=撞击地面时,雨滴速度均由v 减为0,在Δ0.1s t =内完成这一速度变化的雨水的质量为m t ∆。
设雨滴受地面的平均作用力为F ,由动量定理得[()]()F m t g t m t v -∆∆=∆又有Fp S=解以上各式得0.06Pa p ≈所以A 正确,BCD 错误。
故选A 。
2.如图所示,水龙头开口处A 的直径d 1=1cm ,A 离地面B 的高度h =75cm ,当水龙头打开时,从A 处流出的水流速度v 1=1m/s ,在空中形成一完整的水流束,则该水流束在地面B 处的截面直径d 2约为(g 取10m/s 2)( )A .0.5cmB .1cmC .2cmD .应大于2cm ,但无法计算 【答案】A 【解析】 【详解】设水在水龙头出口处速度大小为v 1,水流到B 处的速度v 2,则由22212v v gh -=得24m/s v =设极短时间为△t ,在水龙头出口处流出的水的体积为2111π()2d V v t =∆⋅ 水流B 处的体积为2222π()2d V v t =∆⋅ 由12V V =得20.5cm d =故A 正确。
3.如图所示,粗细均匀,两端开口的U 形管内装有同种液体,开始时两边液面高度差为h ,管中液柱总长度为4h ,后来让液体自由流动,当两液面高度相等时,右侧液面下降的速度大小是( )A 8gh B 6gh C 4gh D 2gh 【答案】A 【解析】 【分析】 【详解】设U 形管横截面积为S ,液体密度为ρ,两边液面等高时,相当于右管上方2h高的液体移到左管上方,这2h 高的液体重心的下降高度为2h ,这2h高的液体的重力势能减小量转化为全部液体的动能。
专题09 微元累积法目录1.过程微元法 (1)2. 对象微元法 (9)微元法是一种介于初等数学与高等数学之间的一种处理物理模型问题的方法,其要点是:在对物理问题做整体的考察后,选取该问题过程中的某一微小单元进行分析,通过对微元细节的物理分析和描述,找出该微元所具有的物理性质和运动变化规律,从而获得解决该物理问题整体的方法。
微元法按其研究物理模型问题可分为对象微元法、过程微元法。
1.过程微元法过程微元法着眼于研究对象物体所经历的比较复杂的过程,比如,物体的运动不是恒力作用下的匀变速运动,而是变力作用下的变加速运动,这时物体运动的过程复杂,运动过程性规律不甚明了,若从整体着手研究,则难以在高中物理层面展开,不过当我们用过程微元法,把物体的运动过程按其经历的位移或时间等分为多个小量,将每个微元过程近似为高中物理知识所能处理的过程,在得出每个微元过程的相关结果后,再进行数学求和,这样就能得到物体复杂运动过程的规律。
典例1.质量为m 物体从地面以初速度v 0竖直上抛,经过t 1时间达最高点,在运动过程中受到的阻力f=kv (k 是常数),求上升的最大高度。
【解析】物体上升过程ma kv mg =+mkv g a += t m kv g v ∆⎪⎭⎫ ⎝⎛+=∆∑∑ mkH gt v 10+= ()kgt -v m H 10= ① 针对训练1.接上题,上题条件不变,物体从最高点下落,当物体到达地面时速度刚好达到最大,求其下落时间t 2.【解析】到达地面速度最大值为v mm g kv m =②过程中ma kv -mg =③∑∑∆=∆t a v ④ ①②③④得:102t -gv k m t += 【总结与点评】本题上升下落过程受到变化的阻力,加速度变化,需要把物体的运动过程进行微元处理,在每一小段的时间内可以认为加速度一定,再进行时间的累积,就可以求出结果。
典例2.如图所示,顶角045θ=的金属导轨MON 固定在水平面内,导轨处在方向竖直,磁感应强度为B 的匀强磁场中,一根与ON 垂直的导体棒在水平外力作用下的恒定速度0v 沿导轨MON 向右滑动,导体棒的质量为m ,导轨与导体棒单位长度的电阻均为r ,导体棒与导轨接触点为a 和b ,导体棒在滑动过程中始终保持与导轨良好接触,t =0时,导体棒位于顶角处。
求(1)t 时刻流过导体棒的电流强度I 和电流方向。
(2)导体棒作匀速直线运动时水平外力F 的表达式。
(3)导体棒在0t -时间内产生的焦耳热Q 。
(4)若在0t 时刻将外力F 撤去,导体棒最终在导轨上静止时的坐标x 。
【解析】⑴经时间t ,导体棒位移 t v x 0= ①导体棒有效长度 l x = ②导体棒电动势 0Blv E = ③回路总电阻 ()r x l x l R 22+++= ④ RE I = ⑤①②③④⑤联立解得()r Bv I 220+=⑥电流方向 b a →(2F IlB =22(3)在t 时刻 ,rt v R 0'= R I P '=2联立解得 ()r t v B P 230222+=t P -为正比例函数关系,作出其图像,(如图2)把时间t 无限小等分,每份t ∆内.........332211t P t P t P Q ∆+∆+∆= ④当Q t ,0→∆线在t 时间内时间所围面积。
()r t v B Pt Q 2230222221+== (4) 撤去外力后,设任意时刻t 导体棒的坐标为x ,速度为v ,把停止前时间无限小等分,每份为t ∆, 由动量定理得02211.........mv t F t F =+∆+∆ ①n n n Bl I F l B I F l B I F ===....,.........,22221111 ② (),2211r Bv I += ()r Bv I 2222+=, ()..........2233r Bv I += ③把② ③代入上式①得:()()()022*********.........2222mv r l t v B r l t v B r l t v B n n n =+∆+++∆++∆ ()()n n n n mv l t v l t v l t v r B =∆+∆+∆+..........222221112 ④当0→∆t 时,棒扫过的面积n n n l t v l t v l t v S ∆+∆+∆=.........222111 ⑤将⑤代入④ 得, ()0222mv rS B =+ ()2022B rmv S += ⑥又知:()()200x xx x S -+= ⑦000t v x = ⑧将⑥⑦⑧联立得, ()202020222t v B rmv x ++= 【总结与点评】该题中导体棒在斜导轨上运动,随着导体棒的运动,导体棒的有效长度随之变化,电阻,电动势,安培力也随之变化,如果直接利用有关公式计算无法得出结果,但这里可以利用过程微元法,将物体运动的过程分成很多的小等份,从而解决了“研究过程的选择”,再辅以力学、电磁学知识,问题得到迎刃而解。
针对训练2.如图所示3,空间等间距分布着水平方向的条形匀强磁场,竖直方向磁场区域足够长,磁感应强度1B T =,每一条形磁场区域的宽度及相邻条形磁场区域的间距均为0.5d m =,现有一个边长0.2l m =,质量0.1m kg =、电阻0.1R =Ω的正方形线框MNOP 以07/v m s =的初速从左侧磁场边缘水平进入磁场,求(1)线框MN 边刚进入磁场时受到安培力的大小F 。
(2)线框从开始进入磁场到竖直下落的过程中产生的焦耳热Q 。
(3)线框能穿过的条形磁场区域的个数n .【解析】(1)线框MN 边刚进入磁场时0E Blv = ①E I R= ② F IBl = ③①②③联立得220 2.8B l v F N R== ④ (2)在水平方向,由能量守恒定律得 201 2.452Q mv J == ⑤(3)在水平方向,把部分线框在磁场中变速运动过程微元处理,每一微元的冲量 i i i Blv t I R∆= 由动量定理得11220......n n Blv t Blv t Blv t mv R R R∆∆∆++= ⑥ ()11220......n n Bl v t v t v t mv R++= ⑦ 部分线框在磁场中的变减速运动的位移1122......n n x v t v t v t =++ ⑧将⑦⑧联立得0mv R x Bl= ⑨ 线框变减速运动每通过一个条形磁场发生的位移为线框边长的二倍,2x n l= ⑩ 联立⑨⑩得 4n =(取整数)【总结与点评】本题线框在磁场中受重力和安培力的作用作曲线运动,类似于平抛运动但不同于平抛运动,属于要求较高的问题。
试题中第一问考查载流导体在磁场中的受力情况,属于考查基础知识范畴;第二问考查分析运动过程及能量的转化情况;第三问重点考查利用动量定理和微元法处理物理问题的能力,要求考生有较高的利用数学知识处理物理问题的能力和技巧。
三个设问对学生的能力要求逐步递增,有较好的区分度。
本题揭示了“变”与“不变”的内在物理规律,展现了一个新的物理图景。
典例3.如图所示,间距为l 的两条足够长的平行金属导轨与水平面的夹角为θ,导轨光滑且电阻忽略不计。
场强为B 的条形匀强磁场方向与导轨平面垂直,磁场区域的宽度为1d ,间距为2d 。
两根质量均为m 、有效电阻均为R 的导体棒a 和b 放在导轨上,并与导轨垂直。
(设重力加速度为g)(1)若a 进入第2个磁场区域时,b 以与a 同样的速度进入第1个磁场区域.求b 穿过第1个磁场区域过程中增加的动能ΔEk 。
(2)若a 进入第2个磁场区域时,b 恰好离开第1个酷场区域,此后a 离开第2个磁场区域时.B 又恰好进入第2个磁场区域且a 、b 在任意一个磁场区域或无磁场区域的 运动时间均相等.求a 穿过第2个磁场区域过程中,两导体棒产生的总焦耳热Q(3)对于第(2)问所述的运动情况,求a 穿出第k 个磁场区域时的速率v.【解析】⑴ a 和b 不受安培力作用,由机械能守恒知θsin 1mgd E k =∆ ①⑵设导体棒刚进入无磁场区域时的速度为1v ,刚离开无磁场区域的速度为2v ,由能量守恒得: 在磁场区域中θsin 212112221mgd mv Q mv +=+ ② 在无磁场区域中θsin 212122221mgd mv mv -= ③ 解得: ()12sin Q mg d d θ=+ ④⑶在无磁场区域中,根据匀变速直线运动规律θsin 12gt v v =- ①且平均速度 td v v 2212=+ ② 在磁场区域中棒a 受到合力 IBl mg F -=θsin ③感应电动势 Blv E = ④感应电流 RE I 2=⑤ 解得 v Rl B mg F 2sin 22-=θ ⑥ 根据牛顿第二定律,在t 到t t ∆+时间内t mF v ∆∑=∆∑ ⑦ 则有t mR v l B g v ∆⎥⎦⎤⎢⎣⎡-∑=∆∑2sin 22θ ⑧ 解得122212sin d mRl B gt v v -=-θ ⑨ 联立①②⑨解得122122218sin 4d mR l B d l B mgRd v -=θ 由题意知122122218sin 4d mR l B d l B mgRd v v -==θ 【总结与点评】本题考察考生对匀强磁场中的安培力、电磁感应定律、能量守恒和匀加速直线运动的分析综合能力及以应用数学处理物理问题的能力。
第(1)问要求考生理解感应电流产生的条件,直接使用能量守恒定律解决问题。
第(2)问要求考生仔细分析棒的物理状态和运动过程,建立物理模型,从而找到系统能量守恒的物理规律。
对考生的分析综合能力要求较高。
第(3)问能将复杂问题分解,综合运用牛顿运动定律、电磁感应定律和能量守恒定律,应用过程微元法解决问题,是整卷中对考生能力要求最高的一问。
针对训练3.如图所示,两平行的光滑金属导轨安装在一光滑绝缘斜面上,导轨间距为l 、 足够长且电阻忽略不计,导轨平面的倾角为α,条形匀强磁场的宽度为d ,磁感应强度大小为B 、方向与导轨平面垂直。
长度为2d 的绝缘杆将导体棒和正方形的单匝线框连接在一起组成“”型装置,总质量为m ,置于导轨上。
导体棒中通以大小恒为I 的电流(由外接恒流源产生,图中未图出)。
线框的边长为d (d < l ),电阻为R ,下边与磁场区域上边界重合。
将装置由静止释放,导体棒恰好运动到磁场区域下边界处返回,导体棒在整个运动过程中始终与导轨垂直。
重力加速度为g 。
求:(1)装置从释放到开始返回的过程中,线框中产生的焦耳热Q ;(2)线框第一次穿越磁场区域所需的时间t 1 ;(3)经过足够长时间后,线框上边与磁场区域下边界的最大距离χm 。