2018-2019学年河南省驻马店市确山县七年级(下)期中数学试卷
- 格式:docx
- 大小:221.65 KB
- 文档页数:12
七年级(下)期中数学试卷题号一二三四总分得分一、选择题(本大题共10小题,共30.0分)1.如果x=2是方程x+a=-1的根,那么a的值是()A. 0B. 2C. -2D. -62.根据等式性质,下列结论正确的是()A. 如果2a=b-2,那么a=bB. 如果a-2=2-b,那么a=-bC. 如果-2a=2b,那么a=-bD. 如果2a=b,那么a=b3.如图,下列四个天平中,相同形状的物体的重量是相等的,其中第①个天平是平衡的,根据第①个天平,后三个天平中不平衡的有()A. 0个B. 1个C. 2个D. 3个4.在如图所示的2018年1月的月历表中,任意框出表中竖列上的三个相邻的数,这三个数的和不可能是()A. 27B. 51C. 65D. 725.下列方程组中,不是二元一次方程组的是()A. B.C. D.6.已知是方程组的解,则(m+n)2018的值为()A. 22018B. -1C. 1D. 07.二元一次方程3x+y=7的正整数解有()组.A. 0B. 1C. 2D. 无数8.某校运动员分组训练,若每组7人,余3人;若每组8人,则缺5人;设运动员人数为x人,组数为y组,则列方程组为()A. B. C. D.9.我国古代名著《九章算术》中有一题:“今有凫起南海,七日至北海,雁起北海,九日至南海.今凫雁俱起,问何日相逢?”意思是:野鸭从南海起飞到到北海需要7天;大雁从北海飞到南海需要9天.野鸭和大雁同时分别从南海和北海出发,多少天相遇?设野鸭与大雁从南海和北海同时起飞,经过x天相遇,可列方程为()A. 9x-7x=1B. 9x+7x+1C. x+x=1D. x-x=110.某种商品的进价为800元,出售时标价为1200元,后来由于该商品积压,商店准备打折销售,但要保证利润率不低于5%,则至多可打()A. 6折B. 7折C. 8折D. 9折二、填空题(本大题共6小题,共18.0分)11.关于x的方程(a-2)x|a|-1-2=0是一元一次方程,则a=______.12.若关于x的方程5x-1=2x+a的解与方程4x+3=7的解相同,则a=______.13.若关于x、y的二元一次方程组的解满足x+y>0,则m的取值范围是______.14.若(2x-4)2+(x+y)2+|4z-y|=0,则x+y+z等于______.15.小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为5mm的小正方形,则每个小长方形的面积为______mm2.16.一列方程如下排列:+=1的解是x=2,+=1的解是x=3,+=1的解是x=4.…根据观察所得到的规律,请你写出其中解是x=2018的方程是:______.三、计算题(本大题共3小题,共30.0分)17.解方程:(1)-=1(2)2(x-2)-3(4x-1)=9(1-x)18.用指定的方法解下列方程组:(1)(代入法)(2)(加减法)19.先阅读下列解题过程,然后解答后面两个问题.解方程:|x+3|=2.解:当x+3≥0时,原方程可化为x+3=2,解得x=-1;当x+3<0时,原方程可化为x+3=-2,解得x=-5.所以原方程的解是x=-1或x=-5.①解方程:|3x-2|-4=0.②当b为何值时,关于x的方程|x-2|=b+1,(1)无解;(2)只有一个解;(3)有两个解.四、解答题(本大题共4小题,共42.0分)20.阅读理解:我们把称作二阶行列式,规定它的运算法则为=ad-bc,如=2×5-3×4=-2.如果有>0,求x的解集,并将解集在数轴上表示出来.21.有一种用来画圆的工具板(如图所示),工具板长21cm,上面依次排列着大小不等的五个圆(孔),其中最大圆的直径为3cm,其余圆的直径从左到右依次递减0.2cm.最大圆的左侧距工具板左侧边缘1.5cm,最小圆的右侧距工具板右侧边缘1.5cm,相邻两圆的间距d均相等.(1)直接写出其余四个圆的直径长;(2)求相邻两圆的间距.22.如图,在数轴上点A,点B,点C表示的数分别为-2,1,6.(1)线段AB的长度为______个单位长度,线段AC的长度为______个单位长度.(2)点P是数轴上的一个动点,从A点出发,以每秒1个单位长度的速度,沿数轴的正方向运动,运动时间为t秒(0≤t≤8).用含t的代数式表示:线段BP的长为______个单位长度,点P在数轴上表示的数为______;(3)点M,点N都是数轴上的动点,点M从点A出发以每秒4个单位长度的速度运动,点N从点C出发以每秒3个单位长度的速度运动.设点M,N同时出发,运动时间为x秒.点M,N相向运动,当点M,N两点间的距离为13个单位长度时,求x的值,并直接写出此时点M在数轴上表示的数.23.为加强中小学生安全和禁毒教育,某校组织了“防溺水、交通安全、禁毒”知识竞赛,为奖励在竞赛中表现优异的班级,学校准备从体育用品商场一次性购买若干个足球和篮球(每个足球的价格相同,每个篮球的价格相同),购买1个足球和1个篮球共需159元;足球单价是篮球单价的2倍少9元.(1)求足球和篮球的单价各是多少元?(2)根据学校实际情况,需一次性购买足球和篮球共20个,但要求购买足球和篮球的总费用不超过1550元,学校最多可以购买多少个足球?答案和解析1.【答案】C【解析】解:∵x=2是方程x+a=-1的根,∴代入得:×2+a=-1,∴a=-2,故选:C.把x═2代入方程x+a=-1得出一个关于a的方程,求出方程的解即可.本题考查了一元一次方程的解和解一元一次方程,解此题的关键是得出一个关于a的方程.2.【答案】C【解析】解:A、左边除以2,右边加2,故A错误;B、左边加2,右边加-2,故B错误;C、两边都除以-2,故C正确;D、左边除以2,右边乘以2,故D错误;故选:C.根据等式的性质,可得答案.本题考查了等式的性质,熟记等式的性质是解题关键.3.【答案】B【解析】解:由第①个天平,得一个球等于两个长方体,故③不符合题意;两个球等于四个长方体,故②不符合题意,两个球等于四个长方体,故④符合题意;故选:B.根据等式的性质,可得答案.本题考查了等式的性质,利用等式的性质是解题关键.4.【答案】C【解析】解:设第一个数为x,则第二个数为x+7,第三个数为x+14故三个数的和为x+x+7+x+14=3x+21当x=17时,3x+21=72;当x=10时,3x+21=51;当x=2时,3x+21=27.故任意圈出一竖列上相邻的三个数的和不可能是65.故选:C.设第一个数为x,则第二个数为x+7,第三个数为x+14.列出三个数的和的方程,再根据选项解出x,看是否存在.此题主要考查了一元一次方程的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再求解.5.【答案】B【解析】解:A.方程组是二元一次方程组,与要求不符;B.方程组中,含有三个未知数,不是二元一次方程组,符合要求;C.方程组是二元一次方程组,与要求不符;D.方程组是二元一次方程组,与要求不符.故选:B.依据二元一次方程组的定义求解即可.本题主要考查的是二元一次方程组的定义,掌握二元一次方程组的定义是解题的关键.6.【答案】C【解析】解:把代入方程组得:,解得:,则(m+n)2018=12018=1,故选:C.根据方程组的解满足方程组,可得关于m,n的方程组,根据解方程组,可得m,n的值,再根据1的任何次幂都等于1,可得答案.本题考查了二元一次方程组的解,利用方程组的解满足方程组得出关于m,n的方程组是解题关键.7.【答案】C【解析】解:方程3x+y=7,解得:y=-3x+7,当x=1时,y=4;x=2时,y=1,则方程的正整数解有2组,故选:C.把x看做已知数求出y,即可确定出正整数解.此题考查了解二元一次方程,解题的关键是将x看做已知数求出y.8.【答案】D【解析】解:设运动员人数为x人,组数为y组,由题意得:列方程组为:.故选:D.根据关键语句“若每组7人,余3人”可得方程7y+3=x;“若每组8人,则缺5人.”可得方程8y-5=x,联立两个方程可得方程组.此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,抓住关键语句,列出方程.9.【答案】C【解析】解:由题意可得,,故选:C.根据题意可以列出相应的方程,从而可以解答本题.本题考查由实际问题抽象出一元一次方程,解答本题的关键是明确题意,列出相应的方程.10.【答案】B【解析】解:设可打x折,则有1200×-800≥800×5%,解得x≥7.即最多打7折.故选:B.本题可设打x折,根据保持利润率不低于5%,可列出不等式:1200×-800≥800×5%,解出x的值即可得出打的折数.本题考查的是一元一次不等式的应用,解此类题目时注意利润和折数,计算折数时注意要除以10.11.【答案】-2【解析】解:根据题意得|a|-1=1,且a-2≠0,解得:a=-2.故答案是:-2.根据一元一次方程的定义,最高项的次数是1,且一次项系数不等于0即可求解.本题考查了一元一次方程的概念和解法.一元一次方程的未知数的指数为1,理解定义是关键.12.【答案】2【解析】【分析】本题主要考查的是同解方程的定义,熟练掌握同解方程的定义是解题的关键,先求得方程4x+3=7的解,然后将x的值代入方程5x-1=2x+a,然后可求得a的值.【解答】解:∵4x+3=7,∴x=1,∵关于x的方程5x-1=2x+a的解与方程4x+3=7的解相同,∴方程5x-1=2x+a的解为x=1.∴5-1=2+a,解得:a=2.故答案为2.13.【答案】m>-2【解析】解:,①+②得2x+2y=2m+4,则x+y=m+2,根据题意得m+2>0,解得m>-2.故答案是:m>-2.首先解关于x和y的方程组,利用m表示出x+y,代入x+y>0即可得到关于m的不等式,求得m的范围.本题考查的是解二元一次方程组和解一元一次不等式,解答此题的关键是把m当作已知数表示出x+y的值,再得到关于m的不等式.14.【答案】-【解析】解:∵(2x-4)2+(x+y)2+|4z-y|=0,∴,解得:,则x+y+z=2-2-=-.故答案为:-.利用非负数的性质列出关于x,y及z的方程组,求出方程组的解即可得到x,y,z的值,确定出x+y+z的值.此题考查了解三元一次方程组,利用了消元的思想,熟练掌握运算法则是解本题的关键.15.【答案】375【解析】解:设小长方形的长为xmm,宽为ymm,由题意,得:,解得:,则每个小长方形的面积为:25×15=375(mm2)故答案是:375.设小长方形的长为xmm,宽为ymm,观察图形发现“3x=5y,2y-x=5”,联立成方程组,解方程组即可得出结论.本题考查了二元一次方程组的应用,解题的关键是根据图形长宽之间的关系得出关于x、y的二元一次方程组.本题属于基础题,难度不大,解决该题型题目时,根据给定图形中长宽间的关系列出方程组是关键.16.【答案】+=1【解析】解:方程+=1的解为x=2018.故答案为+=1.利用题中方程的特点和方程的解之间的关系写出形式与题中的方程一样且解是x=2018的方程.本题考查了一元一次方程的解:使一元一次方程左右两边相等的未知数的值叫做一元一次方程的解.把方程的解代入原方程,等式左右两边相等.17.【答案】解:(1)去分母得:2x+6-3x-3=6,移项合并得:-x=3,解得:x=-3;(2)去括号得:2x-4-12x+3=9-9x,移项合并得:-x=10,解得:x=-10.【解析】(1)方程去分母,去括号,移项合并,把x系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解.此题考查了解一元一次方程,解方程移项时注意要变号.18.【答案】解:(1),由②得:x=4+y③,把③代入①得3(4+y)+4y=19,解得:y=1,将y=1代入①得:x=5,则方程组的解为:;(2),①-②×2得:x=2,把x=2代入①得:y=-1,方程组的解为:.【解析】(1)利用代入消元法解方程组即可;(2)利用加减消元法解方程组.本题考查的是二元一次方程组的解法,掌握代入消元法和加减消元法的一般步骤是解题的关键.19.【答案】答:(1)当3x-2≥0时,原方程可化为:3x-2=4,解得x=2;当3x-2<0时,原方程可化为:3x-2=-4,解得x=-.所以原方程的解是x=2或x=-;(2)∵|x-2|≥0,∴当b+1<0,即b<-1时,方程无解;当b+1=0,即b=-1时,方程只有一个解;当b+1>0,即b>-1时,方程有两个解【解析】(1)首先要认真审题,解此题时要理解绝对值的意义,要会去绝对值,然后化为一元一次方程即可求得.(2)根据绝对值的性质分类讨论进行解答.本题主要考查含绝对值符号的一元一次方程,解题的关键是根据绝对值的性质将绝对值符号去掉,从而化为一般的一元一次方程求解.20.【答案】解:由题意得2x-(3-x)>0,去括号得:2x-3+x>0,移项合并同类项得:3x>3,把x的系数化为1得:x>1,解集在数轴上表示如下:【解析】首先看懂题目所给的运算法则,再根据法则得到2x-(3-x)>0,然后去括号、移项、合并同类项,再把x的系数化为1即可.本题考查了解一元一次不等式,有理数的混合运算和在数轴上表示不等式的解集,正确掌握解不等式的基本步骤是解题的关键.21.【答案】解:(1)其余四个圆的直径依次为:2.8cm,2.6cm,2.4cm,2.2cm.(2)设两圆的距离是d,4d+1.5+1.5+3+2.8+2.6+2.4+2.2=214d+16=21d=故相邻两圆的间距为cm.【解析】(1)因为其余圆的直径从左到右依次递减0.2cm,可依次求出圆的长.(2)可设两圆的距离是d,根据5个圆的直径长和最大圆的左侧距工具板左侧边缘1.5cm,最小圆的右侧距工具板右侧边缘1.5cm,以及圆之间的距离加起来应该为21cm,可列方程求解.本题考查理解题意的能力,以及识图的能力,关键是21cm做为等量关系可列方程求解.22.【答案】(1)3 ,8 ;(2)(3-t)或(t-3),-2+t;(3)依题意有:4x+3x-8=13,解得x=3.此时点M在数轴上表示的数是-2+4×3=10.【解析】解:(1)线段AB的长度为1-(-2)=3个单位长度,线段AC的长度为6-(-2)=8个单位长度;故答案为:3;8.(2)线段BP的长为:点P在点B的左边为3-t,点P在点B的右边为t-3;点P在数轴上表示的数为-2+t;故答案为:(3-t)或(t-3);-2+t.(3)见答案.本题考查了一元一次方程的应用,数轴,根据题目给出的条件,找出合适的等量关系列出方程,再求解.(1)根据两点间的距离公式可求线段AB的长度,线段AC的长度;(2)先根据路程=速度×时间求出点P运动的路程,再分点P在点B的左边和右边两种情况求解;(3)根据等量关系点M、N两点间的距离为13个单位长度列出方程求解即可.23.【答案】解:(1)设一个足球的单价x元、一个篮球的单价为y元,根据题意得,解得:,答:一个足球的单价103元、一个篮球的单价56元;(2)设可买足球m个,则买篮球(20-m)个,根据题意得:103m+56(20-m)≤1550,解得:m≤9,∵m为整数,∴m最大取9答:学校最多可以买9个足球.【解析】(1)设一个足球的单价x元、一个篮球的单价为y元,根据:①1个足球费用+1个篮球费用=159元,②足球单价是篮球单价的2倍少9元,据此列方程组求解即可;(2)设买足球m个,则买篮球(20-m)个,根据购买足球和篮球的总费用不超过1550元建立不等式求出其解即可.本题考查了列二元一次方程组解实际问题的运用,列一元一次不等式解实际问题的运用,解答本题时找到建立方程的等量关系和建立不等式的不等关系是解答本题的关键.。
确山县初级中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)如图,已知AB∥CD∥EF,FC平分∠AFE,∠C=25°,则∠A的度数是()A.25°B.35°C.45°D.50°【答案】D【考点】平行线的性质【解析】【解答】解:∵CD∥EF,AB∥EF∴∠C=∠CFE,∠A=∠AFE∵FC平分∠AFE∴∠AFE=50°,即∠A=50°故答案为:D。
【分析】根据平行线的性质,两直线平行,内错角相等以及角平分线的性质,进行求解即可。
2、(2分)下列各式计算错误的是()A. B. C. D.【答案】B【考点】立方根及开立方【解析】【解答】A、,不符合题意;B、,符合题意;C、,不符合题意;D、,不符合题意;故答案为:B.【分析】求一个数的立方根的运算叫开立方。
(1)根据开立方的意义可得原式=0.2 ;(2)根据算术平方根的意义可得原式=11;(3)根据开立方的意义可得原式=;(4)根据开立方的意义可得原式=-.3、(2分)如图,在下列条件中,能判断AD∥BC的是()A. ∠DAC=∠BCAB. ∠DCB+∠ABC=180°C. ∠ABD=∠BDCD. ∠BAC=∠ACD 【答案】A【考点】平行线的判定【解析】【解答】解:A、∵∠DAC=∠BCA,∴AD∥BC(内错角相等,两直线平行),A符合题意;B、根据“∠DCB+∠ABC=180°”只能判定“DC∥AB”,而非AD∥BC,B不符合题意;C、根据“∠ABD=∠BDC”只能判定“DC∥AB”,而非AD∥BC,C不符合题意;D、根据“∠BAC=∠ACD”只能判定“DC∥AB”,而非AD∥BC,D不符合题意;故答案为:A.【分析】根据各个选项中各角的关系,再利用平行线的判定定理,对各选项逐一判断即可。
河南省驻马店地区七年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题(本大题共10个小题,每小题3分,共30分) (共10题;共29分)1. (3分)下列各式中不是方程的是()A . 2x+3y=1B . -x+y=4C . 3π+4≠5D . x=82. (3分) (2019七下·遂宁期中) 若关于x的方程2x-(2a-1)x+3=0的解为x=3,则a的值是()A . -2B . 0C . 1D . 23. (3分)(2018·漳州模拟) 如图,在下框解分式方程的4个步骤中,根据等式基本性质的是().A . ①②B . ②④C . ①③D . ③④4. (3分)将3x﹣7=2x变形正确的是()A . 3x+2x=7B . 3x﹣2x=﹣7C . 3x+2x=﹣7D . 3x﹣2x=75. (3分) (2018八上·深圳期末) 若4x-3y-6z=0,x+2y-7z=0(xyz≠0),则式子的值等于()A .B .C . -15D . -136. (3分)若关于,的方程组的解是,则为()A . 1B . 3C . 5D . 27. (3分)下列式子:①5>0;②3a+4b>0;③x=2;④x﹣1;⑤x+3≠5;⑥2a+3≤7;⑦x2+1≥8,其中,不等式有()A . 2个B . 3个C . 4个D . 5个8. (2分)(2019·吉林模拟) 满足-1<x≤2的数在数轴上表示为().A .B .C .D .9. (3分)下列说法正确的有()①最大的负整数是-1;②数轴上表示数2和-2的点到原点的距离相等;③有理数分为正有理数和负有理数;④a+5一定比a大;⑤在数轴上7与9之间的有理数是8A . 1个B . 2个C . 3个D . 4个10. (3分)陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有“笑脸”和“爱心”两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置的需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为()A . 14元B . 15元C . 16元D . 17元二、填空题(本大题共4个小题,每小题4分,共16分) (共8题;共32分)11. (4分)在等式两边同时________得 4x-2a=3。
河南省驻马店地区七年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分)已知a2+a-3=0,那么a2(a+4)的值是()A . 9B . -12C . -18D . -152. (2分) (2019八上·桐梓期中) 下列线段中能围成三角形的是()A . 1,2,3B . 4,5,6C . 5,6,11D . 7,10,183. (2分) (2017七下·钦州期末) 下列变形是因式分解的是()A . xy(x+y)=x 2 y+xy 2B . x 2+2x+1=x(x+1)+1C . (a﹣b)(m﹣n)=(b﹣a)(n﹣m)D . ab﹣a﹣b+1=(a﹣1)(b﹣1)4. (2分)下列多项式乘法中可以用平方差公式计算的是()A . (-a+b)(a-b)B . (x+2)(2+x)C .(x+y)(y-x)D . (x+y)(y+x)5. (2分)下列运算正确的是()A . a•a3=a3B . 2(a﹣b)=2a﹣bC . (a3)2=a5D . a2﹣2a2=﹣a26. (2分) (2018八上·柘城期末) 已知a,b,c是三角形的三边,那么代数式a2﹣2ab+b2﹣c2的值()A . 大于零B . 等于零C . 小于零D . 不能确定7. (2分)多项式x2﹣mxy+9y2能用完全平方因式分解,则m的值是()A . 3B . 6C . ±3D . ±68. (2分)下列计算正确的是()A .B .C .D .二、填空题 (共10题;共17分)9. (1分) (2017七下·金山期中) ﹣0.000000259用科学记数法表示为________.10. (1分)(2020·邗江模拟) 如图,直线,等边△ABC的顶点C在直线上,若边AB与直线的夹角,则边AC与直线的夹角∠2=________ .11. (1分) (2017八上·盂县期末) 计算:(﹣3x2y2)2•2xy+(xy)3=________.12. (1分) (2019七下·兰州期中) 如图,AB∥CD,AC⊥BC,∠BAC=65°,则∠BCD=________.13. (1分) (2020七下·青岛期中) 如图,将一张长方形纸片沿EF折叠后,点D、C分别落在点D′、C′的位置,ED′的延长线与BC相交于点G,若∠EFG=58°,则∠1=________°.14. (1分)若a+b=5,ab=6,则a﹣b=________ .15. (1分) (2017八上·宝坻月考) 若10m=5,10n=3,则102m+3n=________.16. (1分) (2018七上·前郭期末) 已知关于x的方程2x+a=x﹣1的解为﹣4,则a=________.17. (1分) (2018八上·南昌期中) 如图,在Rt△ABC 中,∠A=90°,∠ABC 的平分线 BD 交 AC 于点 D ,AD=3,BC=8,则△BDC 的面积是________.18. (8分) (2017七下·防城港期中) 如图,AB∥CD,BE平分∠ABD,DE平分∠BDC,且BE与DE相交于点E,求证∠E=90°证明:∵AB∥CD(________)∴∠ABD+∠BDC=180°(________)∵BE平分∠ABD(________)∴∠EBD= ________(________)又∵DE平分∠BDC∴∠BDE= ________(________)∴∠EBD+∠EDB= ∠ABD+ ∠BDC(________)= (∠ABD+∠BDC)=90°∴∠E=90°.三、解答题 (共10题;共112分)19. (10分)计算:(1) 3x(1﹣x)+2x(x+3)+5(x﹣2);(2) 5a﹣3(a﹣2)﹣2[a﹣3(3﹣2a)+6].20. (20分) (2020七下·徐州期中) 把下列各式分解因式:(1) 2x2-32(2) 2x2-2x+(3);(4) .21. (20分) (2019八上·长春期中) 计算:(1)(﹣2a3)2•(﹣5a2);(2)(﹣2x)(3x2﹣2x﹣1);(3)(﹣x﹣y)(﹣x+y);(4)(﹣8a3b4c)÷(﹣2ab2)2 .22. (5分) (2020七下·常熟期中) 先化简,再求值:2(x-1)(2x+1)-(x+1)2+(x-3)(x+3),其中x=2.23. (15分) (2019·山西模拟) 如图,四边形ABCO为矩形,点A在x轴上,点C在y轴上,且点B的坐标为(2,1),将此矩形绕点O逆时针旋转90°得矩形DEFO,抛物线y=-x2+bx+c过B、E两点.(1)求此抛物线的函数解析式.(2)将矩形DEFO向右平移,当点E的对应点E’在抛物线上时,求线段DF扫过的面积.(3)若将矩形ABCO向上平移d个单位长度后,能使此抛物线的顶点在此矩形的边上,求d的值.24. (5分)如图,点E、A、C在一条直线上,AD⊥BC,EG⊥BC,垂足分别为D、G,EG与AB相交于点F,且∠1=∠2,∠BAD与∠CAD相等吗?为什么?25. (10分) (2018九上·建平期末) 如图,在正方形ABCD中,点G在对角线BD上(不与点B,D重合),GE⊥DC于点E,GF⊥BC于点F,连结AG.(1)写出线段AG,GE,GF长度之间的数量关系,并说明理由;(2)若正方形ABCD的边长为1,∠AGF=105°,求线段BG的长.26. (10分) (2018八上·兴义期末) 若△ABC的三边长分别a、b、c.(1)当b2+2ab=c2+2ac时,试判断 ABC的形状;(2)判断式子a2-b2+c2-2ac的值的符号。
第1页,共6页 第2页,共6页1——————————————————————————————————————————————————————————————————————————密考 班级 姓名——————————————————密 封 线 内 不 得 答 题————————————————河南学校2018-2019第二学期七年级期中考试数学试题(满分120分,考试时间120分钟)一、选择题.(每空3分,共30分)1. 如图,直线AB 、CD 相交于点O,若∠1+∠2=100°,则∠BOC 等于 ( )A.130°B.140°C.150°D.160°2.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上,如果∠1=20°,那么∠2等于( )A .30° B.25° C.20° D.15° 3.如图,若在中国象棋盘上建立平面直角坐标系,使“帅”位于点(-1,-2),“马”位于点(2,-2),则“兵”位于点( )A .(-1,1)B .(-2,-1)C .(-3,1)D .(1,-2) 4.下列现象属于平移的是( )A .冷水加热过程小气泡上升成为大气泡 B.急刹车时汽车在地面上的滑动 C .投篮时的篮球运动 D .随风飘动的树叶在空中的运动 5.如图①,A ,B ,C ,D 中的哪幅图案可以通过图案①平移得到( )A B C D6.下列各数中,是无理数的为( ) A.39 B. 3.14 C. 4D. 722-7.若a 2=9, 3b =-2,则a+b=( )A. -5B. -11C. -5 或 -11D. ±5或±118.如果一个实数的平方根与它的立方根相等,则这个数是( )A . 0B . 正整数C . 0和1D . 1 9.下列各组数中互为相反数的是( )A .-2B .-2C .-2与12-D .|-2|与210.若点A (m ,n )在第三象限,点B (-m ,-n )在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 二、填空.(每小题3分,共18分)11.把命题“平行于同一条直线的两条直线平行”改写成“如果……那么……”的形式:_____________________________________________________________12.一大门的栏杆如右图所示,BA ⊥AE ,若CD ∥AE ,则∠ABC+∠BCD=____度.13.如右图,有下列判断:①∠A 与∠1是同位角;②∠A 与∠B 是同旁内角;③∠4与∠1是内错角;④∠1与∠3是同位角。
第1页(共21页)2018-2019学年七年级下学期期中考试数学试卷一、选择题(共12小题,每小题3分,满分36分)1.下列式子中,属于最简二次根式的是( )ABCD2x 的取值范围是( )A .3x <B .3x …C .3x >D .3x …3.下列计算错误的是( )A=B=C= D.3=4.实数a( )A .7B .7-C .215a -D .无法确定 5.已知a =b =,则a 与b 的关系是( )A .a b =B .1ab =C .a b =-D .5ab =-6.若顺次连接四边形的各边中点所得的四边形是菱形,则该四边形一定是( )A .矩形B .一组对边相等,另一组对边平行的四边形C .对角线互相垂直的四边形D .对角线相等的四边形7.如图,ABCD 的对角线AC 与BD 相交于点O ,AB AC ⊥,若4AB =,6AC =,则BD的长是( )A .8B .9C .10D .11 8.如图,在ABC ∆中,45A ∠=︒,30B ∠=︒,CD AB ⊥,垂足为D ,1AD =,则BD 的长第2页(共21页)为( )AB .2 CD .39.如图,一轮船以16海里/时的速度从港口A 出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A 出发向东南方向航行,离开港口2小时后,则两船相距( )A .25海里B .30海里C .40海里D .50海里10.如图,平行四边形ABCD 中,5AD =,3AB =,AE 平分BAD ∠交BC 边于点E ,则EC 等于( )A .1B .2C .3D .411.如图, 在ABC ∆中,D ,E ,F 分别为BC ,AC ,AB 边的中点,AH BC⊥于H ,8FD =,则HE 等于( )A . 20B . 16C . 12D . 812.如图,已知OP 平分AOB ∠,60AOB ∠=︒,2CP =,//CP OA ,PD OA ⊥于点D ,PE OB⊥于点E .如果点M 是OP 的中点,则DM 的长是( )。
确山县实验中学2018-2019学年七年级下学期数学期中考试模拟试卷含解析班级__________ 座号_____ 姓名__________ 分数__________一、选择题1、(2分)在,π,,1.5(。
)1(。
),中无理数的个数有()A. 2个B. 3个C. 4个D. 5个【答案】A【考点】无理数的认识【解析】【解答】解:∵无理数有:,故答案为:A.【分析】无理数:无限不循环小数,由此即可得出答案.2、(2分)不等式的解集是()A.B.C.D.【答案】A【考点】解一元一次不等式【解析】【解答】解:,去分母得3x-2(x-1)≤6,解得,,故答案为:A.【分析】根据以下步骤进行计算:(1)两边同乘以各分母的最小公倍数去分母;(2)去括号(不要漏乘);(3)移项、合并同类项;(4)系数化为1(注意不等号的方向),3、(2分)下列方程中,是二元一次方程的是()A.3x﹣2y=4zB.6xy+9=0C.D.【答案】D【考点】二元一次方程的定义【解析】【解答】解:根据二元一次方程的定义,方程有两个未知数,方程两边都是整式,故D符合题意,故答案为:D【分析】根据二元一次方程的定义:方程有两个未知数,含未知数项的最高次数都是1次,方程两边都是整式,即可得出答案。
4、(2分)在数轴上标注了四段范围,如图,则表示的点落在()A. 段①B. 段②C. 段③D. 段④【答案】C【考点】实数在数轴上的表示,估算无理数的大小【解析】【解答】解:∵2.62=6.76,2.72=7.29,2.82=7.84,2.92=8.41,32=9,∴7.84<8<8.41,∴2.8<<2.9,∴表示的点落在段③故答案为:C【分析】分别求出2.62,2.72,2.82,2.92,32值,就可得出答案。
5、(2分)估计30的算术平方根在哪两个整数之间()A. 2与3B. 3与4C. 4与5D. 5与6【答案】D【考点】估算无理数的大小【解析】【解答】解:∵25<30<36,∴5<<6,故答案为:D.【分析】由25<30<36,根据算术平方根计算即可得出答案.6、(2分)在数:3.14159,1.010010001…,7.56,π,中,无理数的个数有()A. 1个B. 2个C. 3个D. 4个【答案】B【考点】无理数的认识【解析】【解答】解:上述各数中,属于无理数的有:两个.故答案为:B.【分析】根据无理数的定义“无限不循环小数叫做无理数”分析可得答案。
河南省驻马店地区七年级下学期期中数学试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2019七下·红河期末) 的算术平方根是()A .B . -C .D . ±2. (2分) (2016七下·微山期中) 如图,三条直线l1 , l2 , l3相交于点E,则∠1+∠2+∠3=()A . 90°B . 120°C . 180°D . 360°3. (2分) (2018八上·东台月考) 在,,,,中,无理数的个数是()A . 个B . 个C . 个D . 个4. (2分)如图,象棋盘上,若“帅”位于点,“马”位于点,则“炮”位于点A .B .C .D .5. (2分) (2018七下·深圳期中) 如图,不一定能推出a∥b的条件是()A . ∠1=∠3B . ∠2=∠4C . ∠1=∠4D . ∠2+∠3=180º6. (2分)(2017·隆回模拟) 下列命题中,真命题是()A . 有两边相等的平行四边形是菱形B . 有一个角是直角的四边形是矩形C . 四个角相等的菱形是正方形D . 两条对角线互相垂直且相等的四边形是正方形7. (2分) (2017九上·路北期末) 如图,已知矩形ABCD和矩形EFGO在平面直角坐标系中,点B,F的坐标分别为(﹣4,4),(2,1).若矩形ABCD和矩形EFGO是位似图形,点P(点P在GC上)是位似中心,则点P的坐标为()A . (0,3)B . (0,2.5)C . (0,2)D . (0,1.5)8. (2分)过(6,﹣3)和B(﹣6,﹣3)两点的直线一定()A . 垂直于x轴B . 与y轴相交但不平行于x轴C . 平行于x轴D . 与x轴、y轴都不平行9. (2分) (2019八上·哈尔滨期末) 在△ABC中, AB=AC=4,∠B=30°,点P是线段 BC上一动点,则线段AP的长可能是()A . 1B .C .D .10. (2分) (2019八上·阜新月考) 实数a,b在数轴上的位置如图所示,则化简的结果是()A .B .C .D .二、填空 (共5题;共8分)11. (3分)把下列各数的序号填在相应的横线上.①﹣0.3,②0,③,④π2 ,⑤|﹣2|,⑥,⑦3.1010010001…(每两个1之间多一个0),⑧﹣分数:________ ,整数:________ ,无理数:________12. (2分) (2020七下·青岛期中) 如图,直角三角形ABC中,AC⊥BC,CD⊥AB,点A到直线BC的距离等于线段________的长度,点A到直线CD的距离等于线段________的长度.13. (1分) (2016七上·绍兴期中) 如果x2=64,那么 =________.14. (1分) (2017八下·江东月考) 如图,A,B的坐标为(1,0),(0,2),若将线段AB平移至A1B1 ,则a﹣b的值为________.15. (1分) (2019八上·嘉兴期末) 平面直角坐标系中,点A(1,-2)到x轴的距离是________.三、解答 (共7题;共82分)16. (10分) (2017八下·简阳期中) 计算下列各式:(1) |﹣5|+(π﹣3.1)0﹣()﹣1+ ;(2) 1﹣÷ • .17. (5分) (2019七下·福州期末) 如图,线段AB,CD交于点E,且∠ACE=∠AEC,过点E在CD上方作射线EF∥AC,求证:ED平分∠BEF.18. (15分)(2019·石景山模拟) 如图,在等边△ABC中,D为边AC的延长线上一点(CD<AC),平移线段BC,使点C移动到点D,得到线段ED,M为ED的中点,过点M作ED的垂线,交BC于点F,交AC于点G.(1)依题意补全图形;(2)求证:AG=CD;(3)连接DF并延长交AB于点H,用等式表示线段AH与CG的数量关系,并证明.19. (9分) (2018七下·浦东期中) 按下列要求画图并填空:(1)画图:① 过点A画AD⊥BC,垂足为D② 过点C画CE⊥AB,垂足为E③ 过点B画BF⊥AC,垂足为F(2)填空:① 点B、C两点的距离是线段________的长度,AD的长度表示点A到直线________的距离.② 点B到直线AC的距离是线段________的长度.③点E到直线AB的距离是________.20. (15分) (2017八下·仁寿期中) 已知,如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y= (n为常数且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂直为D,若OB=2OA=3OD=6.(1)求一次函数与反比例函数的解析式;(2)求两函数图象的另一个交点坐标;(3)直接写出不等式;kx+b≤ 的解集.21. (11分) (2019七下·通城期末) 我们规定:将任意三个互不相等的数a,b,c按照从小到大的顺序排列后,把处于中间位置的数叫做这三个数的中位数.用符号mid{a,b,c}表示.例如mid{﹣1,2,1}=1.(1) mid{ ,5,3}=________.(2)当x<﹣2时,求mid{1+x,1﹣x,﹣1}.(3)若x≠0,且mid{5,5﹣2x,2x+1}=2x+1,求x的取值范围.22. (17分) (2020七下·云南月考) 如(图1),在平面直角坐标系中,,,,且满足,线段交轴于点.(1)填空: ________, ________;(2)点为轴正半轴上一点,若,,且分别平分,如(图2),求的度数;(3)求点的坐标;(4)如(图3),在轴上是否存在一点,使三角形的面积和三角形的面积相等?若存在,求出点坐标,若不存在,说明理由.参考答案一、选择题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空 (共5题;共8分)11-1、12-1、13-1、14-1、15-1、三、解答 (共7题;共82分)16-1、16-2、17-1、18-1、18-2、18-3、19-1、19-2、20-1、20-2、20-3、21-1、21-2、21-3、22-1、22-2、22-3、22-4、。
河南省驻马店地区七年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2019·肥城模拟) 下列图形中,可以由其中一个图形通过平移得到的是()A .B .C .D .2. (2分) (2020八上·莱山期末) 若正多边形的一个外角是45°,则该正多边形从一个顶点出发的对角线的条数为()A . 4B . 5C . 6D . 83. (2分) (2016八上·上城期末) 已知三角形的两边长分别为8和4,则第三边长可能是()A . 3B . 4C . 8D . 124. (2分)下列运算中,一定正确的是()A . m5﹣m2=m3B . m10÷m2=m5C . m•m2=m3D . (2m)5=2m55. (2分) (2020八上·曲沃期末) 若x+y=3且xy=1,则代数式(1+x)(1+y)的值等于()A . ﹣1B . 1C . 3D . 56. (2分)如图,两个正六边形的边长均为1,其中一个正六边形的一边恰在另一个正六边形的对角线上,则这个图形(阴影部分)外轮廓线的周长是A . 7B . 8C . 9D . 107. (2分) (2020七下·昌吉期中) 如图所示,下列条件中,能判断直线L1∥L2的是()A . ∠2=∠3B . ∠l=∠3C . ∠4+∠5=180D . ∠2=∠48. (2分)不等式组的最小整数解为()A . 0B . 1C . 2D . ﹣19. (2分) (2018八下·越秀期中) 如图,正方形ABCD中,E为DC边上一点,且DE=1,AE=EF,∠AEF=90°,则FC= ()A .B .C .D . 110. (2分) (2019七上·全州期中) 在数轴上,一只蚂蚁从原点出发,它第一次向右爬行了1个单位长度,第二次接着向左爬行了2个单位长度,第三次接着向右爬行了3个单位长度,第四次接着向左爬行了4个单位长度,如此进行了2019次,此时蚂蚁在数轴上的位置表示的数是()A . ﹣1009B . 1009C . ﹣1010D . 1010二、填空题 (共8题;共8分)11. (1分)(2018·张家界) 目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造芯片的最小工艺水平是16纳米,已知1纳米=10﹣9米,用科学记数法将16纳米表示为________米.12. (1分) (2020九下·中卫月考) 若关于x的方程x2+2x+m=0没有实数根,则m的取值范围是________.13. (1分) (2019七上·杨浦月考) 计算: =________14. (1分)(2020·黄浦模拟) 不等式组的整数解是________.15. (1分) (2017七下·嘉兴期末) 如图,立方体棱长为2cm,将线段AC平移到A1C1的位置上,平移的距离是________cm.16. (1分) (2020七下·青岛期中) 若是一个完全平方式,则k的值为________;17. (1分) (2016八下·大石桥期中) 如图,四边形ABCD是正方形,延长AB到E,使AE=AC,则∠BCE的度数是________度.18. (1分) (2017七下·邗江期中) 如图,已知DE∥BC,DC平分∠EDB,∠ADE=80°,则∠BCD=________°.三、解答题 (共9题;共86分)19. (5分) (2020八下·永春期末) 计算:.20. (10分) (2019八下·九江期中) 分解因式:(1);(2)21. (5分)已知a+b=2,c-d=1,求(a+d)-(c-b)的值.22. (10分) (2017七下·南京期中) 如图(1)如图,试用x的代数式表示图形中阴影部分的面积;(2)当x=4时,计算图中阴影部分的面积.23. (11分) (2020八下·天桥期末) ABC在平面直角坐标系xOy中的位置如图所示. A (-2,3),B (-1,1),C(0,2)(1)将 ABC向右平移2个单位,作出平移后的 A1B1C1;(2)作出 A1B1C1关于点C1成中心对称的图形 A2B2C2;(3)连接A2B1 ,则 A2B2B1的面积为________.24. (5分) (2017七下·宜春期末) 如图是一个汉字“互”字,其中,∥ ,∠1=∠2,∠ =∠.求证:∠MEF=∠GHN25. (10分) (2020八下·莲湖期末) 如图,在三角形纸片中,的平分线交于点D,将沿折叠,使点C落在点A处.(1)求证: .(2)若,求的度数.26. (20分) (2018七上·盐城期中) (阅读理解)第一届现代奥运会于1896年在希腊雅典举行,此后每4年举行一次,奥运会如因故不能举行,届数照算.则奥运会的年份可排成如下一列数:1896,1900,1904,1908,…观察上面一列数,我们发现这一列数从第二项起,每一项与它前一项的差都等于同一个常数4,这一列数在数学上叫做等差数列,这个常数4叫做等差数列的公差.(1)等差数列2,5,8,…的第五项多少;(2)若一个等差数列的第二项是28,第三项是46,则它的公差为多少,第一项为多少,第五项为多少;(3)聪明的小雪同学作了一些思考,如果一列数a1 , a2 , a3 ,…是等差数列,且公差为d,根据上述规定,应该有:a 2-a1=d,a3-a2= d,a4-a3= d,…所以a 2=a1+d,a3=a2+d=(a1+d)+d=a1+2d,a4=a3+d=( a1+2d)+d=a1+3d,…则等差数列的第n项an多少 (用含有a1、n与d的代数式表示);(4)按照上面的推理,2008年中国北京奥运会是第几届奥运会,2050年会不会(填“会”或“不会”)举行奥运会.27. (10分) (2016七上·太康期末) 如图,直线AB,CD相交于点O,OA平分∠EOC.(1)若∠EOC=70°,求∠BOD的度数;(2)若∠EOC:∠EOD=2:3,求∠BOD的度数.参考答案一、单选题 (共10题;共20分)答案:1-1、考点:解析:答案:2-1、考点:解析:答案:3-1、考点:解析:答案:4-1、考点:解析:答案:5-1、考点:解析:答案:6-1、考点:解析:答案:7-1、考点:解析:答案:8-1、考点:解析:答案:9-1、考点:解析:答案:10-1、考点:解析:二、填空题 (共8题;共8分)答案:11-1、考点:解析:答案:12-1、考点:解析:答案:13-1、考点:解析:答案:14-1、考点:解析:答案:15-1、考点:解析:答案:16-1、考点:解析:答案:17-1、考点:解析:答案:18-1、考点:解析:三、解答题 (共9题;共86分)答案:19-1、考点:解析:答案:20-1、答案:20-2、考点:解析:答案:21-1、考点:解析:答案:22-1、答案:22-2、考点:解析:答案:23-1、答案:23-2、答案:23-3、考点:解析:答案:24-1、考点:解析:答案:25-1、答案:25-2、考点:解析:答案:26-1、答案:26-2、答案:26-3、答案:26-4、考点:解析:答案:27-1、答案:27-2、考点:解析:。
七年级下学期数学期中测试题1如图,AB∥CD∥EF,AF∥CG,则图中与∠A(不包括∠A)相等的角有()A.5个B.4个C.3个D.2个2.在平面直角坐标系中,点()1,12+-m一定在()A、第一象限B、第二象限C、第三象限D、第四象限3.如图所示,通过平移,可将左图中的福娃“欢欢”移动到图()(A)(B)(C)(D)4.如图,AB∥CD,且∠BAP=60°-α,∠APC=45°+α,∠PCD=30°-α,则α=( )A、10°B、15°C、20°D、30°5.如图,能判断直线AB∥CD的条件是()A、∠1=∠2B、∠3=∠4C、∠1+∠3=180 oD、∠3+∠4=180 o6.三角形A’B’C’是由三角形ABC平移得到的,点A(-1,-4)的对应点为A’(1,-1),则点B(1,1)的对应点B’、点C(-1,4)的对应点C’的坐标分别为()A、(2,2)(3,4)B、(3,4)(1,7)C、(-2,2)(1,7)D、(3,4)(2,-2)7.一个长方形在平面直角坐标系中三个顶点的坐标为(– 1,– 1)、(– 1,2)、(3,– 1),则第四个顶点的坐标为()A、(2,2)B、(3,2)C、(3,3)D、(2,3)A BPC D8. 点E (a,b )到x 轴的距离是4,到y 轴距离是3,则有( )A .a=3, b=4B .a =±3,b=±4C .a=4, b=3D .a=±4,b=±3 9. 点A (0,-3),以A 为圆心,5为半径画圆交y 轴负半轴的坐标是 ( )A .(8,0)B .( 0,-8)C .(0,8)D .(-8,0) 10.下列长度的三条线段,不能组成三角形的是 ( ) A 、a+1,a+2,a+3(a>0)B 、 3a,5a,2a+1(a>0)C 、三条线段之比为1:2:3D 、 5cm ,6cm ,10cm11.已知有两边相等的三角形两边长分别为6cm 、4cm,则该三角形的周长是( •) A.16cm B.14cm C.16cm 或14cm D.10cm12. 一幅美丽的图案,在某个顶点处由四个边长相等的正多边形镶嵌而成,其中三个分别为正三角形、正四边形、正六边形,则另一个为( )A.正三角形B.正四边形C.正五边形D.正六边形 二、填空题。
河南省驻马店地区七年级下学期数学期中联考试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列运算正确的是()A .B .C .D .2. (2分) (2019八上·黄冈月考) 下列实数中,属于无理数的是()A .B .C .D .3. (2分)图中同旁内角有()对A . 4B . 5C . 6D . 74. (2分)方程1+2x=0的解是()A . x=2B . x=-2C . x=D . x=-5. (2分) (2017七下·江阴期中) 某人在练车场上练习驾驶汽车,两次拐弯后的行驶方向与原来的方向相反,则两次拐弯的角度可能是()A . 第一次向左拐40°,第二次向右拐40°B . 第一次向左拐50°,第二次向右拐130°C . 第一次向左拐70°,第二次向右拐110°D . 第一次向左拐70°,第二次向左拐110°6. (2分) (2018八上·下城期末) 已知点A的坐标为(a+1,3﹣a),下列说法正确的是()A . 若点A在y轴上,则a=3B . 若点A在一三象限角平分线上,则a=1C . 若点A到x轴的距离是3,则a=±6D . 若点A在第四象限,则a的值可以为﹣27. (2分)(2017·邵阳模拟) 如图,将周长为4的△ABC沿BC方向向右平移1个单位得到△DEF,则四边形ABFD的周长为()A . 5B . 6C . 7D . 88. (2分)在平面直角坐标系中,点P(-2,x2+1)所在的象限是()A . 第一象限B . 第二象限C . 第三象限D . 第四象限9. (2分)(2019·河池) 如图,∠1=120°,要使a∥b,则∠2的大小是()A .B .C .D .10. (2分)用“O”摆出如图所示的图案,若按照同样的方式构造图案,则第11个图案需要()个“O”。
数学试题 第5页(共6页) 数学试题 第6页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________2018-2019学年下学期期中原创卷A 卷七年级数学(考试时间:100分钟 试卷满分:120分)注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答第Ⅰ卷时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
如需改动,用橡皮擦干净后,再选涂其他答案标号。
写在本试卷上无效。
3.回答第Ⅱ卷时,将答案写在答题卡上。
写在本试卷上无效。
4.考试结束后,将本试卷和答题卡一并交回。
5.考试范围:人教版七下第5—7章。
第Ⅰ卷一、选择题(本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项是符合题目要求的) 1.计算-38+4等于 A .0 B .2 C .3D .42.在四个实数-3、3、2、-1.4中,大小在-1和2之间的数是 A .-3 B .3 C .2D .-1.43.如图是小强画出的一张脸的简笔画,他对小刚说:“我用(0,2)表示左眼的位置,用(2,2)表示右眼的位置”,那么嘴的位置可表示成A .(1,0)B .(-1,0)C .(0,1)D .(1,-1)4.如图,下列条件中,不能判断直线a ∥b 的是A .∠1+∠3=180°B .∠2=∠3C .∠4=∠5D .∠4=∠65.以下四个条件中,能得到互相垂直关系的有 ①对顶角的平分线;②平行线截得的一组同旁内角的平分线; ③平行线截得的一组同位角的平分线;④平行线截得的一组内错角的平分线. A .1个 B .2个 C .3个D .4个6.下列命题正确的是A .如果两个角相等,那么它们是对顶角B .如果a b =,那么||||a b =C .面积相等的两个三角形全等D .如果22a b =,那么a b = 7.如图,小手盖住的点的坐标可能为A .(45)--,B .(45)-,C .(45),D .(45)-,8.在平面直角坐标系中,点P (m –3,4–2m )不可能在 A .第一象限B .第二象限数学试题 第3页(共6页) 数学试题 第4页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………此卷只装订不密封………………○………………外………………○………………装………………○………………订………………○………………线………………○………………C .第三象限D .第四象限9.把△ABC 沿BC 方向平移,得到△A ′B ′C ′,随着平移距离的不断增大,△A ′CB 的面积大小变化情况是A .增大B .减小C .不变D .不确定10.如图,数轴上表示1、3的对应点分别为点A 、点B .若点A 是BC 的中点,则点C 所表示的数为A .31-B .13-C .32-D .23-第Ⅱ卷二、填空题(本大题共5小题,每小题3分,共15分)11.无理数13的整数部分是a ,小数部分是b ,则a -b =__________. 12.如图,DE ∥BC ,EF ∥AB ,图中与∠BFE 互补的角有__________.13.已知一个正数的两个平方根分别是4a +1和a -11,则这个正数是__________. 14.如图,在正方形网格中,若A (1,1),B (2,0),则C 点的坐标为__________.15.已知点A (0,1),B (0,2),点C 在x 轴上,且2ABC S =△,则点C 的坐标__________. 三、解答题(本大题共8小题,共75分.解答应写出文字说明、证明过程或演算步骤)16.(本小题满分8分)计算:(1)23(2)|21|27-+--;(2)310.048|32|34+-++-+. 17.(本小题满分9分)求下列代数式的值:(1)如果a 2=4,b 的算术平方根为3,求a +b 的值;(2)已知x 是25的平方根,y 是16的算术平方根,且x <y ,求x -y 的值.18.(本小题满分9分)如图,12180AGF ABC ∠=∠∠+∠=︒,. (1)试判断BF 与DE 的位置关系,并说明理由; (2)若2150BF AC ⊥∠=︒,,求AFG ∠的度数.19.(本小题满分9分)(1)已知:2a +1的算术平方根是3,3a -b -1的立方根是2,求320b a +的值.(2)已知a 是10的整数部分,b 是它的小数部分,求a 2+(b +3)2的值.20.(本小题满分9分)如图,直线AB 与CD 相交于点O ,OF ,OD 分别是∠AOE ,∠BOE 的平分线.(1)写出∠DOE 的补角;(2)若∠BOE =62°,求∠AOD 和∠EOF 的度数; (3)射线OD 与OF 之间的夹角是多少?21.(本小题满分10分)如图,∠BAP +∠APD =180°,∠AOE =∠1,∠FOP =∠2.(1)若∠1=55°,求∠2的度数; (2)求证:AE ∥FP .22.(本小题满分10分)如图所示,把三角形ABC 向上平移3个单位长度,再向右平移2个单位长度,得到三角形A 1B 1C 1.数学试题 第5页(共6页) 数学试题 第6页(共6页)………………○………………内………………○………………装………………○………………订………………○………………线………………○………………………………○………………外………………○………………装………………○………………订………………○………………线………………○………………… 学校:______________姓名:_____________班级:_______________考号:______________________(1)在图中画出三角形A 1B 1C 1; (2)写出点A 1,B 1的坐标;(3)在y 轴上是否存在一点P ,使得三角形BCP 与三角形ABC 面积相等?若存在,请直接写出点P 的坐标;若不存在,说明理由.23.(本小题满分11分)已知下面四个图形中,AB ∥CD ,探究四个图形中,∠APC 与∠PAB ,∠PCD 的数量关系.(1)图①中,∠APC 与∠PAB ,∠PCD 的关系是__________; (2)图②中,∠APC 与∠PAB ,∠PCD 的关系是__________;(3)请你在图③和图④中任选一个,说明∠APC 与∠PAB ,∠PCD 的关系,并加以证明.。
驻马店地区七年级下学期数学期中考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共27分)1. (2分)如图,直线c、b被直线a所截,则∠1与∠2是()A . 同位角B . 内错角C . 同旁内角D . 对顶角2. (2分)下列方程是二元一次方程的是()A .B .C .D .3. (2分)(2017·玉林模拟) 把0.0000052用科学记数法表示为()A . 0.52×10﹣5B . 5.2×10﹣5C . 5.2×10﹣6D . 52×10﹣54. (2分) (2019七下·漳州期中) 下面计算正确是()A .B .C .D .5. (2分)如果二次三项式x2+px﹣6可以分解为(x+q)(x﹣2),那么(p﹣q)2的值为()A . 2B . 3C . 4D . 96. (2分) (2019八上·洪山期末) 下列计算正确的是()A . (a2)3=a5B . (15x2y﹣10xy2)÷5xy=3x﹣2yC . 10ab3÷(﹣5ab)=﹣2ab2D . a﹣2b3•(a2b﹣1)﹣2=7. (5分)(2016·赤峰) 如图,工人师傅在工程施工中,需在同一平面内弯制一个变形管道ABCD,使其拐角∠ABC=150°,∠BCD=30°,则()A . AB∥BCB . BC∥CDC . AB∥DCD . AB与CD相交8. (2分)(2019·合肥模拟) 下列多项式能用完全平方公式进行因式分解的是()A . a2﹣1B . a2﹣2a﹣1C . a2﹣a+1D . a2﹣2a+19. (2分)化简(3x﹣2)(x﹣3)﹣3(x2+2)的结果是()A . 11xB . ﹣11xC . 6x2﹣8x+12D . x2﹣110. (2分) 2015年亚洲杯足球冠军联赛恒大队广州主场,小李在网上预订了小组赛和淘汰赛两个阶段的球票共10张,总价为5600元.其中小组赛球票每张500元,淘汰赛每张800元,问小李预定了小组赛和淘汰赛的球票各多少张?设小李预定了小组赛球票x张,淘汰赛球票y张,可列方程组()A .B .C .D .11. (2分) (2017八下·宜兴期中) 如图,将长方形纸片ABCD折叠,使边DC落在对角线AC上,折痕为CE,且D点落在对角线上D'处.若AB=3,AD=4,则ED的长为()A .B . 3C . 1D .12. (2分) (2020八上·乌海期末) 若4x2+(k-1)x+25是一个完全平方式,则常数k的值为()A . 11B . 21C . -19D . 21或-19二、填空题 (共6题;共6分)13. (1分) (2018七下·宁远期中) 因式分解:3x2-6xy+3y2=________.14. (1分) (2018七上·十堰期末) 若(x+m)与(x+3)的乘积中不含x的一次项,则m的值为________.15. (1分) (2019七下·黄石期中) 已知,x=2,y=-5,是方程3mx-2y=4的一组解,则m=________.16. (1分) (2019七上·武汉月考) 如图1,在一个边长为a的正方形木板上锯掉一个边长为b的正方形, 并把余下的部分沿虚线剪开拼成图2的形状.(1)请用两种方法表示阴影部分的面积图1得:________;图2得________;(2)由图1与图2 面积关系,可以得到一个等式:________;(3)利用(2)中的等式,已知,且a+b=8,则a-b=________.17. (1分)夏季荷花盛开,为了便于游客领略“人从桥上过,如在河中行”的美好意境,某景点拟在如图所示的长方形荷塘上架设小桥.若荷塘周长为250m,且桥宽忽略不计,则小桥总长为________ m.18. (1分) (2015七下·泗阳期中) 已知正方形的边长为a,如果它的边长增加3,那么它的面积增加了________.三、解答题 (共11题;共69分)19. (10分)已知4x=m,8y=n.(1)求22x+3y;(2)求26x﹣9y .20. (10分)解下列方程组:(1)(2).21. (5分) (2019七下·锡山月考) 先化简,再求值:(a+b)(a﹣b)﹣a(2a+b),其中,a=,b=1.22. (10分) (2017七下·无棣期末) 如图,和的度数满足方程组,且CD∥EF,.(1)求与的度数;(2)判断AB与CD的位置关系,并说明理由;(3)求∠C的度数。
2018-2019学年七年级(下)期中数学试卷一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的1.4的算术平方根是()A.2±B.2C.2-D.16±2.点(5,4)A-在第几象限()A.第一象限B.第二象限C.第三象限D.第四象限3.如图,//∠的大小为()∠=︒,则2⊥,若134a b,点B在直线b上,且AB BCA.34︒B.54︒C.56︒D.66︒∆通过平移得到,且点B,E,C,F在同一条直线4.如图,DEF∆是由ABCEC=.则BE的长度是()上.若14BF=,6A.2B.4C.5D.35.将点(1,2)A-向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是( )A.(3,1)B.(3,1)--D.(3,1)--C.(3,1)a=,且a在数轴上对应点的位置如图所示,其中正确的是( 6.如果实数11)A.B.C.D.7.64-的立方根是( )A .8-B .4-C .2-D .不存在 8.在722,3.33,2π,122-,0,0.454455444555⋯,0.9-,127,3127中,无理数的个数有( )A .2个B .3个C .4个D .5个9.如图,点E 在AC 的延长线上,下列条件中能判断//AB CD 的是( )A .34∠=∠B .D DCE ∠=∠C .12∠=∠D .180D ACD ∠+∠=︒10.若A ∠与B ∠的两边分别平行,60A ∠=︒,则(B ∠= )A .30︒B .60︒C .30︒或150︒D .60︒或120︒11.如图是丁丁画的一张脸的示意图,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成( )A .(1,0)B .(1,0)-C .(1,1)-D .(1,1)-12.已知12x y =-⎧⎨=⎩是二元一次方程组321x y m nx y +=⎧⎨-=⎩的解,则m n -的值是( ) A .1 B .2 C .3 D .413.方程组23x y k x y k -=+⎧⎨+=⎩的解适合方程2x y +=,则k 值为( ) A .2 B .2- C .1 D .12- 14.已知点(1,0)A ,(0,2)B ,点P 在x 轴上,且PAB ∆的面积为5,则点P 的坐标是( )A .(4,0)-B .(6,0)C .(4,0)-或(6,0)D .(0,12)或(0,8)-二、填空题(本大题共5小题,每小题3分,共15分)15.命题“同旁内角互补”是一个 命题(填“真”或“假” )16.将一矩形纸条,按如图所示折叠,若264∠=︒,则l ∠= 度.17.在平面直角坐标系中,点(21,32)A t t -+在y 轴上,则t 的值为 .18102.0110.1= 1.0201= .19.若一正数的两个平方根分别是21a -与25a +,则这个正数等于 .三、解答题(共7题,共63分)20.(8分)计算:(1)21210x -=;(2)3(5)80x -+=21.(10分)解方程组.(1)211312x y x y +=⎧⎨+=⎩.(2)232491a b a b +=⎧⎨-=-⎩.22.(10分)如图,已知点D 、F 、E 、G 都在ABC ∆的边上,//EF AD ,12∠=∠,70BAC ∠=︒,求AGD ∠的度数.(请在下面的空格处填写理由或数学式)解://EF AD Q ,(已知)2∴∠= ( )12∠=∠Q ,(已知) 1∴∠= ( )∴ // ,( )AGD ∴∠+ 180=︒,(两直线平行,同旁内角互补) Q ,(已知)AGD ∴∠= (等式性质)23.(7分)已知,如图,直线AB 和CD 相交于点O ,COE ∠是直角,OF 平分AOE ∠,34COF ∠=︒,求AOC ∠和BOD ∠的度数.24.(8分)如图,已知E 是AB 上的点,//AD BC ,AD 平分EAC ∠,试判定B ∠与C ∠的大小关系,并说明理由.25.(9分)如图是一个被抹去x轴、y轴及原点O的网格图,网格中每个小正方形的边长均为1个单位长度,三角形ABC 的各顶点都在网格的格点上,若记点A 的坐标为(1,3)-,点C 的坐标为(1,1)-.(1)请在图中画出x 轴、y 轴及原点O 的位置;(2)ABC ∆内部一点P 的坐标为(,)a b ,把ABC ∆向下平移2个单位长度,再向右平移3个单位长度,请你画出平移后的△111A B C ,点P 随ABC ∆平移后的坐标是 ;(3)求出ABC ∆的面积.26.(11分)【问题情境】:如图1,//∠的度数.PCD∠=︒,求APCAB CD,130PAB∠=︒,120小明的思路是:过P作//∠.PE AB,通过平行线性质来求APC(1)按小明的思路,求APC∠的度数;【问题迁移】:如图2,//∠=,当点P在B、D∠=,PCDβAB CD,点P在射线OM上运动,记PABα两点之间运动时,问APC∠与α、β之间有何数量关系?请说明理由;【问题应用】:(3)在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点O、B、D三点不重合),请直接写出APC∠与α、β之间的数量关系.参考答案与试题解析一、选择题(本大题共14小题,每小题3分,共42分)在每小题所给出的四个选项中,只有一项是符合题目要求的1.4的算术平方根是( )A .2±B .2C .2-D .16±【分析】依据算术平方根的定义解答即可.【解答】解:224=Q ,4∴的算术平方根是2.故选:B .【点评】本题主要考查的是算术平方根的定义,掌握算术平方根的定义是解题的关键.2.点(5,4)A -在第几象限( )A .第一象限B .第二象限C .第三象限D .第四象限【分析】根据第四象限内点的横坐标大于零,纵坐标小于零,可得答案.【解答】解:Q 点A 的横坐标为正数、纵坐标为负数,∴点(5,4)A -在第四象限,故选:D .【点评】本题考查了各象限内点的坐标的符号特征以及解不等式,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(,)++;第二象限(,)-+;第三象限(,)--;第四象限(,)+-.3.如图,//a b ,点B 在直线b 上,且AB BC ⊥,若134∠=︒,则2∠的大小为( )A .34︒B .54︒C .56︒D .66︒【分析】先根据平行线的性质,得出1334∠=∠=︒,再根据AB BC ⊥,即可得到2903456∠=︒-︒=︒.【解答】解://a b Q ,1334∴∠=∠=︒,又AB BC ⊥Q ,2903456∴∠=︒-︒=︒,故选:C .【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.4.如图,DEF ∆是由ABC ∆通过平移得到,且点B ,E ,C ,F 在同一条直线上.若14BF =,6EC =.则BE 的长度是( )A .2B .4C .5D .3【分析】根据平移的性质可得BE CF =,然后列式其解即可.【解答】解:DEF ∆Q 是由ABC ∆通过平移得到,BE CF ∴=,1()2BE BF EC ∴=-, 14BF =Q ,6EC =,1(146)42BE ∴=-=. 故选:B .【点评】本题考查了平移的性质,根据对应点间的距离等于平移的长度得到BE CF =是解题的关键.5.将点(1,2)A -向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是()A .(3,1)B .(3,1)--C .(3,1)-D .(3,1)-【分析】直接利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减,据此可得.【解答】解:将点(1,2)A -向右平移4个单位长度,再向下平移3个单位长度,则平移后点的坐标是(14,23)-,-+-,即(3,1)故选:C.【点评】本题主要考查了平移中点的变化规律:左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.a=,且a在数轴上对应点的位置如图所示,其中正确的是( 6.如果实数11)A.B.C.D.【分析】根据被开方数越大算术平方根越大,可得答案.【解答】解:由被开方数越大算术平方根越大,得49911<<,得4<<,3 3.5a故选:C.【点评】本题考查了实数与数轴,利用被开方数越大算术平方根越大得出4991147.64-()A.8-B.4-C.2-D.不存在【分析】先根据算术平方根的定义求出64【解答】解:648Q,-=-∴-的立方根是2-.64故选:C.【点评】本题考查了立方根的定义,算术平方根的定义,先化简64-8.在722,3.33,2π,122-,0,0.454455444555⋯,0.9-,127,3127中,无理数的个数有( )A .2个B .3个C .4个D .5个【分析】根据无理数的定义求解即可.【解答】解:2π,0.454455444555⋯,0.9-是无理数, 故选:B .【点评】此题主要考查了无理数的定义,注意带根号的要开不尽方才是无理数,无限不循环小数为无理数.如π,6,0.8080080008⋯(每两个8之间依次多1个0)等形式.9.如图,点E 在AC 的延长线上,下列条件中能判断//AB CD 的是( )A .34∠=∠B .D DCE ∠=∠C .12∠=∠D .180D ACD ∠+∠=︒【分析】由平行线的判定定理可证得,选项A ,B ,D 能证得//AC BD ,只有选项C 能证得//AB CD .注意掌握排除法在选择题中的应用.【解答】解:A 、34∠=∠Q ,//AC BD ∴.本选项不能判断//AB CD ,故A 错误;B 、D DCE ∠=∠Q ,//AC BD ∴.本选项不能判断//AB CD ,故B 错误;C 、12∠=∠Q ,//AB CD ∴.本选项能判断//AB CD ,故C 正确;D 、180D ACD ∠+∠=︒Q ,//AC BD ∴.故本选项不能判断//AB CD ,故D 错误.故选:C .【点评】此题考查了平行线的判定.注意掌握数形结合思想的应用.10.若A ∠与B ∠的两边分别平行,60A ∠=︒,则(B ∠= )A .30︒B .60︒C .30︒或150︒D .60︒或120︒【分析】根据题意分两种情况画出图形, 再根据平行线的性质解答 .【解答】解: 如图 (1) ,//AC BD Q ,60A ∠=︒,160A ∴∠=∠=︒,//AE BF Q ,1B ∴∠=∠,60A B ∴∠=∠=︒.如图 (2) ,//AC BD Q ,60A ∠=︒,160A ∴∠=∠=︒,//DF AE Q ,1180B ∴∠+∠=︒,180A B ∴∠+∠=︒,180********B A ∴∠=︒-∠=︒-︒=︒.∴一个角是60︒,则另一个角是60︒或120︒.故选:D .【点评】本题考查的是平行线的性质, 解答此题的关键是要分两种情况讨论, 不要漏解 .11.如图是丁丁画的一张脸的示意图,如果用(0,2)表示左眼,用(2,2)表示右眼,那么嘴的位置可以表示成( )A .(1,0)B .(1,0)-C .(1,1)-D .(1,1)-【分析】根据左右的眼睛的坐标画出直角坐标系,然后写出嘴的位置对应的点的坐标.【解答】解:如图,嘴的位置可以表示为(1,0).故选:A .【点评】本题考查了坐标确定位置:平面直角坐标系中点与有序实数对一一对应;记住平面内特殊位置的点的坐标特征.12.已知12x y =-⎧⎨=⎩是二元一次方程组321x y m nx y +=⎧⎨-=⎩的解,则m n -的值是( ) A .1 B .2 C .3 D .4【分析】跟据方程组的解满足方程,可得关于m ,n 的方程,根据解方程,可得答案.【解答】解:由题意,得3421m n -+=⎧⎨--=⎩, 解得13m n =⎧⎨=-⎩, 1(3)4m n -=--=,故选:D .【点评】本题考查了二元一次方程组的解,利用方程组的解满足方程得出关于m ,n 的方程是解题关键.13.方程组23x y k x y k -=+⎧⎨+=⎩的解适合方程2x y +=,则k 值为( )A.2B.2-C.1D.1 2 -【分析】根据方程组的特点,①+②得到1x y k+=+,组成一元一次方程求解即可.【解答】解:23x y kx y k-=+⎧⎨+=⎩①②,①+②得,1x y k+=+,由题意得,12k+=,解答,1k=,故选:C.【点评】本题考查的是二元一次方程组的解,掌握加减消元法解二次一次方程组的一般步骤是解题的关键.14.已知点(1,0)A,(0,2)B,点P在x轴上,且PAB∆的面积为5,则点P的坐标是() A.(4,0)-B.(6,0)C.(4,0)-或(6,0)D.(0,12)或(0,8)-【分析】根据B点的坐标可知AP边上的高为2,而PAB∆的面积为5,点P在x轴上,说明5AP=,已知点A的坐标,可求P点坐标.【解答】解:(1,0)AQ,(0,2)B,点P在x轴上,AP∴边上的高为2,又PAB∆的面积为5,5AP∴=,而点P可能在点(1,0)A的左边或者右边,(4,0)P∴-或(6,0).故选:C.【点评】本题考查了直角坐标系中,利用三角形的底和高及面积,表示点的坐标.二、填空题(本大题共5小题,每小题3分,共15分)15.命题“同旁内角互补”是一个假命题(填“真”或“假”)【分析】根据平行线的性质判断命题的真假.【解答】解:两直线平行,同旁内角互补,所以命题“同旁内角互补”是一个假命题;故答案为:假.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果⋯那么⋯”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.16.将一矩形纸条,按如图所示折叠,若264∠=︒,则l∠=52度.【分析】从折叠图形的性质入手,结合平行线的性质求解.【解答】解:由折叠图形的性质,结合两直线平行,同位角相等可知,221180∠+∠=︒,可得152∠=︒,故答案为:52.【点评】本题主要考查平行线的性质,掌握平行线的性质和判定是解题的关键,即①两直线平行⇔同位角相等,②两直线平行⇔内错角相等,③两直线平行⇔同旁内角互补.17.在平面直角坐标系中,点(21,32)A t t-+在y轴上,则t的值为12.【分析】根据y轴上的点横坐标为0,列式可得结论.【解答】解:Q点(21,32)A t t-+在y轴上,210t∴-=,12t=,故答案为:12.【点评】本题考查了平面直角坐标系中坐标轴上的点的特征,明确:①x轴上的点:纵坐标为0;②y轴上的点横坐标为0.18102.0110.1= 1.0201= 1.01.【分析】根据算术平方根的移动规律,把被开方数的小数点每移动两位,结果移动一位,进行填空即可.【解答】解:Q102.0110.1=,∴ 1.0201 1.01=;故答案为:1.01.【点评】本题考查了算术平方根的移动规律的应用,能根据移动规律填空是解此题的关键.19.若一正数的两个平方根分别是21a -与25a +,则这个正数等于 9 .【分析】根据正数的两个平方根互为相反数列方程求出a ,再求出一个平方根,然后平方即可.【解答】解:Q 一正数的两个平方根分别是21a -与25a +,21250a a ∴-++=,解得1a =-,21213a ∴-=--=-,∴这个正数等于2(3)9-=.故答案为:9.【点评】本题主要考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.三、解答题(共7题,共63分)20.(8分)计算:(1)21210x -=;(2)3(5)80x -+=【分析】(1)变形为2(x a a =为常数)的形式,根据平方根的定义计算可得;(2)变形为3(x a a =为常数)的形式,再根据立方根的定义计算可得.【解答】解:(1)方程变形得:2121x =,开方得:11x =±;(2)方程变形得:3(5)8x -=-,开立方得:52x -=-,解得:3x =.【点评】本题主要考查立方根和平方根,解题的关键是将原等式变形为3x a =或2(x a a =为常数)的形式及平方根、立方根的定义.21.(10分)解方程组.(1)211312x y x y +=⎧⎨+=⎩.(2)232491a b a b +=⎧⎨-=-⎩.【分析】方程组利用加减消元法求出解即可.【解答】解:(1)211312x y x y +=⎧⎨+=⎩①②, ②-①得:1x =,把1x =代入①得:9y =,∴原方程组的解为:19x y =⎧⎨=⎩; (2)232491a b a b +=⎧⎨-=-⎩①②,①3⨯得:696a b +=③,②+③得:105a =,12a =, 把12a =代入①得:13b =, ∴方程组的解为:1213a b ⎧=⎪⎪⎨⎪=⎪⎩. 【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.(10分)如图,已知点D 、F 、E 、G 都在ABC ∆的边上,//EF AD ,12∠=∠,70BAC ∠=︒,求AGD ∠的度数.(请在下面的空格处填写理由或数学式)解://EF AD Q ,(已知)2∴∠= 3∠ ( )12∠=∠Q ,(已知) 1∴∠= ( )∴ // ,( )AGD ∴∠+ 180=︒,(两直线平行,同旁内角互补)Q,(已知)∴∠=(等式性质)AGD【分析】由EF与AD平行,利用两直线平行同位角相等得到23∠=∠,利用∠=∠,再由12等量代换得到一对内错角相等,利用内错角相等两直线平行得到DG与BA平行,利用两直线平行同旁内角互补即可求出AGD∠度数.【解答】解://Q,(已知)EF AD∴∠=∠(两直线平行同位角相等)2312Q,(已知)∠=∠∴∠=∠(等量代换)13∴,(内错角相等两直线平行)//DG BA∴∠+∠=︒,(两直线平行,同旁内角互补)AGD CAB180Q,(已知)∠=︒CAB70∴∠=︒(等式性质).AGD110故答案为:3∠;等量代换;DG;BA;内错角相等两直线∠;两直线平行同位角相等;3平行;CAB∠;70︒;110︒∠;CAB【点评】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.23.(7分)已知,如图,直线AB和CD相交于点O,COE∠,∠是直角,OF平分AOE∠和BOD∠的度数.∠=︒,求AOCCOF34【分析】利用图中角与角的关系即可求得.【解答】解:因为90∠=︒,COFCOE∠=︒,34所以56∠=∠-∠=︒,EOF COE COF因为OF 是AOE ∠的平分线,所以2112AOE EOF ∠=∠=︒,所以1129022AOC ∠=︒-︒=︒,18011268EOB ∠=︒-︒=︒,因为EOD ∠是直角,所以22BOD ∠=︒.【点评】此题主要考查了角平分线的定义,根据角平分线定义得出所求角与已知角的关系转化求解.24.(8分)如图,已知E 是AB 上的点,//AD BC ,AD 平分EAC ∠,试判定B ∠与C ∠的大小关系,并说明理由.【分析】由//AD BC ,可得EAD B ∠=∠,DAC C ∠=∠,根据角平分线的定义,证得EAD DAC ∠=∠,等量代换可得B ∠与C ∠的大小关系.【解答】解:B C ∠=∠.理由如下://AD BC Q ,EAD B ∴∠=∠,DAC C ∠=∠.AD Q 平分EAC ∠,EAD DAC ∴∠=∠,B C ∴∠=∠.【点评】本题考查的是平行线的性质以及角平分线的性质,解题时注意:两直线平行,同位角相等.25.(9分)如图是一个被抹去x 轴、y 轴及原点O 的网格图,网格中每个小正方形的边长均为1个单位长度,三角形ABC 的各顶点都在网格的格点上,若记点A 的坐标为(1,3)-,点C 的坐标为(1,1)-.(1)请在图中画出x 轴、y 轴及原点O 的位置;(2)ABC ∆内部一点P 的坐标为(,)a b ,把ABC ∆向下平移2个单位长度,再向右平移3个单位长度,请你画出平移后的△111A B C ,点P 随ABC ∆平移后的坐标是 (3,2)a b +- ;(3)求出ABC ∆的面积.【分析】(1)根据题意画出平面直角坐标系即可;(2)根据坐标平移的规律解决问题即可;(3)利用分割法求出三角形的面积即可;【解答】解:(1)平面直角坐标系,如图所示:O 点即为所求;(2)如图所示:△111A B C ,即为所求;1(3,2)P a b +-; 故答案为:(3,2)a b +-;(3)111455223248222ABC S ∆=⨯-⨯⨯-⨯⨯-⨯⨯=.【点评】本题考查作图-平移变换,三角形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.26.(11分)【问题情境】:如图1,//AB CD ,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.小明的思路是:过P 作//PE AB ,通过平行线性质来求APC ∠.(1)按小明的思路,求APC ∠的度数;【问题迁移】:如图2,//AB CD ,点P 在射线OM 上运动,记PAB α∠=,PCD β∠=,当点P 在B 、D两点之间运动时,问APC ∠与α、β之间有何数量关系?请说明理由;【问题应用】:(3)在(2)的条件下,如果点P 在B 、D 两点外侧运动时(点P 与点O 、B 、D 三点不重合),请直接写出APC ∠与α、β之间的数量关系.【分析】(1)过P 作//PE AB ,通过平行线性质可得180A APE ∠+∠=︒,180C CPE ∠+∠=︒再代入130PAB ∠=︒,120PCD ∠=︒可求APC ∠即可;(2)过P 作//PE AD 交AC 于E ,推出////AB PE DC ,根据平行线的性质得出APE α∠=∠,CPE β∠=∠,即可得出答案;(3)分两种情况:P 在BD 延长线上;P 在DB 延长线上,分别画出图形,根据平行线的性质得出APE α∠=∠,CPE β∠=∠,即可得出答案.【解答】(1)解:过点P 作//PE AB ,//AB CD Q ,////PE AB CD ∴,180A APE ∴∠+∠=︒,180C CPE ∠+∠=︒,130PAB ∠=︒Q ,120PCD ∠=︒,50APE ∴∠=︒,60CPE ∠=︒,110APC APE CPE ∴∠=∠+∠=︒.(2)APC αβ∠=∠+∠,理由:如图2,过P 作//PE AB 交AC 于E ,//AB CD Q ,////AB PE CD ∴,APE α∴∠=∠,CPE β∠=∠,APC APE CPE αβ∴∠=∠+∠=∠+∠;(3)如图所示,当P 在BD 延长线上时,CPA αβ∠=∠-∠;如图所示,当P 在DB 延长线上时,CPA βα∠=∠-∠.【点评】本题主要考查了平行线的性质和判定的应用,主要考查学生的推理能力,题目是一道比较典型的题目,解题时注意分类思想的运用.。
1 / 3—学年度第二学期期中测试卷七年级(初一)数学参考答案及评分意见一、选择题(本大题共小题,每小题分,共分).; .; .; .; .; .; .; ..二、填空题(本大题共小题,每小题分,共分).; .; .°; .; .; .αβ+或αβ-或βα-.三、解答题(本大题共小题,每小题分,共分).解:()由题意,得-,-, ……………分 解得,. ……………分()22a b +的算术平方根是5. ……………分 .解:()∵<211<, ……………分12<.即<. ……………分()原式21|2……………分2 ……………分 - ……………分.解:()由题意,得(+)+(-2a ),解得. ……………分 ∴(). ……………分()当,时,2是有理数. ……………分 .解:图 图()如图中垂线为所画. ……………分 ()如图中平行线为所画. ……………分 说明:每图分,说明分.四、解答题(本大题共小题,每小题分,共分).解:()∵∥轴, ∴、两点的纵坐标相同. ……………分 ∴+,解得. ……………分 ∴、两点间的距离是(-)+-+. ……………分 ()∵⊥轴,∴、两点的横坐标相同.∴(-,).∵,∴,解得1b =±. ……………分 当时,点的坐标是(-,). ……………分当-时,点的坐标是(-,-). ……………分2 /3 .解:()(,)、(,)、(,). ……………分()当运动秒时,点在上,点与点重合, ……………分 此时,,, . ……………分∴△梯形-△-△111(48)48242222+⨯-⨯⨯-⨯⨯ ……………分 ……………分.解:()∥,其理由是: ……………分∵∥,∴∠∠. ……………分∵∠∠,∴∠∠,∴∥. ……………分()∵∥,且∠°,∴∠°,∠∠. ……………分∵∠∠,∴∠∠.∵平分∠,∴∠∠, ……………分 ∴∠∠+∠12∠° …………分()∠+∠°. ……………分五、探究题(本大题共小题,共分).解:() ① 过作∥,则∠+∠°.∵∥,∴∥,∴∠+∠°. ……………分∴∠+∠+∠+∠°.即∠+∠+∠ °. ……………分②过作∥,则∠∠.∵∥,∴∥,∴∠∠. ……………分∴∠+∠∠+∠.即∠+∠∠. ……………分 ()∠+∠°,其理由是: ……………分∵、分别平分∠、∠,∴∠12∠,∠12∠. ∴∠+∠12(∠+∠).即(∠+∠)∠+∠.3 / 3 由()结果知∠°-∠ ,即∠+∠ °. ……………分 ∵13ABM ABF ∠=∠,13CDM CDF ∠=∠, ∴∠∠+∠11()33ABF CDF BFD ∠+∠=∠.∴∠∠. ……………分 由上证得∠+∠ °,∴∠+∠°. ……………分 ()当1ABMABF n ∠=∠,1CDM CDF n ∠=∠,且∠°时, ∴∠3602m n︒-︒. ……………分。
2018-2019学年河南省驻马店市确山县七年级(下)期中数学试卷
一、选择题(每小题3分,共36分下列各小题均有四个答案,其中只有一个是正确的)
1.(3分)8的立方根是()
A.2B.土2C.士4D.﹣2
2.(3分)在实数,0,,π,中,无理数有()
A.1个B.2个C.3个D.4个
3.(3分)下列汽车标志中,能通过一些基本图形平移得到的是()
A.B.
C.D.
4.(3分)下列说法中,正确的是()
A.=±5B.=﹣3C.±=±6D.=﹣10
5.(3分)已知点P(0,a)在y轴的负半轴上,则点M(a,﹣a+1)在()
A.第一象限B.第二象限C.第三象限D.第四象限
6.(3分)如图,下列说法中错误的是()
A.若a∥b,b∥c,则a∥c B.若∠1=∠2,则a∥c
C.若∠3+∠5=180°,则a∥c D.若∠2=∠4.则a∥c
7.(3分)如图,周董从A处出发沿北偏东60°方向行走至B处,又沿北偏西20°方向行走至C处,则∠ABC的度数是()。