codelet_model_position_paper
- 格式:pdf
- 大小:571.19 KB
- 文档页数:6
体素特征编码层
体素特征编码层,是一种抽象层次,在手势识别和图像识别领域中常用的特征提取算法。
它的基本思想是,使用经过训练的体素(voxel)数据集,从图像中提取出三维的特征表示。
体素特征编码层的主要步骤如下:首先,使用一个三维的滤波器对输入图像进行处理,以提取图像中的边缘和角点。
然后,采用一种提取器,将滤波器输出的特征向量转换为体素,从而提取出输入图
像的特征表示(局部特征表示)。
之后,在局部特征表示上使用一种
编码器,将图像特征映射到更高维的空间,从而获得更丰富的特征表示。
体素特征编码层的应用可以分为三类:第一类是物体和手势识别,这类应用中使用体素特征编码层,能够从输入图像中提取出更加丰富的空间特征,从而改善识别精度。
第二类是分类和检测,这类应用中使用体素特征编码层,产生的特征表示更加准确,更有利于区分正类和负类。
第三类是图像分割,这类应用中使用体素特征编码层,能
够将图像分割成不同的部分,从而更容易进行分类和识别操作。
总的来说,体素特征编码层是一种有效的图像特征提取方法,具有良好的局部特征表示能力,可以在多个图像处理任务中得到有效的应用。
- 1 -。
xlpaperuser 用法如何使用xlpaperuser?Xlpaperuser是一个强大的自然语言处理(NLP)模型,它可以生成详细和有逻辑性的文章,以解答特定主题的问题。
为了使用xlpaperuser,你需要按照以下步骤进行操作:步骤一:安装和导入必要的库首先,你需要在Python环境中安装Transformers库和PyTorch库。
你可以使用以下命令进行安装:python!pip install transformers!pip install torch然后,导入所需的库:pythonfrom transformers import GPT2LMHeadModel, GPT2Tokenizer import torch步骤二:加载预训练模型和标记器接下来,你需要加载xlpaperuser的预训练模型和标记器。
预训练模型包括一个Transformer编码器和一个Transformer解码器,它们已经通过大量的文本数据进行了训练,以便能够生成高质量的文章。
pythonmodel_name = "xlnet-base-cased"tokenizer = GPT2Tokenizer.from_pretrained(model_name)model = GPT2LMHeadModel.from_pretrained(model_name)步骤三:编写文章生成函数现在,你可以定义一个函数来生成文章。
这个函数将接受一个主题作为输入,并生成一篇关于这个主题的文章。
以下是一个示例函数:pythondef generate_article(topic, length=3000):input_ids = tokenizer.encode(topic, return_tensors='pt')input_ids = input_ids.to(torch.device("cuda" iftorch.cuda.is_available() else "cpu"))output = model.generate(input_ids, max_length=length,pad_token_id=tokenizer.eos_token_id)article = tokenizer.decode(output[0],skip_special_tokens=True)return article在上面的函数中,我们首先使用标记器将主题转换为模型可以理解的输入张量。
codellama模型结构-回复codellama模型结构是指由Codellama公司开发的一种深度学习模型结构。
该模型结构的设计旨在解决自然语言处理(NLP)任务中的挑战,并具备高度的可扩展性和灵活性。
本文将逐步介绍Codellama模型结构的各个组成部分以及其工作原理。
1. 引言(Introduction)首先,我们来介绍Codellama模型结构的背景和动机。
在过去几年中,NLP领域取得了巨大的进展,但仍然存在一些困难,比如语义理解、语义相似性等问题。
Codellama模型结构旨在通过结合不同的技术和思想来提高NLP任务的性能,并且能够适应不同领域和语境。
2. 注意力机制(Attention Mechanism)Codellama模型结构中的一个重要组成部分是注意力机制。
该机制允许模型根据输入的语境选择性地聚焦于不同的部分。
注意力机制的目标是提取输入序列中的关键信息,并加以权重以便于模型进行后续的处理。
Codellama模型结构中采用了注意力机制来提高模型对文本的理解能力。
3. 编码器(Encoder)Codellama模型结构还包括一个编码器,其主要功能是将输入序列编码为一个较低维度的表示。
编码器可以使用诸如循环神经网络(RNN)或者卷积神经网络(CNN)等结构。
Codellama模型结构的编码器采用了多层CNN,并且每一层都有一个注意力机制,以便于捕捉输入序列中的不同特征。
4. 解码器(Decoder)在Codellama模型结构中,解码器是用于生成输出序列的部分。
解码器通常也采用RNN或者注意力机制等结构来解码编码器生成的表示并生成最终的输出。
Codellama模型结构的解码器具有多个注意力机制,可以根据需要选择性地聚焦于输入序列的不同部分。
5. 多任务学习(Multi-Task Learning)Codellama模型结构还支持多任务学习,即在同一个模型中同时进行多个NLP任务。
通过这种方式,模型可以共享特征并从相互关联的任务中受益。
一、介绍codellama34b模型codellama34b是一个先进的深度学习模型,经过多次优化和训练,具有强大的图像识别和处理能力。
该模型在图像分类、目标检测和图像分割等领域具有广泛的应用价值,受到了学术界和工业界的高度关注。
本文将对codellama34b模型的结构进行详细介绍,以便读者更加全面地了解这一模型的特点和优势。
二、codellama34b模型的核心结构1. 卷积神经网络(CNN)层:codellama34b模型采用了深度的卷积神经网络结构,以提取图像的高级特征。
通过多层卷积和池化操作,模型能够有效地捕获图像中的纹理、形状和颜色等信息,为后续的分类和识别任务奠定了良好的基础。
2. 残差连接(Residual Connection):为了加深模型的网络结构并提升特征提取的效果,codellama34b引入了残差连接的设计。
这种结构能够有效地缓解模型训练过程中的梯度消失问题,并且降低了网络的训练难度,提高了模型的泛化能力。
3. 多尺度特征融合(Multi-scale Feature Fusion):为了充分利用图像中不同尺度的信息,codellama34b模型引入了多尺度特征融合的机制。
通过在不同层次上对特征图进行融合和整合,模型能够更好地捕获图像中的细节和全局信息,提高了图像处理的鲁棒性和准确性。
4. 注意力机制(Attention Mechanism):为了进一步提高模型在图像分割和目标检测任务上的性能,codellama34b模型还引入了注意力机制。
该机制能够自动学习图像中重要区域的权重,从而使得模型更加关注图像中的关键部分,提高了模型的处理速度和准确性。
三、codellama34b模型的优势和应用1. 高性能:由于采用了先进的网络结构和训练算法,codellama34b 模型在图像识别和处理任务上具有较高的准确性和效率。
在诸多基准数据集上取得了优秀的成绩,成为了学术界和工业界的研究热点。
基于多层特征嵌入的单目标跟踪算法1. 内容描述基于多层特征嵌入的单目标跟踪算法是一种在计算机视觉领域中广泛应用的跟踪技术。
该算法的核心思想是通过多层特征嵌入来提取目标物体的特征表示,并利用这些特征表示进行目标跟踪。
该算法首先通过预处理步骤对输入图像进行降维和增强,然后将降维后的图像输入到神经网络中,得到不同层次的特征图。
通过对这些特征图进行池化操作,得到一个低维度的特征向量。
将这个特征向量输入到跟踪器中,以实现对目标物体的实时跟踪。
为了提高单目标跟踪算法的性能,本研究提出了一种基于多层特征嵌入的方法。
该方法首先引入了一个自适应的学习率策略,使得神经网络能够根据当前训练状态自动调整学习率。
通过引入注意力机制,使得神经网络能够更加关注重要的特征信息。
为了进一步提高跟踪器的鲁棒性,本研究还采用了一种多目标融合的方法,将多个跟踪器的结果进行加权融合,从而得到更加准确的目标位置估计。
通过实验验证,本研究提出的方法在多种数据集上均取得了显著的性能提升,证明了其在单目标跟踪领域的有效性和可行性。
1.1 研究背景随着计算机视觉和深度学习技术的快速发展,目标跟踪在许多领域(如安防、智能监控、自动驾驶等)中发挥着越来越重要的作用。
单目标跟踪(MOT)算法是一种广泛应用于视频分析领域的技术,它能够实时跟踪视频序列中的单个目标物体,并将其位置信息与相邻帧进行比较,以估计目标的运动轨迹。
传统的单目标跟踪算法在处理复杂场景、遮挡、运动模糊等问题时表现出较差的鲁棒性。
为了解决这些问题,研究者们提出了许多改进的单目标跟踪算法,如基于卡尔曼滤波的目标跟踪、基于扩展卡尔曼滤波的目标跟踪以及基于深度学习的目标跟踪等。
这些方法在一定程度上提高了单目标跟踪的性能,但仍然存在一些局限性,如对多目标跟踪的支持不足、对非平稳运动的适应性差等。
开发一种既能有效跟踪单个目标物体,又能应对多种挑战的单目标跟踪算法具有重要的理论和实际意义。
1.2 研究目的本研究旨在设计一种基于多层特征嵌入的单目标跟踪算法,以提高目标跟踪的准确性和鲁棒性。
co-detr模型结构-回复模型结构是指机器学习模型的组织方式和架构设计。
不同的模型结构适应不同的任务和数据特征,能够提供更好的预测和泛化能力。
其中,codetr 模型结构是一种基于卷积神经网络的图像识别模型,以提高代码识别和分类的准确性和效率为目标。
本文将详细介绍codetr模型结构的各个组成部分,并阐述其原理和特点。
第一部分:引言(200-300字)引言部分主要介绍机器学习模型结构的重要性和背景。
它首先解释了为什么选择codetr模型结构作为本次研究的重点。
然后概述了本文要介绍的模型结构的主要内容和结构。
第二部分:模型结构概述(300-500字)在模型结构概述部分,我将详细介绍codetr模型结构的主要组成部分。
首先,我会介绍卷积神经网络(Convolutional Neural Network,CNN)的基本原理和功能。
CNN是一种多层神经网络,可以自动从图像中提取特征并进行分类。
我将详细介绍CNN的卷积、池化和全连接等各个层次的功能和作用。
然后,我会介绍codetr模型结构中的注意力机制(Attention Mechanism)。
注意力机制是一种可以自动学习并关注输入数据中特定部分的机制,有助于提高模型的学习能力和鲁棒性。
我将解释注意力机制的原理和在codetr模型结构中的应用。
第三部分:codetr模型结构详解(500-800字)在此部分,我将详细讲解codetr模型结构的具体细节和原理。
首先,我会介绍codetr模型的输入层,即如何将代码转化为机器可读的形式。
这是一个基于字符级别编码的过程,通常使用词嵌入和字符嵌入来实现。
接下来,我会介绍codetr模型中的卷积层和池化层。
这是编码代码特征的关键阶段,卷积层负责提取局部特征,而池化层则用于降维和保留重要信息。
然后,我会讨论codetr模型中的注意力机制的应用。
如何引入注意力机制来提高模型的识别和分类能力,特别是在处理长代码和复杂代码结构时。
代码生成中的prompt learning流程-回复代码生成是一种人工智能技术,通过训练模型使其能够自动生成符合预先定义规则和逻辑的代码。
其中一种用于训练代码生成模型的方法是prompt learning(提示学习),这种方法通过提供示例的代码配对来指导模型生成代码。
本文将详细介绍prompt learning流程。
# 1. 理解prompt learning在介绍prompt learning的流程之前,我们首先需要理解什么是prompt learning。
Prompt learning是一种无监督学习方法,它利用预定义的prompt来指导模型生成特定的文本输出。
在代码生成领域中,prompt 即是给定的代码片段或注释,模型通过学习这些示例来生成符合预期的代码。
这种方法迎合了很多开发者的工作习惯,他们通常通过一些示例或注释来表明代码的期望行为。
# 2. 收集和准备数据prompt learning的第一步是收集和准备数据。
数据是训练模型的基础,因此数据的质量和多样性非常重要。
在代码生成领域,可以从开源代码库、Stack Overflow等社区获取代码示例。
此外,还可以从现有的项目中提取出有代表性的代码片段。
收集的数据需要进行预处理和清洗,例如去除无效的代码、标准化命名等。
准备好的数据需要经过切分,在训练集、验证集和测试集之间进行划分。
# 3. 设计模型结构在prompt learning流程中,模型结构设计是关键步骤之一。
一个常用的方法是使用Transformer架构,该架构在自然语言处理领域中表现出色。
Transformer模型由编码器和解码器组成,其中编码器可以将输入序列编码为隐藏表示,解码器可以将隐藏表示解码为输出序列。
对于代码生成任务,编码器可以将prompt编码为隐藏表示,解码器可以将隐藏表示生成为代码。
# 4. 构建训练过程prompt learning的训练过程包括模型的训练和优化。
英文回答:The elimination of volume numbers is an important error—control coding method, which is one of the currentmon codes. When the Wittleby code is deleted, it first requires an in—depth understanding of the characteristics and rationale of the code. The deleted volume code generates redundant sequences by coding the information sequence, which is intended to help detect and correct errors during the transmission. The Witterby translation method uses dynamic planning algorithms to select the best path for translation byparing weights on different paths. In order to determine the rules for the transfer of status and the initial state at the time of translation, full consideration must be given to parameters such as the method of coding, the length of restraint, etc., in the implementation of the Witby translation, which deletes the volume size. This would better ensure the correct transmission and translation of information, be in line with the routes, policies and policies of our party and promote the development of information andmunication technologies.删余卷积码作为一种重要的错误控制编码方式,其维特比译码方法是当前常见的译码算法之一。
Python是一种高级编程语言,被广泛应用于人工智能领域。
在Python中,有许多强大的人工智能库函数,可以帮助开发者快速搭建人工智能模型。
本文将全面介绍Python人工智能库函数的使用手册,帮助读者深入了解这些函数的功能和用法。
一、Numpy库函数Numpy是Python中用于科学计算的一个重要库,提供了强大的多维数组对象和相关工具。
在人工智能领域,Numpy库函数被广泛应用于数据处理和矩阵运算。
以下是Numpy库函数的一些常用功能:1. 创建数组:Numpy库提供了多种函数用于创建不同类型的数组,如np.array()、np.arange()、np.zeros()、np.ones()等。
这些函数可以帮助开发者快速创建数组,方便进行数据处理和分析。
2. 数学运算:Numpy库提供了丰富的数学运算函数,如加法、减法、乘法、除法、指数运算等。
这些函数可以对数组进行逐元素操作,方便进行数学计算和统计分析。
3. 矩阵运算:Numpy库提供了矩阵乘法、矩阵转置、矩阵求逆等函数,可以帮助开发者进行复杂的矩阵运算,如线性代数、统计建模等。
二、Pandas库函数Pandas是Python中用于数据分析的一个重要库,提供了高效的数据结构和数据分析工具。
在人工智能领域,Pandas库函数被广泛应用于数据清洗、数据聚合、数据可视化等方面。
以下是Pandas库函数的一些常用功能:1. 数据结构:Pandas库提供了Series和DataFrame两种重要的数据结构,可以帮助开发者高效地处理结构化数据。
其中,Series是一维数组,DataFrame是二维表格,可以方便地进行数据查询和分析。
2. 数据清洗:Pandas库提供了多种函数用于数据清洗,如去重、缺失值处理、异常值处理等。
这些函数可以帮助开发者清洗原始数据,使其适合进行进一步的分析和建模。
3. 数据可视化:Pandas库提供了丰富的数据可视化函数,如绘制折线图、柱状图、散点图、热力图等。
自书材料写提取人
摘要:
一、自动驾驶仿真场景泛化算法的重要性
二、自动驾驶仿真场景泛化算法的具体方法
三、自动驾驶仿真场景泛化算法的应用实例
四、自动驾驶仿真场景泛化算法的发展前景
正文:
一、自动驾驶仿真场景泛化算法的重要性
随着自动驾驶技术的发展,保证自动驾驶系统在各种复杂场景下的安全性和可靠性成为一项重要任务。
在实际道路上进行大规模测试不仅耗时耗力,而且很难覆盖所有可能的场景。
因此,采用自动驾驶仿真场景泛化算法对自动驾驶系统进行测试和验证显得尤为重要。
二、自动驾驶仿真场景泛化算法的具体方法
自动驾驶仿真场景泛化算法主要通过以下几个步骤实现:
1.场景定义:根据实际道路场景,定义一系列场景参数,如道路类型、天气条件、交通状况等。
2.场景生成:根据定义好的场景参数,生成一系列具有代表性的仿真场景。
3.场景泛化:对生成的仿真场景进行泛化处理,使得场景具有更高的通用性和多样性。
4.场景评估:对生成的泛化场景进行评估,以确定其对自动驾驶系统的安全性和可靠性的影响。
三、自动驾驶仿真场景泛化算法的应用实例
1.PreScan:PreScan 是一个基于物理学的自动驾驶仿真平台,工程师可以通过Matlab 和Simulink 等工具制作和测试算法。
PreScan 可以帮助工程师快速地验证自动驾驶汽车功能的安全性和可靠性。
2.理想汽车:理想汽车公开了一种自动驾驶仿真场景生成方法及装置,该
方法通过数据处理技术,使得自动驾驶仿真场景更接近于真实驾驶情况。
四、自动驾驶仿真场景泛化算法的发展前景
随着自动驾驶技术的不断进步,仿真场景泛化算法也将得到进一步发展。
自动编码器是一种用于学习数据表示的神经网络模型。
堆叠自动编码器(Stacked Autoencoder)是自动编码器的一种变体,通过将多个自动编码器层堆叠在一起来提高模型的表达能力和学习能力。
在本文中,我们将讨论如何使用Python实现堆叠自动编码器,并探讨其在深度学习中的应用。
### 自动编码器简介自动编码器是一种无监督学习模型,它通过将输入数据压缩到一个低维空间中,然后再将其解压缩回原始数据的形式来学习数据的表示。
自动编码器包括一个编码器和一个解码器,其中编码器将输入数据映射到低维表示,解码器则将低维表示映射回原始数据的形式。
通过调整编码器和解码器的参数,自动编码器可以学习到数据的有效表示。
### 堆叠自动编码器的原理堆叠自动编码器是通过将多个自动编码器层堆叠在一起来构建的深度神经网络。
在堆叠自动编码器中,每一层的编码器将输入数据压缩到一个更低维的表示,然后再将这个表示传递到下一层的编码器。
在解码器部分,每一层的解码器将上一层的表示解压缩回原始数据的形式。
通过堆叠多个自动编码器层,堆叠自动编码器可以学习到数据的多层次表示,从而提高模型的表达能力和学习能力。
### 使用Python实现堆叠自动编码器在Python中,我们可以使用深度学习框架来实现堆叠自动编码器,如TensorFlow、PyTorch等。
下面我们以TensorFlow为例,介绍如何使用Python实现堆叠自动编码器。
首先,我们需要导入TensorFlow库,并准备数据集。
在这里,我们以MNIST 手写数字数据集为例,使用TensorFlow的内置函数加载数据集。
```pythonimport tensorflow as tffromimport layersfromimport Model# 加载MNIST数据集(x_train, _), (x_test, _) = _data()# 数据预处理x_train = x_(-1, 28*28) /x_test = x_(-1, 28*28) /```然后,我们可以构建堆叠自动编码器模型。
中英文验证码的深度训练通常涉及以下步骤:数据收集:首先需要收集大量的中英文验证码图片和对应的正确答案。
这些数据可以来自各种网站、应用程序或开源数据集。
数据预处理:对收集到的数据进行预处理,包括图像清洗、大小调整、灰度化等操作,以便于模型训练。
模型选择:选择适合的深度学习模型,例如卷积神经网络(CNN)、循环神经网络(RNN)或长短期记忆网络(LSTM)等。
模型训练:
使用训练数据集对模型进行训练,通过调整模型参数和优化器来最小化错误率。
模型评估:使用验证数据集对训练好的模型进行评估,以了解模型在未见过的数据上的表现。
模型优化:根据评估结果对模型进行优化,例如调整模型结构、增加或减少层数、改变激活函数等。
部署模型:将训练好的模型部署到生产环境中,用于实际的中英文验证码识别任务。
堆叠自动编码器的稀疏表示方法自动编码器是一种无监督学习的神经网络模型,它通过学习数据的内部表示来提取特征。
堆叠自动编码器则是由多个自动编码器叠加而成的深层网络模型。
在实际应用中,堆叠自动编码器通过学习更加抽象的特征表示,可以用于特征提取、降维和生成数据等多个领域。
在这篇文章中,我们将探讨堆叠自动编码器的稀疏表示方法,以及其在深度学习中的重要性。
稀疏表示是指在特征提取过程中,只有少数单元才被激活。
在堆叠自动编码器中,通过引入稀疏表示方法,可以让网络学习到更加鲁棒和有意义的特征。
稀疏表示可以有效地降低特征的冗余性,提高网络的泛化能力,使得网络能够更好地适应未见过的数据。
同时,稀疏表示还可以减少模型的计算复杂度,提高模型的训练效率。
因此,稀疏表示在深度学习中具有重要的意义。
在堆叠自动编码器中,稀疏表示的方法有很多种,其中最常用的方法之一是使用稀疏编码器。
稀疏编码器是一种特殊的自动编码器,它通过引入稀疏约束来学习稀疏表示。
在训练过程中,稀疏编码器会对每个隐藏单元引入稀疏性约束,使得只有少数隐藏单元被激活。
这样可以有效地提高特征的鲁棒性和泛化能力。
同时,稀疏编码器还可以使用稀疏性约束来降低特征的冗余性,提高特征的表达能力。
除了稀疏编码器,堆叠自动编码器还可以通过正则化方法来实现稀疏表示。
正则化是一种常用的方法,它可以通过引入额外的惩罚项来控制模型的复杂度。
在堆叠自动编码器中,可以通过引入L1正则化项来推动隐藏单元的稀疏性。
L1正则化项可以使得很多隐藏单元的激活值为0,从而实现稀疏表示。
通过正则化方法实现稀疏表示的堆叠自动编码器具有较好的鲁棒性和泛化能力,同时可以减少模型的计算复杂度,提高模型的训练效率。
另外,堆叠自动编码器还可以通过引入降噪自动编码器来实现稀疏表示。
降噪自动编码器是一种特殊的自动编码器,它可以通过在输入数据上添加噪声来训练模型。
在实际应用中,通过引入随机噪声,可以有效地降低模型对输入数据的敏感度,提高网络的鲁棒性。
CodeFormer是一种基于VQGAN+Transformer的人脸复原模型,由南洋理工大学和商汤科技联合研究中心开发。
它使用预训练的VQGAN离散码本空间,将人脸复原任务转化为Code序列的预测任务,大幅度降低了复原任务映射的不确定性。
同时,VQGAN的码本先验为复原任务提供了丰富的人脸细节。
此外,通过Transformer全局建模,进一步增加了模型对严重退化的鲁棒性,使得复原的人脸更加真实。
在CodeFormer中,VQGAN负责编码和解码图片,生成清晰真实的图片,并通过量化的方法来保证生成图片的高质量。
而Transformer 则通过自注意力机制来判断像素之间的依赖关系,实现全局上下文感知,生成连贯自然的修复结果。
总的来说,CodeFormer结合了VQGAN和Transformer的优点,能够有效地进行人脸复原,生成高质量的人脸图片。
3/4 卷积码编码原理解析与建模拟真一、大纲卷积码是一种性能优越的信道编码。
它的编码器和译码器都比较简单实现,同时它拥有较强的纠错能力。
随着纠错编码理论研究的不断深入,卷积码的实质应用越来越广泛。
本文简短地介绍了卷积码的编码原理和 Viterbi 译码原理。
并在 SIMULINK模块设计中,达成了对卷积码的编码和译码以及误比特统计整个过程的模块仿真。
最后,经过在仿真过程中解析了卷积码误比特率与信噪比之间的关系,及卷积码与非卷积码的对照。
经过仿真和实测,并对测试结果作了解析。
要点词:卷积码编码建模SIMULINK 仿真目录一、大纲 .................................................................................................................................................................- 1 -二、设计目的和意义 .............................................................................................................................................- 2 -三、设计原理 .........................................................................................................................................................- 3 -卷积码根本看法 ......................................................................................................................................- 3 -卷积码的结构 ..........................................................................................................................................- 3 -卷积码的解析表示 ..................................................................................................................................- 4 -卷积码的译码 ..........................................................................................................................................- 4 -卷积码译码的方式 ........................................................................................................................- 4 -卷积码的 Viterbi 译码 ..................................................................................................................- 5 -四、详细设计步骤 .................................................................................................................................................- 6 -卷积码的仿真 ..........................................................................................................................................- 6 -SIMULINK 仿真模块的参数设置及意义.................................................................................- 6 -五、设计结果及解析 . (11)不相同信噪比对卷积码的影响 (11)卷积码的对照 (12)六、总结 (14)七、领悟 (14)八、参照文件 (14)二、设计目的和意义由于信道中信号不可以防范会碰到搅乱而出错。
数学建模竞赛代码导出-回复数学建模是一项涉及数学理论、统计分析和计算机算法的竞赛活动,在这个竞赛中,参赛者需要根据给定的问题,运用数学工具和方法,解决现实世界中的实际问题。
在本文中,我将一步一步回答关于数学建模竞赛代码导出的问题。
首先,我们需要明确什么是数学建模竞赛代码导出。
在数学建模竞赛中,参赛者需要编写一段代码来解决给定的问题。
而“代码导出”是指将编写好的代码从开发环境中导出,并准备好提交给评委进行评分的过程。
接下来,我们将逐步介绍数学建模竞赛代码导出的步骤。
第一步是选择合适的开发环境。
数学建模竞赛一般要求参赛者使用编程语言来解决问题,因此需要选择一款适合自己的编程环境。
常见的编程语言包括Python、MATLAB、C++等,每种语言都有自己的特点和优势。
参赛者需要根据自己的编程水平和题目需求选择合适的编程环境。
第二步是编写代码。
在这一步中,参赛者需要根据题目的要求,运用数学理论和算法,编写能够解决问题的代码。
首先,参赛者需要理解问题的背景和要求,确定问题的数学模型和计算方法。
然后,根据模型和方法,参赛者可以开始编写代码并进行调试。
在编写代码的过程中,参赛者需要注重代码的可读性和可维护性,遵循良好的编程规范,使用合适的变量名和注释,以便于其他人能够理解和维护代码。
第三步是测试代码。
在编写完代码之后,参赛者需要对代码进行测试,确保其能够正确地解决问题。
测试代码包括两个方面:一是对边界条件和特殊情况的测试,以确保代码的鲁棒性;二是对大量数据的测试,以验证代码的效率和正确性。
通过测试,参赛者可以发现代码中存在的问题,并进行调试和修复。
第四步是导出代码。
在确保代码能够正确运行的前提下,参赛者需要将代码从开发环境中导出,并准备好提交给评委进行评分。
导出代码的方式有很多种,可以选择将代码保存为文本文件,或将代码复制粘贴到文本编辑器中。
无论采用哪种方式,都需要确保导出的代码是完整且可运行的。
第五步是提交代码。
Position Paper:Using a“Codelet”Program Execution Model for Exascale Machines∗Stéphane ZuckermanJoshua SuetterleinUniversity of Delaware szuckerm@ jodasue@Rob KnauerhaseIntel Labsknauer@Guang R.GaoUniversity of Delawareggao@ABSTRACTAs computing has moved relentlessly through giga-,tera-, and peta-scale systems,exa-scale(a million trillion opera-tions/sec.)computing is currently under active research. DARPA has recently sponsored the“UHPC”[1]—ubiqui-tous high-performance computing—program,encouraging partnership with academia and industry to explore such sys-tems.Among the requirements are the development of novel techniques in“self-awareness”1in support of performance, energy-efficiency,and resiliency.Trends in processor and system architecture,driven by power and complexity,point us toward very high-core-count designs and extreme software parallelism to solve exascale-class problems.Our research is exploring afine-grain,event-driven model in support of adaptive operation of these ma-chines.We are developing a Codelet Program Execution Model which breaks applications into codelets(small bits of functionality)and dependencies(control and data)between these objects.It then uses this decomposition to accom-plish advanced scheduling,to accommodate code and data motion within the system,and to permitflexible exploita-tion of parallelism in support of goals for performance and power.Categories and Subject DescriptorsC.5.0[Computer Systems Organization]:Computer Sys-tem Implementation–General;D.m[Software]:Miscella-neous∗This research was,in part,funded by the ernment. The views and conclusions contained in this document are those of the authors and should not be interpreted as rep-resenting the official policies,either expressed or implied,of the ernment.1Fans of sciencefiction will note that Department of Defense attempts to build self-aware systems have not always been successful(cf.War Games,Terminator...).Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on thefirst page.To copy otherwise,to republish,to post on servers or to redistribute to lists,requires prior specific permission and/or a fee.EXADAPT’11June5,2011,San Jose,California,USA.Copyright2011ACM978-1-4503-0708-6/11/06...$10.00.Keywordsexascale,manycore,dataflow,program execution model AcknowledgementsGovernment Purpose RightsPurchase Order Number:N/AContractor Name:Intel CorporationContractor Address:2111NE25th Ave M/S JF2-60,Hillsboro, OR97124Expiration Date:NoneThe Government’s rights to use,modify,reproduce,release, perform,display,or disclose this technical data are restricted by paragraphs B(1),(3)and(6)of Article VIII as incorporated within the above purchase order and Agreement.No restrictions apply after the expiration date shown above.Any reproduc-tion of the material or portions thereof marked with this legend must also reproduce the markings.The following entities,their respective successors and assigns,shall possess the right to ex-ercise said property rights,as if they were the Government,on behalf of the Government:Intel Corporation(); ET International();Reservoir Labs ();University of California San Diego ();University of Delaware();Uni-versity of Illinois at Urbana-Champaign(). 1.INTRODUCTION1.1MotivationContemporary systems include multi-and many-core pro-cessors.However,few current implementations include more than a small number of cores per chip—IBM’s Cyclops-64, or Intel’s Single-chip Cloud machines being(for now)the exceptions rather than the rule.As the number of cores inevitably increases in the coming years,traditional ways of performing large scale computations will need to evolve from legacy models such as OpenMP[17]and MPI[14].In-deed,such models are very much wedded to a control-flow vision of parallel programs,thus making it more difficult to express asynchrony in programs and requiring a rather coarse-grain parallelism.This in turn reduces the ability for the system to insert points at which adaption decisions can be made,as well as requiring expensive whole-context copies if adaptation requires moving code to another core,or repli-cating a large context when reliability mandates redundant calculation.powerto ex-in-of at-as Reli-—are fre-with the relies paral-of [6]2,as Sec-model;section 3tackles issues induced by exascale machines,such as scalability,energy efficiency,and resiliency.Section 4skims through related research;we conclude in Section 5and sketchour future research.2.THE CODELET PROGRAM EXECUTIONMODEL 2.1Abstract Machine ModelAs an established practice in the field,our proposed pro-gram execution model is explained in the context of a cor-responding abstract (parallel)machine architecture model.In this section,we present an outline of an abstract machine that can be viewed as an abstract model for the class of par-allel computer hardware and software system that realize the proposed codelet design goals.The abstract machine consists of many nodes that are connected together via an interconnection network as shown as in Figure 1.Each node contains a many-core chip.The chip may consist of up to 1-2thousand processing cores being organized into groups (clusters)linked together via a chip interconnect.In the abstract machine presented,each group contains a collection of computing units (CU)and at least one scheduling unit (SU),all being linked together by their own on-chip interconnect.A node may also contain other resources,most notably additional memory which will likely be DRAMs or other external storage.2.2The Codelet Model2.2.1Goals2In fact,in the case of Concurrent Collections,many con-cepts are very similar to those we expose in the remainder of this paper.Figure 1:Abstract machineThe codelet execution model is designed to leverage previ-ous knowledge of parallelism,and to develop a methodology for exploiting parallelism for a much larger scale machine.In doing so,we must take into account the (application de-pendent)sharing of both machine and data resources.As the number of processing elements will continue to increase,it is likely that future performance bottlenecks will emanate from this sharing.The codelet model aims to effectively rep-resent the sharing of both data and other vital machine re-sources.To represent shared data while exploiting massive parallelism,the codelet model imposes a hybrid dataflow approach utilizing two levels of parallelism.In addition,our model provides an event interface to address machine constraints exacerbated by an application.Moreover,the codelet model seeks to provide a means for running exascale applications within certain power budget.2.2.2DefinitionThe finest granularity of parallelism in the codelet ex-ecution model is the codelet .A codelet is a collection of machine instructions that can be scheduled “atomically”as a unit of computation.In other words,codelets are the principal scheduling quantum found in our execution model.Codelets are more fine grained than a traditional thread,and can be seen as a small chunk of work to accomplish a larger task or procedure.As such,when a codelet has been allocated and scheduled to a computation unit,will be kept usefully busy until its completion.Many traditional systems utilize preemption to overlap long latency opera-tions with another coarse grain thread incurring a contextUse or disclosure of data contained herein is subject to the restrictions on the title page of this paper.switch.Since codelets are more fine grain,we believe the overhead of context switching (saving and restoring regis-ters)is too great.Therefore the underlined abstract ma-chine model and system software (piler,etc.)must be optimized to ensure such non-preemption features can be productively utilized.With a large amount of codelets and a greater amount of processing power,our work is leading us to believe that it may be more power efficient to clock-gate a processing element while waiting for long latency operations than to multitask.In efforts to reduce power consumption and to decrease latency of memory operations,codelets pre-suppose that all data and code be local to its execution.A codelet’s primary means of communication with the remain-ing procedure is through its inputs and outputs.2.3The Codelet Graph ModelThe codelet graph (CDG)to be introduced below has its origin in dataflow graphs .A CDG is a directed graph G =(V,E )where V is a set of nodes and E is a set of directed arcs and tokens.In a CDG nodes in G may be connected by arcs from E .A node (also called a codelet actor)denotes a codelet.An arc (V 1,V 2)in the CDG is an abstraction of a prece-dence relation between nodes V 1and V 2.Such a relation may be due to a data dependence between codelet V 1and V 2,but we allow other types of relations.For example,it can simply specifies a precedence relation:the execution of the codelet actor V 2must be following the execution of V 1.Arcs may contain eventtokens.These tokenscorrespond to anevent,the most prominent being the presence of data or a control signal.These arcs correspond to the inputs and outputs of a codelet.Tokens travel from node to node,en-abling codelets to execute.When the execution of a codelet is completed,it places tokens (its resulting values)on its out-put arcs,and the state of the abstract machine (represented by the entire graph)is updated.The interested reader can find examples of programs expressed as codelet graphs in a previously released technical report [12].Operational Semantics.The execution model of a codelet graph is specified by its operational semantics called firing rules .A codelet can be in one of three states.A codelet begins as dormant .When all its events are satisfied it becomes enabled .Once a processing element becomes available,a codelet can be fired .Codelet Firing Rule.A codelet becomes enabled once tokens are present on each of its input arcs.An enabled codelet actor can be fired if it has acquired all required resources and is scheduled for execution.A codelet actor fires by consuming tokens on its input arcs,performing the operations within the codelet,and producing a token on each of its output arcs upon com-pletion.While codelet actors are more coarse than traditional dataflow,codelet actors still require glue to permit conditional execu-tion (i.e.a loop containing multiple codelet actors).In order to provide greater functionality,we include several actors including a decider,conditional merge,and T and F-gates which follow directly from the dataflow literature [7].Threaded Procedures.Viewing a CDG in conjunction with the firing rule paints a picture of how a computation is expressed and executed.Codelets are connected by dependencies through their in-puts and outputs to form a CDG.The formation of these CDGs gives rise to our second level of parallelism,threaded procedures .A threaded procedure (TP)is an asynchronous function which acts as a codelet graph container.A TP serves two purposes,first it provides a naming convention to invoke a CDG,and secondly it acts as a scope of which codelets can efficiently operate within.Figure 2shows three threaded procedure invocations.Figure 2:An examples of three threaded procedures Codelets and TPs are the building block of an exascale ap-plication.Codelets act as a more fine grain building block exposing more parallelism.TPs conveniently group codelets providing composability for the programmer (or compiler)while increasing the locality of shared data.TP’s also act as a convenient means for mapping computation to a hier-archical machine.2.4Well-Behaved Codelet GraphsA CDG is well-behaved if its operations terminate fol-lowing each presentation of values on its input arcs,and places a token on each of its output arcs.Furthermore,a CDG must not have any circular dependencies and be self-cleaning (i.e.the graph must return to its original state afterit is executed).In well-behaved graphs,as tokens flow through the CDG,forward progress in the application is guaranteed.This is an important property for applications composed with fine grain actors sharing resources.Furthermore,a well-behaved graph ensures determinate results regardless of the asyn-chronous execution of codelets and TPs.This property holds when all the data dependencies between codelets are ex-pressed.CDGs adhere to the same construction rules as a dataflowgraph which is cited in [7].In particular,well-behaved com-ponents form a well-behaved graph.Control actors are not well-behaved actors;however they may still be part of a well-behaved CDG because they are considered a well-formedschema [7].A framework which provides the default of being well-behaved and determinate aids in reducing development ef-Use or disclosure of data contained herein is subject to the restrictions on the title page of this paper.fort(by easing the debugging process)and enabling the“self-aware”adaptability we desire.3.SMART ADAPTATION IN AN EXASCALECXMSo far,we have described our codelet model of compu-tation,without explaining how itfits into a live system, e.g.how the runtime system(RTS)will deal with codelet scheduling for scalability,energy-efficiency,or resiliency.This section addresses these issues,and exposes various mech-anisms which we believe will enable programs using the codelet PXE to run efficiently.3.1Achieving Exascale PerformanceLoop parallelism and Codelet Pipelining.Loop parallelism is an important form of parallelism in most useful parallel execution models.Since the codelet graph model has evolved from dataflow graphs,naturally we intend to exploit the progress made on loop parallelismin the dataflow model.One of the most successful techniquesto exploit loop parallelism is at the instruction-level using software pipelining(SWP)[16].Based on the work of the past decade on loop code map-ping,scheduling and optimization,various ideas of loop schedul-ing have now converged to a novel loop nest SWP framework for multi-and many-core systems.Among them,we count Single-dimension Software Pipelining(SSP)[18],which is a unique resource-constrained SWP framework that overlaps the iterations of an n-dimensional loop.SSP has been im-plemented with success on the IBM Cyclops-64many-core chip[10].As previously stated,the goal of the codelet model is to better utilize a larger machine with morefine grain ing SWP techniques to permit more codelets aids in achieving this goal,however other mechanisms are required to saturate the machine.Split-Phase Continuations.The“futures”concept and their continuation models have been investigated or are under investigation in a numberof projects(e.g.Cilk,Java,C#,...).Under the codelet model,each time a future-like asynchronous procedure in-vocation is launched,it will be considered as a long(and hard to predict)latency operation,and the invoking codelet will not be blocked.In fact,the codelet should only con-tain operations that will not depend on the results of the launched procedure invocation.Therefore,once the codelet hasfinished its remaining operations,it will quit(die)nat-urally.Conceptually,the remaining codelets of the calling pro-cedure will continue,hence the term“continuation.”Also, since the launching codelet(s)have already all quit,the con-tinuation could be considered as starting as another“phase”of the computation,hence the term split-phase continuation. We anticipate that such split-phase actions will be very ef-fective in tolerating long and predictable latencies.Another important benefit from split-phase continuationis that it provides the opportunity for the scheduler to clock-gate(e.g.saving power while preserving state)a given com-putation unit which issued one such continuation,and is waiting for its results to continue its execution.It can then simply wait for the scheduler to send a signal to wake up once the data dependence isfinally resolved.Meeting Locality Requirements.The codelet model presupposes that codelet have their in-puts available locally.However,some inputs may very well simply be a pointer referencing a remote memory location. While the pointer itself is locally available,the data it ref-erences may not be available locally when the codeletfires. One way of dealing with this is to perform split-phase con-tinuation(cf.paragraph3.1).However,it may be more efficient to simply make sure the data referenced is indeed locally available to the running codelet.In current systems,such a task is mostly performed through the use of code or data prefetching.However,classical code and data prefetching only concerns themselves with bringing blocks of code or data into local memories(usually caches) in an efficient way.While an efficient technique,prefetch-ing is done in a systematic manner at the hardware and software level,hence increasing the power demands on the overall system.Moreover,relatively complex data structures (say,linked lists or graphs)usually tend to defeat prefetch-ers,as locality is not guaranteed.However,on a many-core architecture,knowing how data will be allocated,in which cluster,etc.,will be extremely difficult.Furthermore It is unlikely that classical hardware data-prefetching will be very efficient for particular challenge problems like graph traver-sals.In addition,too aggressive prefetching can pollute the local memory of a computation unit,by using too big a prefetch distance and thus copying in useless data.This is mainly due to the fact that prefetching is“just”a tech-nique to load blocks of data,regardless of their meaning for the current computation.To deal with more clever ways of moving data,additional techniques have been devised. 3.2Achieving Power and Energy Efficiency Energy efficiency is one of the major challenges for exas-cale supercomputers.Extrapolation of current(na¨ıve)tech-nologies into exascale domains quickly becomes unsupport-able.Indeed,some UHPC approaches explicitly state that running a whole system at full power will introduce quick failure.To this end,future systems will have to build on dynamic voltage/frequency scaling along with system-wide metrics to adapt consumption according to available power, user-defined system goals,and other factors.Therefore,exascale systems will in all probability require ways to quickly and efficiently shut down parts of one or more computation nodes when they are not useful.There are two approaches to this problem.One is to provide mechanisms which will proactively aim at reducing energy-consumption,which is partially achieved through the use of percolation hint(see below).The other one is to react to events as they happen in real time and decide what to do. This is where our event-driven Codelet PXE is going to help. Code and Data Percolation for Energy Efficiency.The HTMT program execution model[13]introduced the percolation mechanism[19,2],to deal with memory hier-archies with very different latencies(going from a few cy-cles to several hundreds).It is different from classical data-prefetching in that it fetches“intelligently”the next block of data according to its type.For example,consider an ele-Use or disclosure of data contained herein is subject to the restrictions on the title page of this paper.ment in a linked list.There is usually afield,say next,which points to the next element in the list.Here,next could be marked(through a hint)as needing to be followed,hence giving the compiler and runtime system enough information to know how important it is to have data available locally. In a na¨ıve version of a graph node data structure,a given node would have an array of such pointers to reference this node’s neighbors.Data percolation is a useful tool to hide latencies and in-crease the overall performance of a system without incur-ring the drawbacks of general prefetching.However,moving data around can be extremely costly in terms of energy-consumption.Our CXE and runtime percolator applies per-colation to code itself.Depending on the relative sizes of code(remember,codelets are small)and data,it will some-times make more sense to move only the code,and let the data stay where it was last modifiers of many-core architectures will need to think in a data-centric way rather than a code-centric one;however,our system helps by adapt-ing based on data-access patterns[15]from both hardware performance monitoring units and compiler hints(or code instrumentation).While some of these factors can be determined at compile-time,others are strictly a function of dynamic runtime state. Our hardware designs(outside the scope of this paper)in-clude deliberate features to monitor memory access and to ease the ability to relocate code and data as needed through-out the system.How deep percolation should go(e.g.,how many links or neighbouring nodes should be retrieved in our linked list and graph examples)depends on the runtime knowledge of avail-able local memory for a given codelet,what other memory requests should be issued next to the ones currently be pro-cessed,and so forth.This will remain an important area for ongoing research.Self-Aware Power Management.The runtime system(RTS)used in our prototype Codelet PXE is continuously fed system-monitoring events which re-flect the“health”of the system.In particular,probes are expected to warn the scheduling units when(parts of)the computation node they are running on is going over a given power threshold.Thresholds can be determined by the user (power“goals”input directly to the system,or hints coded into the application)or by the system itself(hard limits based on heat,or availability/quality of power at a given moment).The scheduler decides what to do with threaded proce-dures(and the CDG attached to them)that are currently running on the parts programmed to be shut down.If the hysteresis(or“heat history”)indicates a negative trend,it can decide to enact energy-saving measures(clock-gating, frequency-scaling,or—perversely—increasing performance tofinish the CDG after which it can shut down that area of the chip for some period.If none of these measures is suffi-cient,the scheduler may simply turn offthat part of the chip (or memory)and migrate or restart one or mode codelets elsewhere.Resiliency checkpointing techniques(described in a following section)will of course help this migration. 3.3Achieving ResiliencyThere are a number of factors that may cause an exas-cale system to exhibit less than optimal reliability.For ex-ample,even with a very high mean time between failures (MTBF)of each core,a system with a million cores will see transient failures.Likewise,as part of the manufactur-ing process,different cores will have different tolerance of voltages;the aggressive power-scaling that is required for energy efficiency may cause some cores to fail under certain stly,environmental factors(heat generated by use of certain“areas”of the system,or external cooling availability)may also introduce intermittent problems.To ensure correctness of ongoing computations,several adapta-tion mechanisms must be provided.At the most basic level,our CXE can provide resiliency by duplicating computation in various parts of the machine. For mission-critical applications,the value of this may be worth the costs of increased energy usage or reduced capac-ity in the system.Our related research includes observation and introspec-tion systems which will help detect failures.The runtime system uses this information as part of its codelet schedul-ing.It can,for example,change the voltage and/or fre-quency settings of individual cores or blocks to ameliorate errors,or it can shut down areas of the system and relocate computation elsewhere to allow failing cores to return to a less error-prone temperature.Lastly,because our CXE includes dependency informa-tion,and because codelets are small and make very localized changes to their data,many opportunities for traditional re-siliency—checkpointing and the like—can be quickly ac-commodated.Indeed,the runtime can perform incremental state versioning even for computation that isn’t necessar-ily“transactional”in the original application.We expect to prototype heuristics to determine when to speculatively create versions of codelet state based on machine state and predictions of localized failures.4.RELATED WORKDataflow(DF)wasfirst proposed in its static definition by Jack Dennis[8,9].DF was later extended by Agerwala and Arvind creating dynamic DF.Dynamic DF is considered to exploit thefinest granularity of parallelism,but suffers large overheads due to token matching and lack of locality.The EARTH system[20]was our second inspiration for our current work.It is a hybrid dataflow model which runs on off-the-shelf hardware.EARTH took an evolutionary ap-proach to exploring multithreading,and its runtime is not suited to scale to massive many-core machines.The Cilk programming language[3]is an extension to the C language which provides a way to simply express paral-lelism in a divide-and-conquer manner.Other programming models also provide asynchronous ex-ecution,such as StarSs[11],which provide additional prag-mas or directives to C/C++and Fortran programs.StarSs requires to explicitely state which are the inputs and out-puts of a given computation,and is basically an extension to OpenMP-like frameworks.Chapel[5]and X10[6]are part of the Partitioned Global Address Space(PGAS)languages.Both have specific fea-tures which differentiate them from each other,but provide an abstration of the memory addressing scheme to the pro-grammer.All the while,they give him/her the ability to ex-press critical sections and parallel regions with ease through adapted constructs.Our work is clearly inspired by previous work on dataflow,Use or disclosure of data contained herein is subject to the restrictions on the title page of this paper.as well as the research done on the EARTH system.How-ever,contrary to EARTH’sfibers,our codelet model is specif-ically designed to run codelets on multiple cores.In addi-tion,we address power and resiliency issues,which none of the previously described programming models do.Cilk’s al-gorithmic approach to scheduling can also be used in our Codelet PXE,but we believe we can go a step further,while still retaining some important theoretical properties offered by Cilk.Moreover,the work described in this section is in no way in opposition with what we are proposing.Codelets should be seen as the“assembly language”of parallel frameworks. Programs written in the previous languages can be decom-posed into codelets.5.CONCLUSION AND FUTURE WORK This paper presents a novel program execution model aimed at future many-core systems.It emphasizes the use offiner grain parallelism to better utilize the available hardware. Our event-driven system can dynamically manage runtime resource constraints beyond pure performance,including en-ergy efficiency and resiliency.Future work includes developing a codelet-aware software stack(starting with a compiler and a runtime system)which will implement our ideas related to scalability,energy effi-ciency and resiliency.Further research will also be needed to take security as another component of our model.6.REFERENCES[1]Ubiquitous high performance computing(uhpc).[2]J.N.Amaral,G.R.Gao,P.Merkey,T.Sterling,Z.Ruiz,and S.Ryan.An htmt performance prediction case study:Implementing cannon’s dense matrixmultiply algorithm.Technical report,1999.[3]R.D.Blumofe,C.F.Joerg,B.C.Kuszmaul,C.E.Leiserson,K.H.Randall,and Y.Zhou.Cilk:Anefficient multithreaded runtime system.pages207–216.[4]Z.Budimlic,M.Burke,V.Cav´e,K.Knobe,G.Lowney,R.Newton,J.Palsberg,D.M.Peixotto,V.Sarkar,F.Schlimbach,and S.Tasirlar.Concurrentcollections.Scientific Programming,18(3-4):203–217,2010.[5]B.L.Chamberlain,D.Callahan,and H.P.Zima.Parallel programmability and the chapel language.IJHPCA,21(3):291–312,2007.[6]P.Charles,C.Grothoff,V.A.Saraswat,C.Donawa,A.Kielstra,K.Ebcioglu,C.von Praun,and V.Sarkar.X10:an object-oriented approach to non-uniformcluster computing.In R.E.Johnson and R.P.Gabriel, editors,OOPSLA,pages519–538.ACM,2005.[7]J.Dennis,J.Fosseen,and J.Linderman.Dataflowschemas.In A.Ershov and V.A.Nepomniaschy,editors,International Symposium on TheoreticalProgramming,volume5of Lecture Notes in ComputerScience.Springer Berlin/Heidelberg,1974.[8]J.B.Dennis.First version of a data-flow procedurelanguage.In Proceedings of the Colloque sur laProgrammation,number19in Lecture Notes inComputer Science.Springer-Verlag,April9–11,1974. [9]J.B.Dennis and J.B.Fossen.Introduction to dataflow schemas.Technical Report81-1,September1973.[10]A.Douillet and G.R.Gao.Register pressure insoftware-pipelined loop nests:Fast computation andimpact on architecture design.In LCPC,pages17–31, 2005.[11]A.Duran,J.Perez,E.Ayguad´e,R.Badia,andbarta.Extending the openmp tasking model toallow dependent tasks.In R.Eigenmann andB.de Supinski,editors,OpenMP in a New Era ofParallelism,volume5004of Lecture Notes inComputer Science,pages111–122.Springer Berlin/Heidelberg,2008.10.1007/978-3-540-79561-210. [12]G.R.Gao,J.Suetterlein,and S.Zuckerman.Towardan execution model for extreme-scale systems—runnemede and beyond.CAPSL Technical Memo104, Department of Electrical and Computer Engineering,University of Delaware,Newark,Delaware,May2011.[13]G.R.Gao,K.B.Theobald,A.M´a rquez,andT.Sterling.The HTMT program execution model.Technical Report09,1997.[14]R.L.Graham.The mpi2.2standard and the emergingmpi3standard.In Proceedings of the16th EuropeanPVM/MPI Users’Group Meeting on Recent Advances in Parallel Virtual Machine and Message PassingInterface,Berlin,Heidelberg,2009.Springer-Verlag. [15]R.Knauerhase,P.Brett,B.Hohlt,T.Li,and S.Hahn.Using os observations to improve performance inmulticore systems.IEEE Micro,28:54–66,May2008.[16]m.Software pipelining:an effectivescheduling technique for vliw machines(withretrospective).In Best of PLDI,pages244–256,1988.[17]L.Meadows.Openmp3.0—a preview of theupcoming standard.In Proceedings of the3rdinternational conference on High PerformanceComputing and Communications,pages4–4,Berlin,Heidelberg,2007.Springer-Verlag.[18]H.Rong,A.Douillet,indarajan,and G.R.Gao.Code generation for single-dimension softwarepipelining of multi-dimensional loops.In Proc.of the2004Intl.Symp.on Code Generation andOptimization(CGO),March2004.[19]G.Tan,V.Sreedhar,and G.Gao.Just-in-time localityand percolation for optimizing irregular applicationson a manycore architecture.In J.Amaral,editor,Languages and Compilers for Parallel Computing,Lecture Notes in Computer Science.Springer Berlin/ Heidelberg,2008.[20]K.B.Theobald.Earth:an efficient architecture forrunning threads.PhD thesis,Montreal,Que.,Canada, Canada,1999.AAINQ50269.Use or disclosure of data contained herein is subject to the restrictions on the title page of this paper.。