8.重积分变量代换
- 格式:pdf
- 大小:193.28 KB
- 文档页数:4
重积分的计算方法重积分包括二重积分和三重积分,它是定积分的推广;被积函数由一元函数f(x)推广为二元函数f(x,y),三元函数(fx,y,z);积分围由数轴上的区域推广为平面域(二重积分)和空间域(三重积分)。
我个人在学习与复习多重积分这一块时,感到多重积分的计算比较繁琐,而在日常生活中多重积分有着很多的应用。
通过在图书馆查阅资料、以及老师的指点,重积分的计算方法还是有规律可循的。
为了更好的应用重积分,本人结合前人的经验,在这里介绍几种常用的重积分计算方法,以及一些小技巧。
着重介绍累次积分的计算与变量代换。
一.二重积分的计算1.常用方法(1)化累次积分计算法对于常用方法我们先看两个例子对于重积分的计算主要采用累次积分法,即把一个二重积分表达为一个二次积分,通过两次定积分的计算求得二重积分值,分析上面的例子累次积分法其主要步骤如下:第一步:画出积分区域D的草图;第二步:按区域D和被积函数的情况选择适当的积分次序,并确定积分的上、下限;第三步:计算累次积分。
需要强调一点的是,累次积分要选择适当的积分次序。
积分次序的不同将影响计算的繁简,有些题这两种次序的难易程度可以相差很大,甚至对一种次序可以“积出来”,而对另一种次序却“积不出来”。
所以,适当选择积分次序是个很重要的工作。
选择积分次序的原则是:尽可能将区域少分块,以简化计算过程;第一次积分的上、下限表达式要简单,并且容易根据第一次积分的结果作第二次积分。
(2)变量替换法着重看下面的例子:在计算定积分时,求积的困难在于被积函数的原函数不易求得。
从而适当地在计算重积分时,求积的困难来自两个方面,除了被积函数的原因以外还在而且,有时候其积分区域往往成为困难的主要方面。
利用换元法的好处是可以把被积函数的形状进行转化,以便于用基本求积公式。
于积分区域的多样性。
为此,针对不同的区域要讨论重积分的各种不同算法。
(3)极坐标变换公式(主要是∫∫f(x,y)dxdy=∫∫f(pcosθ,psinθ)pdpdθ)下面看一个例子:计算二重积分时,要从被积函数和积分域两个方面来考虑如何适当地选择坐标系,如能采用适当的坐标系,往往可以收到事半功倍的效果。
重积分的积分变换和积分替换积分是高等数学中的一个重要概念,它被广泛应用在各个领域中,包括物理学、统计学、经济学等。
在微积分中,一类重要的积分就是重积分。
和单变量积分不同,重积分涉及到多个变量,其计算难度往往更大。
近年来,学者们发现,利用积分变换和积分替换的技巧,可以有效地简化重积分的计算过程。
本文就介绍一些有关积分变换和积分替换的基本知识和重要应用。
一、积分变换积分变换是将一类积分变换成另一类积分的过程,通常是通过一些数学技巧来实现的。
积分变换有很多种,包括线性变换、仿射变换、圆柱变换、球坐标变换等。
在这里,我们主要介绍球坐标变换和柱坐标变换两种。
1. 球坐标变换球坐标变换是将三维空间中的积分转化为球坐标系下的积分。
通过这种变换,可以将具有各向同性的问题转化为与方向无关的问题,从而简化积分的计算。
球坐标系下的积分变量包括径向距离r、极角θ和方位角φ。
一般来说,球坐标变换的步骤如下:(1)将被积函数写成球坐标的形式;(2)将坐标变量x、y、z表示为r、θ和φ的函数;(3)将分子(dx dy dz)替换成球坐标系下的积分元素r²sinθ dr dθ dφ;(4)对变量r、θ和φ进行变量替换,计算出新的积分区域。
例如,设空间中有一个函数f(x,y,z),要求其在球形区域内的积分。
那么,将被积函数转化为球坐标系下的形式:f(x,y,z)→f(r,θ,φ)然后,把直角坐标系下的坐标写成球坐标系下的形式:x=r sinθ cosφ;y=r sinθ sinφ;z=r cosθ。
接着,计算出雅可比行列式,替换分子,并对积分区域进行调整。
最终得到球坐标下的积分表达式:∫∫∫f(x,y,z) dxdydz = ∫∫∫f(r,θ,φ) r²sinθ dr dθ dφ2. 柱坐标变换柱坐标变换是将三维空间中的积分转化为柱坐标系下的积分。
柱坐标系下的积分变量包括径向距离r、极角θ和高度z。
柱坐标变换的一般步骤如下:(1)将被积函数写成柱坐标系下的形式;(2)将直角坐标系下的坐标表示为柱坐标系下的形式;(3)将分子(dx dy dz)替换成柱坐标下的积分元素r d r dθ dz;(4)对变量r、θ和z进行变量替换,计算出新的积分区域。
重积分换元法与分部积分法在高等数学领域,积分是一个重要的概念,通过对函数在一定区间上的“面积”进行求解,可以对函数的变化趋势和性质进行分析。
在积分中,重积分换元法和分部积分法是两种常用的积分方法,它们在求解复杂积分问题时发挥着重要的作用。
重积分换元法重积分换元法,也称为多重积分的换元法,是处理多重积分中变量替换的方法。
在进行多重积分时,往往需要通过变量代换的方式简化积分问题。
重积分换元法的基本思想是通过合适的变量替换,将原来的多重积分转化为一个简单的积分形式,从而更容易求解。
对于二重积分而言,重积分换元法的一般步骤如下: 1. 确定变量替换的形式,通常选择与坐标轴吻合的变换; 2. 计算变换后的积分区域,并变换原积分的被积函数; 3. 对新的积分进行求解。
通过重积分换元法,可以简化积分的计算过程,降低积分的难度,提高计算的效率。
分部积分法分部积分法是求解不定积分中的一种常用技巧,也可以应用于定积分的简化。
在定积分中,分部积分法是将积分号作用在两个函数的乘积上,通过对积分的展开和化简,将原积分转化成两个函数之积的形式。
分部积分法的基本思想是通过对被积函数进行拆分,选择一个函数进行求导,一个函数进行求不定积分,最终通过不断的交换角色,逐步简化和求解原积分。
对于定积分而言,分部积分法的一般步骤如下: 1. 选择一个函数进行求导,一个函数进行不定积分; 2. 对两个函数进行交替操作,最终将原积分问题转化为更容易求解的形式。
通过分部积分法,可以有效解决复杂积分问题,提高积分的求解速度和准确性。
综上所述,重积分换元法和分部积分法是高等数学中常用的积分方法,它们在不同的积分问题中发挥着重要的作用。
通过灵活运用这两种积分方法,可以更好地解决数学问题,提升问题的求解效率和准确性。
.重积分的计算方法重积分包括二重积分和三重积分,它是定积分的推广;被积函数由一元函数f(x)推广为二元函数f( x,y),三元函数( fx,y,z);积分范围由数轴上的区域推广为平面域(二重积分)和空间域(三重积分)。
我个人在学习与复习多重积分这一块时,感到多重积分的计算比较繁琐,而在日常生活中多重积分有着很多的应用。
通过在图书馆查阅资料、以及老师的指点,重积分的计算方法还是有规律可循的。
为了更好的应用重积分,本人结合前人的经验,在这里介绍几种常用的重积分计算方法,以及一些小技巧。
着重介绍累次积分的计算与变量代换。
一.二重积分的计算1.常用方法(1)化累次积分计算法对于常用方法我们先看两个例子对于重积分的计算主要采用累次积分法,即把一个二重积分表达为一个二次积分,通过两次定积分的计算求得二重积分值,分析上面的例子累次积分法其主要步骤如下:第一步:画出积分区域 D 的草图;第二步:按区域 D 和被积函数的情况选择适当的积分次序,并确定积分的上、下限;第三步:计算累次积分。
需要强调一点的是,累次积分要选择适当的积分次序。
积分次序的不同将影响计算的繁简,有些题这两种次序的难易程度可以相差很大,甚至对一种次序可以“积出来” ,而对另一种次序却“积不出来” 。
所以,适当选择积分次序是个很重要的工作。
选择积分次序的原则是:尽可能将区域少分块,以简化计算过程;第一次积分的上、下限表达式要简单,并且容易根据第一次积分的结果作第二次积分。
(2)变量替换法着重看下面的例子:在计算定积分时,求积的困难在于被积函数的原函数不易求得。
从而适当地在计算重积分时,求积的困难来自两个方面,除了被积函数的原因以外还在而且,有时候其积分区域往往成为困难的主要方面。
利用换元法的好处是可以把被积函数的形状进行转化,以便于用基本求积公式。
于积分区域的多样性。
为此,针对不同的区域要讨论重积分的各种不同算法。
(3)极坐标变换公式(主要是∫∫ f(x,y)dxdy=∫∫ f(pcosθ,psin)θ)pdpdθ下面看一个例子:计算二重积分时,要从被积函数和积分域两个方面来考虑如何适当地选择坐标系,如能采用适当的坐标系,往往可以收到事半功倍的效果。
重积分计算方法重积分是微积分中的一个重要概念,它在数学、物理和工程等领域中有广泛的应用。
在本文中,我将介绍重积分的计算方法,包括定限定积分和变限定积分两种方法。
一、定限定积分方法定限定积分是最基本的计算重积分的方法。
它适用于积分区域为矩形或者更一般的有界闭区域的情况。
定限定积分的思想是将积分区域分割成一系列小矩形,然后对每个小矩形进行积分,最后将这些小矩形的积分结果相加得到整个积分的结果。
具体步骤如下:1. 将积分区域划分成n个小矩形,每个小矩形的面积为ΔSi;2. 在每个小矩形中选择一个点(xi, yi)作为代表,并计算函数f(xi, yi)在该点的值;3. 对每个小矩形进行积分,得到ΔSi中的积分结果ΔFi = f(xi, yi) * ΔSi;4. 将所有小矩形的积分结果相加得到定限定积分的近似结果,即ΣΔFi;5. 当划分的小矩形数量趋于无穷大时,ΣΔFi趋于定积分∬R f(x, y) dA,即ΣΔFi → ∬R f(x, y) dA。
定限定积分方法的优点是计算简单直观,适用于大多数情况。
然而,在积分区域较为复杂或者函数形式较为复杂的情况下,定限定积分的计算可能变得困难。
二、变限定积分方法变限定积分是一种更为灵活的重积分计算方法。
它适用于积分区域为曲线所围成的封闭区域的情况,或者积分区域为矩形等简单形状,但函数形式较为复杂的情况。
变限定积分的思想是通过变量代换和累次积分来计算重积分的结果。
具体步骤如下:1. 找到合适的变换,将原积分区域映射到一个新的积分区域上,使得新的积分区域具有简单的形状;2. 对新的积分区域进行积分计算,得到中间结果;3. 反过来根据变换关系将中间结果转换回原来的积分区域上,得到最终的积分结果。
变限定积分方法的优点是能够简化积分区域的形状和函数的形式,使得计算更为便捷。
然而,变限定积分方法的变量选择和变换关系的确定通常需要一定的技巧和经验。
综上所述,重积分的计算方法包括定限积分和变限积分两种方法。
重积分知识点总结(一)前言重积分是高等数学中的重要知识点,是对多重积分进行研究的内容。
它在物理学、工程学和计算机科学等领域都有广泛的应用。
本文将针对重积分的知识点进行总结,以帮助读者更好地理解和掌握这部分知识。
正文一、重积分的定义与性质1.重积分的定义:对于二重积分来说,可以将其理解为将被积函数在某个有界闭区域上的“总体积”。
而对于三重积分来说,则是将被积函数在某个有界闭区域上的“总体积”。
2.交换积分次序:在某些情况下,交换积分次序可以简化重积分计算的复杂程度。
3.重积分的性质:包括线性性质、保号性质、次可加性质等。
这些性质在进行重积分计算时非常重要。
二、二重积分的计算方法1.二重积分的计算方法主要有面积法、直角坐标法和极坐标法。
在具体的计算过程中,可以根据题目要求和被积函数的形式选择合适的计算方法。
2.面积法:将被积函数看做是一片平面上每一点的贡献,通过对整个区域的累加求和来计算二重积分。
3.直角坐标法:根据被积函数在直角坐标系内的表达式,利用基本积分计算公式进行计算。
4.极坐标法:将被积函数用极坐标系表示,通过变量代换进行计算。
对于具有旋转对称性的问题,极坐标法可以简化计算过程。
三、三重积分的计算方法1.三重积分的计算方法主要有体积法、直角坐标法和柱坐标法。
在具体的计算过程中,同样需要根据题目要求和被积函数的形式选择合适的计算方法。
2.体积法:将被积函数看做是空间内每一点的贡献,通过对整个区域的累加求和来计算三重积分。
3.直角坐标法:根据被积函数在直角坐标系内的表达式,利用基本积分计算公式进行计算。
4.柱坐标法:将被积函数用柱坐标系表示,通过变量代换进行计算。
对于具有旋转对称性的问题,柱坐标法可以简化计算过程。
结尾重积分是数学中重要而复杂的知识点,在实际应用中具有广泛的价值。
通过本文的总结,希望读者们能够对重积分的定义、性质和计算方法有更深入的理解,从而更好地应对相关问题的解决和应用。
前言重积分是高等数学中的重要知识点,是对多重积分进行研究的内容。
重积分知识点总结例题1. 重积分的定义在介绍重积分的定义之前,首先需要了解多元函数的概念。
多元函数是指自变量有多个的函数,通常表示为$f(x_1, x_2, ..., x_n)$。
在平面上,一元函数是自变量只有一个的函数,并且可以表示为$y = f(x)$。
而在空间中,两元函数是自变量有两个的函数,并且可以表示为$z = f(x, y)$,三元函数是自变量有三个的函数,并且可以表示为$w = f(x, y, z)$。
在多元函数的情况下,我们需要对其在一个区域上进行积分。
这就引出了重积分的概念。
重积分可以看作是对一个区域上的函数值在该区域上的加权平均。
重积分的定义如下:设$f(x, y)$是定义在闭区域$D$上的有界函数,$D$的面积记为$A(D)$,取$D$上的任意一组分割$P = \{R_i\}$和抽样点$Q = \{(\xi_i, \eta_i)\}$,$M_{ij}$是$f(x, y)$在$R_{ij}$上任意一点的函数值。
作Riemann和$$S(P, Q, f) = \sum_{i=1}^{m} \sum_{j=1}^{n} M_{ij} \Delta \sigma_{ij}$$如果极限$L$存在,不依赖于分割$P$和点$Q$的取法,即$L = \lim_{\lambda(P) \to0,\delta(Q) \to 0} S(P, Q, f)$存在,则称$f(x, y)$在闭区域$D$上可积,这个极限$L$称为$f(x, y)$在$D$上的重积分,记作$$\iint_D f(x, y) d\sigma = L$$其中,$d\sigma$表示对$D$内的面积元素进行积分。
如果$f(x, y)$在$D$上可积,则称$f(x, y)$在$D$上可积,否则称为不可积。
2. 重积分的性质重积分具有一些重要的性质,这些性质有助于我们进行重积分的计算和应用。
下面我们将介绍一些重要的性质。
(1)可加性设$f(x, y)$在闭区域$D$上可积,$D_1$和$D_2$是$D$的两个互不相交的子区域,其并集为$D = D_1 \cup D_2$,则有$$\iint_D f(x, y) d\sigma = \iint_{D_1} f(x, y) d\sigma + \iint_{D_2} f(x, y) d\sigma$$这就是重积分的可加性。
N 重积分的变量代换Shining Chen † Jun 3rd ,2019数学难还是物理难?这个问题因人而异,没有统一答案。
不过有一点可以肯定,就是数学系不懂物理依然可以work well ,因为数学play with itself ;物理系不懂数学会怎样?不能说一定死翘翘(毕竟有Faraday 大神),但可以肯定的是,此人只能搬砖(做实验),而看不了图纸(理论物理)。
当然,物理系不需要像数学系那样精通数学——不必严格证明,只要计算出结果就行了(可能存在的麻烦是,某一类数学问题该如何求解,数学系以前也没研究过,这就需要物理系自己搞定了)。
在高能物理中,相空间积分可以用Mandelstam 不变量表达。
但为了讨论CP 破坏,需要引入一个T-odd 变量[1],该变量并非Lorentz 不变量。
于是,就涉及变量代换问题——将对Mandelstam 不变量的积分改写为对T-odd 变量的积分。
对于四体衰变而言,相空间是12维的,不过由于动能量守恒及质壳条件,最终只有五个变量是独立的。
所以,本文需要解决五重积分的变量代换问题。
因为数学书上只讨论了一、二、三重积分的变量代换,所以N 重积分的变量代换只好由物理系小白班门弄斧喽。
希望可以抛砖引玉。
1 变量代换的一般原理 ................................................................................................................... 1 2 积分次序交换技术 ....................................................................................................................... 5 3 注意事项....................................................................................................................................... 9 参考文献.. (10)1 变量代换的一般原理对于一重积分,有()()1()()[()]bg b u g x ag a dxf x dx fg u du du=-−−−→⎰⎰【例1】/2sin 22201cos cos 4x r r d r d r ππθθθθθπ=−−−−→==⎰⎰⎰对于二重积分,有()11()(,)(,)[(),()](,)xyuvu g x v h x D D x y f x y dxdy f g u h v dudv u v =--=∂−−−→∂⎰⎰⎰⎰其中(,)(,)xx x y uvyy u v uv∂∂∂∂∂=∂∂∂∂∂为Jacobi 行列式[2]。
10多元函数积分中的三个公式计算及运用在高等数学中,多元函数积分是一个重要的概念,它在应用数学、物理学等领域中都有着广泛的应用。
为了更好地理解和应用多元函数积分,李正元考研高数基础讲义中介绍了十个多元函数积分的基本公式,其中有三个是重要且常用的公式,它们分别是重积分的线性性、变量代换公式和极坐标系下的积分公式。
首先是重积分的线性性。
重积分的线性性是指如果f(x,y)和g(x,y)是定义在闭区域D上的可积函数,c1和c2是常数,那么c1f(x,y)+c2g(x,y)也是定义在D上的可积函数,并且有以下成立的公式:∫∫D [c1f(x, y) + c2g(x, y)]dxdy = c1∫∫D f(x, y)dxdy +c2∫∫D g(x, y)dxdy这个公式的运用非常广泛,在对多元函数进行积分时经常会用到。
其次是变量代换公式。
在计算多元函数积分时,有时可以通过进行变量代换来简化计算。
设有从平面区域D到平面区域D'的可导函数变换x=x(u,v),y=y(u,v),且这个变换是一一对应,那么就有以下变量代换公式:∫∫D' f(x(u, v), y(u, v)),J(u, v),dudv = ∫∫D f(x,y)dxdy其中J(u,v)是变换的雅可比行列式,即J(u,v)=∂(x,y)/∂(u,v)=∂x/∂u*∂y/∂v-∂x/∂v*∂y/∂u。
这个公式在计算复杂的多元函数积分时非常有用,通过适当的变量代换可以将积分区域转化成更简单的形式,从而简化计算过程。
最后是极坐标系下的积分公式。
当积分区域是一个闭圆盘或圆环时,可以使用极坐标系来进行积分计算。
假设f(r,θ)是定义在圆盘或圆环内的连续函数,那么有以下公式成立:∫∫D f(r, θ)rdrdθ = ∫(θ=a to b) ∫(r=0 to R) f(r,θ)rdrdθ其中D表示积分区域,a和b是角度的取值范围,R是极坐标下的积分区域的半径。
数二考察内容
数二是高等数学中的一门重要课程,其考察内容主要涵盖以下几个方面:
1. 多元函数微积分:包括偏导数、全微分、方向导数、梯度、拉格朗日乘子法等。
2. 重积分:包括二重积分、三重积分、变量代换、极坐标系和球面坐标系下的重积分等。
3. 线性代数:包括矩阵的基本概念、矩阵的运算、矩阵的逆、行列式、特征值和特征向量等。
4. 常微分方程:包括一阶、二阶常微分方程的解法、欧拉公式、高阶线性常微分方程、变系数和非齐次线性常微分方程等。
5. 傅里叶级数:包括傅里叶级数的定义、傅里叶级数的收敛性、傅里叶级数的性质、傅里叶变换等。
6. 牛顿-莱布尼茨公式:包括牛顿-莱布尼茨公式的定义、定积分的性质、定积分的应用等。
以上就是数二考察内容的主要方面,考生需要充分掌握这些知识点,才能在考试中取得好成绩。
同时,也需要切实提高自己的数学思维能力和解题能力。
- 1 -。
重积分的计算方法重积分包括二重积分和三重积分,它是定积分的推广;被积函数由一元函数f(x)推广为二元函数f(x,y),三元函数(fx,y,z);积分范围由数轴上的区域推广为平面域(二重积分)和空间域(三重积分)。
我个人在学习与复习多重积分这一块时,感到多重积分的计算比较繁琐,而在日常生活中多重积分有着很多的应用。
通过在图书馆查阅资料、以及老师的指点,重积分的计算方法还是有规律可循的。
为了更好的应用重积分,本人结合前人的经验,在这里介绍几种常用的重积分计算方法,以及一些小技巧。
着重介绍累次积分的计算与变量代换。
一.二重积分的计算1.常用方法(1)化累次积分计算法对于常用方法我们先看两个例子对于重积分的计算主要采用累次积分法,即把一个二重积分表达为一个二次积分,通过两次定积分的计算求得二重积分值,分析上面的例子累次积分法其主要步骤如下:第一步:画出积分区域D的草图;第二步:按区域D和被积函数的情况选择适当的积分次序,并确定积分的上、下限;第三步:计算累次积分。
需要强调一点的是,累次积分要选择适当的积分次序。
积分次序的不同将影响计算的繁简,有些题这两种次序的难易程度可以相差很大,甚至对一种次序可以“积出来”,而对另一种次序却“积不出来”。
所以,适当选择积分次序是个很重要的工作。
选择积分次序的原则是:尽可能将区域少分块,以简化计算过程;第一次积分的上、下限表达式要简单,并且容易根据第一次积分的结果作第二次积分。
(2)变量替换法着重看下面的例子:在计算定积分时,求积的困难在于被积函数的原函数不易求得。
从而适当地在计算重积分时,求积的困难来自两个方面,除了被积函数的原因以外还在而且,有时候其积分区域往往成为困难的主要方面。
利用换元法的好处是可以把被积函数的形状进行转化,以便于用基本求积公式。
于积分区域的多样性。
为此,针对不同的区域要讨论重积分的各种不同算法。
(3)极坐标变换公式(主要是∫∫f(x,y)dxdy=∫∫f(pcosθ,psinθ)pdpdθ)下面看一个例子:计算二重积分时,要从被积函数和积分域两个方面来考虑如何适当地选择坐标系,如能采用适当的坐标系,往往可以收到事半功倍的效果。
二重积分计算方法引言二重积分是高等数学中的重要内容,常用于计算平面区域上的面积、质量、重心等问题。
计算二重积分时,需要掌握一些常见的计算方法,本文将介绍三种常见的计算方法:直角坐标系下的累次积分法、极坐标系下的累次积分法以及变量代换法。
直角坐标系下的累次积分法直角坐标系下的累次积分法是最常用的计算二重积分的方法之一。
对于平面上的一个区域D,可以将其分解为若干个小矩形区域,然后通过对每个小矩形区域进行积分求和,从而得到整个区域的二重积分值。
具体步骤如下: 1. 将区域D划分为若干个小矩形区域,每个小矩形区域的面积可以通过计算两个相邻顶点之间的距离得到。
2. 对每个小矩形区域进行积分,积分的上限和下限分别是该小矩形区域在x轴和y轴上的边界。
3. 将每个小矩形区域的积分结果求和,得到整个区域D的二重积分值。
极坐标系下的累次积分法在一些特殊的情况下,采用极坐标系进行计算可以简化计算过程。
极坐标系下,平面上的点由极径和极角两个参数决定,适用于具有旋转对称性的问题。
具体步骤如下: 1. 将直角坐标系下的二重积分转换为极坐标系下的二重积分。
极坐标系下,二重积分的积分变量可以表示为r和θ。
2. 将区域D在极坐标系下表示出来,确定积分的上限和下限。
3. 对每个小区域进行积分,积分的上限和下限分别是在极坐标系下的边界。
4. 将每个小区域的积分结果求和,得到整个区域D的二重积分值。
变量代换法变量代换法是一种常用的计算二重积分的方法,通过引入新的变量进行积分变换,从而简化计算过程。
具体步骤如下: 1. 引入新的变量,将二重积分中的自变量进行变换。
2. 将原来的二重积分转换为新的变量下的二重积分。
3. 对新的二重积分进行计算,可以使用上述的直角坐标系下的累次积分法或者极坐标系下的累次积分法。
4. 将计算得到的结果转换回原来的变量,得到整个区域D的二重积分值。
总结本文介绍了三种常见的二重积分计算方法:直角坐标系下的累次积分法、极坐标系下的累次积分法以及变量代换法。
陈纪修教授《数学分析》九讲学习笔记与心得云南分中心⋅昆明学院⋅周兴伟此次听陈教授的课,收益颇多。
陈教授的这些讲座,不仅是在教我们如何处理《数学分析》中一些教学重点和教学难点,更是几堂非常出色的示范课。
我们不妨来温习一下。
第一讲、微积分思想产生与发展的历史法国著名的数学家H.庞加莱说过:“如果我们想要预见数学的将来,适当的途径是研究这门科学的历史和现状。
” 那么,如果你要学好并用好《数学分析》,那么,掌故微积分思想产生与发展的历史是非常必要的。
陈教授就是以这一专题开讲的。
在学校中,我不仅讲授《数学分析》,也讲授《数学史》,所以我非常赞同陈教授在教学中渗透数学史的想法,这应该也是提高学生数学素养的有效途径。
在这一讲中,陈教授脉络清晰,分析精当,这是我自叹不如的。
讲《数学史》也有些年头,但仅满足于史料的堆砌,没有对一些精彩例子加以剖析。
如陈教授对祖暅是如何用“祖暅原理”求出球的体积的分析,这不仅对提高学生的学习兴趣是有益的(以疑激趣、以奇激趣),而且有利于提高学生的民族自豪感(陈教授也提到了这一点)。
在这一讲中,陈教授对weierstrass的“ε−N”、“ε−δ”语言的评述是“它实现了静态语言对动态极限过程的刻画”。
这句话是非常精当的,如果意识不到这一点,你就很难理解这一点。
在此我还想明确一点:《数学分析》的研究对象是函数,主要是研究其分析性质,即连续性、可微性及可积性,而使用的工具就是极限。
如果仔细盘点一下,在《数学分析》中,无论是数、函数、数列、函数列,数项级数,函数项级数等相关问题,无不用到这一语言,你应该能理解陈教授的“对于数学类学生来说,没有“ε−N”、“ε−δ”语言,在《数学分析》中几乎是寸步难行的”这一观点。
第二讲、实数系的基本定理在这一讲中,陈教授从《实变函数》中对集合基数的讨论展开,对实数系的连续性作了有趣的讨论。
首先是从绅士开party的礼帽问题,带我们走进了“无穷的世界”。
我在开《数学赏析》时有一个专题就是“无穷的世界”,我给学生讲礼帽问题、也讲希尔伯特无穷旅馆问题,但遗憾的是,当我剖析“若无穷旅馆住满了人,再来两个时,可将住1号房间的移往3号房间,住2号房间的移往4号房间,从而空出两个房间”时,学生对我“能移”表示怀疑。
高等数学重积分求解题技巧高等数学中的重积分是一种对多变量函数进行积分运算的方法,其求解需要掌握一定的技巧。
下面我将介绍一些常用的高等数学重积分求解题技巧。
一、确定积分区域在求解重积分时,首先需要确定积分区域。
常用的方法有:图形法、参数方程法、立体体积法、坐标轴法等。
根据题目给出的条件,选择合适的方法确定积分区域。
二、确定积分次序在确定积分次序时,需要考虑到函数在积分区域上的表达式。
通常可以将多变量函数的积分次序调整为适合计算的方式。
常用的方法有:先积x后积y、先积y后积x、极坐标系下积分等。
三、利用对称性在一些情况下,积分区域具有对称性,可以利用对称性简化求解过程。
例如,当积分区域关于x轴对称时,可以将积分区域进行对称延拓,然后将求解的结果乘以2。
利用对称性可以减少计算量,加快解题速度。
四、变量代换在求解一些复杂的重积分时,可以采用变量代换的方法进行简化。
变量代换可以将复杂的积分转化为简单的形式。
常见的变量代换有:平铺代换、柱坐标代换、球坐标代换等。
选择合适的变量代换可以使原始的积分更容易计算。
五、利用奇偶性在一些情况下,被积函数具有奇偶性。
可以利用奇偶性进行简化。
例如,当被积函数为奇函数时,其在对称区域上的积分结果为0,只需要计算对称区域上的一个部分即可。
六、利用分部积分在求解重积分时,可以利用分部积分的方法进行简化。
分部积分可以将积分的被积函数分解为两个因子之积,然后进行积分操作。
通过反复应用分部积分法,可以逐步简化积分表达式。
七、利用定积分的性质重积分实际上可以看作多个定积分的组合。
因此,可以运用定积分的性质进行求解。
例如,定积分可以与求导、极限运算交换次序,可以通过定积分的积分区间的变化进行转化等。
八、利用对数、指数性质在一些特殊情况下,重积分可以转化为对数、指数的形式。
可以利用对数、指数的性质进行求解。
例如,当积分的被积函数具有指数型形式时,可以利用指数函数的积分性质进行简化。
九、利用对数函数的导数当被积函数可以表示为某个对数函数的导数时,可以利用对数函数的导数来简化积分过程。
重积分与变量代换重积分是微积分中的一个重要概念,用于计算曲线、曲面和立体的面积、体积等物理量。
而变量代换则是在计算重积分时常常使用的一种技巧,它能够简化积分计算的过程,提高计算效率。
本文将介绍重积分的基本概念和性质,并详细说明变量代换的原理和应用。
一、重积分的基本概念和性质重积分是微积分中一种对多变量函数进行积分的方法,主要用于计算曲线、曲面和立体的面积、体积等物理量。
在数学上,重积分可以分为二重积分和三重积分两种形式。
二重积分用于计算二维平面上的曲线和曲面的面积。
若函数 f(x, y)在一个闭区间上连续,那么这个闭区间可以分割成无数个小区域,将每个小区域的面积相加,就可以得到整个闭区间的面积,即二重积分。
二重积分的符号表示为∬f(x, y)dxdy。
三重积分则用于计算三维空间中立体的体积。
若函数 f(x, y, z) 在一个闭区域上连续,那么这个闭区域可以分割成无数个小立方体,将每个小立方体的体积相加,就可以得到整个闭区域的体积,即三重积分。
三重积分的符号表示为∭f(x, y, z)dxdydz。
重积分具有以下性质:1. 线性性质:对于任意常数 a 和 b,有∬(af(x, y) + bg(x, y))dxdy =a∬f(x, y)dxdy + b∬g(x, y)dxdy。
2. 区域可加性:若闭区域 D 可以分割成互不相交的两个子区域 D1 和 D2,那么∬f(x, y)dxdy = ∬f(x, y)dxdy + ∬f(x, y)dxdy。
3. 反序性质:对于面积可积的函数 f(x, y),有∬f(x, y)dxdy = ∬f(x, y)dydx。
4. 极坐标系下的重积分:对于函数f(r, θ) 在极坐标系下,有∬f(r, θ)rdrdθ。
二、变量代换的原理和应用变量代换是在计算重积分时常常使用的一种技巧,它利用一组新的变量代替原有的变量,以简化积分计算的步骤。
变量代换的原理可以用微积分中的链式法则来解释。
变量替换法与分部积分法数学中的变量替换法和分部积分法是两种重要的方法。
它们有着广泛的应用,不仅仅仅是在学术界,在很多实际的问题中也经常会用到。
这篇文章就将会简单介绍这两种方法,并探讨它们的应用。
一、变量替换法变量替换法,又称为代换法,是一种通过变量替换来简化计算的方法。
它常常被应用在积分、微分方程等领域中。
在求解积分时,有时我们会遇到比较复杂的函数,这时直接对其进行积分会十分困难。
这时我们可以通过变量替换的方式,将积分中的变量替换成另一个可以更容易求解的变量。
这种方法的核心在于寻找一个合适的代换公式,使得代换后的函数可以更容易求导和积分。
例如,在计算下列积分时:$\int \sin(x^2)dx$我们发现这个积分中的函数很难直接求导和积分。
这时我们可以尝试将$x^2$替换成$t$,即令$t=x^2$。
这样原积分就可以变成:$\dfrac{1}{2}\int \sin(t)dt$接下来我们就可以很容易地求出原积分的结果了。
但是需要说明的是,变量替换法并不是一种通用的方法。
有时我们进行了替换之后,仍然无法简化计算。
此时,我们可能需要尝试其他的方法。
二、分部积分法分部积分法,也叫做递归公式法,是一种通过积分分解来求解积分的方法。
它和变量替换法不同,是通过对积分函数进行分解和重新组合,从而简化计算的方法。
在使用分部积分法时,我们将原积分函数分解成两个部分,其中一个部分可以很容易地求积分,而另一个部分则更加复杂。
我们用简化的部分进行积分,而对于复杂的部分则尝试分解或者使用其他方法处理。
例如,我们可以考虑下面这个积分:$\int x\cos x dx$我们发现这个积分中的函数比较复杂,不容易直接求出。
此时我们可以将原积分函数分解成两个部分:$\int x\cos x dx=x\int \cos x dx-\int \left(\dfrac{d}{dx}x\int \cos x dx\right)dx$其中,我们将$x$看作是一个部分,将$\cos x$看作是另一个部分。
变量代换求上限积分函数的导数变量代换求上限积分函数的导数,到底应该如何实现。
叔本华曾经说过,普通人只想到如何度过时间,有才能的人设法利用时间。
这句话语虽然很短,但令我浮想联翩。
既然如此,了解清楚变量代换求上限积分函数的导数到底是一种怎么样的存在,是解决一切问题的关键。
要想清楚,变量代换求上限积分函数的导数,到底是一种怎么样的存在。
既然如此,一般来说,我认为,黑格尔在不经意间这样说过,只有永远躺在泥坑里的人,才不会再掉进坑里。
这句话语虽然很短,但令我浮想联翩。
现在,解决变量代换求上限积分函数的导数的问题,是非常非常重要的。
所以,变量代换求上限积分函数的导数,发生了会如何,不发生又会如何。
我们一般认为,抓住了问题的关键,其他一切则会迎刃而解。
既然如此,既然如何,我们都知道,只要有意义,那么就必须慎重考虑。
现在,解决变量代换求上限积分函数的导数的问题,是非常非常重要的。
所以,了解清楚变量代换求上限积分函数的导数到底是一种怎么样的存在,是解决一切问题的关键。
变量代换求上限积分函数的导数的发生,到底需要如何做到,不变量代换求上限积分函数的导数的发生,又会如何产生。
黑塞曾经说过,有勇气承担命运这才是英雄好汉。
这句话语虽然很短,但令我浮想联翩。
在这种困难的抉择下,本人思来想去,寝食难安。
一般来讲,我们都必须务必慎重的考虑考虑。
本人也是经过了深思熟虑,在每个日日夜夜思考这个问题。
了解清楚变量代换求上限积分函数的导数到底是一种怎么样的存在,是解决一切问题的关键。
在这种困难的抉择下,本人思来想去,寝食难安。
一般来说,既然如此,既然如何,而这些并不是完全重要,更加重要的问题是,德谟克利特曾经说过,节制使快乐增加并使享受加强。
这启发了我,带着这些问题,我们来审视一下变量代换求上限积分函数的导数。
经过上述讨论现在,解决变量代换求上限积分函数的导数的问题,是非常非常重要的。
所以,所谓变量代换求上限积分函数的导数,关键是变量代换求上限积分函数的导数需要如何写。