材料学基础课程 第六章 第四部分
- 格式:ppt
- 大小:330.50 KB
- 文档页数:11
材料科学基础第零章材料概论该课程以金属材料、陶瓷材料、高分子材料及复合材料为对象,从材料的电子、原子尺度入手,介绍了材料科学理论及纳观、微观尺度组织、细观尺度断裂机制及宏观性能。
核心是介绍材料的成分、微观结构、制备工艺及性能之间的关系。
主要内容包括:材料的原子排列、晶体结构与缺陷、相结构和相图、晶体及非晶体的凝固、扩散与固态相变、塑性变形及强韧化、材料概论、复合材料及界面,并简要介绍材料科学理论新发展及高性能材料研究新成果。
材料是指:能够满足指定工作条件下使用要求的,就有一定形态和物理化学性状的物质。
按基本组成分为:金属、陶瓷、高分子、复合材料金属材料是由金属元素或以金属元素为主,通过冶炼方法制成的一类晶体材料,如Fe、Cu、Ni等。
原子之间的键合方式是金属键。
陶瓷材料是由非金属元素或金属元素与非金属元素组成的、经烧结或合成而制成的一类无机非金属材料。
它可以是晶体、非晶体或混合晶体。
原子之间的键合方式是离子键,共价键。
聚合物是用聚合工艺合成的、原子之间以共价键连接的、由长分子链组成的髙分子材料。
它主要是非晶体或晶体与非晶体的混合物。
原子的键合方式通常是共价键。
复合材料是由二种或二种以上不同的材料组成的、通过特殊加工工艺制成的一类面向应用的新材料。
其原子间的键合方式是混合键。
材料选择:密度弹性模量:材料抵抗变形的能力强度:是指零件承受载荷后抵抗发生破坏的能力。
韧性:表征材料阻止裂纹扩展的能力功能成本结构(Structure)性质(Properties)加工(Processing)使用性能(Performance)在四要素中,基本的是结构和性能的关系,而“材料科学”这门课的主要任务就是研究材料的结构、性能及二者之间的关系。
宏观结构←显微镜下的结构←晶体结构←原子、电子结构重点讨论材料中原子的排列方式(晶体结构)和显微镜下的微观结构(显微组织)的关系。
以及有哪些主要因素能够影响和改变结构,实现控制结构和性能的目的。
第一章材料中的原子排列第一节原子的结合方式1 原子结构2 原子结合键(1)离子键与离子晶体原子结合:电子转移,结合力大,无方向性和饱和性;离子晶体;硬度高,脆性大,熔点高、导电性差。
如氧化物陶瓷。
(2)共价键与原子晶体原子结合:电子共用,结合力大,有方向性和饱和性;原子晶体:强度高、硬度高(金刚石)、熔点高、脆性大、导电性差。
如高分子材料。
(3)金属键与金属晶体原子结合:电子逸出共有,结合力较大,无方向性和饱和性;金属晶体:导电性、导热性、延展性好,熔点较高。
如金属。
金属键:依靠正离子与构成电子气的自由电子之间的静电引力而使诸原子结合到一起的方式。
(3)分子键与分子晶体原子结合:电子云偏移,结合力很小,无方向性和饱和性。
分子晶体:熔点低,硬度低。
如高分子材料。
氢键:(离子结合)X-H---Y(氢键结合),有方向性,如O-H—O(4)混合键。
如复合材料。
3 结合键分类(1)一次键(化学键):金属键、共价键、离子键。
(2)二次键(物理键):分子键和氢键。
4 原子的排列方式(1)晶体:原子在三维空间内的周期性规则排列。
长程有序,各向异性。
(2)非晶体:――――――――――不规则排列。
长程无序,各向同性。
第二节原子的规则排列一晶体学基础1 空间点阵与晶体结构(1)空间点阵:由几何点做周期性的规则排列所形成的三维阵列。
图1-5特征:a 原子的理想排列;b 有14种。
其中:空间点阵中的点-阵点。
它是纯粹的几何点,各点周围环境相同。
描述晶体中原子排列规律的空间格架称之为晶格。
空间点阵中最小的几何单元称之为晶胞。
(2)晶体结构:原子、离子或原子团按照空间点阵的实际排列。
特征:a 可能存在局部缺陷;b 可有无限多种。
2 晶胞图1-6(1)――-:构成空间点阵的最基本单元。
(2)选取原则:a 能够充分反映空间点阵的对称性;b 相等的棱和角的数目最多;c 具有尽可能多的直角;d 体积最小。
(3)形状和大小有三个棱边的长度a,b,c及其夹角α,β,γ表示。
《材料性能学》课程教学大纲课程名称(英文):材料性能学(Properties of Materials)课程类型:学科基础课总学时: 72 理论学时: 60 实验(或上机)学时: 12学分:4.5适用对象:金属材料工程一、课程的性质、目的和任务本课程为金属材料工程专业的一门专业基础课,内容包括材料的力学性能和物理性能两大部分。
力学性能以金属材料为主,系统介绍材料的静载拉伸力学性能;其它载荷下的力学性能,包括扭转、弯曲、压缩、缺口、冲击及硬度等;断裂韧性;变动载荷下、环境条件下、高温条件下的力学性能;摩擦、磨损性能以及其它先进材料的力学性能等。
物理性能概括介绍常用物理性能如热学、电学、磁学等的基本参数及物理本质,各种影响因素,测试方法及应用。
通过本课程的学习,使学生掌握材料各种主要性能指标的宏观规律、物理本质及工程意义,了解影响材料性能的主要因素,了解材料性能测试的原理、方法和相关仪器设备,基本掌握改善或提高材料性能指标、充分发挥材料潜能的主要途径,初步具备合理的选材和设计,开发新型材料所必备的基础知识和基本技能。
在学习本课程之前,学生应学完物理化学、材料力学、材料科学基础、钢的热处理等课程。
二、课程基本要求根据课程的性质与任务,对本课程提出下列基本要求:1.要求学生在学习过程中打通与前期材料力学、材料科学基础等课程的联系,并注重建立与同期和后续其它专业课程之间联系以及在生产实际中的应用。
2.能够从各种机器零件最常见的服役条件和失效现象出发,了解不同失效现象的微观机理,掌握工程材料(金属材料为主)各种力学性能指标的宏观规律、物理本质、工程意义和测试方法,明确它们之间的相互关系,并能大致分析出各种内外因素对性能指标的影响。
3.掌握工程材料常用物理性能的基本概念及影响各种物性的因素,熟悉其测试方法及其分析方法,初步具备有合理选择物性分析方法,设计其实验方案的能力。
三、课程内容及学时分配总学时72,课堂教学60学时,实验12学时。
《材料力学》课程教学大纲总学时:90 学分:5理论学时:78 实验学时:12面向专业:土木工程课程代码:HD0686先开课程:高等数学、理论力学课程性质:专业基础课第一部分:理论教学部分一、说明1、课程的性质、地位和任务材料力学是变形固体力学的一个分支,它是土木工程专业必修的专业核心课程。
为后续课程《结构力学》、《混凝土结构设计原理》、《钢结构设计原理》、《钢结构设计》以及《砌体结构》等各专业课的学习提供预备知识。
本课程安排在第三学期,是在学生学完高等数学、理论力学等课程之后,在学生数学力学等必备的知识基础上,进一步研究构件在力的作用下,内力、应力、变形及稳定性等问题。
通过材料力学的学习,要求学生对杆件的强度、刚度和稳定性等问题具有明确的基本概念和必要的基础知识,对常用材料的基本力学性能及其测定方法、电测试验应力分析的基本原理和基本方法有初步认识,使学生初步会用材料力学的理论和分析方法,解决一些简单的工程实际问题,为学习有关的后继课程打下初步基础。
由于本课程的内容及众多公式具有一定程序及规律,为了系统地学习、研究其内在规律,对整个教材的教学设想是应用框图思维法,即削枝强干,删繁就简,强调“三基”,突出重点,达到有利于培养学生分析问题与解决问题的能力。
2、课程教学和教改基本要求通过本课程的学习,使学生明确认识材料力学的基本概念和基本分析方法,培养分析问题、推导计算、判断结果和自学查阅的能力;熟练地做出杆件基本变形时的内力图,进行应力和位移、强度和刚度计算;掌握应力状态分析方法和理论,掌握组合变形下杆件的强度计算;掌握简单超静定问题的求解方法;了解压杆的稳定性概念,会计算轴向受压杆的临界力与临界应力;了解低碳钢和铸铁的基本力学性能及其测试方法;掌握电测实验应力分析的基本原理和方法。
对杆件的受力分析、强度、刚度和稳定性问题具有明确的基本概念、必要的基础知识、比较熟练的计算能力,初步的力学建模及对简化模型近似性评估的能力,一定的定性与定量分析能力和初步的实验能力。
一、课程名称材料学二、授课对象土木工程、材料科学与工程等相关专业学生三、授课学时共32学时四、教学目标1. 理解材料学的基本概念、分类、性能及应用;2. 掌握材料的基本性质,如力学性能、热性能、电性能等;3. 熟悉材料制备、加工、检测及表征方法;4. 了解材料科学的发展趋势,培养创新意识。
五、教学内容第一章材料学导论1. 材料学的定义、发展历程及在现代社会中的作用2. 材料的基本分类及特点3. 材料科学的研究方法第二章材料的基本性质1. 材料的力学性能2. 材料的热性能3. 材料的电性能4. 材料的磁性能第三章材料制备与加工1. 材料制备的基本原理2. 材料加工的方法及工艺3. 材料制备与加工中的质量控制第四章材料表征与检测1. 材料表征的基本方法2. 材料检测的技术与设备3. 材料性能测试与分析第五章材料的应用1. 建筑材料的应用2. 汽车材料的应用3. 航空航天材料的应用4. 电子材料的应用第六章材料科学的发展趋势1. 新材料的研究与发展2. 材料科学与其他学科的交叉融合3. 材料科学在可持续发展中的作用六、教学方法1. 讲授法:系统讲解材料学的基本概念、原理及发展趋势;2. 案例分析法:结合实际工程案例,分析材料的应用及问题;3. 讨论法:引导学生对材料学相关话题进行讨论,提高学生分析和解决问题的能力;4. 实验法:通过实验操作,使学生掌握材料制备、加工、检测及表征方法。
七、考核方式1. 课堂参与:20%2. 作业与报告:30%3. 期末考试:50%八、教学进度安排第1-4周:材料学导论、材料的基本性质第5-8周:材料制备与加工、材料表征与检测第9-12周:材料的应用第13-16周:材料科学的发展趋势九、教学资源1. 教材:《材料学》2. 教学课件3. 实验指导书4. 网络资源十、教学评价1. 学生对课程内容的掌握程度;2. 学生对材料科学问题的分析和解决能力;3. 学生对课程教学的满意度。
《材料科学基础教案》PPT课件第一章:材料科学导论1.1 材料科学的定义和发展历程1.2 材料的分类和特性1.3 材料科学的研究内容和方法1.4 材料科学在工程中的应用第二章:材料的力学性能2.1 弹性、塑性和脆性2.2 材料的强度、硬度和韧性2.3 材料的热膨胀和导热性2.4 材料的疲劳和腐蚀性能第三章:材料的结构3.1 原子结构与元素的电子配置3.2 金属晶体结构3.3 非金属晶体结构3.4 材料的微观结构与宏观性能的关系第四章:材料的热处理和加工4.1 材料的热处理工艺和性能4.2 金属的铸造、焊接和热轧4.3 非金属材料的加工方法4.4 新型材料的加工技术和应用第五章:材料的选择与应用5.1 材料的选用原则和标准5.2 工程常用金属材料的选择与应用5.3 常用非金属材料的选择与应用5.4 新型材料在工程中的应用案例分析第六章:金属的腐蚀与防护6.1 金属腐蚀的基本类型和机理6.2 金属腐蚀的影响因素6.3 金属的腐蚀防护方法6.4 实例分析:金属腐蚀与防护的应用第七章:陶瓷材料7.1 陶瓷材料的定义和特性7.2 陶瓷材料的制备方法7.3 陶瓷材料的分类与应用7.4 先进陶瓷材料的最新发展第八章:高分子材料8.1 高分子材料的定义和结构8.2 高分子材料的制备方法8.3 高分子材料的性能与应用8.4 生物基高分子材料和可持续发展的关系第九章:复合材料9.1 复合材料的定义和特点9.2 复合材料的制备方法9.3 常见复合材料的类型与应用9.4 复合材料在航空航天和汽车工业中的应用第十章:纳米材料10.1 纳米材料的定义和特性10.2 纳米材料的制备方法10.3 纳米材料的应用领域10.4 纳米材料的发展趋势和挑战重点和难点解析重点一:材料科学的定义和发展历程解析:理解材料科学的定义是掌握整个学科的基础,对材料科学的发展历程有一个全面的了解,能够帮助我们更好地理解其在不同历史阶段的重要性。
重点二:材料的分类和特性解析:材料的分类是理解不同材料性质的基础,而特性则是材料应用的关键。
第一章 原子排列与晶体结构1. fcc 结构的密排方向是 ,密排面是 ,密排面的堆垛顺序是 ,致密度为 ,配位数是 ,晶胞中原子数为 ,把原子视为刚性球时,原子的半径r 与点阵常数a 的关系是 ;bcc 结构的密排方向是 ,密排面是 ,致密度为 ,配位数是 ,晶胞中原子数为 ,原子的半径r 与点阵常数a 的关系是 ;hcp 结构的密排方向是 ,密排面是 ,密排面的堆垛顺序是 ,致密度为 ,配位数是 ,,晶胞中原子数为 ,原子的半径r 与点阵常数a 的关系是 。
2. Al 的点阵常数为0.4049nm ,其结构原子体积是 ,每个晶胞中八面体间隙数为 ,四面体间隙数为 。
3. 纯铁冷却时在912ε 发生同素异晶转变是从 结构转变为 结构,配位数 ,致密度降低 ,晶体体积 ,原子半径发生 。
4. 在面心立方晶胞中画出)(211晶面和]211[晶向,指出﹤110﹥中位于(111)平面上的方向。
在hcp 晶胞的(0001)面上标出)(0121晶面和]0121[晶向。
5. 求]111[和]120[两晶向所决定的晶面。
6 在铅的(100)平面上,1mm 2有多少原子?已知铅为fcc 面心立方结构,其原子半径R=0.175×10-6mm 。
第二章 合金相结构一、 填空1) 随着溶质浓度的增大,单相固溶体合金的强度 ,塑性 ,导电性 ,形成间隙固溶体时,固溶体的点阵常数 。
2) 影响置换固溶体溶解度大小的主要因素是(1) ;(2) ;(3) ;(4) 和环境因素。
3) 置换式固溶体的不均匀性主要表现为 和 。
4) 按照溶质原子进入溶剂点阵的位置区分,固溶体可分为 和 。
5) 无序固溶体转变为有序固溶体时,合金性能变化的一般规律是强度和硬度 ,塑性 ,导电性 。
6)间隙固溶体是 ,间隙化合物是 。
二、 问答1、 分析氢,氮,碳,硼在α-Fe 和γ-Fe 中形成固溶体的类型,进入点阵中的位置和固溶度大小。
介绍材料学的课件材料学是一门研究材料的性能、结构和表征的科学,它是应用物理学、化学和工程学相结合的高度复杂的学科。
它的研究既涉及到木材,金属,塑料,纤维,玻璃,混凝土,粉末,薄膜,水泥,瓷等生物材料,也涉及到钢,铝,镍,钛,镁,金属弹性体,过渡金属,合金,半导体,复合材料等等。
本课件将重点介绍材料学相关内容:第一部分:材料分类及性能材料分类及性能主要包括材料的力学性能,电学性能,热学性能,磁学性能,声学性能,光学性能,可塑性等性能的研究。
这些性能的特性有助于我们了解材料的变形行为,设计出具有符合要求的强度、刚度、耐热、耐腐蚀、抗疲劳、耐冲击等等性能的材料。
第二部分:材料的组成和结构材料的组成和结构主要研究材料的原子结构,晶体结构,宏观结构,微观结构,变形机理等,根据不同结构参数和性质,材料可以分为金属、非金属、气体、液体、固体和高分子类型等。
具体的结构特征可以影响材料的物理性能,进而影响应用的效果。
第三部分:材料的制备方法材料的制备方法有常规制造、重熔工艺、热加工、激光束材料加工、自然及人工合成等,最终根据合成材料的组分、结构特征等来判断材料的特性。
第四部分:材料的测试材料的测试主要是确定材料性能参数,如抗拉强度、抗压强度、断裂伸长率、热膨胀系数、表面粗糙度、弯曲模量、硬度、电阻率等。
测试结果可以反映材料的特性,并反应材料对不同环境及服役条件的适应性。
第五部分:材料的应用材料的应用涉及到各个行业,工业,医疗,航空航天,新能源等,根据具体的应用需求,需要选择符合性能要求,结构合理且具有低成本的材料,才能做出高性能及节能环保的产品。
以上就是介绍材料学相关内容的课件,本课件中介绍了材料分类及性能,材料的组成和结构,材料的制备方法,材料的测试及应用等内容,让我们更好地理解材料学的内涵,掌握其学习与应用技能。
《材料科学基础》课程教学大纲一、课程说明课程编码4300655 课程类别专业方向课修读学期第三学期学分 2 学时32 课程英文名称Fundamentals of Materials Science适用专业应用化学先修课程大学物理、物理化学二、课程的地位及作用材料科学基础是研究材料的成分、结构与性能之间的关系及其变化规律的一门应用基础科学。
本课程的任务是向学生较全面系统地介绍材料科学基本原理,注意材料的共性与个性的结合,实现多学科知识的交叉与渗透。
学习本课程的目的是为后续专业课打下牢固的基础,同时为将来从事材料的研究与开发打下坚实的理论基础。
先修课程为物理化学、高等数学。
通过材料科学基础的教学,使学生了解和掌握材料科学的基本理论,培养学生理论思维的能力,为从事材料学教学和科研打下扎实的理论基础。
三、课程教学目标1. 理解金属键、离子键、共价键、分子键和氢键几种典型结合键的,掌握三大固体材料的结构特点、性能特点,建立材料结构与性能之间的关系。
掌握晶体学的基础知识。
2.掌握晶体缺陷的类型、结构特征、性质及其对材料性能的影响3.掌握扩散第一定律、扩散第二定律及其应用、扩散机制、扩散系数的计算、影响扩散的因素和离子晶体的扩散。
4.掌握固体材料变形的基本方式,掌握形变金属及合金在退火过程中的变化。
核的规律,了解熔化熵对晶体生长的影响。
了解固溶体合金的凝固规律,了解材料的非晶态概念。
5. 掌握相图的基本知识,二元相图的基本类型,二元相图的分析与使用方法,熟练应用铁碳相图;掌握三元相图类型、定量法则、分析方法、等温截面、变温截面、液态投影图。
四、课程学时学分、教学要求及主要教学内容(一) 课程学时分配一览表章节主要内容总学时学时分配讲授实践第1章原子结构与键合 2 2 0第2章固体结构 6 6 0第3章晶体缺陷 6 6 0第4章固体中原子及分子的运动 4 4 0第5章材料的形变和再结晶 4 4 0第6章单组元相图及纯金属的凝固 4 4 0第7章二元系相图及合金的凝固 6 6 0(二) 课程教学要求及主要内容第一章原子结构与键合教学目的和要求:1. 了解原子结构及建合类型;2. 掌握物质的组成、原子的结构、电子结构和元素周期表;3. 熟悉一次键(金属键、离子键、共价键)、二次健(范德华力和氢键)的定义、特点;4. 掌握材料中的结合键的类型对材料性能的影响,键-能曲线及其应用。
材料科学基础名词解释(上海交大第二版)第一章原子结构结合键结合键分为化学键和物理键两大类,化学键包括金属键、离子键和共价键;物理键即范德华力。
化学键是指晶体内相邻原子(或离子)间强烈的相互作用。
金属键金属中的自由电子与金属正离子相互作用所构成的键合称为金属键。
离子键阴阳离子之间通过静电作用形成的化学键叫作离子键共价键由两个或多个电负性相差不大的原子间通过共用电子对而形成的化学键。
范德华力是借助临近原子的相互作用而形成的稳定的原子结构的原子或分子结合为一体的键合。
氢键氢与电负性大的原子(氟、氧、氮等)共价结合形成的键叫氢键。
近程结构高分子重复单元的化学结构和立体结构合称为高分子的近程结构。
它是构成高分子聚合物最底层、最基本的结构。
又称为高分子的一级结构远程结构由若干个重复单元组成的大分子的长度和形状称为高分子的远程结构第二章固体结构1、晶体:原子在空间中呈有规则的周期性重复排列的固体物质。
晶体熔化时具固定的熔点,具有各向异性。
2、非晶体:原子是无规则排列的固体物质。
熔化时没有固定熔点,存在一个软化温度范围,为各向同性。
3、晶体结构:原子(或分子、离子)在三维空间呈周期性重复排列,即存在长程有序。
4、空间点阵:阵点在空间呈周期性规则排列,并具有完全相同的周围环境,这种由它们在三维空间规则排列的阵列称为空间点阵,简称点阵。
5、阵点:把实际晶体结构看成完整无缺的理想晶体,并将其中的每个质点抽象为规则排列于空间的几何点,称之为阵点。
6、晶胞:为了说明点阵排列的规律和特点,在点阵中取出一个具有代表性的单基本元(最小平行六面体)作为点阵的组成单元,称为晶胞。
7、晶系:根据六个点阵参数间的相互关系,将全部空间点阵归属于7中类型,即7个晶系,分别为三斜、单斜、正交、六方、菱方、四方和立方。
13、晶带轴:所有平行或相交于某一晶向直线的晶面构成一个晶带,此直线称为晶带轴。
属于此晶带的晶面称为共带面。
14、晶面间距:晶面间的距离。
第二章答案2-1略。
2-2〔1〕一晶面在x、y、z轴上的截距分别为2a、3b、6c,求该晶面的晶面指数;〔2〕一晶面在x、y、z轴上的截距分别为a/3、b/2、c,求出该晶面的晶面指数。
答:〔1〕h:k:l==3:2:1,∴该晶面的晶面指数为〔321〕;〔2〕h:k:l=3:2:1,∴该晶面的晶面指数为〔321〕。
2-3在立方晶系晶胞中画出以下晶面指数和晶向指数:〔001〕与[],〔111〕与[],〔〕与[111],〔〕与[236],〔257〕与[],〔123〕与[],〔102〕,〔〕,〔〕,[110],[],[]答:2-4定性描述晶体构造的参量有哪些.定量描述晶体构造的参量又有哪些.答:定性:对称轴、对称中心、晶系、点阵。
定量:晶胞参数。
2-5依据结合力的本质不同,晶体中的键合作用分为哪几类.其特点是什么.答:晶体中的键合作用可分为离子键、共价键、金属键、范德华键和氢键。
离子键的特点是没有方向性和饱和性,结合力很大。
共价键的特点是具有方向性和饱和性,结合力也很大。
金属键是没有方向性和饱和性的的共价键,结合力是离子间的静电库仑力。
范德华键是通过分子力而产生的键合,分子力很弱。
氢键是两个电负性较大的原子相结合形成的键,具有饱和性。
2-6等径球最严密堆积的空隙有哪两种.一个球的周围有多少个四面体空隙、多少个八面体空隙.答:等径球最严密堆积有六方和面心立方严密堆积两种,一个球的周围有8个四面体空隙、6个八面体空隙。
2-7n个等径球作最严密堆积时可形成多少个四面体空隙、多少个八面体空隙.不等径球是如何进展堆积的.答:n个等径球作最严密堆积时可形成n个八面体空隙、2n个四面体空隙。
不等径球体进展严密堆积时,可以看成由大球按等径球体严密堆积后,小球按其大小分别填充到其空隙中,稍大的小球填充八面体空隙,稍小的小球填充四面体空隙,形成不等径球体严密堆积。
2-8写出面心立方格子的单位平行六面体上所有结点的坐标。
答:面心立方格子的单位平行六面体上所有结点为:〔000〕、〔001〕〔100〕〔101〕〔110〕〔010〕〔011〕〔111〕〔0〕〔0〕〔0〕〔1〕〔1〕〔1〕。