曲线积分与路径无关的条件_图文
- 格式:ppt
- 大小:497.00 KB
- 文档页数:21
曲线积分和路径无关的条件曲线积分是在曲线上对向量场进行积分的过程。
路径无关的条件是指,对于同一向量场和相同的起点和终点,不同的路径所得到的曲线积分值相等。
这个条件对于许多物理问题都具有重要意义,因为它允许我们在计算复杂路径上的积分时选择更简单或更方便的路径。
一、曲线积分的定义曲线积分可以看作是沿着一条曲线对一个向量场进行积分。
具体来说,设C是一条参数化曲线,即C可以表示为r(t)=(x(t),y(t),z(t)),其中t∈[a,b]。
向量场F(x,y,z)=(P(x,y,z),Q(x,y,z),R(x,y,z))是一个从三维空间中每个点到该点处的向量赋值函数。
则沿着C对F进行积分的结果为:∫CF·ds=∫baF(r(t))·r'(t)dt其中F(r(t))表示在r(t)处F的值,r'(t)表示r关于t的导数。
二、路径无关条件如果不同路径上所得到的曲线积分值相等,则称该向量场F在区域D内满足路径无关条件。
形式化地说,在D内如果任意两条起点和终点相同但路径不同的曲线C1和C2上,有∫C1F·ds=∫C2F·ds则称F在D内满足路径无关条件。
三、路径无关条件的判定对于一个向量场F,它是否满足路径无关条件取决于该向量场的旋度。
具体来说,如果F在D内存在一个连通区域,并且该区域内的旋度为零,则F在该区域内满足路径无关条件。
这个结论可以用斯托克斯定理来证明。
四、斯托克斯定理斯托克斯定理是曲线积分和曲面积分之间的一种联系。
它告诉我们,如果一个向量场在某个区域内旋度为零,那么该向量场在该区域内满足路径无关条件。
具体来说,设S是一个分段光滑的曲面,边界为曲线C。
如果向量场F在S上连续可微,则有:∫SF·dS=∫CF·ds其中左边是对曲面S进行的曲面积分,右边是对边界曲线C进行的曲线积分。
五、应用举例路径无关条件可以应用于许多物理问题中。
例如,在电磁学中,电场和磁场的旋度为零是电场和磁场满足路径无关条件的充分条件。
§ 3 Green 公式 曲线积分与路径无关性一、 格林Green 公式Green 公式揭示了平面上某区域内的二重积分与该边界上的一个特定的第二类曲线积分之间的关系. Green 公式是N--L 公式在 R 2中的推广.1 闭区域的正面与边界正向的规定平面上的单连通区域、多连通区域 P227—228在区域D 2R ⊂内,如果任意两条有同一起点和同一终点的曲线,其中一条总可以在D 内连续的变动为另一条,则称区域D 是单连通的;否则就是多连通闭区域的正面与边界正向的规定搭配: 右手螺旋定向, 即以右手拇指表示区域的正面( 理解为拇指“站立在” 区域的正面上 ), 则其余四指( 弯曲 )表示边界的正向. 右手螺旋定向法则还可表述为: 人站立在区域的正面的边界上, 让区域在人的左方. 则人前进的方向为边界的正向. 参阅P224图21--10. 若以L 记正向边界, 则用-L 或L -表示反向(或称为负向)边界.2 格林Green 公式及其证明定理21.11 设闭区域D 边界D ∂由光滑曲线或逐段光滑曲线组成. 若函数P 和Q 在闭区域D ⊂R 2上连续,且有连续的一阶偏导数, 则有⎰⎰⎰+=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂D L Qdy Pdx dxdy y P x Q , (1)其中L 为区域D 的正向边界.证明 P224—226注 将格林Green 公式的证明过程分为几个习题,由同学们解答.然后老师小结.Green 公式又可记为⎰⎰⎰+=∂∂∂∂DL Qdy Pdx dxdy QP y x . 3 格林Green 公式的一个应用由逐段光滑封闭曲线所围区域D 的面积公式|D |⎰-=L ydx xdy 21, L 为D 的正向边界. (2)补例1 计算由星形线 ) 20 ( sin , cos 33π≤≤==t t b y t a x 所界的面积. 补例2 用Green 公式求曲线 a x y y x 333=+ 所围图形的面积.4 应用格林Green 公式简化某些二类曲线积分的计算举例有时用Green 公式,将二类曲线积分转化为二重积分来计算. 对环路积分, 可直接应用Green 公式. 对非闭路积分, 常采用附加上一条线使变成环路积分的技巧.例1 计算积分⎰ABxdy , 其中A , ) , 0 (r B ) 0 , (r . 曲线AB 为圆周222r y x =+在第一象限中的部分. (P226)解法1 ( 直接计算积分 ) 曲线AB 的方程为 20 , sin , cos π≤≤==t t r y t r x .方向为自然方向的反向. 因此⎰⎰-=⎪⎭⎫ ⎝⎛+-=-=AB r t t r tdt r xdy 222022242sin 2121cos πππ. 解法2 ( 用Green 公式 ) 补上线段BO 和OA ( O 为坐标原点 ), 成闭路. 设所围区域为D , 注意到∂D 为反向, 以及0=⎰BOA, 有⎰ABxdy ⎰⎰⎰⎰∂-=-=-=DBOADr dxdy xdy xdy 24π.例2 计算积分 I =⎰+-L y x ydxxdy 22, 其中L 为任一不包含原点的闭区域D 的边界. (P226)解 2222),( , ),(yx xy x Q y x y y x P +=+-=. (P 和Q 在D 上有连续的偏导数). ()2222222yx x y y x y x y P +-=⎪⎪⎭⎫ ⎝⎛+-∂∂=∂∂, 22222)(y x x y x Q +-=∂∂. 于是, I =⎰⎰⎰=⎪⎪⎭⎫ ⎝⎛∂∂-∂∂=D Ldxdy y P x Q 0.注 将此例推广为(参见P203) 计算积分 I =⎰+-L y x ydxxdy 22, 其中L 为任一不通过原点的正向闭曲线.补例3 计算积分⎰++Ldy x y x dx xy )(22, 其中L 是由曲线 222 , x y x y ==,4 , 3==xy xy 所围区域D 的边界, 取正向.解 ,),(2xy y x P = x y x y x Q +=2),(. 1 , 12 , 2=∂∂-∂∂⇒+=∂∂=∂∂yP x Q xy x Q xy y P . ⎰⎰⎰=DLdxdy .作代换xy v x yu ==, 2, 在此代换之下 , 区域D 变为UV 平面上的区域 } 43 , 21|),( {≤≤≤≤='v u v u D .=-=∂∂xy x x yy x v u 2312),(),(u x y 332-=-, u v u y x 31),(),( =∂∂⇒. 于是,⎰⎰⎰⎰⎰⎰⎰'====DD Lu dv du dudv u dxdy 2143331 ⎰==21212ln 31ln 3131u u du . 补例4 计算积分⎰⎰-Dy dxdy e 2, D : 10 , 1≤≤≤≤x y x . 解 令2),( , 0),(y xe y x Q y x P -==, 有⎰⎰⎰∂+=DDdy y x Q dx y x P ),(),( .域D 为三角形, 三个顶点为O , ) 0 , 0 (A ) 1 , 1 (, B ) 1 , 0 (.⇒⎰⎰⎰⎰⎰⎰=-==+=∂∂BOO ADDDdy y x Q dy y x Q dx y x P ),(),(),()1(21211101022----=-==⎰e e dx xe x x . 注 此例将二重积分化为二类曲线积分转来计算.二、曲线积分与路线无关性第二类曲线积分不仅与曲线的起点和终点有关,而且也与所沿的积分路径有关. 对同一个起点和同一个终点,沿不同的路径所得到的第二类曲线积分一般是不相同的. 在什么样的条件下第二类曲线积分与积分路径无关而仅与曲线的起点和终点有关呢?下面我们先在平面中情形来讨论这个问题。