2019年微积分复习习题
- 格式:pdf
- 大小:221.87 KB
- 文档页数:7
微积分习题集带参考答案综合练习题1(函数、极限与连续部分)1.填空题 (1)函数)2ln(1)(-=x x f 的定义域是 . 答案:2>x 且3≠x .(2)函数24)2ln(1)(x x x f -++=的定义域是 .答案:]2,1()1,2(-⋃--(3)函数74)2(2++=+x x x f ,则=)(x f . 答案:3)(2+=x x f(4)若函数⎪⎩⎪⎨⎧≥<+=0,0,13sin )(x k x xx x f 在0=x 处连续,则=k .答案:1=k (5)函数x x x f 2)1(2-=-,则=)(x f .答案:1)(2-=x x f(6)函数1322+--=x x x y 的间断点是 .答案:1-=x(7)=∞→xx x 1sin lim .答案:1(8)若2sin 4sin lim 0=→kxxx ,则=k .答案:2=k2.单项选择题(1)设函数2e e xx y +=-,则该函数是( ).A .奇函数B .偶函数C .非奇非偶函数D .既奇又偶函数 答案:B(2)下列函数中为奇函数是().A .x x sinB .2e e x x +- C .)1ln(2x x ++ D .2x x +答案:C(3)函数)5ln(4+++=x x xy 的定义域为( ). A .5->x B .4-≠x C .5->x 且0≠x D .5->x 且4-≠x答案:D(4)设1)1(2-=+x x f ,则=)(x f ( ) A .)1(+x x B .2xC .)2(-x xD .)1)(2(-+x x 答案:C(5)当=k ( )时,函数⎩⎨⎧=≠+=0,,2)(x k x e x f x 在0=x 处连续.A .0B .1C .2D .3 答案:D(6)当=k ( )时,函数⎩⎨⎧=≠+=0,,1)(2x k x x x f ,在0=x 处连续.A .0B .1C .2D .1- 答案:B (7)函数233)(2+--=x x x x f 的间断点是( ) A .2,1==x xB .3=xC .3,2,1===x x xD .无间断点 答案:A 3.计算题(1)423lim 222-+-→x x x x . 解:4121lim )2)(2()1)(2(lim 423lim 22222=+-=+---=-+-→→→x x x x x x x x x x x x (2)329lim 223---→x x x x解:234613lim )1)(3()3)(3(lim 329lim 33223==++=+-+-=---→→→x x x x x x x x x x x x (3)4586lim 224+-+-→x x x x x解:3212lim )1)(4()2)(4(lim 4586lim 44224=--=----=+-+-→→→x x x x x x x x x x x x x综合练习题2(导数与微分部分)1.填空题 (1)曲线1)(+=x x f 在)2,1(点的切斜率是 .答案:21 (2)曲线xx f e )(=在)1,0(点的切线方程是 . 答案:1+=x y(3)已知xx x f 3)(3+=,则)3(f '= . 答案:3ln 33)(2x x x f +=')3(f '=27()3ln 1+(4)已知x x f ln )(=,则)(x f ''= . 答案:x x f 1)(=',)(x f ''=21x- (5)若xx x f -=e )(,则='')0(f.答案:xx x x f --+-=''e e 2)(='')0(f 2-2.单项选择题 (1)若x x f xcos e)(-=,则)0(f '=( ).A. 2B. 1C. -1D. -2 因)(cos e cos )e ()cos e()('+'='='---x x x x f x x x)sin (cos e sin e cos e x x x x x x x +-=--=---所以)0(f '1)0sin 0(cos e 0-=+-=- 答案:C (2)设,则( ). A . B .C .D .答案:B(3)设)(x f y =是可微函数,则=)2(cos d x f ( ). A .x x f d )2(cos 2' B .x x x f d22sin )2(cos 'C .x x x f d 2sin )2(cos 2'D .x x x f d22sin )2(cos '- 答案:D(4)若3sin )(a x x f +=,其中a 是常数,则='')(x f ( ).A .23cos a x + B .a x 6sin + C .x sin - D .x cos 答案:C3.计算题(1)设xx y 12e =,求y '.解: )1(e e 22121xx x y xx -+=')12(e 1-=x x(2)设x x y 3cos 4sin +=,求y '.解:)sin (cos 34cos 42x x x y -+='x x x 2cos sin 34cos 4-=(3)设xy x 2e 1+=+,求y '. 解:2121(21exx y x -+='+ (4)设x x x y cos ln +=,求y '.解:)sin (cos 12321x x x y -+=' x x tan 2321-= 综合练习题3(导数应用部分)1.填空题 (1)函数的单调增加区间是 .答案:),1(+∞(2)函数1)(2+=ax x f 在区间),0(∞+内单调增加,则a 应满足 . 答案:0>a2.单项选择题(1)函数2)1(+=x y 在区间)2,2(-是( )A .单调增加B .单调减少C .先增后减D .先减后增 答案:D(2)满足方程0)(='x f 的点一定是函数)(x f y =的( ). A .极值点 B .最值点 C .驻点 D . 间断点 答案:C(3)下列结论中( )不正确. A .)(x f 在0x x =处连续,则一定在0x 处可微. B .)(x f 在0x x =处不连续,则一定在0x 处不可导. C .可导函数的极值点一定发生在其驻点上.D .函数的极值点一定发生在不可导点上. 答案: B(4)下列函数在指定区间上单调增加的是( ).A .x sinB .xe C .2x D .x -3答案:B3.应用题(以几何应用为主)(1)欲做一个底为正方形,容积为108m 3的长方体开口容器,怎样做法用料最省?解:设底边的边长为x m ,高为h m ,容器的表面积为y m 2。
微积分的应用专项练习60题(有答案)本文档包含60道微积分的应用专项练题目,每道题目均附有答案。
通过解答这些题目,您可以进一步巩固和应用微积分的知识,加深对微积分的理解。
以下是题目和答案的列表:1. 问题一(答案:A)2. 问题二(答案:B)3. 问题三(答案:C)4. 问题四(答案:D)5. 问题五(答案:A)6. 问题六(答案:B)7. 问题七(答案:C)8. 问题八(答案:D)9. 问题九(答案:A)10. 问题十(答案:B)11. 问题十一(答案:C)12. 问题十二(答案:D)13. 问题十三(答案:A)14. 问题十四(答案:B)15. 问题十五(答案:C)16. 问题十六(答案:D)17. 问题十七(答案:A)18. 问题十八(答案:B)19. 问题十九(答案:C)20. 问题二十(答案:D)21. 问题二十一(答案:A)22. 问题二十二(答案:B)23. 问题二十三(答案:C)24. 问题二十四(答案:D)25. 问题二十五(答案:A)26. 问题二十六(答案:B)27. 问题二十七(答案:C)28. 问题二十八(答案:D)29. 问题二十九(答案:A)30. 问题三十(答案:B)31. 问题三十一(答案:C)32. 问题三十二(答案:D)33. 问题三十三(答案:A)34. 问题三十四(答案:B)35. 问题三十五(答案:C)36. 问题三十六(答案:D)37. 问题三十七(答案:A)38. 问题三十八(答案:B)39. 问题三十九(答案:C)40. 问题四十(答案:D)41. 问题四十一(答案:A)42. 问题四十二(答案:B)43. 问题四十三(答案:C)44. 问题四十四(答案:D)45. 问题四十五(答案:A)46. 问题四十六(答案:B)47. 问题四十七(答案:C)48. 问题四十八(答案:D)49. 问题四十九(答案:A)50. 问题五十(答案:B)51. 问题五十一(答案:C)52. 问题五十二(答案:D)53. 问题五十三(答案:A)54. 问题五十四(答案:B)55. 问题五十五(答案:C)56. 问题五十六(答案:D)57. 问题五十七(答案:A)58. 问题五十八(答案:B)59. 问题五十九(答案:C)60. 问题六十(答案:D)这些题目的难度各不相同,涵盖了微积分应用的不同方面,包括导数、积分、微分方程等内容。
一、选择题(每题2分)1、设x ƒ()定义域为(1,2),则lg x ƒ()的定义域为() A 、(0,lg2)B 、(0,lg2]C 、(10,100)D 、(1,2)2、x=-1是函数x ƒ()=()221x x x x --的() A 、跳跃间断点 B 、可去间断点 C 、无穷间断点 D 、不是间断点3、试求0x →A 、-14B 、0C 、1D 、∞ 4、若1y xx y+=,求y '等于() A 、22x y y x -- B 、22y x y x -- C 、22y x x y-- D 、22x yx y +-5、曲线221xy x =-的渐近线条数为() A 、0 B 、1 C 、2 D 、3 6、下列函数中,那个不是映射()A 、2y x = (,)x R y R +-∈∈ B 、221y x =-+C 、2y x = D 、ln y x = (0)x >二、填空题(每题2分) 1、__________2、、2(1))l i m ()1x n xf x f x nx →∞-=+设 (,则 的间断点为__________3、21lim51x x bx ax→++=-已知常数 a 、b,,则此函数的最大值为__________ 4、263y x k y x k =-==已知直线 是 的切线,则 __________5、ln 2111x y y x +-=求曲线 ,在点(,)的法线方程是__________ 三、判断题(每题2分)1、221x y x =+函数是有界函数 ( )2、有界函数是收敛数列的充分不必要条件 ( )3、limββαα=∞若,就说是比低阶的无穷小 ( ) 4、可导函数的极值点未必是它的驻点 ( ) 5、曲线上凹弧与凸弧的分界点称为拐点 ( ) 四、计算题(每题6分) 1、1sin xy x=求函数 的导数2、21()arctan ln(12f x x x x dy =-+已知),求 3、2326x xy y y x y -+="已知,确定是的函数,求 4、20tan sin lim sin x x xx x→-求 5、计算6、21lim (cos )x x x +→计算 五、应用题1、设某企业在生产一种商品x 件时的总收益为2)100R x x x =-(,总成本函数为2()20050C x x x=++,问政府对每件商品征收货物税为多少时,在企业获得利润最大的情况下,总税额最大?(8分) 2、描绘函数21y x x=+的图形(12分) 六、证明题(每题6分)1、用极限的定义证明:设01lim (),lim ()x x f x A f A x+→+∞→==则 2、证明方程10,1xxe =在区间()内有且仅有一个实数一、选择题1、C2、C3、A4、B5、D6、B 二、填空题1、0x =2、6,7a b ==-3、184、35、20x y +-= 三、判断题1、√2、×3、√4、×5、× 四、计算题 1、1sin1sin1sin ln 1sin ln 22))1111cos ()ln sin 1111(cos ln sin )xxx xx xy x ee x x x x x x x x x x x'='='⎡⎤=-+⎢⎥⎣⎦=-+((2、22()112(arctan )121arctan dy f x dxxx x dx x xxdx='=+-++= 3、 解:2222)2)222302323(23)(23(22)(26)(23x y xy y y x yy x y y x y x y yy y x y--'+'=-∴'=--'----'∴''=-4、解:2223000tan sin ,1cos 21tan (1cos )12lim lim sin 2x x x x x x x x x x x x x x x →→→--∴==当时,原式=5、解:65232222261)61116116(1)166arctan 6arctanx t dx t tt t t t t tt t C C===+=++-=+=-+=-+=-+⎰⎰⎰⎰令原式(6、 解:201ln cos 01limln cos 20200012lim 1lim ln cos ln cos lim 1(sin )cos lim 2tan 1lim 22x xx x xx x x x x e ex xxx x x xx x e++→++++→→→→→-===-=-==-∴= 原式其中:原式 五、应用题1、解:设每件商品征收的货物税为a ,利润为()L x222()()()100(20050)2(50)200()45050()0,,()4(50)41(502)410250225L x R x C x axx x x x ax x a x L x x aaL x x L x a a ax T a T a T a =--=--++-=-+--'=-+--'==-='=-'==''=-<∴=令得此时取得最大值税收T=令得当时,T 取得最大值2、 解:()()2300,01202201D x y x x y x y x y x =-∞⋃+∞='=-'==''=+''==-,间断点为令则令则渐进线:32lim lim 001lim x x x y y y x y y x y x x→∞→→∞=∞∴=∴=+==∞∴无水平渐近线是的铅直渐近线无斜渐近线图象六、证明题 1、 证明:lim ()0,0()11101()1lim ()x x f x AM x M f x A x M M M x f A x f A x εεξε→∞→∞=∴∀>∃>>-<><<>∴-<= 当时,有取=,则当0时,有即。
微积分练习题及答案微积分练习题及答案微积分是数学中的一门重要学科,它研究的是函数的变化规律和求解各种问题的方法。
在学习微积分的过程中,练习题是非常重要的,它能够帮助我们巩固知识、提高技能。
下面,我将为大家提供一些微积分的练习题及其答案,希望能够对大家的学习有所帮助。
一、求导练习题1. 求函数f(x) = x^3 + 2x^2 - 3x + 1的导数。
答案:f'(x) = 3x^2 + 4x - 32. 求函数g(x) = e^x * sin(x)的导数。
答案:g'(x) = e^x * sin(x) + e^x * cos(x)3. 求函数h(x) = ln(x^2 + 1)的导数。
答案:h'(x) = (2x) / (x^2 + 1)二、定积分练习题1. 计算定积分∫[0, 1] (x^2 + 1) dx。
答案:∫[0, 1] (x^2 + 1) dx = (1/3)x^3 + x ∣[0, 1] = (1/3) + 1 - 0 = 4/32. 计算定积分∫[1, 2] (2x + 1) dx。
答案:∫[1, 2] (2x + 1) dx = x^2 + x ∣[1, 2] = 4 + 2 - 1 - 1 = 43. 计算定积分∫[0, π/2] sin(x) dx。
答案:∫[0, π/2] sin(x) dx = -cos(x) ∣[0, π/2] = -cos(π/2) + cos(0) = 1三、微分方程练习题1. 求解微分方程dy/dx = 2x。
答案:对方程两边同时积分,得到y = x^2 + C,其中C为常数。
2. 求解微分方程dy/dx = e^x。
答案:对方程两边同时积分,得到y = e^x + C,其中C为常数。
3. 求解微分方程d^2y/dx^2 + 2dy/dx + y = 0。
答案:设y = e^(mx),代入方程得到m^2 + 2m + 1 = 0,解得m = -1。
微积分复习试题及答案10套(大学期末复习资料)习题一(A) 1、求下列函数的定义域:ln(4),x2(1) (2) (3) y,y,logarcsinxyx,,4a||2x,113y,,log(2x,3)(4) (5) yx,,,1arctanax,2x2、求下列函数的反函数及其定义域xx,32(1) (2) (3) yy,,yx,,,1ln(2)x2,1x,3x,,(4)yx,,,2sin,[,] 3223、将下列复合函分解成若干个基本初等函数2x(1) (2) (3) yx,lnlnlnyx,,(32ln)ye,,arcsin123(4) y,logcosxa4、求下列函数的解析式:112,求. (1)设fxx(),,,fx()2xx2(2)设,求 fgxgfx[()],[()]fxxgxx()1,()cos,,,5、用数列极限定义证明下列极限:1232n,1,,(1)lim(3)3 (2) lim, (3) ,lim0nn,,n,,n,,3353n,n6、用函数极限定义证明下列极限:x,31x,32lim(8)1x,,lim1,lim,(1) (2) (3) 23x,x,,x,,3xx,967、求下列数列极限22nn,,211020100nn,,3100n,limlimlim(1) (2) (3)32n,,n,,n,,54n,n,144nn,,,12n111,,,,?,lim,,lim,,,(4)? (5) ,,222,,x,,x,,1223n(n1),,,nnn,,,,1111,,k,0(6) (7)() lim,,,?lim,,2x,,x,,n,31541,,nknnkn,,,111,,,,?12n222lim(1)nnn,,(8) (9) limx,,x,,111,,,,?12n5558、用极限的定义说明下列极限不存在:1x,3limcosx(1) (2) (3) limsinlimx,,x,0x,3x|3|x,9、求下列函数极限:22xx,,56xx,,562(1) (2) (3) limlimlim(21)xx,,x,x,13x,3x,3x,2222256x,xx,,44()xx,,,(4) (5) (6) limlimlim2x,x,,,220xx,,21x,2,nx,1x,9x,1(7) (8) (9) limlimlimm3,1xx,9x,1x,1x,3x,1 2nnxxx,,,,?13x,,12(10), (11)lim() (12)limlim33x,1,x1x,1xx,,111,xx,110、求下列函数极限:22xx,,56xx,,56 (2) (1)limlim2x,,x,,x,3x,3nn,1axaxaxa,,,,?011nn,lim(11)xx,,,(3) (4)lim,(,0)ab,00mm,1x,,x,,bxbxbxb,,,,?011mm,lim(11)xxx,,,(5) x,,11、求下列极限式中的参变量的值:2axbx,,6lim3,(1)设,求的值; ab,x,,23x,2xaxb,,lim5,,(2)设,求的值; ab,x,11x,22axbxc,,lim1,(3)设,求的值; abc,,x,,31x,12x,0arcsin~xxtan~xx1cos~,xx12、证明:当时,有:(1),(2) ,(3); 213、利用等价无穷小的性质,求下列极限:sin2xsin2xsecxlimlimlim(1) (2) (3) 2x,0x,0x,0,tan5x3x2x3sinx21111sin,,x,limlim()(4) (5)lim (6)x,0x,0x,0xxx,tansinxxtansin1cos,x14、利用重要极限的性质,求下列极限:sin2xsinsinxa,xxsin(1) (2) (3) limlimlimx,0xa,x,0,sin3xxa,1cos2x xsinxx,tan3sin2xx,4,,(4) (5) (6) limlimlim1,,,x,0x,0,,xsinxx,3xx,, xxx,3xk,21,,,,,,(7) (8) (9) limlim1,,lim1,,,,,,,,,,xxx,,xxxk,,,,,,, 1/x(10)lim12,x ,,,,x15、讨论下列函数的连续性:,,,xx1,,2fxxx()11,,,,(1) ,,211xx,,,x,x,0,sinx,x,0(2)若,在处连续,则为何值. fxax()0,,a,,1,1sin1,,xxx,x,e(0,x,1)(3) 为何值时函数f(x),在[0,2]上连续 a,a,x(1,x,2),53xx,,,52016、证明方程在区间上至少有一个根. (0,1)32x,0x,317、证明曲线在与之间至少与轴有一交点. xyxxx,,,,252(B)arccoslg(3,x)y,1、函数的定义域为 ( ) 228,3x,x(A) ,,,,,7,3 (B) (-7, 3) (C) ,7,2.9 (D) (-7, 2.9),1 2、若与互为反函数,则关系式( )成立。
微积分基础考试题及答案一、单项选择题(每题2分,共20分)1. 函数f(x)=x^2+3x+2的导数为:A. 2x+3B. x^2+3C. 2x+6D. 3x+2答案:A2. 曲线y=x^3-3x+1在x=1处的切线斜率为:A. 0B. 1C. -1D. 3答案:D3. 函数f(x)=sin(x)的不定积分为:A. -cos(x)+CB. cos(x)+CC. sin(x)+CD. x+C答案:A4. 极限lim(x→0) (sin(x)/x)的值为:A. 0B. 1C. π/2D. ∞答案:B5. 函数f(x)=x^3+2x^2-5x+7的极值点个数为:A. 0B. 1C. 2D. 3答案:C6. 曲线y=e^x与直线y=ln(x)相切的切点坐标为:A. (1,1)B. (e,e)C. (ln(e),e)D. (e,ln(e))答案:A7. 函数f(x)=x^2-4x+3的零点个数为:A. 0B. 1C. 2D. 3答案:C8. 函数f(x)=x^2-4x+3的单调递增区间为:A. (-∞,2)B. (2,+∞)C. (-∞,2)∪(2,+∞)D. (-∞,+∞)答案:B9. 函数f(x)=x^3-3x的拐点个数为:A. 0B. 1C. 2D. 3答案:C10. 曲线y=x^2+2x+1与x轴的交点个数为:A. 0B. 1C. 2D. 3答案:A二、填空题(每题3分,共15分)1. 函数f(x)=x^2+2x+1的最小值为_________。
答案:02. 函数f(x)=ln(x)的反函数为_________。
答案:e^x3. 曲线y=x^3+3x^2+2x+1在x=-1处的切线方程为_________。
答案:y=-x4. 函数f(x)=x^2-4x+3的极大值为_________。
答案:45. 曲线y=x^2与直线y=2x相切的切点坐标为_________。
答案:(1,1)三、计算题(每题10分,共30分)1. 计算定积分∫(0,1) (x^2-2x+1) dx。
《微积分》(全册)期末复习题 黄士叶 老师一、填空题1、复合函数x y 5sin 4=可分解为______________________;2、若y=f (x )的定义域是[0,1],则)(2x f 的定义域是__________;3、=-→)13(lim 1x x ___ 4、=++→21lim1x x x ____ 5、=+∞→22342limxx x ____6、=-+-→265lim22x x x x _______;7、=++-∞→3223lim232x x x x ___8、=→x x x 5sin lim_ 9.=→xx x ωsin lim_____10、=-→xxx x sin tan lim______;11、=→xx x tan lim_____12.xx xx 21lim )(+∞→=____ 13.x x x 1)1lim -→( = ___ 14、xx x)81lim -∞→( = __;15、43)31lim +∞→+x x x( = ______; 16xx x2)21lim +∞→( = ______;17、函数2)2(1+=x y 的间断点是______;是第______类间断点;18、函数2212)(2>≤⎩⎨⎧-=x x x x x f ,当2→x 时的左极限是______;右极限是______;在2=x 处______;(填是否连续) 19、函数3313)(≥<⎩⎨⎧-=x x x xx f ,当3→x 时的左极限是______;右极限是______;极限是______;在3=x 处______;(填是否连续) 20、函数2)1(1-=x y 当______时,是无穷大量;当______时,是无穷小量;21、函数11)2(1++-=x x y 的间断点是______和______;22、函数)(x f y =在点x 处的导数)(x f '表示曲线)(x f y =在点(x ,y )处的______和______; 23、曲线x y ln =在点M (e ,1)处的切线方程是____________ ;24、若函数)(x f y =在点0x 处可导,则)(x f y =在点0x 处必______,且=→)(lim 0x f x x ______;25、函数112)(3++=x x x f 在定义域内是单调______的; 26、函数6)1()(-=x x f 的凹区间为________ ;27、已知函数)(x f y =在点0x 处可导,且)(0x f 是极小值,则=')(0x f ___ ; 28、若点(1,4)是曲线23bx ax y +=的拐点,则a =_____,=b ___ ;29、已知函数F (x )和G (x )都是函数f (x )的原函数,且G (x )=2x e ,F (0)=0,则F(x )=________ ;30、已知不定积分⎰+=,)()(C x F dx x f 则⎰=dx x F x f )()(________ ;31、根据定积分的几何意义可知:⎰=-1021dx x ____;32、已知0)2(1⎰=+dx b x ,则b=________ ; 33、已知连续函数)(x f 是奇函数,且1)(10-=⎰dx x f ,则⎰-=01)(dx x f ________ ;34、曲线y=x 3在点A(2,8)处的切线斜率为_________; 二、选择题1、=→x x e 1lim ( )A 0; B -∞; C +∞; D 不存在。
微积分考试题目及答案一、选择题1. 下列哪个选项描述了微积分的基本思想?A. 求导运算B. 求积分运算C. 寻找极限D. 都是答案:D2. 求函数f(x) = 2x^3 + 3x^2的导数是多少?A. f'(x) = 4x^2 + 6xB. f'(x) = 6x^2 + 3xC. f'(x) = 6x^2 + 6xD. f'(x) = 4x^2 + 3x答案:A3. 计算积分∫(2x^2 + 3x)dxA. x^3 + 2x^2B. x^3 + 2x + CC. (2/3)x^3 + (3/2)x^2D. (2/3)x^3 + 3x^2答案:C二、填空题4. 函数f(x) = 3x^2 + 2x的导数为_________答案:f'(x) = 6x + 25. 计算积分∫(4x^3 + 5x)dx = __________答案:x^4 + (5/2)x^2 + C6. 函数y = x^2在点x=2处的切线斜率为_________答案:4三、解答题7. 求函数y = x^3 + 2x^2在x=1处的切线方程。
解:首先求函数在x=1处的导数,f'(x) = 3x^2 + 4x。
代入x=1得斜率为7。
又因为该点经过(1,3),故切线方程为y = 7x - 4。
8. 求曲线y = x^3上与x轴围成的面积。
解:首先确定曲线截距为(0,0),解方程得x=0。
利用定积分区间求解:∫[0,1] x^3dx = 1/4。
以上为微积分考试题目及答案,希望对您的学习有所帮助。
感谢阅读!。
微积分练习题册第一章 函数判断题1. y 1是无穷小量; x2. 奇函数与偶函数的和是奇函数;3. 设 y arcsin u , ux 2 2 ,这两个函数可以复合成一个函数y arcsin x 2 2 ;4. 函数 y1的定义域是 x 1 且 x10 ;lg lg x5. 函数 y e x 2 在 (0,) 内无界; 6. 函数 y1在 (0,) 内无界;21 x 7. 1 x 2f ( x)是奇函数;cos x8. f ( x) x 与 g( x) ( x )2 是相同函数 ; 9. 函数 y e x 是奇函数;10. 设 f ( x) sin x ,且 f [ ( x)] 1 x 2 ,则 ( x) 的定义域是 (0,1) ;11. y x 与 yx 2 是同一函数;12. 函数 y x 3 x 1 是奇函数; 13. 函数 yarcsinx 1的定义域是 ( 1,3) ;214. 函数 y cos3 x 的周期是 3 ;15. y x 与 yx 2不是同一个函数;x16. 函数 yx cos x 是偶函数 .填空题1. 设 y 3u ,u v 2 , v tan x, 则复合函数为 y f ( x) = _________;2. cos x x 0= __________;设 f ( x)x ,则 f (0)x3. 设 f ( x)4 x 2 ,则 f ( 2) = _______ ;2x4. 设 f ( x)1, g (x) 1x ,则 f [ g( x)] = _______ ;x5. 复合函数 y e (sin x)2 是由 ________, ________, _______ 函数复合而成的;6. 函数 y 4x 3 的反函数是 _______ ;7. 已知 f ( 1 1,则 f (2) __________ ; )1 x 1 x 8.x 4 ,其定义域为 __________ ;y x19. 设函数f ( x)x 21) = __________;,则 f (x 110. 考虑奇偶性,函数 y ln( xx 2 1) 为 ___________ 函数 ; 11. 函数 y e 2 x的反函数是 y1ln x , 它的图象与y e 2x 的图象关于________ 对称 .2选择题1. 函数 yx 2 的定义域是 ( )(A)x 3 (B)(2,)[2,](C) ( ,3) U (3,) (D)[2,3) U (3,)2. 函数 y x 2 ( x 1)2 在区间 (0,1) 内 ( )(A) 单调增加(B) 单调减少 (C) 不增不减 (D) 有增有减 3. 下列函数中,是奇函数的是 ( )(A) yx 4 x 2(B) y x x 2(C) y2x 2 x (D) y 2x2 x4. 已知函数f ( x)ax b x 0,则 f (0) 的值为 ( )x 2 1 x 0(A) a b(B) b a(C) 1 (D) 2第二章 极限与连续判断题1. 函数在点 x 0 处有极限,则函数在 x 0 点极必连续;2. x 0 时, x 与 sin x 是等价无穷小量;3. 若 f ( x 00)f ( x 0 0) ,则 f ( x) 必在 x 0 点连续;4. 当 x0 时, x 2 sin x 与 x 相比是高阶无穷小; 5. 函数 y 2x 2 1 在 ( , ) 内是单调的函数;6. 设 f ( x) 在点 x 0处连续,则 f ( x 00) f ( x 0 0) ;7. 函数x 2sin 1, x 00 点连续;f ( x) x在 x0 , x 08. x1 是函数 yx 2 2 的间断点;x 19. f ( x) sin x 是一个无穷小量;10. 当 x 0 时, x 与 ln(1 x 2 ) 是等价的无穷小量;11. 若 lim f ( x) 存在,则 f (x) 在 0 处有定义;xx 012. 若 x 与 y 是同一过程下两个无穷大量,则 x y 在该过程下是无穷小量;13. yx 22 是一个复合函数; x14. limx 1 ;x 0xsin x215. lim x sin11 ;x 0x16. lim(1 2 ) xe 2 ;xx17. 数列1,0,1, 0, 1 , 0, L 收敛 ;24 1 818. 函数y xsin 在 x0 点连续;x19. 当 x 0 时, 1 x1 x ~ x ;20. 函数f ( x) x cos 1,当 x时为无穷大; x21. 当 x 1 时, ln x 与 x 1 是等价无穷小量 ; 22. x 0 是函数 yln( x 2) 的间断点;x23. 以零为极限的变量是无穷小量; 24. lim sin x1 ;xx25. lim sin 2x 5 ;x 0sin 5x 226. 无穷大量与无穷小量的乘积是无穷小量;27. ln(1 x) ~ x ; 28. lim x sin11 ;xx129. lim(1 x)x e 1;x 030. lim tan x 1 .x 0 x填空题1. lim sin x _______ ;x x2. lim x7 1 ______ ;x 1 x 13. lim x = _______ ;x x sin xx 24.函数 y2在_______处间断;9x5. lim 3n 2= _______;5n 2 2nn 16. 函数 y ln x 是由 ______, ______ ,______复合而成的;7. y arcsin 1 x 2 1 的定义域是 ______ ;1 x 28. 当 x 0 时, 1 cos x 是比 x ______阶的无穷小量;______ ;9. 当 x 0 时,若 sin 2 x 与ax是等价无穷小量,则 a10. lim x( x x) __________ ;sin xx 0sin 2x, x 0连续,则 a _________;11. 设 f ( x) xa, x 012. lim x h x ___________ ;hh 013.函数 y x 在点 _________ 连续,但不可导;14. lim(1 2)xx x ________;15. lim ln(1 3x) _________ ;x 0 sin 3x116. 设 f ( x) e x2 , x 0 在 x 0 处________(是、否)连续;0, x 017. 当 x 0 时, 4 x 2 与 9 x 3 是______(同阶、等价)无穷小量. 选择题1. 当 x0 时, ysin 1 为 ( )(A)x(B)无穷小量 无穷大量(C) 有界变量但不是无穷小量(D) 无界变量 2.x 1 时,下列变量中为无穷大量的是( )1x 211x1(A) 3 x 1(B) (C) (D)x1xx 212, x 13. 已知函数 f ( x)x 1,1 x 0 ,则 lim f ( x) 和limf ( x) ()x 2, 0x 1x1x 01(A) 都存在 (B) 都不存在(C) 第一个存在,第二个不存在(D)第一个不存在,第二个存在 4.xx 1 的连续区间是 ()函数 f ( x)12x 1(A) ((B) (1,(C) ((D) (,1)),1) (1,),)5. 函数 y 4cos 2x的周期是 ()(A) 4(B) 2(C)(D)26. 设 f (x)3x 2, x 0 ,则 lim f (x)()x 22,x 0x 0(A) 2(B) 0(C)1(D)27. 函数 f ( x)1, x 0 ,在 x0 处 ()1, x 0(A) 左连续(B) 右连续(C) 连续 (D) 左、右皆不连续8. 当 n时, n sin1是 ()(A) 无穷小量(B)n(C)(D) 有界变量无穷大量 无界变量9. lim2x()x 05arcsin x2(A) 0 (B) 不存在(C)(D) 110.f ( x)5x 0 处连续的 ()在点 x x 0处有定义,是 f (x) 在 x(A) 必要条件 (B) 充分条件(C) 充分必要条件 (D) 无关条件11. 下列极限存在的有 ()(A) limx(x1) 11x 21(B) lim(C) lim e x(D) lim计算与应用题x 2 3x 2x2, x 21. 设 f (x)在点 x2 处连续,且 f ( x),求 aa,x 22. 求极限 limcosx 12x2 x 03. 求极限 lim(2x1) x 1x2 x 14. limx 3 2x 1x 45x15. lim (1x)xx 046. lim (11 ) x2 x2x7. 1 cos xlimx 2x 08.求lim(1112Ln)n2 2 29. 求极限 lim(12 )2 nnnx10. 求极限 lim( ) x11. 求极限limx 2 1x 1ln x12. e x 1limxx 0x 213. lim(12) 2x 100xx1 x 314.求 limx823x15. lim(x1)2 xxx 116. 求 lim(3 1 )x 11x 3 1 x第三章 导数与微分 判断题1. 若函数 f (x) 在 x 0 点可导,则 f ( x 0 ) [ f ( x 0 )] ;2. 若 f ( x) 在 x 0 处可导,则 lim f ( x) 一定存在;x x 03. 函数 f ( x) x x 是定义区间上的可导函数;4.函数 f ( x) x 在其定义域内可导;5. 若 f (x) 在 [a,b] 上连续,则 f ( x)在 (a,b) 内一定可导; 6. 已知 y e f ( x ) , 则 y e f ( x ) f ( x) ;2 x 2 ,x 17. 函数 f ( x)lnx 在 x1 点可导;, 0 x 148. 若 f ( x)x n , 则 f ( n) (0) n! ;9. d (ax 2 b) 2ax ;10. 若 f (x) 在 x 0 点不可导,则 f ( x) 在 x 0 不连续; 11. 函数f ( x) x x在点 x 0 处不可导 .填空题1.f (x) ln 1 x 2 ,则 f (0)_________ ;2. 曲线 y x 3 在点 (1,1) 处的切线方程是 ________ ;3. 设 y x e e x ln x e e ,则 y = ______ ;4. y sin(e x 1) , dy _______ ;5. 设 y x 2 2 x e 2 ,则 y = ________ ;6. 设 yx n e ,则 y ( n) = ________ ;7. 曲线 y x e x 在点 (0,1) 的处的切线方程是 _______; 8. 若 u(x) 与 v(x) 在 x处可导,则 [u(x)]= _________ ;v( x)9. (x x ) = _______;10. 设 f (x)在 x 0 处可导,且 f ( x 0 )A ,则 lim f ( x 0 2h) f ( x 0 3h)hh 0用 A 的代数式表示为 _______ ;11. 导数的几何意义为 ________________________ ;12. 曲线 y1在 (1,1) 处的切线方程是 ___________ ;x13. 曲线 y x 3 1 在 ( 1,0) 处的切线方程是 ___________ ;14. 函数 y x 3 sin( x 2 1) 的微分 dy __________ ;15. 曲线 y x 2 在点 (0,0) 处切线方程是 _________ ; 16. dyy 的近似值是 _________ ;17. y x n ( n 是正整数 ) 的 n 阶导数是 ________ .选择题1. 设 f ( x) 在点 x 0 处可导,则下列命题中正确的是 ( )(A) lim f ( x) f ( x 0 ) 存在(B) lim f ( x) f ( x 0 ) 不存在x x 0x x 0x x 0xx 0(C) limf (x)f ( x 0 )存在(D) lim f ( x)f (x 0 )不存在x x 0xx 0x2. 设 f ( x) 在 点 x 0 处 可 导 且 limx1 , 则 f ( x 0 ) 等 于x 0f (x 02x) f (x 0 )4()(A) 4 x2(B) –4(C) 2(D)–23. 设 f (x)1 ,1 x 0,则 f ( x) 在点 x = 0 处 ( )1, 0 x 2(A) 可导 (B) 连续但不可导 (C) 不连续 (D) 无定义4. 设 y f ( x) 可导,则 f ( x 2h) f (x) = ( ) (A) f ( x)h o(h) (C) f (x)h o(h)f (x)5. 设 f (0) 0 ,且 limx 0x(B) 2 f ( x)h o(h) (D) 2 f ( x)h o(h)存在,则 lim f ( x) = ()x 0x(A) f ( x)(B) f(0)(C) f (0)(D) 1 f (0)e f ( x) ,则 y"26. 函数 y( )(A)e f ( x)(B) e f ( x) f " ( x)(C) e f ( x) [ f '( x)] 2(D) e f (x ) {[ f '( x)] 2 f " (x)}7. 函数 f ( x) ( x 1) x 的导数为 ( )(A) x( x 1) x(B) (x 1) x1(C) x x ln x(D) ( x 1) x [ x ln( x 1)]x 1 8. 函数 f ( x) 在 xx 0 处连续,是 f (x) 在 x 0 处可导的 ( )(A) 充分不必要条件(B) 必要不充分条件(C) 充分必要条件(D) 既不充分也不必要条件9. 已知 yx ln x ,则 y (10)()(A)1 (B) 1(C) 8!(D)8!x 9x 9x 9x 910. 函数 f (x)x 在 x0 处 ()x(A)(B)连续但不可导 连续且可导(C) 极限存在但不连续(D) 不连续也不可导11. 函数 f (x)1, x 0,在 x 0处 ()1, x 0(A) 左连续 (B) 右连续(C) 连续 (D) 左、右皆不连续12. 设 y e x e x ,则 y ()(A) e x e x (B) e x e x (C) e x e x(D)e x e x0, x 013. 函数 f (x)1, x 0 ,在点 x0 不连续是因为 ()(A)x (B)f (0 0)f (0) f (0 0)f (0)(C) f (0 0) 不存在(D) f (0 0) 不存在 14. 设 f ( x 2)1 ,则 f ( x)()x 11 111(A)(B)(C) (D)( x 1)2( x 1)2x 1 x 115. 已知函数 y ln x 2 ,则 dy()(A)2(B)2(C) 1(D)1dxdxxx 22xxx cos 1, x 0x16. 设 f ( x)0, x 0 ,则 f ( x) 在 x0 处()1tan x 2 , x 0 x(A) 极限不存在 (B) 极限存在,但不连续 (C) 连续但不可导 y (10) (D) 可导17. 已知 y sin x ,则 ( )(A) sin x (B) cos x (C) sin x (D) cos x计算与应用题1. 设 f(x) =x2a2a arccosa( a 0 ), 求 f ( 2a)x2. 设 yln( xy) 确定 y 是 x 的函数,求dy dx3. 设 y ln 1 cos1,求 dyx x4. 设y (1 x2 )arctan x 1 cos x ,求 y25. 设e y y ln x 确定y 是 x 的函数,求dydx6.设y ln(ln x) ,求dy7. y e2x x2 arcsin 1 y , 求y' 及 dyx8. y ln tan x,求y'及dy29.y sin( x y),求y'及dy10. y ln 5 cos x212,求y 及 dy x11.y e arctan x,求y及dy12.y e x xy ,求 y 及 dy13.已知 y cos2 3x ,求 y14.设 2 y 2x sin y 0 ,求y15.求 y e1 3 x cos x 的微分16. 设y x ln( x 1 x2 ) ,求y17.设 y e cos 2x,求 dy18.方程 e y e x xy 0 确定y是x的函数,求 y19. 设y arctan( 2x 2 ) ,求 y1 x20.方程y 2 cosx e y0 确定y 是x的函数,求y21.y x3 cos x e cos x,求dy22.y x ln x,求y23. 已知y ln( x x2a2 ) ,求y24.设 y x x,求 y25.已知 f ( x) sin3 x,求 f ( )2e2x26.求y的微分x第四章导数的应用判断题1. y 轴是曲线y 4( x 1)x22 的铅垂渐近线;x32. 曲线 y x 在 ( ,0) 是下凹的,在 (0, ) 是上凹的;3. x 1 是 f ( x) 1 x3 x 在 [ 2, 2] 上的极小值点;34. 曲线 y 3 x 在x 0 点没有切线;5.函数可导,极值点必为驻点;6. 函数的极值只可能发生在驻点和不可导点;7. 直线 y2 是曲线 y4(x 1) 2 的水平渐近线;x 21是曲线118.x yx 3 x 2 的拐点;9. 2 6 4若 f (x) 在 [ a, b] 上连续,在 ( a, b) 内可导, ax 1 x 2 b , 则至少存在一点 (x 1, x 2 ) ,使得 f (b) f (a) f ( )(b a) ;10. 若 f ( x 0 )0 , f ( x 0 ) 0 ,则 f ( x 0 ) 是 f ( x) 的极大值;11. 函数 f ( x) ln( 2x 1) 在 [0,2] 上满足拉格朗日定理;12. 若 x x 0 是函数 f ( x) 的极值点,则 f ' ( x 0 ) 0 ; 13. 函数 f ( x) 在 [a,b] 上的极大值一定大于极小值;14. 当 x 很小时, ln(1 x) x ;15. xsin x1 ;lim33x 0x16. 曲线 y x 3 的拐点是 (0,0) ;17. 函数 yf ( x) 在 x x 0点处取得极大值,则 f ( x 0 ) 0 或不存在;18. f ( x 0 ) 0 是可导函数 y f ( x) 在 x x 0 点处取得极值的充要条件; 19. 曲线 y 1 ln x 没有拐点;20. 设 f ( x) ( x a) ( x) ,其中函数 ( x) 在 x a 处可导,则 f ( a)(a) ;21. 因为 y1 在区间 (0,1) 内连续,所以在 (0,1) 内 y 1 必有最大值;xx填空题1. 求曲线 y (x 2)5的拐点是 ________;32. 求曲线 yx 2x的渐近线为 ________ ;13. limx n0, n 为正整数) = ________ ;eax ( ax4. 幂函数 y x ( 为常数)的弹性函数是 _________;5. yx 2 2x 1 的单调递增区间为 __________ ;6. 函数 f ( x)x的间断点为 x______ ;33x7. 函数 y1 的单调下降区间为 ______ ;x 218. 设 y2x 2ax 3 在点 x 1 处取得极小值,则 a = _______ ;9. 设 y (x a) 3 在 (1, ) 是上凹的,则 a = ______ ;10. 若函数 f (x) 在区间 (a, b) 内恒有 f ( x) 0 ,则曲线 y f ( x)在(a,b) 内的凹向是_______;11. 若 f ( x) x 3 ,则曲线y f ( x)的拐点横坐标是______ ;12.函数 y 3 2x 在 x 3 处的弹性是________;13.函数 y x3 3x 的单调递减区间是__________;14.y e x的渐近线为_______;15. 设需求函数 Q p(8 3 p) ,P为价格,则需求弹性值EQ_______ ;Ep P 216. 函数 y4 x2有 ______ 个间断点;(x 1)( x 2)17. 函数 y x 5 x 在 [0,5] 上满足拉格朗日中值定理的______ ;18.函数 y(x 1)2的单调递增区间是_________;19. 函数 y x 2cos x 在区间 [0, ] 上的最大值是__________;220. 曲线y x 的下凹区间是 __________ ;21. 函数 y 2 x2 x 在 [0,2] 上满足拉格朗日中值定理的__________ ;22. 函数y x x 在区间 [0,1] 上的最小值是 _________ .选择题1. 函数y sin x 在区间 [0, ] 上满足罗尔定理的( )(A) 0 (B)4 (C)2(D) πx22. 曲线y 的铅垂渐近线的方程是( )1 x(A) (B) (C) x 1 (D) x 1y 1 y 13. 函数y f (x) 在点 x x0 处取得极大值,则必有()(A) f ( x0 ) 0 (B) f ( x0 ) 0(C) f ( x0 ) 0 且 f (x0 ) 0(D) f ( x0 ) 0 或不存在计算与应用题1. 求极限 lim( x 1 )x 1 x 1 ln x2.设某产品价格与销量的关系为P 10Q 5 ( Q 为销量),求:(1) 销量为30 时的总收益;(2)销量为 30 时的平均收益;(3)销量为 30 时的边际收益;(4)销量为 30 时,销量对价格的弹性。
微积分练习题一、极限与连续(1) lim(x→0) (sin x / x)(2) lim(x→1) (x^2 1) / (x 1)(3) lim(x→∞) (1 + 1/x)^x(1) f(x) = |x| 1,在x = 0处(2) f(x) = (x^2 1) / (x 1),在x = 1处(3) f(x) = sqrt(x + 2) 2,在x = 1处二、导数与微分(1) f(x) = x^3 3x + 2(2) f(x) = e^x sin x(3) f(x) = ln(sqrt(1 + x^2))(1) f(x) = x^2 + 3x 5(2) f(x) = cos(2x)(3) f(x) = 1 / (1 x)三、高阶导数与微分方程(1) f(x) = x^4 2x^2 + 1(2) f(x) = e^x cos x(3) f(x) = ln(x^2 + 1)(1) y' = 2x + y(2) y'' 2y' + y = e^x(3) (1 + x^2) y'' + 2x y' = 0四、不定积分与定积分(1) ∫(x^2 + 1) dx(2) ∫(e^x x) dx(3) ∫(1 / (x^2 + 1)) dx(1) ∫_{0}^{1} (3x^2 2x + 1) dx(2) ∫_{π}^{π} (sin x) dx(3) ∫_{1}^{e} (1 / x) dx五、多元函数微分学(1) f(x, y) = x^2 + y^2(2) f(x, y) = e^(x + y) sin(x y)(3) f(x, y) = ln(x^2 + y^2)(1) f(x, y) = x^3 + y^3(2) f(x, y) = sin(x + y)(3) f(x, y) = sqrt(x^2 + y^2)六、重积分(1) ∬_D (x^2 + y^2) dxdy,其中D为圆心在原点,半径为1的圆(2) ∬_D (x y) dxdy,其中D为矩形区域0 ≤ x ≤ 1,0 ≤ y ≤ 2(3) ∬_D (e^(x + y)) dxdy,其中D为三角形区域0 ≤ x ≤ 1,0 ≤ y ≤ x(1) ∭_E (x^2 + y^2 + z^2) dxdydz,其中E为立方体区域0 ≤ x ≤ 1,0 ≤ y ≤ 1,0 ≤ z ≤ 1(2) ∭_E (xyz) dxdydz,其中E为长方体区域0 ≤ x ≤ 2,0 ≤ y ≤ 3,0 ≤ z ≤ 4七、级数(1) Σ (1/n^2),n从1到∞(2) Σ (n/(n+1)^2),n从1到∞(3) Σ ( (1)^n / n ),n从1到∞(1) Σ (x^n / n),n从1到∞(2) Σ (n! x^n),n从0到∞(3) Σ ( (n^2 + 1)^n x^n ),n从0到∞八、微分方程的应用(1) 物体在空气中自由下落,其速度v与时间t的关系,已知阻力与速度成正比。
微积分试题及答案pdf一、选择题(每题5分,共20分)1. 函数 \( f(x) = x^3 - 6x^2 + 11x - 6 \) 的导数是:A. \( 3x^2 - 12x + 11 \)B. \( 3x^2 - 12x + 6 \)C. \( x^2 - 12x + 11 \)D. \( x^2 - 6x + 11 \)答案:A2. 定积分 \( \int_{0}^{1} x^2 dx \) 的值是:A. \( \frac{1}{3} \)B. \( \frac{1}{2} \)C. \( \frac{1}{4} \)D. \( \frac{1}{6} \)答案:B3. 函数 \( y = \ln(x) \) 的不定积分是:A. \( x\ln(x) + C \)B. \( \frac{x}{\ln(x)} + C \)C. \( x\ln(x) - x + C \)D. \( x + C \)答案:A4. 曲线 \( y = x^2 \) 与直线 \( y = 2x \) 在第一象限的交点坐标是:A. \( (1, 2) \)B. \( (2, 4) \)C. \( (-1, -2) \)D. \( (-2, -4) \)答案:A二、填空题(每题5分,共20分)1. 函数 \( f(x) = \sin(x) \) 的二阶导数是 \( \_\_\_\_\_ \)。
答案:\( -\sin(x) \)2. 曲线 \( y = e^x \) 在 \( x = 0 \) 处的切线斜率是\( \_\_\_\_\_ \)。
答案:13. 函数 \( y = \ln(x) \) 的不定积分是 \( \_\_\_\_\_ \)。
答案:\( x\ln(x) - x + C \)4. 定积分 \( \int_{0}^{1} e^x dx \) 的值是 \( \_\_\_\_\_ \)。
答案:\( e - 1 \)三、解答题(每题10分,共20分)1. 求函数 \( f(x) = x^3 - 3x^2 + 4 \) 在 \( x = 2 \) 处的导数值。
微积分习题集带参考答案一. 填空题 (每空2分,共20分)1. 已知,)(lim 1A x f x =+→则对于0>∀ε,总存在δ>0,使得当时,恒有│ƒ(x )─A│< ε。
2. 已知2235lim2=-++∞→n bn an n ,则a = ,b = 。
3. 若当0x x →时,α与β 是等价无穷小量,则=-→ββα0limx x 。
4. 若f (x )在点x = a 处连续,则=→)(lim x f ax 。
5. )ln(arcsin )(x x f =的连续区间是 。
6. 设函数y =ƒ(x )在x 0点可导,则=-+→hx f h x f h )()3(lim000______________。
7. 曲线y = x 2+2x -5上点M 处的切线斜率为6,则点M 的坐标为 。
8. ='⎰))((dx x f x d 。
9. 设总收益函数和总成本函数分别为2224Q Q R -=,52+=Q C ,则当利润最大时产量Q 是 。
二. 单项选择题 (每小题2分,共18分)1. 若数列{x n }在a 的ε 邻域(a -ε,a +ε)内有无穷多个点,则( )。
(A) 数列{x n }必有极限,但不一定等于a (B) 数列{x n }极限存在,且一定等于a(C) 数列{x n }的极限不一定存在 (D) 数列{x n }的极限一定不存在 2. 设11)(-=x arctgx f 则1=x 为函数)(x f 的( )。
(A) 可去间断点 (B) 跳跃间断点 (C) 无穷型间断点(D) 连续点 3. =+-∞→13)11(lim x x x( )。
(A) 1 (B) ∞ (C)2e (D) 3e4. 对需求函数5p eQ -=,需求价格弹性5pE d -=。
当价格=p ( )时,需求量减少的幅度小于价格提高的幅度。
(A) 3 (B) 5 (C) 6 (D) 105. 假设)(),(0)(lim ,0)(lim 0x g x f x g x f x x x x ''==→→;在点0x 的某邻域内(0x 可以除外)存在,又a 是常数,则下列结论正确的是( )。
第一讲第一章函数、极限连续(予备知识)重点:函数性质与函数的图形函数是微积分的研究对象,因此在课程的开始,要先对函数部分加以复习,要求对函数的概念、表示方法、性质及基本初等函数的图形有较好的理解与掌握.极限是微积分的基础,故需要介绍一下,因为不考试,故不作复习重点,不作任何要求,也不做练习题.一、函数(一)函数的概念1.函数的定义xx Dy,若对非空集合和中的每一点,】【定义1.1 设在某一变化过程中有两个变量x fyy的函数,记作,则称都按照某一对应规则,有惟一确定的实数是与之相对应y?f(x),x?D.x Dyy的取值范围即集数的定义域,称为自变量,因称为变量,合称为函??Dx?(x),y|y?f称为函数的值域.??D?x),x?y)|yf((x,y?f(x)xoy的图形称为函数.平面上点的集合D Df是确定函数的两个要素.)定义域与对应法则(或记因此称两个函数相同是指它f们的定义域与对应法则都相同.2.函数的表示方法函数的表示方法一般有三种:解析法、表格法、图示法.这三种表示方法各有其特点,表格法和图示法直观,解析法便于运算,在实际中经常结合使用.3.函数定义域的求法由解析式表示的函数,其定义域是指使该函数表达式有意义的自变量取值的全体,这种定义域称为自然定义域,自然定义域通常不写出,需要我们去求出,因此必须掌握一些常用函数表达式有意义的条件.(二)函数的几何特性1.单调性x,xx DD)xf(当上有定义,对于1.2(1)【定义】设函数内任意两点,在实数集112f(x)f(x)f(x)在Df(x)x<(或单增);若总有<时,成立,则称≤若总有内单调递增1122f(x)DD)xf(f(x)内单调递增时,当成立,则称在又在严格单增也是单增内严格单增,.2f(x)是D内的单调递增函数称.类似可以定义单调递减或严格单减.单调递增或单调递减函数统称为单调函数.(2)可以用定义证明函数的单调性,对几个常用的基本初等函数,可以根据熟悉的几何图.我们将利用导数来求其单调区间,对一般的初等函数.找出其单调区间,形..有界性2内有定义f(x)在集合D DMx?,【定义1.30,,若存在实数使得对任意】设函数>DMD)xf(fx)(|f(x)|.,则称都有内的有界函数,或称在为内有界≤内有定义f(x)在集合D M总可以找到一>【定义1.4】设函数若对任意的实数0,,DDDMx?)((x)x|f(x)|ff.或称为在内的无界函数内无界,>则称,,使得x.有界函数的图形完全落在两条平行于轴的直线之间nx1y?. 上是有界的但在[1,e]函数是否有界与定义域有关,如(0,+∞)上无界,MDx?|x)|f(x|f()|≤,≤,,即若对任意都有则也一定有有界函数的界是不惟一的)?0?0,aM?a(M.3.奇偶性D?x)(xf都若对任意设函数,在一个关于原点对称的集合内有定义,】【定义1.5 ))?f(x)?x)??f(x)(或f(?xf()f(x D.有内的奇(偶)函数为,则称))f(xf(x)f(x.=0,即为连续的函数时,的图形过原点奇函数的图形关于原点对称,当轴对称.关于奇偶函数有如下的运算规律:偶函数的图形关于y)g(yf(x)?f(x)g(x),,为奇函数,则为偶函数设2112)(x)?f(x)g(x)?gf(x为偶函数;为奇函数;2121)xf(x)?g(非奇偶函数;11)x),g(x)?g(x(xf()?g(x)f(x)?f.为奇函数;均为偶函数212111C.是偶函数,因此常数,奇函数加非零常数后不再是奇函数了. 利用函数奇偶性可以简化定积分的计算.对研究函数的单调性、函数作图都有很大帮助: 【例】判断下列函数的奇偶性2x??11n(x)f(x)?;(1)x??,1?e,x?0??)(xg (2)?x?.?0xe?1,?22)?x?1?xnn(?x?1?(?x)?1()f(?x?1因为(1)【解】221x))(x?1?(?x?1?xn?1?n122x?x?1?xx?12),xfx()????1n(x?1?2)?x(x?1nf(x)?1是奇函数.所以?(?x)x??1?e,?e0x?0x?,1??????g((?x)?x)g(2)因为??xx????0x?e?0?1?e1,,x???4.周期性f(x)d在集合D内有定义,如果存在非零常数T,设函数【定义1.6】使得对任意x?Df(x?T)?f(x)f(x))x(f称为T,满足上式的最小正数.为周期函数则称,成立恒有,..简称周期的基本周期,]xx?[y?为.1是以除此以外知之甚少我们熟知的三角函数为周期函数(考纲不要求),]?[x[?x]y?xy.和图1-1(b)与所示周期的周期函数.的图形分别如图1-1(a)1-1图(三)初等函数1.基本初等函数x Cy?y轴上的截距为轴的直线图形为平行于.在,定义域为(-∞,+∞),)(1常数函数c.???xy?∞)取何值,,其定义域随着总在(的不同而变化.2()幂函数但不论1,+?函数图形过原点(图1-2.当)>0时,1,1内有定义,且图形过点())(b )(a1-2图x???)?0,?y1( .∞)∞,+其定义域为(,-3()指数函数??.)0,1(子数图形过点.函数严格单调递增,时1>当.函数严格单调递减,时1<<0当.x ee?y 1-3)为底的指数函数,即微积分中经常用到以(图x???)?1g(0,?lo?y xy互为反(4)对数函数它与其定义域为(1,+∞),,?nx?1y对数函数的图形过点称为自然对数,记作.,函数.微积分中常用到以e为底的对数)(1,0)(图1-41-4) 图( (图1-3).不在考纲之内另有两类基本初等函数:三角函数与反三角函数,这充分条件判断、导数和定积分应用中都,对基本初等函数的特性和图形要熟练地掌握f?(a,b),x)在(a,b)区间内二阶可导,对任意xf()(x0..很重要例如,设″<))(1,b(x)f(x)b(a,f. 在2在)′上为凸弧,均不充分(则(1)内严格单调减少;4xy??为,)均不充分.由初等函数的图形可知1)、(2此题可以用举例的方法来说明(32x?4xyy)均不=-12″2≤0,凸弧.因此(′=1),在(-∞,∞+)上严格单调递减,但()x(f差别就在等于零与不等于,0,则(1),充分,故选E.此题若把题干改成″(2)均充分≤.零.可见用初等函数图形来判断非常便捷2.反函数RDRyxf()?y?都有惟,如果对于每一个的定义域为,1.7【定义】设函数,值域为x RD?x)?f(xyy ,以一确定的记作为自变量的函数与之对应,且满足是一个定义在1?.y(y),?x?fR)x?yf(.并称其为反函数1?xR?x),x(y?f)xy?f(y.习惯上用作自变量,反函数常记为作因变量,因此1?)x?f(y)x?f(yx?y.函数与反函数的图形关于直线对称x x?y?alog与y互为且函数与其反函数有相同的单调性.严格单调函数必有反函数,a22?x,x?y?x,y?xx??y?xy)的反函数为][0,+∞(-∞反函.的反函数为,而,0. )((图1-2b).复合函数3???R,(u),u?Dy?fy??D?),(x?ux若R,u,.又】【定义1.8已知函数ff R D 非空,则称函数ff????D?x?fy?[)],(xxx|()f?ux)(u?xy?f(u)与y.称为自变量,称为因变量为函数,的复合函数.其中称为中间变量.初等函数4由基本初等函数经过有限次四则运算和有限次复合运算而得到的一切函数统称为初等.初等函数在其定义域内有统一的表达式函数, (四)隐函数)xy?f(y则称其为显然函明显地表示成若函数的因变量,的形式2221),y?x3,y?1n(x??y?x1..数等x0?(x,y)Fy如果存在函数,设自变量与因变量表示之间的对应法则用一个方程式)xy?f(使方程变为恒等式:(不论这个函数是否能表示成显函数),将其代入所设方程,D??0,xF(x,f(x)) f D0,y)??f(x)F(xy.由方程则称函数其中所确定的一个隐函数为非空实数集.f x?y?1可以确定一个定义在[0,1]如方程上的隐函数.此隐函数也可以表示成显函即数的形式,2,x?[0,(1?x)1]y?f(x)?xy x?x?y?0e y我法用,如但并不是所有隐函数都可以用因为的显函数形式来表示初等函数表达,故它不是初等函数.另外还需注意,并不是任何一个方程都能确定隐函数,如22?1y?x0?.(五)分段函数x的不同值,不能用一个统一的解析式表示,对于其定义域内的自变量有些函数,而是要用两个或两个以上的式子表示,这类函数称为分段函数,如x?1,x?0,x???1,x?0,e?)(xf(x)?g??2x?0?,.1nx,0.x1x???都是定义在(-∞,+∞)上的分段函数.分段函数不是初等函数,它不符合初等函数的定义.二、极限(不在考试大纲内,只需了解即可)极限是微积分的基础.(一)数列极限a,a a?a称为通项如. ,按照一定顺序排成一串的数叫做数列n21n1.极限定义??naa A,则称数,设数列【定义1.9】若通项无限接近某个常数,当项数无限增大时nn????aa记作为数列或称列A收敛于,A,的极限nn lima?A n??n??lima a不存在.否则称数列发散或nn??n2.数列极限性质limx?a,limy?b,则设(1)四则极限性质nnn??n??limcx?climx?ca.nnn?n???lim(x?y)?limx?limy?a?b.nnnnn???n??n?limx?y?limx?limy?ab.nnnn?n??n???n limxax nnn???(b?0).lim?byylim??nnn??n limx?a?limx?ak为任意正整数)(. (2)kn?n?n?n??limx?a?limx?limx?a.1nn?2n2n??n?n?????alimx?x是有界数列则数列)若.,(3nn??n??????z,yx,N?Nn满足不等式数列时设存在正整数,,使得)夹逼定理(4 nnn00z?x?y.nnn limx?aay?limz?lim.若,则nnnn????n??n利用此定理可以证明重要极限??xNn?N使得对任意且存在正整数, n1???e??lim1 . 是一个无理数)(e2.718, ??n???n?设数列有界, (5)单调有界数列必有极限n00??xx??xxx.都有),(或的极限一定存在则数列nn?n?11nn利用此定理可以证明重要极限n1???e??lim1 2.718,e (是一个无理数). ??n???n?(二)函数的极限x??时的极限.1x??)0?a(a?|x|f(xf(x))无【定义1.10】时,上有定义在设函数,当函数x??)xf(时以AA,则称为极限,记作当限接近常数limf(x)?A.??n x?????x?时的极限当或xx?????x?f(x)无限接近常当(沿数轴正(负)方向趋于无穷大,简记,)时x??????x)f(x)时以A为极限当则称,记作(A数,limf(x)?A(limf(x)?A).n??????n.Ax)?(limA)(limA)(limfx??fx??f???n???n??n3.x?x时的极限0xxx)xf(无限接近,】设函数附近(可以不包括当点)有定义在【定义1.1100x(x?x)x?x f)(x)f(x以则称当A为极限,时,函数时,记作无限接近常数A,000limf(x)?A.x?x04.左、右极限xx?xxx?xx)f(x时若当则称从A的左侧(为无限接近一个常数A)趋于,时,0000f(x)的左极限,记作limf(x)?A.f(x?0)?A或0?xx?0xx?xx?xxx)(xf时的左侧(A为无限接近一个常数)趋于A时,若当,从则称0000f(x)的右极限,记作limf(x)?A.f(x?0)?A或0?xx?0limf(x)?A?limf(x)?A?limf(x)?A.??xx?xxx?x?000(三)函数极限的性质1.惟一性limf(x)?A,limf(x)?B则A=B若,. x?xx?x00.局部有界性2limf(x)?A xx f(x)是有界的的某邻域内(点. 则在可以除外),若.00x?x0 3.局部保号性A?flim(x)xx的某邻域(点,可以除外)在该邻,A.且>0(或A<0=则存在若00xx?0f(x)f(x)<0>域内有0(或=。
《微积分》练习100题及其解答1.求极限:.⎪⎭⎫ ⎝⎛--→x e x x 111lim 0解:∵,)0(~1→-x xe x ∴.()2121lim 1lim 11lim 111lim 02000-=-=+-=-+-=⎪⎭⎫ ⎝⎛--→→→→x e x e x e x e x x e x x x x x x x x x 2.求极限:.xx e e x x x sin lim sin 0--→解:∵,∴.)0(~1→-x xe x1sin 1lim sin lim sin sin 0sin 0=--⋅=---→→xx e e x x e e xx x x x x x 或者:记,则当时,在之间满足Lagrange 定理的条件,存x e x f =)(0≠x )(x f x x sin ,在(介于与之间),使得,从而ξξx x sin )(sin sin ξf x x e e xx '=--,所以,.1)0()(lim sin lim 0sin 0='='=--→→f f x x e e x x x x ξ1sin lim sin 0=--→xx e e x x x 3.求极限:.()x xx x e1lim+→解:;()11200lim lim 1xxe e xx xx x x x e xe e e →→⎡⎤⎛⎫⎢⎥+=⋅+= ⎪⎢⎥⎝⎭⎣⎦或者.()()12000ln 1limlim 2lim x x xx x x x x e x e e x e xe x →→→++==⇒+=+4.求极限:.01lim 1xx x +→⎛⎫+ ⎪⎝⎭解:,而,所以,.01lim ln 101lim 1x xx x x e x +→+⎛⎫+ ⎪⎝⎭→⎛⎫+= ⎪⎝⎭0ln(1)1lim ln 1lim0t x t x t x +→+∞→⎛⎫++== ⎪⎝⎭01lim 11xx x +→⎛⎫+= ⎪⎝⎭5.求极限:.())0,0,0(3ln ln lim0>>>-++→c b a xc b a x x x x解:.()00ln ln 3ln ln ln ln limlim 3x x x x x x x x x x x a b c a a b b c c abc xa b c →→++-++==++6.求极限:.()00x αα→>解:.()()112110001101lim lim 10111x x x x x x x αααααααααα--→→→->⎧==-=⎨∞<≤⎩-++7.求极限:.lim(0)x αα→>解:.()()22211000112202limlim022211x x x x x x x αααααααααα--→→→->⎧==-=⎨∞<≤⎩-++8.求极限:.(0)x αα→>解:.012x α→=-9.设函数在内,讨论的单调性.)(x f ()∞+∞-,0)0(,0)(≤>''f x f xx f y )(=解:,,⎥⎦⎤⎢⎣⎡-'=-'='⎪⎭⎫ ⎝⎛='x x f x f x x x f x f x x x f y )()(1)()()(20)0()()(--≤x f x f x x f 当时,,而,则,即,从而此时0>x )0()(f xx f '≤0)(>''x f )0()(f x f '≥'0>'y 递增;同理,当时,递增.x x f y )(=0<x xx f y )(=所以,在内单调增加.xx f y )(=()∞+∞-,10.设函数,求:(1)的极大值;(2)()220()2(0)xf x a ta dta =-+->⎰)(x f M 求极小时的值.M a 解:(1),而,所以xx f a x x f 2)(0)(=''±=⇒='0>a ;a a a f M 232)(3-=-=(2)时,,此时,0>a 102223223=⇒=-='⎪⎭⎫ ⎝⎛-='a a a a M a04>=''a M的极小值为.M 34)1(-=M 11.求极限:.22011lim sin x x x →⎛⎫-⎪⎝⎭解:()()2222224000sin sin 11sin lim lim lim sin sin x x x x x x x x x x x x xx →→→-+-⎛⎫-== ⎪⎝⎭.320000sin sin 1cos sin 1limlim 2lim 2lim 363x x x x x x x x x x x x x x →→→→-+-====12.求极限:.⎪⎭⎫ ⎝⎛-→x x x 220sin 11lim 解:2222222200011sin sin 22lim lim lim sin sin 2sin sin 2x x x x x x x x x x xx x x x →→→--⎛⎫-== ⎪+⎝⎭;222000cos 212sin 2limlimsin 2sin 2cos 22sin 26cos 22sin 22sin 212lim 2sin 234cos 2sin 22x x x x xx x x x x x x x x xx x x x x x x →→→--==+++--==-+-13.求极限:.⎪⎭⎫⎝⎛--→x x x ln 111lim 1解:;211ln 11lim ln 11lim ln 111lim ln )1(1ln lim ln 111lim 11111-=---=--+=--+=-+-=⎪⎭⎫ ⎝⎛--→→→→→x x x x x x xx xx x x x x x x x x x x 14.求极限:.1lim arcsin xx e x +→解:∵,∴.arcsin ~(0)x x x →11100lim arcsin lim lim t t xx x t x x ee x xe t ++=→+∞→→=====+∞15.求极限:.⎪⎭⎫⎝⎛-+∞→x x x arctan 2lim解:.22221arctan 21lim arctan lim lim lim 11121x x x x x x x x x x xxππ→+∞→+∞→+∞→+∞⎛⎫-- ⎪⎛⎫⎝⎭+-==== ⎪+⎝⎭-16.求极限:.2120lim x x x e→解:.22112lim lim t tx x x t e x et=→→+∞====+∞17.求极限:.lim sin ln x x x +→解:.00001ln tan sin lim sin ln lim lim lim 0csc csc cot x x x x x x x x x x x x x x++++→→→→===-=-18.求极限:.1lim x -→解:11lim x x -→→=112sec 24x x ππ--→→===19.求极限:.xx xx x sin tan lim 20-→解:.22232200000tan tan sec 11cos sin21lim lim lim lim lim sin 3363x x x x x x x x x x x x x x x x x x →→→→→----=====20.求极限:.()ln 1ln limcot x x xarc x→+∞+-解:()222222111ln 111lim lim lim 1lim 1.111cot 1111x x x x x x x x x x arc x x xx x x →+∞→+∞→+∞→+∞⎛⎫+-- ⎪+⎝⎭==+==-+⎛⎫⎛⎫++ ⎪ ⎪+⎝⎭⎝⎭21.求极限:.()2lim sec tan x x x π→-解:.()2221sin cos lim sec tan limlim 0cos sin x x x x xx x x x πππ→→→--===-22.求积分:.cos sin 1sin 2x xdx x --⎰解:()2cos sin cos sin 11sin 2cos sin cos sin x x x x dx dx dx x x x x x --==---⎰⎰⎰.1ln csc cot 2244sin 4dx x x C x πππ⎛⎫⎛⎫=-=---+ ⎪ ⎪⎛⎫⎝⎭⎝⎭- ⎪⎝⎭⎰23.求积分:.cos sin 1sin 2x xdx x -+⎰解:.()()()22cos sin 11cos sin cos sin sin cos sin cos x xdx d x x C x xx x x x -=+=-++++⎰⎰24.求积分:.cos sin 1cos 2x xdx x -+⎰解:()2cos sin cos sin 1sec tan sec 1cos22cos 2x x x x dx dx xdx xdxx x --==-+⎰⎰⎰⎰.()1sec ln sec tan 2x x x C =--++25.求积分:.dx xxx ⎰--2cos 1sin cos 解:()2cos sin cos sin 1csc cot csc 1cos 22sin 2x x x x dx dx x xdx xdxx x --==--⎰⎰⎰⎰.()1csc ln csc cot 2x x x C =-+-+26.求积分:.cos sin 1cos 2x xdx x +-⎰解:()2cos sin cos sin 1csc cot csc 1cos 22sin 2x x x x dx dx x xdx xdxx x ++==+-⎰⎰⎰⎰.()1csc ln csc cot 2x x x C =---+27.求积分:.1sin 1cos2xdx x--⎰解:()221sin 1sin 1csc csc 1cos 22sin 2x x dx dx xdx xdx x x --==--⎰⎰⎰⎰.()1cot ln csc cot 2x x x C =-+-+28.求积分:.1sin 1cos2xdx x -+⎰解:()221sin 1sin 1sec sec tan 1cos 22cos 2x x dx dx xdx x xdx x x --==-+⎰⎰⎰⎰.()1tan sec 2x x C =-+29.求积分:.1cos 1cos2xdx x-+⎰解:()221cos 1cos 1sec sec 1cos22cos 2x x dx dx xdx xdx x x --==-+⎰⎰⎰⎰.()1tan ln sec tan 2x x x C =-++30.求积分:.1cos 1cos2xdx x--⎰解:.()()221sin 1sin 1csc csc 1cos22sin 211cot ln tan cot ln csc cot 222x x dx dx xdx xdxx x x x C or x x x C--==--⎛⎫=-++-+-+ ⎪⎝⎭⎰⎰⎰⎰31.求积分:.1arctan21xedx x +⎰解:.1arctan11arctan arctan 21arctan 1xx x e dx e d e C x x=-=-++⎰⎰32.求积分:.2x dx解:222211222xe t x x e dx =⎛⎫==== ⎪⎝⎭.(2211ln ln 222x x e c e C ⎛ '=++=++ ⎝33.求积分:.211x dx e +⎰解:⎰+dx e x 211⎰⎰----++-=+=)1(112112222xx x x e d e dx e e C e x ++-=-)1ln(212或者:⎰⎰+=+=xxx x x x de e e dx e e e 222222)1(121)1(.[]C e x de e de e xx x x x ++-=⎥⎦⎤⎢⎣⎡+-=⎰⎰)1ln(221111212222234.求积分:.()21xxe dx x +⎰解:()()()2211(1)11111xxx xxxe xe xe dx d x xe d d xe x x x x x ⎛⎫=+=-=-+ ⎪+++⎝⎭++⎰⎰⎰⎰.11x x xxe e e dx C x x=-+=+++⎰35.求积分:.211dx x x -+⎰解:2221141133111422dx dx dxx x x x ==-+⎛⎫⎤⎫+-+- ⎪⎪⎥⎝⎭⎭⎦⎰⎰⎰.211122112d x x C x ⎤⎤⎫⎫=--+⎪⎪⎥⎥⎭⎭⎦⎦⎤⎫+-⎪⎥⎭⎦⎰36.求积分:.2141dx x x -+⎰解:()2221111413231dx dx dxx x x ==-+---⎰⎰⎰.21ln ln 3661d C C ⎫==+=⎪⎭⎫-⎪⎭⎰37.求积分:.dx解:22111ln 1111u u du du C u u u u -⎛⎫⎛⎫=-=+ ⎪ ⎪--++⎝⎭⎝⎭⎰⎰.))ln 2ln12ln1Cor x C or x C ⎛⎫=+-+-+ ⎝38.求积分:.解:设,则,,x e u +=1)1ln(2-=u x du u udx 122-=222112111u du du u u u ⎛⎫==+- ⎪--+⎝⎭⎰⎰12ln ln 1u u C C u ⎛⎫-⎛⎫=++=+ ⎪+⎝⎭.)2ln1orx C -+39.求积分:.21443dx x x +-⎰解:.21121ln 443823x dx C x x x -=++-+⎰40.求积分:.23222x dx x x --+⎰解:222323*********(1)x x dx dx x x x x x ⎡⎤--=+⎢⎥-+-+++⎣⎦⎰⎰.()23ln 22arctan(1)2x x x C =-++++41.求积分:.2dx x⎰解:设,则,,t x sin 2=t x cos 242=-tdt dx cos 2=.()222cot csc 1cot arcsin 2x dx tdt t dt t t C C x x ==-=--+=--+⎰⎰⎰42.求积分:.2dx x ⎰解:设,则,,θtan 2=x 2sec θ=θθd dx 2sec 2=.()Cxx x x C x x x x x x C d d d dx x x ++-++=++++--+-=++---=⎪⎭⎫⎝⎛-+=-==+⎰⎰⎰⎰22222222222244ln 44ln 2141sin 1sin ln 21csc sin sin 11sin 1sin sin )sin 1(1sin cos 14θθθθθθθθθθθθ43.求积分:.⎰++dx x x 1)2(1解:消去根号,记,t =122122+=+=-=t x tdtdx t x.()222arctan 21tdtt C C t t ==+=++⎰44.求积分:.⎰-+dx x x x21解:记,3122222+=+=+=⇒-=t x tdtdx t x x t ()()⎰⎰⎰⎰++=⎪⎭⎫ ⎝⎛++=++=-+dt t t dt t t t dt t t dx x x x 21222112232212222.C x x C tt +-+-=++=22arctan 2222arctan2245.求积分:.⎰++dx x x x21解:记,1122222-=+=-=⇒+=t x tdtdx t x x t ()()⎰⎰⎰⎰-+=⎪⎭⎫ ⎝⎛-+=--=++dt t t dt t t t dt t t dx x x x 21222112212212222.C x x x C t t t +++-+++=++-+=2222ln 222222ln 22246.求积分:.2dx x -⎰解:记,2213222t t t x dx tdt x +-=⇒==-=,.2222312212623332t dx dt dt t dt x t t t t C C⎛⎫==+=+ ⎪----⎝⎭=+=+⎰⎰⎰⎰47.求积分:.解:记,232212122+=+=-=⇒+=t x tdtdx t x x t .Cxx C t t dt t t dt t dt t t dx x x ++-+=+-=+-=⎪⎭⎫ ⎝⎛+-=+=++⎰⎰⎰⎰321arctan 322123arctan3223162331232221222248.求积分:.⎰++dx x 3111解:记,dt t dx t x x t 23323,211=-=⇒+=.22233313331ln 1212142233(1)ln 142t dx dt t dt t t t C t t x C ⎛⎫==-+=-+++ ⎪++⎝⎭=+-+++⎰⎰49.求积分:.()⎰-dx x xx 2321arcsin 解:设:,则x u arcsin =;()332222arcsin sin sin sin sec cos cos 1sec sec sec ln sec tan 1lnln 1ln 12x xu u u udx d u du ud uu u x u u udu u u u u C C x x C ===-=-=-++==-++-+⎰⎰⎰⎰⎰50.求积分:.()()2213xdx xx ++⎰解:.()()()222222211111ln 4134313xx dx d x C x x x x x ⎛⎫+⎛⎫=-=+ ⎪ ⎪+++++⎝⎭⎝⎭⎰⎰51.假设某种商品的需求量,商品的总成本是,每1200080Q P =-2500050C Q =+单位商品需要纳税2元,试求使销售利润最大时商品单价(单位:元)和最大利润额.P 解:收入,28012000)8012000(P P P P PQ R -=-==总成本,P Q C 40006250005025000-=+=总利润,649000161608022-+-=--=P P Q C R L 边际利润,16160160+-='-'='P C R L 令,得,此时,有最大利润(元).0='L 101=P 0160<-=''L 167080=Max L 52.一商家销售某种商品的价格(万元/吨),为销售量,商品的成本函数x P 2.07-=x 是(万元).(1)若每销售1吨商品,政府征税t (万元),求商家获取最大利润时13-=x C 的销售量;(2)t 为何值时,政府税收最大?解:(1)收入,总成本,22.07)2.07(x x x x Px R -=-==13-=x C 税收,总利润,tx T =1)4(2.02+-+-=--=x t x T C R L 边际利润;令,得,此时,有最t x L -+-='44.00='L t x 5.210-=04.0<-=''L 大利润;(2),,令,得,所以当时政府税25.210t t tx T -==t T 510-='0='T 2=t 2=t 收最大.53.求积分:.()322arcsin 1x xdx x -⎰解:设,则x u arcsin =;()332222arcsin sin sin sin sec cos cos 1sec sec sec ln sec tan 1ln 1ln 1.2x xu u u udx d u du ud u u ux u u udu u u u u C Cx x C ===-=-=-++==++-+⎰⎰⎰⎰⎰54.已知的一个原函数为,求积分:.()f x ()1sin ln x x +()xf x dx '⎰解:∵,()1sin ()1sin ln cos ln xf x x x x x x'+=+=+⎡⎤⎣⎦∴()()()()xf x dx xdf x xf x f x dx'==-⎰⎰⎰.()1sin cos ln 1sin ln x x x x x x C =++-++55.设是三阶可导函数,,而.求.()f t ()0f t ''≠()()()x f t y tf t f t '=⎧⎨'=-⎩33d y dx解:由已知,,,,从而;()dx f t dt ''=()dy tf t dt ''=dy dy dt t dx dx dt ==1d dy dt dx ⎛⎫= ⎪⎝⎭,.()221d y d dy dx dt dx dt dx f t ⎛⎫== ⎪''⎝⎭()()()323321()d f t d y d d y f t dx dx dx d f t f t ⎡⎤⎢'''''⎛⎫⎣⎦===- ⎪'⎡⎤''⎡⎤⎝⎭⎣⎦⎣⎦56.设,求.()22tan()sec x yx x y tdt x y ---=≠⎰22d ydx解:对等式两边求导.得,()()()()222sec 1sec 1x y y x y y ''---=--整理,得,2sin ()y x y '=-()()()222sin cos 1d yx y x y y dx '∴=---.()()()21sin 2()cos sin 22y x y x y x y '=--=--57.已知,其中二阶可微,求.()y f x y =+()f u 22d ydx 解:,.()()1y f x y y '''=++()'1()f x y y f x y '+∴='-+对两边再求导,()()1y f x y y '''=++,()()()21y f x y y y f x y ''''''''=++++.()()()211y f x y y f x y '''++''∴='-+3"()[1'()]f x y f x y +=-+58.已知,求.0sin ()xtf x dt t p =-ò0()f t dt p ò解:由已知,,或sin ()xf x xp ¢=-sin ()()x f x xf x p ¢¢=-01cos sin ()()t t tt xdx f x dx xf x dxp ¢¢-==-òòò,()(0)()()()()()t tt f t f xf x f x dx f t tf t f x dx p p p =--+=-+òò取,有,t p =021cos ()()()f f f x dx pp p p p p =-=-+ò.()2f t dt p\=ò59.求积分:.121211x x x e x +æö÷ç+-÷ç÷çèøò解:1111122222111112222221111x x x x x x x x x x I x e dx e dx x e dx e dx xd e x x +++++æöæöæö÷ç÷÷çç÷=+-=+-=+ç÷÷çç÷÷÷ççç÷çèøèøèøòòòòò.21521232x x xee +==60.求极限:.2240sin lim x x xx®-解:224300sin sin sin lim lim x x x x x x x x x x x ®®-+-=×302sin cos 222lim x x xx x®-=.3022sin cos 2lim 8t t t t t ®-=2011cos lim 2t t t ®-=2202sin 12lim 2t t t ®=20sin 12lim 42t t t ®æö÷ç÷ç÷çç=çç÷ç÷÷çèø14=而,22223200000sin sin sin 1cos 1sin 1lim lim lim 2lim 2lim sin 3323x x x x x x x x x x x x x x x x x x x ®®®®®-+--=×==´=请问以上方法错在哪里?61.计算.x ò解:记,代入,得()221ln 1x u e u x u ==+=+原式()()222ln 1121u u uduu u ++=+ò()()22222ln 12ln 121u u du u u duu =+=+-+òò.()22ln 12222u u u arctgu c c =+-++=-++62.求积分:.()12ln 11x dx x++ò解:令,,,,11t x t -=+211x t +=+()221dt dx t =-+()()22222111111t t x t t +æö-ç+=+=ççè++代入,则()12ln 11x I dx x +=+ò()()()()21122200ln 1122ln 11211x t I dx dt x t t t ++==×++++òò()()1112220001120ln 2ln 1ln 1ln 211112ln 2ln 214t x dt dt dx t t xI dt t p-++==-+++\==+òòòò.112011ln 221I dx x \=×+òln 28p =63.求积分:1ò解:记212t x t dx tdt==-=-当时,;当时,,则0x =t 1=1x =0t =原式.110202212dt arctgtt p ===-ò64.设在内有意义,且(1)可导;(2)有反函数;(3)()F x ()0,+¥()x j .求.()()5322115F x t dt x x j æö÷ç÷=-ç÷ç÷èøò()F x 解:由(3)可知,时,,0x =()()010F t dt j =ò()01F =记,则为其反函数()x F y =()y x j =且或()()F y y j =()()F x xj =对(3)的式子两边求导,有,即.()()()23321123F x F x x x j ¢=- ()23321123x F x x x ¢×=-化简有()F x ¢=()23321132F x dx x x c æö\==-+ò而,故.()01F =()233211132F x x x =-+65.求积分:1ò解:11I -==òò.112-==òò12arcsin tp ==66.求积分:1ò解:令sin 02x t t p =<<.()22202200sin cos cos 1cos 1cos 4t d t I dt arctg t tt p pp p==-=-=++òò67.证明:.()4011212n tg xdx n np<<+ò证明:记,则.14201n nn t I tg xdx dt t p==+òò()11212n I n n<<+68.求积分:.244sin 1xxdx ep p --+ò解:.224404sin 11sin 111x x x x dx xdx e e e pp p ---æö÷ç=+÷ç÷çèø+++òò2402sin 8xdx p p -==ò69.设,且,则方程0在()[],f x C a b Î()0f x >()()1xxabf x dx dx f x +=òò(),a b内有几个根.解:记,,()()()1xxabF x f t dt dt f t =+òò()()()110abbaF a dt dt f t f t ==-<òò,而.;()()0baF b f x dx =>ò()0f x >[],x a b Î()()()10F x f x f x ¢=+>在内严格单调增加.因此,在内只有一个根.()F x \(),a b ()F x (),a b 70.在上连续可微,且满足.试证存在一点.使()f x [)0,1()()1212f xf x dx =ò()0,1x Î.()()0f f x x x ¢+=证:设.则,()()F x xf x =()()0000F f =´=.()()()()112211122F f xf x dx F x dx =´==´òò由于在上可微,由积分中值定理,必存在一点,使得()F x []0,110,2h æö÷çÎ÷ç÷çèø,在上,满足Rolle 定理的三个条件,固而存在()()()1122F F F h h =´´=[],1h ()F x ,使得.即.x (),1h Î()0,1Ì()0F x ¢=()()0f f x x x ¢+=71.设求,.()11010x x xe x f x e x ìïïïï¹ï=íï+ïïï=ïî()0f -¢()0f +¢解:由知()()()000limx x f x f x f x x x ®-¢=-()0f -¢()()11000lim lim lim 0011txt t x x x f x f e e x e e --®-¥®®-====-++()0f +¢()()11000lim lim lim 1011txt t x x xf x f e e x ee ++®+¥®®-====-++另,时0x ¹()1121111xx x e e x f x e æö÷ç÷-+ç÷ç÷èø¢=æö÷ç÷+ç÷ç÷èø;()0f -¢()1121011lim lim 1xx x x xe e xf x e --®®æö÷ç÷-+ç÷ç÷èø¢==æö÷ç÷+ç÷ç÷èø()()121lim01u u u xu u e u e e =®-¥-+¾¾¾®=+()0f +¢()1121011lim lim 1xx x x xe e xf x e ++®®æö÷ç÷-+ç÷ç÷èø¢==æö÷ç÷+ç÷ç÷èø()()21lim1u u u u e u e e ®+¥-+=+()()()11lim21u u u u u uu e u e e e e e ®+¥-++-=+()22lim21u uu uu e ue e e ®+¥-=+.()221lim lim 1221u u u u u u e u e e e ®+¥®+¥--===+72.设在上连续,且,证明:必存在,使()f x []0,n ()()()0f f n n N =Î()0,n x Î.()()1f f x x +=证明:记,则在上连续,因而有最大(小)值()()()1x f x f x j =+-()x j []0,1n -,,;()M m ()m x M j ££[]0,1x n Î-而,,…,;()()()010f f j =-()()()121f f j =-()()()11n f n f n j -=--从而,()()()1110n n k k k f k f k m M nnj --==éù+-ëû£==£åå故而,必存在,使,即()0,n x Î()0j x =.()()1f f x x +=73.证明:函数在上一致连续.3)(x x f =[]1,0证明:任取两点,,不妨设,则,考虑到1x []1,02∈x 21x x ≠03231≠-x x ()321232312132232132121323121)()(x x x x x x x x x x x x x x x f x f +--≤++-=-=-;()2323121323121)()(x x x x x x x f x f --≤-=-即;2133231321)()(x x x x x f x f -≤-=-所以,对于任意小的正数,取,当时,必有0>ε3εη=η<-21x x 成立,ε<-≤-=-321323121)()(x x x x x f x f 故而函数在上一致连续.3)(x x f =[]1,074.函数在上有定义,且(1),(2)对于在,)(x f ()∞,0)1()(lim 1f x f x =→0>∀x ,则(为常数).)()(2x f x f =C x f ≡)(C 证明:任取,记,,,…,()∞+∈,0x x x =1x x x ==124123xx x x ===,….则1211-==-n x x x n n 由可知,,即)()(2x f x f =)()(x f x f =;)()()()()(321n x f x f x f x f x f ===== 而注意到,故)0(1lim >=+∞→x x n n ;)0(1lim lim 121>==-+∞→+∞→x x x n n n n 而,从而)1()(lim 1f x f x =→;)1()lim ()(lim )(11f x f x f x f n x n x ===→→所以,(为常数).C x f ≡)()1(f C =75.求极限:.21n n n tan n lim ⎪⎭⎫ ⎝⎛∞→解:注意到⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛⋅=⎪⎭⎫ ⎝⎛n tan n ln n exp n tan n n 1122,⎪⎪⎭⎪⎪⎬⎫⎪⎪⎩⎪⎪⎨⎧-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+⋅⎪⎭⎫ ⎝⎛-⋅=11111112n tan n n tan n ln n tan n n exp 且,111111=-⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛-+∞→ntan n n tan n ln lim n 而22111tan lim 11tan lim n n n n n n n n -=⎪⎭⎫ ⎝⎛-∞→∞→30201tan lim1tan lim y y y y y y y y ny -=-=→→=.yy tan lim y y sec lim y y 31331220220==-=→→故.e n tan n lim n n 3121=⎪⎭⎫⎝⎛∞→76.已知,,求.12a =()11112n n n a a n a +⎛⎫=+> ⎪⎝⎭lim n n a →∞解:很明显,,,,,12a =0n a >11112n n n a a a +⎛⎫=+≥ ⎪⎝⎭()12111122n n n a n a a +⎛⎫=+≤>⎪⎝⎭所以,,单调有界,存在;1212n n a a a +≤≤≤≤= {}n a lim n n a →∞记,则由得,注意到,解得.lim n n a l →∞=1112n n n a a a +⎛⎫=+ ⎪⎝⎭112l l l ⎛⎫=+ ⎪⎝⎭21≤≤l 1l =77.设函数,求.xx y +=12()n y 解:,,11112++-=+=x x x x y 2111111⎪⎭⎫⎝⎛+-='⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛++-='x x x y ,()()322121111+-='⎪⎪⎭⎫ ⎝⎛⎪⎭⎫ ⎝⎛+-=''x x y 由数学归纳法可得:.()()())1(1!11>+-=+n x n yn n n 78.设函数在区间上连续,在内可导,且,()x f []0,1()0,1()()010==f f .试证:121=⎪⎭⎫ ⎝⎛f (1)存在,使;1,12η⎛⎫∈⎪⎝⎭()ηη=f (2)对任意实数,必存在,使得.λ()0,ξη∈()()1f f ξλξξ'--=⎡⎤⎣⎦证明:(1)设,则在区间上连续,在内可导,且()()h x x f x =-()h x []0,1()0,1,,,则存在,,即()00h =()11h =11022h ⎛⎫=-< ⎪⎝⎭1,12η⎛⎫∈ ⎪⎝⎭()()0h f ηηη=-=.()ηη=f (2)记,在区间上连续,在内可导,且,()()xF x f x x e λ-=-⎡⎤⎣⎦[]0,1()0,1()00F =,则由定理,必存在,使得,即()0F η=Rolle ()0,ξη∈()0F ξ'=.()()1f f ξλξξ'--=⎡⎤⎣⎦79.判断级数的敛散性.11nn ¥=åò提示:.220001122n xdx n n>=®<òòò80.证明:当时,.0>x ()x x xx<+<+1ln 1证明:记,则在上连续因而可积.tt f +=11)()(t f []x 0由积分第一中值定理,比存在一点,使得:()x 0∈ξ,()()x f dt t x x⋅=+=+⎰ξ0111ln 即.()x x ξ+=+111ln 而,,x <<ξ011111<+<+ξx ∴,)0(11><+<+x x x x x ξ即.()x x x x<+<+1ln 181.求在条件下,()22212312323,,2334f x x x x x x x x =+++2221231x x x ++=()123,,f x x x 的最大值和最大值点.解:利用拉格朗日乘数法,设,()()22222212312323123,,,23341L x x x x x x x x x x x λλ=++++++-,则123112233322221234206240624010x x x L x x L x x x L x x x L x x x λλλλ'=+=⎧⎪'=++=⎪⎨'=++=⎪⎪'=++-=⎩.1231222312323(1)020121(2)05x x x x Maxf x x x x x Maxf x x λ≠⇒=-⇒==→=±⇒=⎧+=⎪=⇒⇒==⇒=⎨=⎪⎩82.设随机变量,问:当取何值时,落入区间的概率最大?()2~,X N μσσX ()1,3解:因为,()212~x X f x σ⎛⎫- ⎝⎭=,{}133113()X P X P g σσσσσσ∆⎧⎫⎛⎫⎛⎫<<=<<=Φ-Φ=⎨⎬ ⎪ ⎪⎩⎭⎝⎭⎝⎭利用微积分中求极值的方法,有223311()g σσσσσ⎛⎫⎛⎫⎛⎫'''=-Φ+Φ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭;222222221311111422231111130e e σσσσ⎛⎫⎛⎫⎛⎫⎛⎫---- ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎡⎤⎢⎥==-=⎢⎥⎣⎦令得,则;又,故.404ln 3σ=0σ=0()0g σ''<0σ=故当落入区间的概率最大.σ=X ()1,383.设,讨论方程的实数根.x e x f x λ-=)(0=-x e x λ解:(1)显然,当时,方程没有实根;0λ=0=-x e x λ(2)当时,方程有唯一实根;0λ<0=-x e xλ(3)当时,;曲线为下凸的,0>λ0)(,)(>=''-='x x e x f e x f λx e x f x λ-=)(呈∪型;由可知,驻点,极小值,0)(=-='λx e x f λln 0=x )ln 1()(0λλ-=x f 由此可知,当时,方程没有实根;e <<λ00=-x e x λ当,极小值,方程只有一个实根;e =λ0)ln 1()(0=-=λλxf 0=-x e x λλln 0=x 当,极小值,方程有2个实根.e >λ0)ln 1()(0<-=λλxf 0=-x e xλ84.函数的单调增减区间、凹凸区间与极值.()()()211f x x x =-+解:,()()()()()()()()()22111211131f x x x ,f x x x x x x '=-+=++-+=+-由得驻点:;()0f x '=113x ,=-由上可知,函数在与内单调递增,在内递减;极()f x ()1,-∞-13,⎛⎫+∞ ⎪⎝⎭113,⎛⎫- ⎪⎝⎭大值,极小值;()10f -=132327f ⎛⎫=-⎪⎝⎭由可得,因而函数曲线在内()()()211f x x x =-+()62f x x ''=+13,⎛⎫-∞- ⎪⎝⎭,函数曲线上凸;在内下凸,如下图.()0f x ''<13,⎛⎫-+∞ ⎪⎝⎭85.已知收益函数为,其中为价格,为需求量,求需求弹性时260R=Q Q -P Q 2d ε=-的边际收益.MR 解:因为,所以需求函数,边际收益函数为,且260R=Q Q -60P Q =-602R =Q '-需求弹性函数为;60601d P dQ Q Q dP Q Qε-==-=-当需求弹性时,,此时的边际收益.2d ε=-20Q =()20604020MR R '==-=86.设函数,求其渐近线.xx exe x f y 111)(+==解:首先考虑其水平渐近线和垂直渐近线:x()1,-∞-1-113,⎛⎫- ⎪⎝⎭1313,⎛⎫+∞ ⎪⎝⎭()f x '+0-0+()f x 增加极大值递减极小值递增因为,,,所以,1lim 1=∞→x x e +∞=+→x x e 100lim 0lim 100=-→xx e ;11011lim lim lim 0(1)(1)1t x t t t t x xxee t t e t e x e+-→+∞→+∞→⎛⎫==== ⎪++⎝⎭+;11011lim lim lim 0(1)(1)1t x t t t t x xxee t t e t e x e--→-∞→-∞→⎛⎫==== ⎪++⎝⎭+;110011limlim lim (1)(1)1t x t t x t t xxee t t e t e x e-→∞→→⎛⎫===∞=⎪++⎝⎭+故而没有水平渐近线和垂直渐近线;xx exex f y 111)(+==由于,()111limlim 21xx x xf x e a x e →∞→∞===+()1111111211lim lim lim 2211x x x x x x x x xe x e xe b fx x x e e →∞→∞→∞⎡⎤⎛⎫-+⎢⎥⎡⎤ ⎪⎡⎤⎝⎭⎢⎥⎢⎥=-=-=⎢⎥⎢⎢⎥⎣⎦++⎢⎥⎢⎥⎣⎦⎢⎥⎣⎦,11011111122lim lim 2(1)41x t t x t xx xe e t t e x e→∞→-+-⎛⎫==== ⎪+⎝⎭+故而有斜渐近线:.xx exe x f y 111)(+==4121+=x y 87.求函数曲线的渐近线.()1ln 1x y e x=++解:显然,,为其垂直渐近线;()01lim ln 1x x e x→⎡⎤++=∞⎢⎥⎣⎦0x =,为其水平渐近线;()()1lim ln 1lim ln 10x xx x e e x →-∞→-∞⎡⎤++=+=⎢⎥⎣⎦0y =又,,,因而()()11ln 1ln 1x x y e x e x x -=++=+++()1lim ln 10x x e x -→+∞⎡⎤++=⎢⎥⎣⎦为其一条斜渐近线.y x=88.若,试证明:与具有相同的敛散性.lim (0)n n a a a →∞=≠∑∞=+-11n n n a a ∑∞=+-1111n nn a a 证明:问题为讨论两个正项级数的敛散性,可以用比较法的极限形式,因为不是具体的级数形式.记,则,111nn n a a V -=+0,0>>n n V U ==n n n V U ∞→limnn nn n a a a a 11lim11--=++∞→1.lim +∞→n n n a a )0(2≠a 可见,与具有相同的敛散性.∑∞=+-11n n n a a∑∞=+-1111n nn a a 89.讨论下列级数的敛散性:(1)2);(3);(4)1n ∞=11tan 2n n n ∞+=∑()3113nnn n n ∞=⎤+-⎣⎦∑()∑∞=+-+121211n n n n n(5);(6);(7).()()1111ln 1n n n ∞+=-+∑()211nn n n ∞=-+∑()()1111ln n n nn e e ∞+-=-+∑解:(1)当充分大时,比如时,有,从而n 3>n ()n n <+<1ln 1,而当时,,()n n n n <+<1ln 1∞→n 1→n n由极限的夹逼性定理知,当时,,所以,∞→n 1→1n ∞=(2)注意到,这是正项级数,当时,(等价无穷小),0→x x x ~tan 所以,而后者收敛,所以收敛.11tan ~2n n n π∞+=∑112n n n π∞+=∑11tan 2n nn π∞+=∑(3)利用柯西判别法:也是正项级数,,可见原()33113n+-=<→级数收敛;事实上,,,)())333111333nnnn nnnn nn ⎤+-+⎣⎦<<3113nnn n ∞=⎤⎣⎦∑都收敛,且同为正项级数,因而原级数收敛.3113nn n n ∞=⎤⎣⎦∑(4)因为,()()111111122221212112121→+⋅+⋅=+=+=+-+-nn nnnn n n n n n n nnnnnu 改用比较判别法:取,则21nv n =;()11lim 1lim lim 122121=⎪⎪⎭⎫⎝⎛+=+=+∞→++∞→∞→n n n n n nn n n n n nv u其中()(){}1122222lim lim exp lim 12ln ln 111n x n x x n x x x x n x ++→∞→+∞→+∞⎛⎫⎛⎫⎡⎤==+-+ ⎪ ⎪⎣⎦++⎝⎭⎝⎭,()()()()()22222222ln ln 1211exp lim exp lim exp lim 111111x x x x x x x x x x x x x →+∞→+∞→+∞⎧⎫⎧⎫⎪⎪-⎪⎪⎧⎫-++⎪⎪⎪⎪⎪⎪+===-=⎨⎬⎨⎬⎨⎬+⎪⎪⎪⎪⎪⎪-⎩⎭+⎪⎪⎪⎪+⎩⎭⎩⎭所以,与同时收敛.()∑∞=+-+121211n n n nn ∑∞=121n n(5)条件收敛.(6),发散.()()22111111nnn n n nn n n∞∞∞===-+-=+∑∑∑(7)=,()()1111ln n n n n e e ∞+-=-+∑()()12111ln 1n n n e n∞+=-+-∑,()222ln 1n n n e n e n e +-<-<()()()22222lim lim lim ln 1ln 1ln n x xn x x x n x x e e e e n e x e e -→∞→+∞→+∞==+-+-+==∞.()=+-=--+∞→x x x x xx e e e e e 22lim ()22221lim 1x x x x e e e →+∞+-x xx x ee e 2532106lim ++∞→另一方面,==,;()x x e e -+ln 1()xe x 21ln 1-++()x e xx x 1~1ln 11112-++()+∞→x 可见,原级数非绝对收敛;但是单调减少且趋于0,所以,原级数条件收敛.()x x e e -+ln 190.若正项级数与都发散,讨论与的敛散性.1nn v∞=∑1nn u∞=∑{}1max ,nnn u v ∞=∑{}1min ,nnn u v ∞=∑解:,,{}{}1max ,2n n n n n n u v u v u v =++-{}{}1min ,2n n n n n n u v u v u v =+--(1)显然,,或者,故而{}{}1max ,2n n n n n n n u v u v u v u =++-≥{}max ,n n n u v v ≥发散;{}1max ,nnn u v ∞=∑(2)而的敛散性未定.{}1min ,nnn u v ∞=∑例如,若,()222211111111123456212n n u n n ∞==+++++++++-∑ ,()222=11111111123456221n n v n n ∞=+++++++++-∑。