人教版初中二年级数学上册教学设计:因式分解(十字相乘法)
- 格式:doc
- 大小:61.00 KB
- 文档页数:4
(完整版)初中生物十字相乘法因式分解初中生物十字相乘法因式分解
引言
十字相乘法是初中生物学中一种常用的因式分解方法,用于分
解多项式式子。
本文将介绍该方法的具体步骤和应用。
步骤
1. 首先,我们需要确定多项式的因式之间是否存在公因式。
如
果存在公因式,我们先将公因式提取出来。
2. 接下来,我们需要确定多项式的因式之间是否存在二元关系。
如果存在二元关系,我们可以使用十字相乘法进行因式分解。
3. 根据两个因式之间的关系,我们可以将多项式分解为两个部分,每个部分包含一个因式。
4. 对于每个部分,我们可以使用十字相乘法,将其进一步分解
成更简单的形式。
应用
十字相乘法因式分解在初中生物学中具有广泛的应用。
它可以帮助我们简化复杂的多项式式子,并更好地理解和分析生物学中的关系和过程。
通过掌握十字相乘法因式分解的方法和应用,我们可以更加深入地研究和掌握初中生物学的知识。
结论
初中生物十字相乘法因式分解是一种常用的因式分解方法,可以帮助我们简化复杂的多项式式子。
通过掌握这种方法,我们可以更加深入地研究和理解初中生物学的知识。
(完整版)初中历史十字相乘法因式分解初中历史十字相乘法因式分解十字相乘法是初中数学中常用的一种因式分解方法。
通过这种方法,我们可以将一个多项式分解成两个或多个简化的因式。
什么是十字相乘法?十字相乘法是一种运用代数式的乘法原理来进行因式分解的方法。
它适用于二次方程的因式分解,也可以用于其他多项式的分解。
如何使用十字相乘法进行因式分解?首先,我们需要一个多项式,如$x^2 + 5x + 6$。
我们将该多项式按照标准形式排列(由高次幂到低次幂),得到$x^2 + 5x + 6$。
其次,我们需要寻找一个分解形式,它可以将前一步得到的多项式分解成两个因式的乘积。
在这个例子中,我们需要找到两个因式之间的关系。
我们要找到两个乘数,使得它们相乘得到6,同时相加得到5。
根据这个要求,我们可以尝试以下组合:- 1和6:1 + 6 = 7- 2和3:2 + 3 = 5我们发现,2和3的乘积等于6,同时它们的和等于5。
因此,我们可以将$x^2 + 5x + 6$分解成$(x + 2)(x + 3)$。
总结十字相乘法是一种有效的因式分解方法,适用于多项式的分解。
通过找到两个乘数,使得它们相乘等于常数项,并且相加等于项数系数,我们可以将多项式分解成两个或多个简化的因式。
同时要注意,十字相乘法只适用于特定类型的多项式,特别是二次方程。
在应用这种方法时,我们应该先将多项式按照标准形式排列,然后寻找乘数来进行分解。
希望这份文档对你有帮助,以理解和应用十字相乘法进行因式分解。
如果有任何疑问,请随时提问。
课题因式分解十字相乘法1、认识因式分解的意义。
教课目的2、娴熟运用适合的方法进行因式分解。
要点:因式分解的观点以及运用提取公因式法和公式法分解因式。
要点、难点难点:运用因式分解进行多项式的除法以及解简单的一元二次方程。
教课内容一、概括定义:把一个多项式化为几个整式的积的形式,这类变形叫做把这个多项式因式分解,也叫作分解因式。
意义:它是中学数学中最重要的恒等变形之一,它被宽泛地应用于初等数学之中,是我们解决很多半学问题的有力工具。
因式分解方法灵巧,技巧性强,学习这些方法与技巧,不单是掌握因式分解内容所必要的,并且对于培育学生的解题技术,发展学生的思想能力,都有着十分独到的作用。
学习它,既能够复习的整式四则运算,又为学习分式打好基础;学好它,既能够培育学生的察看、注意、运算能力,又能够提升学生综合剖析和解决问题的能力。
分解因式与整式乘法互为逆变形。
二、因式分解的方法因式分解没有广泛的方法,初中数学教材中主要介绍了提公因式法、公式法。
而在比赛上,又有拆项和添减项法,分组分解法和十字相乘法,待定系数法,双十字相乘法,对称多项式轮换对称多项式法,余数定理法,求根公式法,换元法,长除法,除法等。
注意三原则1分解要完全2最后结果只有小括号3 最后结果中多项式首项系数为正(比如:-3 x2+x=-x(3x-1))十字相乘法分解因式1.二次三项式( 1)多项式ax2bx c ,称为字母的二次三项式,此中称为二次项,为一次项,为常数项.比如: x22x 3 和 x25x 6 都是对于x的二次三项式.( 2)在多项式x26xy 8y2中,假如把看作常数,就是对于的二次三项式;假如把看作常数,就是对于的二次三项式.( 3)在多项式2a2b27ab3中,把看作一个整体,即,就是对于的二次三项式.同样,多项式 (x ) 27()12,把看作一个整体,就是对于的二次三项式.y x y2.十字相乘法的依照和详细内容(1) 对于二次项系数为 1 的二次三项式x2(a b)x ab (x a)(x b)方法的特点是“拆常数项,凑一次项”当常数项为正数时,把它分解为两个同号因数的积,因式的符号与一次项系数的符号同样;当常数项为负数时,把它分解为两个异号因数的积,此中绝对值较大的因数的符号与一次项系数的符号同样.(2) 对于二次项系数不是 1 的二次三项式ax 2bx c a1 a2 x2( a1c2a2c1 ) x c1c2(a1x c1 )(a2 x c2 )它的特点是“ 拆两端,凑中间”当二次项系数为负数时,先提出负号,使二次项系数为正数,而后再看常数项;常数项为正数时,应分解为两同号因数,它们的符号与一次项系数的符号同样;常数项为负数时,应将它分解为两异号因数,使十字连线上两数之积绝对值较大的一组与一次项系数的符号同样注意:用十字相乘法分解因式,还要注意防止以下两种错误出现:一是没有仔细地考证交错相乘的两个积的和能否等于一次项系数;二是由十字相乘写出的因式漏写字母.二、典型例题例 1把以下各式分解因式:(1) x22x 15 ;(2) x25xy 6y 2.例 2把以下各式分解因式:(1) 2x25x 3;(2) 3x28x 3 .例 3把以下各式分解因式:1)x410x29 ;(2) 7( x y) 35( x y) 22( x y) ;(3) ( a28a) 222(a28a)120 .例 4分解因式:(x22x 3)( x22x 24)90 .例 5分解因式6x45x338 x25x6.例 6分解因式x22xy y25x 5y 6.例 7 分解因式: ca(c-a)+bc(b-c)+ab(a- b).试一试:把以下各式分解因式:(1) 2x215x 7(2)3a28a 4(3)5x27x 6(4) 6 y211y 10 (5)5a2b223ab 10(6)3a2 b217abxy 10 x2 y2(7)x27xy12 y2 (8)x47x218(9)4m28mn 3n2(10)5x515x3 y20xy2课后练习一、选择题1.假如x2px q( x a)( x b),那么p 等于()A . ab B. a+ b C.- ab D .- (a+ b)2.假如x2(a b) x 5b x2x 30 ,则b为( )A . 5B.- 6C.- 5 D . 63.多项式x23x a 可分解为(x-5)(x-b),则a,b的值分别为( ) A.10和-2B.-10和2C.10 和 2D.-10 和- 24.不可以用十字相乘法分解的是()A .x2x2B .3x210x23x C. 4x 2x 2D.5x26xy 8y2 5.分解结果等于 (x+ y- 4)(2x+ 2y- 5)的多项式是()A .2( x y)213(x y)20B.( 2x 2 y)213(x y)20C.2( x y)213( x y)20D.2( x y) 29( x y)206.将下述多项式分解后,有同样因式x-1 的多项式有()① x27x 6 ;② 3x22x 1 ;③ x 25x 6 ;④ 4x25x9;⑤ 15x223x 8;⑥ x 411x212A.2个B.3 个C.4 个D.5 个二、填空题7.x23x 10 8.m25m6__________.(m+ a)(m+b). a= __________,b= __________ .9.2x25x 3(x- 3)(__________) .10. x2____2y2(x- y)(__________) .11.a2n a(_____)(________) 2.m12.当 k= ______时,多项式3x27x k 有一个因式为(__________).13.若 x- y= 6,xy17,则代数式 x3 y2x2 y2xy3的值为__________.36三、解答题14.把以下各式分解因式:(1) x47x2 6 ;(2) x45x236 ;(3) 4x465x 2 y 216 y 4;(4) a67a3b38b6;(5) 6a45a34a2;(6) 4a637a4 b29a2 b4.15.把以下各式分解因式:(1) ( x23)24x2;(2) x2( x 2)29 ;(3) (3x22x 1)2(2x 23x 3)2;(4) ( x2x)217( x2x) 60 ;(5) ( x22x) 27( x22x) 8 ;.16.已知 x+ y= 2, xy= a+4,x3y326 ,求a的值.。
(完整版)初中化学十字相乘法因式分解
初中化学十字相乘法因式分解是化学学科中的一种常用的化学
式化简方法。
该方法适用于由多个化合物组成的复杂化合物的化学
式化简。
十字相乘法因式分解的基本原理是根据化学式中的原子元素的
数量和化合价,寻找可相乘的因子,从而达到分解化学式的目的。
下面将以化合物C6H12O6为例,详细介绍十字相乘法因式分
解的步骤:
1. 首先,找到化合物中各个原子元素的化合价。
在C6H12O6中,碳的化合价为4,氢的化合价为1,氧的化合价为2。
2. 根据化合物元素的化合价,找到可相乘的因子。
在
C6H12O6中,碳的化合价为4,氢的化合价为1,氧的化合价为2,可以得到因子4、1和2。
3. 将化合物中各个原子元素的数量进行配平,使得因子的乘积
等于化合物中各个原子元素的数量。
在C6H12O6中,碳的原子数
量为6,氢的原子数量为12,氧的原子数量为6。
可得到化合物的
化学式化简为(CH2O)6。
以上就是初中化学十字相乘法因式分解的基本步骤和操作方法。
通过这种方法,可以将复杂化合物的化学式简化为更为简洁和清晰
的形式,便于研究和理解。
第7课时§2.4.1 因式分解法——十字相乘法教学目标1、 会对多项式运用十字相乘法进行分解因式;2、 能运用十字相乘法求解一元二次方程。
教学重点和难点重点:运用十字相乘法求解一元二次方程难点:对多项式运用十字相乘法进行分解因式教学过程设计一、从学生原有的认知结构提出问题这节课,我们学习一种比较简便的解一元二次方程的方法。
二、师生共同研究形成概念1、 复习分解因式分解因式:把一个多项式分解成几个整式的积的形式一)填空:1))4)(3(++x x = ; 2))5)(4(++x x = 。
3))3)(1(++y y = ; 4)))((q x p x ++= 。
二)能否对1272++x x 、2092++x x 、342++y y 、pq x q p x +++)(2进行因式分解?它们有什么特点?特点:1)二次项系数是1;2)常数项是两个数之积;3)一次项系数是常数项的两个因数之和。
2、 十字相乘法步骤:(1)列出常数项分解成两个因数的积的各种可能情况;(2)尝试其中的哪两个因数的和恰好等于一次项系数;(3)将原多项式分解成))((q x p x ++的形式。
关键:乘积等于常数项的两个因数,它们的和是一次项系数二次项、常数项分解坚直写,符号决定常数式,交叉相乘验中项,横向写出两因式3、 讲解例题例1 分解因式:1)562++x x ; 2)862++y y ; 3)1682+-x x ; 4)21102+-a a ;5)1452-+x x ; 6)542-+t t ; 7)14132--x x ; 8)6322--x x 。
分析:关键之处在于把常数项分解成两数的积,再找它们的和等于一次项的系数的两个因数。
例2 分解因式:1)652++x x ; 2)652+-x x ; 3)652-+x x ; 4)652--x x 。
分析:此例题中各式都有很大的相同之处。
只有深刻理会十字相乘法,才可以正确地把四个多项式分解因式。
初中数学十字相乘法因式分解要点:一、2()x p q x pq +++型的因式分解特点是:(1)二次项的系数是1(2)常数项是两个数之积(3)一次项系数是常数的两个因数之和。
对这个式子先去括号,得到:pq x q p x +++)(2)()(22pq qx px x pq qx px x +++=+++=))(()()(q x p x p x q p x x ++=+++=1的二次三项式分解因式。
二、一般二次三项式2ax bx c ++的分解因式大家知道,2112212122112()()()a x c a x c a a x a c a c x c c ++=+++。
反过来,就可得到:2121221121122()()()a a x a c a c x c c a x c a x c +++=++我们发现,二次项系数a 分解成12a a ,常数项c 分解成12c c ,把1212,,,a a c c 写成1122a c a c ⨯,这里按斜线交叉相乘,再相加,就得到1221a c a c +,那么2ax bx c ++就可以分解成1122()()a x c a x c ++.这种借助画十字交叉线分解系数,从而将二次三项式分解因式的方法,叫做十字相乘法。
【典型例题】[例1] 把下列各式分解因式。
(1)232++x x (2)672+-x x 分析:(1)232++x x 的二次项的系数是1,常数项212⨯=,一次项系数213+=,这是一个pq x q p x +++)(2型式子。
(2)672+-x x 的二次项系数是1,常数项)6()1(6-⨯-=,一次项系数=-7)1(- )6(-+,这也是一个pq x q p x +++)(2型式子,因此可用公式pq x q p x +++)(2+=x ( ))(q x p +分解以上两式。
解:(1)因为212⨯=,并且213+=,所以)2)(1(232++=++x x x x(2)因为)6()1(6-⨯-=,并且)6()1(7-+-=-,所以)6)(1(672--=+-x x x x[例2] 把下列各式因式分解。
因式分解—十字相乘法(2)教案一、教学目标:1、进一步理解因式分解的定义;2、会用十字相乘法进行二次三项式,2ax bx c ++的因式分解;3、通过学生的不断尝试,培养学生的耐心和信心,同时在尝试中提高学生的观察能力。
二、教学的重点、难点教学重点、难点:能熟练应用十字相乘法进行二次三项式2ax bx c ++的因式分解。
三、导学过程:(一)创设情境,导入新课:分解因式(1)62--x x (2)652++x x (3)62-+x x (4)432-+x x (5)432--x x (二)自主学习()()223531110x x x x ++=++。
反过来就得到: ()()231110235x x x x ++=++。
想一想231110x x ++怎样因式分解的,有什么规律?总结规律:二次项的系数3分解成1,3两个因数的积;常数项10分解成2,5两个因数的积;当我们把1,3,2,5写成 1 23 5后发现1×5+2×3正好等于一次项的系数11。
(三)合作探索由上面例子启发我们,应该如何把二次三项式2ax bx c ++进行因式分解? 我们知道,()()()1122212122112212122112a x c a x c a a x a c x a c x c c a a x a c a c x c c ++=+++=+++反过来,就得到()()()2121221121122 a a x a c a c x c c a x c a x c +++=++(四)点拨升华二次项的系数a 分解成12a a ,常数项c 分解成12c c ,并且把1a ,2a ,1c ,2c 排列如下: 1a 1c2a 2c这里按斜线交叉相乘,再相加,就得到1a 2c +2a 1c ,如果它们正好等于2ax bx c ++的一次项系数b ,那么2ax bx c ++就可以分解成()()1122a x c a x c ++,其中1a ,1c 位于上图的上一行,2a ,2c 位于下一行。
因式分解(十字相乘)教案目的:掌握因式分解的四种方法,并能够解决与此相关的数学题目和问题,为以后的学习打下基础。
1.概念:把一个多项式回味几个整式积地形式,叫做把这个多项式因式分解,也叫做把这个多项式分解因式。
通俗地说就是——多项式的差和化积的过程,因式分解的最后结果是积的形式。
2.和整式的乘法有什么关系?互为逆运算:因式分解是和差化积的过程;整式乘法是积化和差的形式例.:x(x+y)=x^2+xy3.书本上因式分解的四种方法(1)提取公因式法所有相同的项写到一起,其余的写到括号里(2)公式法:平方差公式:a^2-b^2=(a+b)(a-b)完全平方公式:(a+b)^2=a^2+2ab+b^2;(a-b)^2=a^2-2ab+b^2(3)分组分解法一般试四项,较为容易,注意,分完组提取公因式之后,能不能再次分解(4)十字相乘法*(重要)今天要讲的内容是十字相乘法:十字相乘:适用形如ax^2+bx+c 的二次三项式首先:二次项系数a等于1时:套用书上公式:x^2+(a+b)x+ab=(x+a)(x+b)例.:x^2-5x+4其中两个数a,b的和-5,两个数a,b的乘积是4.那这两个数是多少:-1和-4 即这个式子分解因式为(x-1)(x-4)例.:x^2+5x+6 其中两个数a,b的和5,两个数a,b的乘积是6.那这两个数是多少:2和3 即这个式子分解因式为(x+2)(x+3)然后看二次项系数不为1时:ax^2+bx+c=(a1x+c1)(a2x+c2)如何得出:首先画一个十字:系数a分解成a1和a2,c分成c1和c2,a1乘a2等于a ,c1乘c2等于c,交叉乘积的和等于b,即b=a1c2+a2c1;在得出最后结果的时候一定要注意要横着写即(a1x+c1)(a2x+c2)例:3x^2-11x+10=(x-2)(3x-5)__不是一次性成功的,可以吗慢试,做多了题目就会越来越快。
例:3a^2-7a-6=(X-3)(3X+2)例:6x^2+x-35=(2x+5)(3x-7)例:(x^2+3x)^2-2(x^2+3x)-8=(x^2+3x+2)(x^2+3x-4)课后思考:(x+1)(x+2)(x+3)(x+4)+1=(x^2+5x+5)^2(综合)。
十字相乘法教学设计(多篇)篇:十字相乘法设计因式分解——十字相乘法东莞市可园中学教材与学情分析本课时属数学教材八年级上学期《分解因式》的补充内容,依据一是这一内容在九年级解一元二次方程中有很大的应用价值,二是学生的掌握难度并不大,增补此内容并不会增加学生负担,三是学习此内容可开阔学生视野,锻炼学生的思维,所以,我们也安排了课时讲解此内容。
教学目标:1、会用十字相乘法进行二次三项式(x2px q)的因式分解;2、通过学生的不断尝试,培养学生的耐心和信心,在尝试中提高学生的观察能力和逆向思维能力。
教学重点:能熟练应用十字相乘法进行二次三项式(x2px q)的因式分解。
b,a b q。
教学难点:在x2px q分解因式时,准确地找出a、使ab p,教学过程:一、复习引入分解因式:把一个多项式分解成几个整式的_______的形式。
已学的因式分解方法有_______________和______________.思考:你知道x25x6怎样分解因式吗?二、探究(x2)(x3) = ____;(x2)(x4)= _。
填空:(1)(2)(x3)(x4)= ___;(x a)(x b)= _。
(3)(4)根据上面结果,你会对下列二次三项式进行因式分解?请试一下。
它们有什么共同的特点?(1)x25x 6 =____________ , (2) x22x8=_______________。
(3)x27x12 =____________ , (4)x2(a b)x ab =_______________。
共同特点:①二次项系数是_____;②常数项是两个数之_______;③一次项系数是常数项的两个因数之_______。
例题讲解例1.因式分解x25x 6十字相乘法的定义:利用十字交叉来分解系数,把二次三项式分解因式的方法叫做十字相乘法。
练习1 .因式分解(1)x27x 6 (2)x25x 6例2.因式分解x22x8练习2.因式分解(1)x22x8 (2)x27x8四、巩固练习练习3.因式分解(1)x27x10 (2)x27x10(3)x29x10 (4)x23x10练习4.若x2mx n(x4)(x9),则m=______,n=________.五、拓展提升出题比赛练习5.在横线上填一个整数,然后因式分解(1)x2____x15 (2)x2____x 15练习6.若x2ax6在整数范围内可以因式分解,则a的值可能是_____________.六、小结七、教学反思在读书的时候学到十字相乘法时,曾经心里有这样一个疑惑,是不是所有的二次三项式都可以用十字相乘法进行因式分解呢?如果不是,那满足什么条件的二次三项式可以用十字相乘法进行因式分解呢?这留作我们今天这节课的第三个思考题。
“十字相乘法”教学设计(优秀3篇)“十字相乘法”教学设计篇一【教学内容】8.壹五十字相乘法(第一课时,课本P.49~P.51)【教学目标】1、能较熟练地用十字相乘法把形如x2+px+q的二次三项式分解因式;2、通过课堂交流,锻炼学生数学语言的表达能力;3、培养学生的观察能力和从特殊到一般、从具体到抽象的思维品质。
【教学重点】能较熟练地用十字相乘法把形如x2+px+q的二次三项式分解因式。
【教学难点】把x2+px+q分解因式时,准确地找出a、b,使a·b=q;a+b=p.【教学过程】一、复习导入1.口答计算结果:(1)(x+2)(x+1)(2)(x+2)(x-1)(3)(x-2)(x+1)(4)(x-2)(x-1)(5)(x+2)(x+3)(6)(x+2)(x-3)(7)(x-2)(x+3)(8)(x-2)(x-3)2.问题:你是用什么方法将这类题目做得又快又准确的呢?[在多项式的乘法中,有(x+a)(x+b)=x2+(a+b)x+ab]二、探索新知1、观察与发现:等式的左边是两个一次二项式相乘,右边是二次三项式,这个过程将积的形式转化成和差形式,进行的是乘法计算。
反过来可得x2+(a+b)x+ab=(x+a)(x+b).等式的左边是二次三项式,右边是两个一次二项式相乘,这个过程将和差的形式转化成积的形式,进行的是因式分解。
2、体会与尝试:①试一试因式分解:x2+4x+3;x2-2x-3将二次三项式x2+4x+3因式分解,就需要将二次项x2分解为x·x,常数项3分解为3×1,而且3+1=4,恰好等于一次项系数,所以用十字交叉线表示:x2+4{WWW.JIAOXUELA}x+3=(x+3)(x+1).x+3x+13x+“十字相乘法”教学设计篇二教学目标:1.使学生经历整十、整百数乘整十数的口算乘法的过程,能比较正确熟练地进行口算。
2学会运用整十、整百数乘整十数的口算乘法解决简单的实际问题。
十字相乘因式分解教案教案标题:十字相乘因式分解教案教案目标:1. 理解十字相乘法在因式分解中的应用;2. 掌握使用十字相乘法分解二次多项式的技巧;3. 能够独立运用十字相乘法解决相关问题。
教学准备:1. 教师准备:黑板/白板、彩色粉笔/马克笔、教学PPT;2. 学生准备:课本、笔记本、铅笔和橡皮擦。
教学过程:一、导入(5分钟)1. 教师用简单的例子引入十字相乘因式分解的概念,例如:(x+3)(x+2);2. 提问学生是否知道如何将上述式子进行因式分解。
二、讲解十字相乘法(10分钟)1. 教师介绍十字相乘法的步骤:将二次多项式的首项和末项的系数相乘,找出两个数的乘积等于中间项的系数;2. 通过示例演示如何使用十字相乘法分解二次多项式,例如:x^2+5x+6;3. 强调步骤的重要性,并提醒学生在计算过程中注意符号。
三、练习与巩固(15分钟)1. 教师提供一些练习题,让学生独立进行因式分解,例如:2x^2+7x+3;2. 学生在课堂上完成练习题,并相互讨论解题方法;3. 教师巡视课堂,解答学生疑问,纠正他们的错误。
四、拓展与应用(10分钟)1. 教师提供一些拓展题,让学生运用十字相乘法解决实际问题,例如:已知一个矩形的长和宽之和为x,面积为x^2+3x+2,求矩形的长和宽;2. 学生独立解答拓展题,并将答案写在纸上;3. 教师选几位学生上台讲解解题思路,并与学生一同讨论。
五、总结与反思(5分钟)1. 教师对十字相乘因式分解的方法进行总结,强调学生在课后需要多加练习;2. 学生反思本节课的学习情况,提出问题并与教师进行交流。
六、作业布置(5分钟)1. 教师布置相关的作业,要求学生独立完成;2. 强调作业的重要性,并提醒学生将问题及时反馈。
教学反馈:1. 教师对学生的课堂表现进行评价,记录学生的掌握情况;2. 针对学生的问题进行解答和指导,帮助学生提高。
备注:教案中的时间安排仅供参考,实际教学中可根据具体情况进行调整。
初中数学因式分解教案初中数学因式分解教案(5篇)作为一名优秀的教育工作者,可能需要进行教案编写工作,编写教案助于积累教学经验,不断提高教学质量。
如何把教案做到重点突出呢?下面是小编帮大家整理的初中数学因式分解教案,欢迎阅读,希望大家能够喜欢。
初中数学因式分解教案1教学目标1.知识与技能会应用平方差公式进行因式分解,发展学生推理能力.2.过程与方法经历探索利用平方差公式进行因式分解的过程,发展学生的逆向思维,感受数学知识的完整性.3.情感、态度与价值观培养学生良好的互动交流的习惯,体会数学在实际问题中的应用价值.重、难点与关键1.重点:利用平方差公式分解因式.2.难点:领会因式分解的解题步骤和分解因式的彻底性.3.关键:应用逆向思维的方向,演绎出平方差公式,•对公式的应用首先要注意其特征,其次要做好式的变形,把问题转化成能够应用公式的方面上来.教学方法采用“问题解决”的教学方法,让学生在问题的牵引下,推进自己的思维.教学过程一、观察探讨,体验新知【问题牵引】请同学们计算下列各式.(1)(a+5)(a-5);(2)(4m+3n)(4m-3n).【学生活动】动笔计算出上面的两道题,并踊跃上台板演.(1)(a+5)(a-5)=a2-52=a2-25;(2)(4m+3n)(4m-3n)=(4m)2-(3n)2=16m2-9n2.【教师活动】引导学生完成下面的两道题目,并运用数学“互逆”的思想,寻找因式分解的规律.1.分解因式:a2-25;2.分解因式16m2-9n.【学生活动】从逆向思维入手,很快得到下面答案:(1)a2-25=a2-52=(a+5)(a-5).(2)16m2-9n2=(4m)2-(3n)2=(4m+3n)(4m-3n).【教师活动】引导学生完成a2-b2=(a+b)(a-b)的同时,导出课题:用平方差公式因式分解.平方差公式:a2-b2=(a+b)(a-b).评析:平方差公式中的字母a、b,教学中还要强调一下,可以表示数、含字母的代数式(单项式、多项式).二、范例学习,应用所学【例1】把下列各式分解因式:(投影显示或板书)(1)x2-9y2;(2)16x4-y4;(3)12a2x2-27b2y2;(4)(x+2y)2-(x-3y)2;(5)m2(16x-y)+n2(y-16x).【思路点拨】在观察中发现1~5题均满足平方差公式的特征,可以使用平方差公式因式分解.【教师活动】启发学生从平方差公式的角度进行因式分解,请5位学生上讲台板演.【学生活动】分四人小组,合作探究.解:(1)x2-9y2=(x+3y)(x-3y);(2)16x4-y4=(4x2+y2)(4x2-y2)=(4x2+y2)(2x+y)(2x-y);(3)12a2x2-27b2y2=3(4a2x2-9b2y2)=3(2ax+3by)(2ax-3by);(4)(x+2y)2-(x-3y)2=[(x+2y)+(x-3y)][(x+2y)-(x-3y)]=5y(2x-y);(5)m2(16x-y)+n2(y-16x)=(16x-y)(m2-n2)=(16x-y)(m+n)(m-n).初中数学因式分解教案2教学目标1.知识与技能了解因式分解的意义,以及它与整式乘法的关系.2.过程与方法经历从分解因数到分解因式的类比过程,掌握因式分解的概念,感受因式分解在解决问题中的作用.3.情感、态度与价值观在探索因式分解的方法的活动中,培养学生有条理的'思考、表达与交流的能力,培养积极的进取意识,体会数学知识的内在含义与价值.重、难点与关键:1.重点:了解因式分解的意义,感受其作用.2.难点:整式乘法与因式分解之间的关系.3.关键:通过分解因数引入到分解因式,并进行类比,加深理解.教学方法:采用“激趣导学”的教学方法.教学过程:一、创设情境,激趣导入【问题牵引】请同学们探究下面的2个问题:问题1:720能被哪些数整除?谈谈你的想法.问题2:当a=102,b=98时,求a2-b2的值.二、丰富联想,展示思维探索:你会做下面的填空吗?1.ma+mb+mc=()();2.x2-4=()();3.x2-2xy+y2=()2.【师生共识】把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解,也叫做分解因式.三、小组活动,共同探究【问题牵引】(1)下列各式从左到右的变形是否为因式分解:①(x+1)(x-1)=x2-1;②a2-1+b2=(a+1)(a-1)+b2;③7x-7=7(x-1).(2)在下列括号里,填上适当的项,使等式成立.①9x2(______)+y2=(3x+y)(_______);②x2-4xy+(_______)=(x-_______)2.四、随堂练习,巩固深化课本练习.【探研时空】计算:993-99能被100整除吗?五、课堂总结,发展潜能由学生自己进行小结,教师提出如下纲目:1.什么叫因式分解?2.因式分解与整式运算有何区别?六、布置作业,专题突破选用补充作业。
十字相乘法教案教学目标:1.知识目标:使学生掌握通过代换方法,进行可以转化为x2+(a+b)x+ab型的多项式因式分解,领会整体代换、字母表示式和化归等数学方法。
理解运用十字相乘法分解因式的关键。
2.能力目标:通过问题设计,培养学生观察、分析、抽象、概括的逻辑思维能力;训练学生思维的灵活性、层次性,逐步提高学生运用变量代换思想和化归思想解决问题的能力。
3.情感目标:通过问题解决,培养合作意识,激发成功体验,鼓励创新思维。
教学设计思想:本课是简单介绍十字相乘法后的第二节课,结合学生基础较好的特点,我改变教参中的处理方式,尝试以二期课改的理念为指导,帮助学生进行探索性地学习,更好地实现有效学习。
在设计上,希望使学生体会字母表示式的想法和数学题的演变,学会透过现象看本质,灵活运用十字相乘法分解因式,进一步理解运用十字相乘法分解因式的关键。
感悟,从整体上观察、思考和处理问题是一种重要的数学方法,也是解决数学问题、发展数学内容时常用技能和技巧。
化归思想是数学中解决问题的主要思想方法。
教学过程:一、复习引入1.回忆课本上十字相乘法分解因式的一般步骤例1:把多项式x2-3x + 2分解因式。
x -1x -2解:x2-3x + 2 = (x-1) (x-2)像这种借助于画十字交叉线分解因式的方法叫做十字相乘法。
提问:是不是所有的二次三项式都能用十字相乘法分解因式?答:不是,(反例:x2 +3x-2)。
提问:形如x2+px+q的二次三项式满足什么条件时可以用十字相乘法分解因式?请同学总结:(板书)x2+px+q当q=ab,p =a+b时,x2+px+q = (x+a) (x+b) (*)再提问:在将首项系数为1的二次三项式因式分解时,你认为要注意什么?答:试分解后要及时检验,纵向相乘得首项,末项;交叉相乘得中间项。
应该注意的是一次项的系数和末项的系数都是包含了符号的。
如果常数项q是正数,那么把它分解成两个同号因数的积,它们的符号与一次项系数p的符号相同。
人教版初中二年级上册数学教学设计
十字相乘法
学习目标:掌握运用十字相乘法分解因式的方法,能正确运用十字相乘法把多项式分解因式学习重点:运用十字相乘法分解因式
学习过程:
一、知识回顾:
1、分解因式:(1)3xy2-9y2;(2)4x2-16y2;(3)x2+16x+64
2、计算:(x+a)(x+b)= =x2+( )x+ab
二、探索新知:
形如x2+px+q的二次三项式,若常数项q能分解为两个因数a、b的积,并且a+b恰好等于一次项的系数p,那么它就可以分解因式,即x2+px+q=x2+(a+b)x+ab=(x+a)(x+b)
练一练:分解因式:(1)x2+3x+2;(2)x2-7x+10;
(3)x2-x-6 (4) x2+5x-6
三、范例学习:
例把下列各式分解因式:
(1) a2+6a+8 (2) x2-8x+12 (3) x2+13x+12 (4) x2+6xy+5y2
对二次三项式x2+px+q进行因式分解,应重点掌握以下三个方面:
1.掌握方法: 拆分常数项,验证一次项.
2.符号规律: 当q>0时,a、b同号,且a、b的符号与p的符号相同;
当q<0时,a、b异号,且绝对值较大的因数与p的符号相同.
练习1 分解因式:
(1) x2-5x+6 (2) x2-8x-20 (3) x2+6x-16 (4) x2-4xy-5y2
例2把下列各式分解因式:
(1) 2x2+7x+3 (2) 3x2-11x+6 (3) (a+b)2+10(a+b)+9
归纳:
四、自主检测
1、教材第121页练习题。
2、把下列各式分解因式:
(1) x2+7x+6 (2) 2x2-9x+9
(3) 3x2-5x+2 (4) 2x2+7x+5
(5) (a +2b)2+3(a +2b )+2 (6) (a -b)2-5(a -b )+6
五、归纳内化
这节课学到了什么?有哪些收获?
六、课外拓展
1、⑴已知:()()22120x y -++=,则x= ,y= .
⑵已知:22
2450x y x y +-++=,则x= ,y= .
2. 先填空,再分解(尽可能多的): x 2 +( )x + 60 = ;
3、分解因式:x 2+xy -12y 2
4、分解因式:
①a 4-3a 2-4 ②()()
242112222+---x x x x。