秦皇岛市海港区2018-2019学年八年级下期末质量检测试卷有答案-(数学)
- 格式:pdf
- 大小:1.51 MB
- 文档页数:6
河北省秦皇岛海港区八年级数学下学期期末试题新人教版一、选择题(本大题共14小题,共28分)1.(2分)在平面直角坐标系中,点(1,-5)所在象限是()A. 第四象B. 第三象限C. 第二象限D. 第一象限2.(2分)点(-2,3)关于x轴的对称点的坐标为()A. (-2,-3)B. (2,-3)C. (-2,3)D. (2,3)3.(2分)点(3,-4)到x轴的距离为()A. 3B. 4C. 5D. -44.(2分)下列点在直线y=-x+1上的是()A. (2,-1)B. (3,)C. (4,1)D. (1,2)5.(2分)已知一个多边形的内角和等于它的外角和,则多边形的边数是()A. 3B. 4C. 5D. 66.(2分)如图,△ABC三边的长分别为3、4、5,点D、E、F分别是△ABC各边中点,则△DEF 的周长和面积分别为()A. 6,3B. 6,4C. 6,D. 4,67.(2分)如图,□ABCD中,AE平分∠DAB,∠B=100°则∠DAE等于()A.40°B.60°C.80°D.100°8.(2分)如图,添加下列条件仍然不能使▱ABCD成为菱形的是()A. AB=BCB. AC⊥BDC. ∠ABC=90°D. ∠1=∠29.(2分)一次函数y=kx+b中,y 随x的增大而增大,b > 0,则这个函数的图像不经过()A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限10.(2分)如图,当y1>y2时,x的取值范围是()A.x>1B. x>2C.x<1D. x<211.(2分)如图是一块正方形草地,要在上面修建两条交叉的小路,使得这两条小路将草地分成的四部分面积相等,修路的方法有()A. 1种B. 2种C. 4种D. 无数种12.(2分)如图,P为□ABCD对角线BD上一点,△ABP的面积为S1,△CBP的面积为S2,则S1和S2的关系为()A. S1>S2B.S1=S2C.S1<S2D. 无法判断13.(2分)武汉市光谷实验中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),下列说法错误的是()A. 九(1)班的学生人数为40B. m的值为10C. n的值为20D.表示“足球”的扇形的圆心角是70°14.(2分)某批发部对经销的一种电子元件调查后发现,一天的盈利y(元)与这天的销售量x(个)之间的函数关系的图像如图所示下列说法不正确的是().A. 一天售出这种电子元件300个时盈利最大B. 批发部每天的成本是200元C.批发部每天卖100个时不赔不赚D. 这种电子元件每件盈利5元二、填空(15----17每空2分,17-----20每空3分,共24分)15.直线y=x+2与x轴的交点坐标为___________.16.如图,在平面直角坐标系中,已知OA=4,则点A的坐标为____________,直线OA的解析式为______________.17.一次函数y=-½x+4的图像是由正比例函数____________ 的图像向___ (填“上”或“下”)平移__ 个单位长度得到的一条直线.18.如图,矩形ABCD中,对角线AC、BD交于点O,E为OB中点,且AEBD,BD=4,则CD=____________________.19.如图,小亮从点O出发,前进5m后向右转30°,再前进5m后又向右转30°,这样走n次后恰好回到点O处,小亮走出的这个n边形的每个内角是__________°,周长是___________________m.20.如图,在平面直角坐标系中,OA=AB,点A的坐标为(2,4),将△OAB绕点B旋转180°,得到△BCD,再将△BCD绕点D旋转180°,得到△DEF,如此进行下去,…,得到折线OA-AC-CE…,点P(xx,b)是此折线上一点,则b的值为_______________.三、解答题(本大题共5小题,共48分)21.如图,在正方形ABCD中,点E、F分别是AB、BC上的点,且AE=BF.求证:AFDE.22.某公司与销售人员签订了这样的工资合同:工资由两部分组成,一部分是基本工资,每人每月3000元;另一部分是按月销售量确定的奖励工资,每销售一件产品,奖励工资10元.设某销售员销售产品x件,他应得工资记为y元.(1)求y与x的函数关系式.(2)该销售员的工资为4100元,他这个月销售了多少件产品?(3)要使每月工资超过4500元,该月的销售量应当超过多少件?23.□ABCD中,AC=6,BD=10,动点P从B出发以每秒1个单位的速度沿射线BD匀速运动,动点Q从D出发以相同速度沿射线DB匀速运动,设运动时间为t秒.(1)当t =2时,证明以A、P、C、Q为顶点的四边形是平行四边形.(2)当以A、P、C、Q为顶点的四边形为矩形时,直接写出t的值.(3)设PQ=y,直接写出y与t的函数关系式.24.如图,直线l1的解析式为y=-x+4,直线l2的解析式为y=x-2,l1和l2的交点为点B.(1)直接写出点B坐标;(2)平行于y轴的直线交x轴于点M,交直线l1于E,交直线l2于F.①分别求出当x =2和x =4时E F的值.②直接写出线段E F的长y与x的函数关系式,并画出函数图像L.③在②的条件下,如果直线y=kx+b与L只有一个公共点,直接写出k的取值范围.25.如图,四边形ABCD中,AB=AD,CB=CD,AB ∥CD.(1)求证:四边形ABCD是菱形.(2)当△ABD满足什么条件时,四边形ABCD是正方形.(直接写出一个符合要求的条件)(3)对角线AC和BD交于点O,∠ADC =120°,AC=8,P为对角线AC上的一个动点,连接DP,将DP绕点D逆时针方向旋转120°得到线段DP1,直接写出A P1的取值范围. 答案1、A2、A3、B4、A5、B6、C7、A8、C9、D10、C11、D12、B13、D14、D15、(-2,0)16、(,2);17、;上;4.18、219、150 6020、221、证明:∵四边形ABCD为正方形,∴DA=AB,∠DAE=∠ABF=90°,又∵AE=BF,∴△DAE≌△ABF,∴∠ADE=∠BAF,∵∠ADE+∠AED=90°,∴∠FAE+∠AED=90°,∴∠AGE=90°,∴AF⊥DE.22、(1)∵销售人员的工资由两部分组成,一部分为基本工资,每人每月3000元;另一部分是按月销售量确定的奖励工资,每销售1件产品奖励10元,设营销员李亮月销售产品x件,他应得的工资为y元,∴y=10x+3000(,且x为整数);(2)∵若该销售员的工资为4100元,则10x+3000=4100,解之得:x=110,∴该销售员的工资为4100元,他这个月销售了110件产品;(3)根据题意可得:解得,∴要使每月工资超过4500元,该月的销售量应当超过150件.23、1)证明:∵四边形ABCD是平行四边形,∴OA=OC=3,OB=OD=5,当t=2时,BP=QD=2,∴OP=OQ=3,∴四边形APCQ是平行四边形;(2)t =2或t =8;理由如下:如图:∵四边形APCQ是矩形,∴PQ=AC=6,则BQ=PD=2,第一个图中,BP=6+2=8,则此时t=8;第二个图中,BP=2,则此时t=2.即以A、P、C、Q为顶点的四边形为矩形时,t的值为2或8;(3)根据(2)中的两个图形可得出:y=-2t+10(时),y=2y-10(时).24、解:(1)联立两个解析式可得y=-x+4y=x-2,解得x=3y=1,∴点B的坐标为(3,1);(2)①如图:当x=2时,y=-x+4=2,∴E(2,2),当x=2时,y=x-2=0,∴F(2,0),∴EF=2;如图:当x=4时,y=-x+4=0,∴E(4,0),当x=4时,y=x-2=2,∴F(4,2),∴EF=2;②L:,图像如图所示:③k >2或k<-2或.25、证明:(1)AB=AD,CB=CD,∴∠ABD=∠ADB,∠CBD=∠CDB,∵AB∥CD,∴∠ABD=∠CDB,∴∠ADB=∠CBD,∴AD∥BC,∴四边形ABCD是平行四边形.又∵AB=AD,∴四边形ABCD是菱形.(2)要使四边形ABCD是正方形,则∠A=∠ABC=∠C=∠ADC=90°,∴当△ABD是直角三角形时,即∠BAD=90°时,四边形ABCD是正方形;(3)以点C为中心,将线段AC顺时针方向旋转60°得到线段CE,由题意可知,点P1在线段CE 上运动.连接AE,∵AC=CE,∠ACE=60°,∴△ACE为等边三角形,∴AC=CE=AE=8,过点A作于点F,∴.当点P1在点F时,线段AP1最短,此时;当点P1在点E时,线段AP1最长,此时AP1=8,.如有侵权请联系告知删除,感谢你们的配合!如有侵权请联系告知删除,感谢你们的配合!。
2018—2019学年度(下)初中期末教学质量监测八年级数学参考答案选择题(每小题2分,共18分)二、填空题(每小题2分,共18分)10. 2021 11. −2 12. 十 13. 80°或20° 14. −415. 4 16. 2.6cm 17. 1 18.3 三、(每小题4分,共8分)19. (1)因式分解:32296y y x xy ++=)96(22x xy y y ++ ……2分 =2)3(x y y + ……4分(2)解不等式组:解:解不等式①,得 x ≤1 ……1分解不等式②,得 x<4……2分在同一数轴上表示不等式①②的解集,如图.……3分∴原不等式组的解集为:x ≤1 ……4分① ② ≥4, ⎪⎩⎪⎨⎧->+--.1321)2(3x x x x四、(每小题5分,共10分)20.(1)39631122-+÷+---+x xx x x x x =)1(3)3(3112+-⋅--++x x x x x x ……2分 =)1(111+++x x x =x1……4分 当23-=x 时,原式=231-=32- ……5分(2)解方程:14143=-+--xx x 解:方程两边都乘以4-x ,得 ……1分413-=--x x ……2分 解这个方程,得3=x ……3分 检验:将3=x 代入原方程 ……4分左边=右边=1∴原方程的根是3=x ……5分五、(每小题6分,共12分)21. (1)平移如图,△A 1B 1C 1即为所求.A 1的坐标(1,2)……3分(2) 如图,△A 2B 2C 2即为所求.A 2的坐标(−1,−2)……6分(第21题图)22.解:连接AD∵DF 垂直平分AB ,∴AD =BD =26∴∠DAB =∠B =22.5°,∠ADE =45°∵AE ⊥BC ,∴∠AED =90°∴∠EDA =∠EAD =45°∴AE = DE ,设AE= DE =a ,则222)26(=+a a∴a =6,即AE =6, ……4分在Rt △AEC 中,∵∠C =60°,∴∠EAC =30° 设EC =b ,则AC =2b ,∴36)2(22=-b b∴32=b ,即CE =32 ……6分六、(23题7分,24题8分,共15分)23.解:设摩托车速度为x 千米/时,抢修车速度是1.5x 千米/时, ……1分根据题意得:60155.13030+=x x ……3分 解这个方程得40=x ……4分 经检验:40=x 是原方程的根 ……5分 60405.15.1=⨯=x (千米/时) ……6分答:摩托车的速度为40千米/时,抢修车速度是60千米/时 ……7分 24.证明:(1)∵AO =CO ,OE =OF ,∠AOE =∠COF∴△AOE ≌△COF ,∴∠OAE =∠OCF ……2分∴AD ∥BC ,∴∠EDO =∠FBO∵OE =OF ,∠EOD =∠FOB∴△EOD ≌△FOB , ……4分 ∴OB =OD∴四边形ABCD 是平行四边形. ……5分 (2)∵EF ⊥AC ,AO =CO ,∴AF =FC∴AB +BF +AF =AB +BF +FC =15即AB +BC =15 ……7分 ∵□ABCD 中AD =BC ,AB =CD∴□ABCD 的周长是15×2=30. ……8分七、(本题9分)A25.由)100%(801001-+=x y 得,208.01+=x y 由)50%(90502-+=x y 得,59.02+=x y∴y 1,y 2与x 的函数关系式208.01+=x y ,59.02+=x y ……2分 由y 1>y 2得 59.0208.0+>+x x 150<x ……4分 由y 1=y 2得 59.0208.0+=+x x 150=x ……6分 由y 1<y 2得 59.0208.0+<+x x 150>x ……8分∴当小明购物金额少于150元时,去乙超市合算,等于150元时去两家超市一样,多于150元时去甲超市合算. ……9分八、(本题10分)26.(1)①AE CF CP =- ……1分证明:∵AB PD ⊥∴︒=∠=∠90C PDE , ∵BP 平分∠ABC ∴PD =PC 又∵PE =PF∴Rt △PDE ≌Rt △PCF ……2分 ∴DE =CF∵△ABC 中,∠C =90°,AC =BC ∴∠A =∠ABC =45° ∴∠APD =∠A =45° ∴AD =PD ∴AD =CP∵AD -DE =AE∴CP -CF =AE ……4分②∵△PCF ≌△PDE ∴∠DPE =∠CPF ∴∠EPF =∠DPC ∵∠ABC =45° ∴∠DPC =360°-90°-90°-45°=135°∴∠EPF =135° ……6分(2)∵∠EPF =135°,∠DPC =135°∴∠DPE =∠CPF又∵∠PCF =∠PDE =90°,PC =PD ∴△PDE ≌△PCF ∴DE =CF∵PC =PD ,∠PDB =∠PCB =90°,BP =BP ∴Rt △PCB ≌Rt △PDB∴BC =BD ……8分设DE =CF =x ,则BD =BC =x +-+163 AB =2BC =)163(2x +-+ ∵∠CFP =60°,∴∠CPF =30° ∴PF =2x ,x x x PC 3)2(22=-= ∴x PC AD PD 3===∴1633-+++=+=x x BE AE AB ∴1633)163(2-+++=+-+x x x ∴1=x ∴13+=AE ∴2332)13(321+=+=⨯=∆PD AE S AEP ……9分 (3)2)13(2m S AEP -=∆。
2019-2020学年秦皇岛市海港区八年级下学期期末数学试卷一、选择题(本大题共15小题,共30.0分)1.若点P(x,y)的坐标x,y满足√x+1+(y−2)2=0,则点P在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限2.在直角坐标系中,点(−2,3)关于x轴的对称点的坐标是()A. (−2,−3)B. (−2,3)C. (2,−3)D. (2,3)3.平面直角坐标系中,点(2,4)在()A. 第一象限B. 第二象限C. 第三象限D. 第四象限4.若正比例函数的图象经过点(1,2)、(m,6−m),则m的值为()A. −1B. 0C. 1D. 25.已知一次函数y=(3m−7)x−1+m(m为整数)的图象与y轴正半轴相交,y随x的的增大而减小,当0<y<4时,x的取值范围()A. −1<x<0B. −3<x<1C. 0<x<4D. 1<x<36.如图,在平面直角坐标系中,点A在第一象限,点B的坐标为(6,0),(k为常数,k≠0)的图象过点A,将△且AO=AB=5,双曲线y=kxOAB沿y轴正方向平移得到△O′A′B′,当点B的对应点B′落在双曲线上时,停止平移,此时O′A′与双曲线交于点E,则点E的纵坐标是().D.A. 1+√17B. −1+√17C. 3+3√174−3+3√1747.在平面直角坐标系中,若直线y=−x+a与直线y=2x+b(a,b为常数)的交点M(3,−1),则关于x的不等式−x+a≥2x+b的解集为()A. x≤3B. x≥3C. x≤−1D. x≥−18.如图,四边形ABCD中,对角线AC与BD相交于点O,不能判断四边形ABCD是平行四边形的是()A. AB//DC,AO=COB. AB//DC,∠ABC=∠ADCC. AB=DC,AD=BCD. AB=DC,∠ABC=∠ADC9.一个多边形的边数增加2条,则它的内角和增加()A. 180°B. 90°C. 360°D. 540°10.如图,在▱ABCD中,∠B=60°,AE⊥BC于E,AF⊥CD于F.若▱ABCD的面积为S,则△AEF的面积为()A. 25SB. 13SC. 38SD. 12S11.如图,在△ABC和△ADE中,∠BAC=∠DAE=90°,AB=AC,AD=AE,点C,D,E在同一条直角形上,连接B、D和B,E,下列四个结论:①BD=CE;②BD⊥CE;③∠ACE+∠DBC=30°④BE2=2(AD2+AB2)其中,正确的个数是()A. 1B. 2C. 3D. 412.如图,点O为弧AB所在圆的圆心,OA⊥OB,点P在弧AB上,AP的延长线与OB的延长线交于点C,过点C作CD⊥OP于D.若OB=BC=1,则PD的长为()A. 25B. 12C. 35D. 4513.如图所示,ΔABC与ΔA′B′C′关于点O成中心对称,则下列结论不一定成立的是()A. 点A与点A′是对称点B. BO=B′OC. ∠ACB=∠C′A′B′D. AB//A′B′14.经过一、二、三象限的某一次函数的图象上有A(1,m)、B(−1,n)两点,则()A. m<0B. n<0C. m+n>0D. m+n>115.如图,△ABC的周长为10,BC=x,∠B和∠C的平分线相交于点O,过点O作EF//BC交AB,AC于点E,F,若设△AEF的周长为y,则y与x的函数关系图象大致是()A.B.C.D.二、填空题(本大题共5小题,共20.0分)16.如图▱ABCD,点M是边AD上的一点,且BM平分∠ABC,MN⊥CD于点N,若∠DMN=30°,则∠BMN的度数为______.17.如图,在菱形ABCD中,点F为对角线AC上一点,点E在DF的延长线上,且DF=EF,连接CE、BE,若AF=3,BE=2,BC=5,则EC=______ .18.将函数y=3x+1的图象平移,使它经过点(1,1),则平移后的函数表达式是______.19.为了解九年级学生体能情况,随机抽查了其中的40名学生,测试了1分钟仰卧起坐的次数,并绘制成如图的频数分布直方图,则仰卧起坐的次数在20~25次之间的频率是______.20.函数y=kx与y=6−x的图象如图所示,则不等式6−x≥kx的解集为______.三、解答题(本大题共5小题,共50.0分)21.如图,在▱ABCD中,AB=3,AD=4,∠ABC=60°,过BC的中点E作EF⊥AB,垂足为点F,与DC的延长线相交于点H.(1)求EF的长;(2)求△DEF的面积.22.为了解本校八年级学生期末数学考试情况,小梁老师在八年级随机抽取了一部分学生的期末数学成绩为样本,分为A(90分以上),B(89---80分),C(79−,−60分),D(59^−0分)四个等级进行统计,并将统计结果绘制成如下统计图,请你根据统计图解答以下问题:(1)这次随机抽取的学生共有多少人?(2)请补全条形统计图;(3)这个学校八年级共有学生600人,若分数为80分(含80分)以上为优秀,请估什这次八年级学生期末数学考试成绩为优秀的学生人数大约有多少?23.如图1,在平面直角坐标系中,分别以△OAB的边OB,AB为边向外作正方形ABCD和正方形OBEF,作BB1⊥x轴于点B1,作FF1垂直于x轴于点F1,(1)若A(4,0)B(1,4),则①由△______≌△______,得点F的坐标为______;②求D点的坐标.(2)如图2,两正方形的中心分别是O1,O2,连接O1O2及FD,若A(4,0),B(m,n),且m>0,n>0(B点不在FD上),猜想O1O2与FD的关系,并给于证明;(3)如图3,取线段FD的中点M,若B(1,4),A(a,0),且满足2≤a≤8时,点M所经过的路径的长为______.24. 已知:关于x 的一元二次方程ax 2−2(a −1)x +a −2=0(a >0).(1)求证:方程有两个不相等的实数根;(2)设方程的两个实数根分别为x 1,x 2(其中x 1>x 2).若y 是关于a 的函数,且y =ax 2⋅x 1,求这个函数的表达式;(3)将(2)中所得的函数的图象在直线a =2的左侧部分沿直线a =2翻折,图象的其余部分保持不变,得到一个新的图象.请你结合这个新的图象直接写出:当关于a 的函数y =2a +b 的图象与此图象有两个公共点时,b 的取值范围是______ .25. 如图,点E 、F 在平行四边形ABCD 的对角线BD 上,BE =DF ,设AB ⃗⃗⃗⃗⃗ =a ⃗ ,BC ⃗⃗⃗⃗⃗ =b ⃗ ,FC⃗⃗⃗⃗⃗ =c ⃗ . (1)填空:图中与BF ⃗⃗⃗⃗⃗ 互为相反向量的向量是______;(2)填空:b ⃗ −a ⃗ =______.(3)求作:b⃗ +c⃗(不写作法,保留作图痕迹,写出结果)【答案与解析】1.答案:B解析:解:∵√x+1+(y−2)2=0,∴x=−1,y=2,则点P的坐标为(−1,2),∴P在第二象限.故选:B.根据非负数的性质,可知x+1=0,y−2=0;即x=−1,y=2,由此可以得到则点P的坐标,接着可以判断P所在象限.本题主要考查非负数的性质,涉及到点的坐标的确定,学生要熟练掌握四个象限内点的坐标的符号.2.答案:A解析:解:点(−2,3)关于x轴的对称点的坐标是:(−2,−3).故选:A.利用关于x轴对称点的坐标特点:横坐标不变,纵坐标互为相反数.即点P(x,y)关于x轴的对称点P′的坐标是(x,−y),进而得出答案.此题主要考查了关于坐标轴对称点的性质,正确把握横纵坐标关系是解题关键.3.答案:A解析:解:点(2,4)在第一象限,故选:A.根据点的坐标特征求解即可.本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(−,+);第三象限(−,−);第四象限(+,−).4.答案:D解析:解:设过点(1,2)的正比例函数的解析式为y=kx,则2=k,∴y=2x,∵点(m,6−m)在y=2x上,∴6−m=2m,解得,m=2,故选:D.根据题意可以该正比例函数的解析式,然后根据点(m,6−m)在该函数图象上,即可求得m的值.本题考查一次函数图象上点的坐标特征,解答本题的关键是明确题意,利用一次函数的性质解答.5.答案:B解析:解:∵一次函数y=(3m−7)x−1+m(m为整数)的图象与y轴正半轴相交,y随x的的增大而减小,∴{3m−7<0−1+m>0,解得:1<m<7.3∵m为整数,∴m=2,∴一次函数的解析式为y=−x+1.当y=0时,−x+1=0,解得:x=1;当y=4时,−x+1=4,解得:x=−3.∴当0<y<4时,x的取值范围为−3<x<1.故选:B.根据一次函数的图象与y轴正半轴相交且y随x的的增大而减小,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,结合m为整数可确定一次函数的解析式,再利用一次函数图象上点的坐标特征可求出当0<y<4时x的取值范围.本题考查了一次函数图象上点的坐标特征、一次函数的性质以及解一元一次不等式组,利用一次函数图象上点的坐标特征、一次函数的性质以及m为整数,确定一次函数的解析式是解题的关键.6.答案:A解析:本题考查了待定系数法求一次函数、反比例函数的解析式,函数图象上点的特征,以及图象的平移,图象的交点,等腰三角形的性质,勾股定理等,关键是把交点坐标可以看成某方程组的解.过点A 作AC⊥OB,垂足C,可求A的坐标,则可求直线OA解析式,反比例函数解析式,因为平移可得OB= O′B′,则可求B′的纵坐标,即OO′的长度,根据直线平移,k不变,可求O′A′的解析式,E的坐标可以看成反比例函数解析式和直线解析式构成的方程组的解.解:过点A作AC⊥OB,垂足C.∵AO=AB=5,AC⊥OB,OB=6,∴OC=BC=3,∴在Rt△AOC中:AC=√52−32=4,∴A(3,4),∵双曲线y=kx(k为常数,k≠0)的图象过点A,∴4=k3,∴k=12,∴反比例函数解析式y=12x,设OA解析式y=k1x,∴4=3k1,∴k1=43,∴OA解析式y=43x,∵将△OAB沿y轴正方向平移得到△O′A′B′,∴OB=O′B′=6,∴B′的纵坐标为126=2,∴OO′=2即O′(0,2),因为沿y轴向上平移2个单位,∴O′A′的解析式y=43x+2,设E(x,y)(x>0),∴{y=43x+2y=12x,解得:{x =−3+3√174y =1+√17,∴E 的纵坐标为1+√17.故选A . 7.答案:A解析:解:因为直线y =−x +a 与直线y =2x +b(a,b 为常数)的交点M(3,−1),所以可得当x ≤3,不等式−x +a ≥2x +b .故选A .当x ≤3时,y =−x +a 的函数图象在y =2x +b 的下方,从而可得到不等式的解集.本题考查一次函数与一元一次不等式的关系,通过图象求解,当图象在上方时大于,在下方时小于. 8.答案:D解析:解:A 、根据对角线互相平分的四边形是平行四边形可以判定四边形ABCD 为平行四边形,故此选项不合题意;B 、∵AB//CD ,∴∠ABC +∠BCD =180°,∵∠B =∠D ,∴AD//BC ,∴根据两组对边分别平行四边形是平行四边形可以判定四边形ABCD 为平行四边形,故此选项不合题意;C 、根据两组对边分别相等的四边形是平行四边形可以判定四边形ABCD 为平行四边形,故此选项不合题意;D 、不能判定四边形为平行四边形,故此选项符合题意;故选:D .根据平行四边形的判定定理进行判断即可.此题主要考查了平行四边形的判定,关键是掌握判定定理:(1)两组对边分别平行的四边形是平行四边形.(2)两组对边分别相等的四边形是平行四边形.(3)一组对边平行且相等的四边形是平行四边形.(4)两组对角分别相等的四边形是平行四边形.(5)对角线互相平分的四边形是平行四边形. 9.答案:C解析:解:原来的多边形的边数是n ,则新的多边形的边数是n +2.(n +2−2)⋅180°−(n −2)⋅180°=360°.故选:C .根据n 边形的内角和定理即可求解.本题主要考查了多边形的内角和定理,多边形的边数每增加一条,内角和就增加180度. 10.答案:C解析:解:∵四边形ABCD 是平行四边形,∴∠B =∠D ,∵AE ⊥BC ,AF ⊥CD ,∴∠AEB =∠AFD =90°,∴△ABE∽△ADF . ∴AB AD =AE AF ,即AB BC =AEAF , ∵BAE =∠DAF =90°−60°=30°,∠B +∠BAD =180°,∴∠EAF =180°−60°−30°−30°=60°,∴∠B =∠EAF ,∴△AEF∽△ABC ,相似比为sin60°=√32. 但△ABC 的面积为S 2,所以△AEF 的面积为34×S 2=38S.故选:C .由△ABE∽△ADF 得出对应边相等,进而得出∠B =∠EAF ,即△AEF∽△ABC ,由相似比可求三角形的面积.本题主要考查了相似三角形的判定及性质以及三角形的面积问题,应熟练掌握. 11.答案:B解析:解:①∵∠BAC =∠DAE ,∴∠BAC +∠DAC =∠DAE +∠DAC ,即∠BAD =∠CAE .在△ABD 和△ACE 中,∵{AD =AE ∠BAD =∠CAE AB =AC,∴△ABD≌△ACE(SAS),∴BD =CE.故①正确;∵△ABD≌△ACE ,∴∠ABD=∠ACE.∵∠CAB=90°,∴∠ABD+∠DBC+∠ACB=90°,∴∠DBC+∠ACE+∠ACB=90°,∴∠BDC=180°−90°=90°.∴BD⊥CE;故②正确;③∵∠BAC=90°,AB=AC,∴∠ABC=45°,∴∠ABD+∠DBC=45°.∴∠ACE+∠DBC=45°,故③错误;④∵BD⊥CE,∴BE2=BD2+DE2.∵∠BAC=∠DAE=90°,AB=AC,AD=AE,∴DE2=2AD2,BC2=2AB2.∵BC2=BD2+CD2≠BD2,∴2AB2=BD2+CD2≠BD2,∴BE2≠2(AD2+AB2).故④错误,故选:B.①由条件证明△ABD≌△ACE,就可以得到结论;②由△ABD≌△ACE就可以得出∠ABD=∠ACE,就可以得出∠BDC=90°而得出结论;③由条件知∠ABC=∠ABD+∠DBC=45°,由∠DBC+∠ACE=90°,就可以得出结论;④△BDE为直角三角形就可以得出BE2=BD2+DE2,由△DAE和△BAC是等腰直角三角形就有DE2=2AD2,BC2=2AB2,就有BC2=BD2+CD2≠BD2就可以得出结论.本题考查了全等三角形的性质和判定的应用,垂直的性质和判定的应用,等腰直角三角形的性质的应用,勾股定理的应用,能利用全等三角形的性质和判定求解是解此题的关键.12.答案:C解析:本题主要考查相似三角形的判定与性质、垂径定理、勾股定理等知识点,根据题意构建与直角边PD 相关的相似三角形是解题的出发点也是关键.解:过点O作OE⊥AP于点E,则∠AEO=∠AOC=90°,∵∠OAE=∠CAO,∴△AOE∽△ACO,∴AOAC =AEAO,∵OA=OB=BC=1,∴AC=√AO2+OC2=√5,∴√5=AE1,得AE=√55,∵OE⊥AP,∴PE=AE=√55,∴PC=AC−AP=3√55,∵∠OEP=∠D=90°,∠OPE=∠CPD,∴△OPE∽△CPD,∴PEPD =OPCP,即√55PD=3√55,解得:PD=35,故选:C.13.答案:C解析:根据中心对称的性质即可判断.【详解】解:点A与点A′是对称点,A正确;对应点的连线被对称中心平分,B正确;成中心对称图形的两个图形对应边互相平行或在同一直线上,D正确.【点睛】本题考查成中心对称两个图形的性质:对应点的连线被对称中心平分;成中心对称图形的两个图形是全等形.14.答案:C解析:解:设直线AB的解析式为y=kx+b(k≠0).∵直线AB经过一、二、三象限,∴k>0,b>0.∵点A(1,m)、B(−1,n)在直线AB上,∴m=k+b,n=−k+b,∴m+n=k+b−k+b=2b>0.故选C.设直线AB的解析式为y=kx+b(k≠0),由直线AB经过一、二、三象限即可得出k>0、b>0,再根据一次函数图象上点的坐标特征即可用含k、b的代数式表示出m、n,将其相加即可得出结论.本题考查了一次函数图象与系数的关系、列代数式以及一次函数图象上点的坐标特征,根据一次函数图象经过的象限找出k>0、b>0是解题的关键.15.答案:B解析:解:∵,∠B和∠C的平分线相交于点O,∴∠ABO=∠CBO,∠ACO=∠BCO,∵EF//BC,∴∠EOB=∠CBO,∠FOC=∠BCO,∴∠ABO=∠EOB,∠ACO=∠FOC,∴BE=OE,CF=OF,∴△AEF的周长y=AE+EF+AF=AE+OE+OF+AF=AB+AC,∵△ABC的周长为10,BC=x,∴AB+AC=10−x,∴y=10−x,∵AB+AC>BC,∴10−x>x,∴0<x<5,即y与x的函数关系式为y=10−x(0<x<5),故选:B.首先证明BE=OE,CF=OF,得出△AEF的周长y与x的关系式为y=10−x,求出0<x<5,即可得出答案.本题考查了动点问题的函数图象、三角形的内心、平行线的性质、等腰三角形的判定、三角形的周长等知识;求出y与x的关系式是解决问题的关键.16.答案:120°解析:解:∵MN⊥CD于点N,∠DMN=30°,∴∠D=90°−30°=60°,∵四边形ABCD是平行四边形,∴∠A=120°,∠ABC=60°,∵BM平分∠ABC,∴∠ABM=30°,∴∠AMB=180°−120°−30°=30°,∴∠BMN=180°−30°−30°=120°,故答案为:120°.根据互余得出∠D=60°,进而利用平行四边形的性质解答即可.此题考查平行四边形的性质,关键是根据平行四边形的性质解答.17.答案:3√5解析:解:如图所示,过E作EG⊥AC于G,连接BD交AC于O,∵四边形ABCD是菱形,∴AC与BD互相垂直平分,∴∠DOF=∠EGF=90°,在△DOF和△EGF中,{∠DOF=∠EGF ∠DFO=∠EFG DF=EF,∴△EFG≌△DFO(AAS),∴GF=OF,EG=DO=BO,又∵EG//BO,∴四边形BOGE是平行四边形,∴BE=GO=2,∴FO=1GO=1,2又∵AF=3,∴AO=3+1=4,CO=4,∴CG=4+2=6,Rt△BCO中,BO=√BC2−CO2=√52−42=3,∴EG=BO=3,Rt△CEG中,CE=√CG2+EG2=√62+32=√45=3√5.故答案为:3√5.过E作EG⊥AC于G,连接BD交AC于O,依据△EFG≌△DFO,即可得出GF=OF,EG=DO=BO,进而得到CG和EG的长,再根据勾股定理进行计算,即可得到CE的长.本题主要考查了菱形的性质以及勾股定理的运用,关键是掌握菱形的两条对角线互相垂直平分,难点在于作辅助线构造全等三角形和直角三角形.18.答案:y=3x−2解析:此题考查了一次函数图形与几何变换,求直线平移后的解析式时要注意平移时k和b的值的变化.根据函数图象平移的性质得出k的值,设出相应的函数解析式,再把经过的点代入即可得出答案.解:新直线是由一次函数y=3x+1的图象平移得到的,∴可设新直线的解析式为:y=3x+b.∵经过点(1,1),则1×3+b=1,解得b=−2,∴平移后的函数解析式为y=3x−2;故答案为y=3x−2.19.答案:0.3解析:解:在20~25次之间的频数是:40−16−8−4=12,=0.3.则次数在20~25次之间的频率是:1240故答案是:0.3.首先利用总人数40减去其它各组的人数求得20~25次的频数,然后根据频率公式:频率=频数总数,即可求解.本题考查了频率公式:频率=频数总数,即可求解.20.答案:x≤2解析:解:∵函数y=kx与y=6−x的图象交点横坐标为2,∵由图象可知,不等式6−x≥kx的解集为x≤2.故答案为x≤2.结合图象写出不等式6−x≥kx的解集即可.此题主要考查了一次函数与一元一次不等式的关系:从函数的角度看,就是寻求使一次函数y=kx+ b的值大于(或小于)0的自变量x的取值范围;从函数图象的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合.关键是求出A点坐标以及利用数形结合的思想.21.答案:解:(1)∵四边形ABCD是平行四边形,∴AD=BC=4,AB//CD,AB=CD=3,∵E为BC中点,∴BE=CE=2,∵∠B=60°,EF⊥AB,∴∠FEB=30°,∴BF=1,由勾股定理得:EF=√3;(2)∵AB//CD,∴∠B=∠ECH,在△BFE和△CHE中,{∠B=∠ECHBE=CE∠BEF=∠CEH,∴△BFE≌△CHE(ASA),∴EF=EH=√3,CH=BF=1,∵S△DHF=12DH⋅FH=4√3,∴S△DEF=1S△DHF=2√3.2解析:(1)根据平行四边形的性质得到AB=CD=3,AD=BC=4,求出BE、BF、EF;(2)根据相似得出CH=1,EH=√3,根据三角形的面积公式求△DFH的面积,即可求出答案.本题主要考查对平行四边形的性质、平行线的性质、勾股定理、含30度角的直角三角形、三角形的面积、三角形的内角和定理等知识点的理解和掌握,能综合运用这些性质进行计算是解此题的关键.22.答案:解:(1)20÷50%=40(人),答:这次随机抽取的学生共有40人;(2)B等级人数:40−5−20−4=11(人)条形统计图如下:=240(人),(3)600×1640答:这次八年级学生期末数学考试成绩为优秀的学生人数大约有240人.解析:(1)抽查人数可由C等所占的比例为50%,根据总数=某等人数÷对应比例来计算;(2)可由总数减去A、C、D的人数求得B等的人数,再补全条形统计图;(3)用样本估计总体.用总人数600乘以样本中测试成绩等级在80分(含80分)以上的学生所占百分比即可.本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.答案:(1)①OFF1,BOB1,(−4,1);②作DH⊥OA于H.∵A(4,0)B(1,4),∴OA=4,BB1=4,OB1=1,AB1=3,同法可证△ABB1≌△DAH(AAS),∴AH=BB1=4,DH=AB1=3,∴OH=8,∴D(8,3),DF.(2)结论:O1O2//DF,O1O2=12理由:如图2中,连接BF,BD.∵O1,O2是两正方形的中心,∴点O1在线段BF上,点O2在线段BD上,∵BO1=O1F,BO2=O2D,DF.∴O1O2//DF,O1O2=12(3)3√2解析:解:(1)①如图1中,∵FF1⊥x轴,BB1⊥x轴,四边形EBOF是正方形,∴∠OFF1=∠OB1B=∠BOF=90°,∴∠FOF1+∠BOB1=90°,∠BOB1+∠OBB1=90°,∴∠FOF1=∠OBB1,∵OF=OB,∴△OFF1≌△BOB1(AAS),∴FF1=OB1=1,OF1=BB1=4,∴F(−4,1),故答案为OFF1,BOB1,(−4,1).②作DH⊥OA于H.∵A(4,0)B(1,4),∴OA=4,BB1=4,OB1=1,AB1=3,同法可证△ABB1≌△DAH(AAS),∴AH=BB1=4,DH=AB1=3,∴OH=8,∴D(8,3),故答案为(8,3).(2)结论:O1O2//DF,O1O2=12DF.理由:如图2中,连接BF,BD.∵O1,O2是两正方形的中心,∴点O1在线段BF上,点O2在线段BD上,∵BO1=O1F,BO2=O2D,∴O1O2//DF,O1O2=12DF.(3)如图3中,作DH⊥OA于H.同法可证:△ABB1≌△DAH,可得D(a+4,a−1),∵F(−4,1),FM=DM,∴M(a2,a2 ),∵点A的运动轨迹是线段,∴点M的运动轨迹也是线段,当a=2时,M(1,1),当a=8时,M(4,4),∴点M的运动路径的长=√32+32=3√2.故答案为3√2.(1)①证明△OFF1≌△BOB1(AAS)即可解决问题.②作DH⊥OA于H.理由全等三角形的性质解决问题即可.(2)结论:O1O2//DF,O1O2=12DF.如图2中,连接BF,BD.利用三角形的中位线定理解决问题即可.(3)如图3中,作DH⊥OA于H.利用a表示点M的坐标,判断出点M的运动轨迹是线段,求出线段的端点坐标即可.本题属于四边形综合题,考查了正方形的性质,全等三角形的判定和性质,三角形的中位线定理,勾股定理等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题,学会探究规律寻找点的运动轨迹,属于中考压轴题.24.答案:(1)证明:∵ax2−2(a−1)x+a−2=0(a>0)是关于x的一元二次方程,∴△=[−2(a−1)]2−4a(a−2)=4>0,∴方程ax2−2(a−1)x+a−2=0(a>0)有两个不相等的实数根.(2)解:由求根公式,得x=2(a−1)±√△2a =2(a−1)±22a.∴x=1或x=1−2a.∵a>0,x1>x2,∴x1=1,x2=1−2a,∴y=ax2⋅x1=a×(1−2a)−1=a−3.即函数的表达式y=a−3(a>0),(3)−11<b<−5.解析:(1)见答案.(2)见答案.(3)解:如图,直线BD刚好和折线CBA只有一个公共点,再向下平移,就和这些CBA有两个公共点,继续向下平移到直线CE 的位置和直线CBA 刚好有1个公共点,再向下平移和这些CBA 也只有一个公共点,由(2)知,函数的表达式y =a −3(a >0),当a =2时,y =2−3=−1,∴B(2,−1),由折叠得,C(4,−3),当函数y =2a +b 的图象过点B 时,∴−1=2×2+b ,∴b =−5,当函数y =2a +b 的图象过点C 时,∴−3=2×4+b ,∴b =−11,∴−11<b <−5.故答案为:−11<b <−5.(1)根据一元二次方程的根的判别式判断即可;(2)先根据一元二次方程的求根公式得出x 1,x 2,即可得出函数函数关系式;(3)画出新函数的图形和直线y =2a +b ,利用图形和直线与y 轴的交点坐标即可得出结论.此题是翻折变换,主要考查了一元二次方程的根的判别式,求根公式,一次函数的性质,函数图象的画法,解本题的关键是求出函数的表达式y =a −3(a >0),画出函数图象是解本题的难点,注意b 的范围两个端点都不能取,此题(3)可以通过函数关系式求出射线BA 的解析式,线段BC 的解析式,再利用直线y =2a +b 既和射线BA 有交点,也和线段BC 有交点,即可求出b 的范围.25.答案:(1)FB ⃗⃗⃗⃗⃗ 和DE ⃗⃗⃗⃗⃗⃗ (2)BD⃗⃗⃗⃗⃗⃗ (3)如图,BG⃗⃗⃗⃗⃗ 即为所求作的向量.解析:解:(1)∵BE =DF ,∴BF =ED ,∴图中与BF ⃗⃗⃗⃗⃗ 互为相反向量的向量是FB ⃗⃗⃗⃗⃗ 和DE⃗⃗⃗⃗⃗⃗ . 故答案为FB ⃗⃗⃗⃗⃗ 和DE⃗⃗⃗⃗⃗⃗ . (2)∵BD ⃗⃗⃗⃗⃗⃗ =BC ⃗⃗⃗⃗⃗ +CD ⃗⃗⃗⃗⃗ =b ⃗ +(−a ⃗ )=b ⃗ −a ⃗ ,故答案为BD⃗⃗⃗⃗⃗⃗ (3)见答案(1)根据相等平面向量的定义即可判断;(2)理由三角形法则即可判断;(3)理由三角形法则即可解决问题;本题考查作图−复制作图,平行四边形的性质,平面向量等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.。
秦皇岛市八年级下学期数学期末考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共12题;共24分)1. (2分)下列二次根式中,最简二次根式是()A .B .C .D .2. (2分) (2018八上·九台期末) 如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A . 48B . 6C . 76D . 803. (2分)(2019·花都模拟) 如图所示是小明在某条道路所统计的某个时段来往车辆的车速情况,下列说法中正确的是()A . 中位数是52.5B . 众数是8C . 众数是52D . 中位数是534. (2分) (2016八上·无锡期末) 父亲节,学校“文苑”专栏登出了某同学回忆父亲的小诗:“同辞家门赴车站,别时叮咛语千万,学子满载信心去,老父怀抱希望还.”如果用纵轴y表示父亲和学子在行进中离家的距离,横轴t表示离的时间,那么下面与上述诗意大致相吻合的图象是()A .B .C .D .5. (2分)(2017·磴口模拟) 如图,在正方形ABCD中,边长为2的等边三角形AEF的顶点E、F分别在BC 和CD上.下列结论:①CE=CF;②∠AEB=75°;③BE+DF=EF;④S正方形ABCD=2+ .其中正确的个数为()A . 1B . 2C . 3D . 46. (2分)一次函数y=-2x+2的图象不经过()A . 第一象限B . 第二象限C . 第三象限D . 第四象限7. (2分)如图,在菱形ABCD中,不一定成立的是().A . 四边形ABCD是平行四边形B . AC⊥BDC . ABD是等边三角形D . ∠CAB=∠CAD8. (2分)实数范围内有意义,则x的取值范围是()A . x>1B . x≥lC . x<1D . x≤19. (2分) (2018七上·韶关期末) 把弯曲的道路改直,就能缩短路程,其中蕴含的数学原理是()A . 过一点有无数条直线B . 两点确定一条直线C . 两点之间线段最短D . 线段是直线的一部分10. (2分)如图为某一天气温随时间的变化图,则下列说法不正确的是()A . 这一天的最高气温为20 ℃B . 4时到12时,温度在上升C . 这一天的温差为10 ℃D . 这一天中,只有8点的温度为14 ℃11. (2分)如图,菱形ABCD中,已知∠D=110°,则∠BAC的度数为()A . 30°B . 35°C . 40°D . 45°12. (2分)直线y=x+3与y轴的交点坐标是()A . (0,3)B . (0,1)C . (3,0)D . (1,0)二、填空题 (共4题;共9分)13. (1分)化简或计算:(1)=________,(2) =________.14. (5分) (2016八上·东港期中) 已知直线a平行于y轴,且直线a上任意一点的横坐标都是3,直线b 平行于x轴,且直线b与x轴的距离为2,直线a与b交点为P,则点P的坐标为________.15. (2分)如图,有一圆柱,其高为8cm,它的底面半径2cm,在下底面点A处有一只蚂蚁,它想得到上底面与点A相对的点B处的食物,则蚂蚁沿圆柱侧面爬行的最短路程为________ cm(注:π取3).16. (1分) (2015九下·海盐期中) 如图,已知正方形ABCD的边长为12,BM=CN=5,CM,DN交于点O.则下列结论:①DN⊥MC;②DN垂直平分MC;③sin∠OCD= ;④S△ODC=S四边形BMON中,正确的有________(填写序号)三、解答题 (共8题;共81分)17. (10分) (2017八下·凉山期末) 计算:(1)计算:(10 ﹣6 +4 );(2)已知x= ,y= ,求x3y+xy3的值.18. (10分) (2017八下·宁城期末) 先观察下列的计算,再完成习题:;请你直接写出下面的结果:(1)=________; =________;(2)根据你的猜想、归纳,运用规律计算:.19. (11分)(2018·南京模拟) 城南中学九年级共有12个班,每班48名学生,学校对该年级学生数学学科学业水平测试成绩进行了抽样分析,请按要求回答下列问题:(1)【收集数据】要从九年级学生中抽取一个48人的样本,你认为以下抽样方法中最合理的是________.①随机抽取一个班级的48名学生;②在九年级学生中随机抽取48名女学生;③在九年级12个班中每班各随机抽取4名学生.(2)【整理数据】将抽取的48名学生的成绩进行分组,绘制成绩频数分布表和成绩分布扇形统计图如下.请根据图表中数据填空:①表中m的值为________;② B类部分的圆心角度数为________°;③估计C、D类学生大约一共有________名.九年级学生数学成绩频数分布表成绩(单位:分)频数频率A类(80~100)24B类(60~79)12C类(40~59)8mD类(0~39)4(3)【分析数据】教育主管部们为了解学校学生成绩情况,将同层次的城南、城北两所中学的抽样数据进行对比分析,得到下表:学校平均数(分)方差A、B类的频率和城南中学713580.75城北中学715880.82请你评价这两所学校学生数学学业水平测试的成绩,提出一个解释来支持你的观点.20. (5分)(2014·淮安) 如图,在三角形纸片ABC中,AD平分∠BAC,将△ABC折叠,使点A与点D重合,展开后折痕分别交AB、AC于点E、F,连接DE、DF.求证:四边形AEDF是菱形.21. (10分)(2019·益阳) 在平面直角坐标系xOy中,顶点为A的抛物线与x轴交于B、C两点,与y轴交于点D,已知A(1,4),B(3,0).(1)求抛物线对应的二次函数表达式;(2)探究:如图1,连接OA,作DE∥OA交BA的延长线于点E,连接OE交AD于点F,M是BE的中点,则OM 是否将四边形OBAD分成面积相等的两部分?请说明理由;(3)应用:如图2,P(m,n)是抛物线在第四象限的图象上的点,且m+n=﹣1,连接PA、PC,在线段PC上确定一点M,使AN平分四边形ADCP的面积,求点N的坐标.提示:若点A、B的坐标分别为(x1,y1)、(x2,y2),则线段AB的中点坐标为( , ).22. (10分)(2018·鄂尔多斯模拟) 如图,⊙O的半径为6cm,经过⊙O上一点C作⊙O的切线交半径OA的延长于点B,作∠ACO的平分线交⊙O于点D,交OA于点F,延长DA交BC于点E.(1)求证:AC∥OD;(2)如果DE⊥BC,求弧AC的长度.23. (10分) (2018八上·包河期末) 小明家与学校在同一直线上且相距720m,一天早上他和弟弟都匀速步行去上学,弟弟走得慢,先走1分钟后,小明才出发,已知小明的速度是80m/分,以小明出发开始计时,设时间为x(分),兄弟两人之间的距离为ym,图中的折线是y与x的函数关系的部分图象,根据图象解决下列问题:(1)弟弟步行的速度是________m/分,点B的坐标是________;(2)线段AB所表示的y与x的函数关系式是________;(3)试在图中补全点B以后的图象.24. (15分) (2016八上·河源期末) 已知一次函数y=﹣ x+2和y=2x﹣3的图象分别交y轴与A、B两点,两个一次函数的图象相交于点P.(1)求△PAB的面积;(2)求证:∠APB=90°;(3)若在一次函数y=2x﹣3的图象上有一点N,且横坐标为x,连结NA,请直接写出△NAP的面积关于x的函数关系式,并写出相应x的取值范围.参考答案一、单选题 (共12题;共24分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题 (共4题;共9分)13-1、14-1、15-1、16-1、三、解答题 (共8题;共81分)17-1、17-2、18-1、18-2、19-1、19-2、19-3、20-1、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、24-1、24-2、24-3、。
河北省秦皇岛市海港区2018-2019学年八年级第二学期期末数学试卷一、选择题(每小题2分,共30分)1.在平面直角坐标系中,点(0,﹣5)在()A.x轴正半轴上B.x轴负半轴上C.y轴正半轴上D.y轴负半轴上2.点(﹣2,3)关于y轴对称的点的坐标是()A.(2,﹣3)B.(2,3)C.(﹣2,﹣3)D.(3,﹣2)3.点(3,4)到y轴的距离为()A.3B.4C.5D.44.下列点在直线y=﹣x+5上的是()A.(2,﹣1)B.(3,﹣)C.(4,1)D.(1,2)5.直线y=x﹣3与x轴的交点坐标为()A.(0,3)B.(3,0)C.(﹣3,0)D.(0,﹣3)6.过原点和点(2,3)的直线的解析式为()A.y=x B.y=x C.﹣y=x D.﹣y=x7.观察图中的函数图象,则关于x的不等式ax﹣bx>c的解集为()A.x<2B.x<1C.x>2D.x>18.下列命题中,真命题是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线相等且互相垂直的四边形是正方形D.对角线互相垂直的四边形是菱形9.已知一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数为()A.8B.7C.6D.510.如图,▱ABCD中,AE平分∠DAB,∠DEA=40°,则∠D等于()A.80°B.100°C.110°D.120°11.如图,菱形ABCD中,AC=2,BD=4,这个菱形的周长是()A.B.2C.4D.812.如图,在矩形ABCD中,对角线AC和BD相交于点O,点E、F分别是DO、AO的中点.若AB=4,BC=4,则△OEF的周长为()A.6B.6C.2+D.2+213.如图是一个平行四边形,要在上面画两条相交的直线,把这个平行四边形分成的四部分面积相等,不同的画法有()A.1种B.2种C.4种D.无数种14.已知直线y=kx+b,k>0,b>0,则下列说法中正确的是()A.这条直线与x轴交点在正半轴上,与y轴交点在正半轴上B.这条直线与x轴交点在正半轴上,与y轴交点在负半轴上C.这条直线与x轴交点在负半轴上,与y轴交点在正半轴上D.这条直线与x轴交点在负半轴上,与y轴交点在负半轴上15.如图所示,AB是半圆O的直径,点P从点O出发,沿O→A→B→O的路径运动一周.设OP 为s,运动时间为t,则下列图形能大致地刻画s与t之间关系的是()A.B.C.D.二、填空题(每空2分,共20分)16.如图,已知▱ABCD中,AB=4,BC=6,BC边上的高AE=2,则▱ABCD的面积是,DC边上的高AF的长是.17.如图,矩形ABCD中,AB=2,BD=4,对角线AC、BD交于点O,AE⊥BD,则AD=,AE=.18.直线y=﹣x+2是由直线y=﹣x向上平移个单位长度得到的一条直线.直线y=﹣x+2是由直线y=﹣x向右平移个单位长度得到的一条直线.19.某学生会倡导的“爱心捐款活动结束后,学生会干部对捐款情况作了抽样调查,并绘制了统计图,图中从左到右各长方形高度之比为3:4:5:8:2,又知此次调查中捐15元和20元的人数共26人.(1)他们一共抽查了人;(2)抽查的这些学生,总共捐款元.20.已知A、B两地之间的距离为20千米,甲步行,乙骑车,两人沿着相同路线,由A地到B地匀速前行,甲、乙行进的路程s与x(小时)的函数图象如图所示.(1)乙比甲晚出发小时;(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,x的取值范围是.三、解答下列各题(本题共5小题,共50分)21.(10分)求证:平行四边形的对边分别相等.22.(9分)为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2两幅尚不完整的统计图.(1)本次抽测的男生有人,抽测成绩的众数是;(2)请你将图2的统计图补充完整;(3)若规定引体向上5次以上(含5次)为体能达标,则该校350名九年级男生中估计有多少人体能达标?23.(9分)如图,在正方形ABCD中,点E、F分别是AB、BC上的点,且AF⊥DE.求证:AE =BF.24.(10分)季末打折促销,甲乙两商场促销方式不同,两商场实际付费y(元)与标价x(元)之间的函数关系如图所示折线O﹣A﹣C(虚线)表示甲商场,折线O﹣B﹣C表示乙商场.(1)分别求射线AC、BC的解析式;(2)张华说他必须选择乙商场,由此推理张华计划购物所需费用x(元)(标价)的范围是;(3)李明说他必须选择甲商场,由此推理李明计划购物所需费用x(元)(标价)的范围是.25.(12分)如图,在平面直角坐标系中,▱ABCD,顶点A(1,1),B(5,1),D(﹣1,﹣1);直线y=kx﹣3k+4.(1)点C的坐标是,对角线AC与BD的交点E的坐标是;(2)①过点A(1,1)的直线y=kx﹣3k+4的解析式是;②过点B(5,1)的直线y=kx﹣3k+4的解析式是;③判断①、②中两条直线的位置关系是;(3)当直线y=kx﹣3k+4平分▱ABCD的面积时,k的值是;(4)一次函数y=kx﹣2k+1的图象(填能”或“不能”)平分▱ABCD的面积.参考答案与试题解析一、选择题(每小题2分,共30分)1.【分析】依据坐标轴上的点的坐标特征即可求解.【解答】解:∵点(0,﹣5),横坐标为0∴点(0,﹣5)在y轴负半轴上故选:D.【点评】本题考查了点的坐标:坐标平面内的点与有序实数对是一一对应的关系;解题时注意:x轴上点的纵坐标为0,y轴上点的横坐标为0.2.【分析】根据关于y轴对称点的坐标特点:横坐标互为相反数,纵坐标不变可得答案.【解答】解:点(﹣2,3)关于y轴对称的点的坐标是(2,3),故选:B.【点评】此题主要考查了关于y轴对称点的坐标,关键是掌握点的坐标的变化规律.3.【分析】根据点到y轴的距离是点的横坐标的绝对值,可得答案.【解答】解:点的坐标(3,4),它到y轴的距离为|3|=3,故选:A.【点评】本题考查了点的坐标,点到y轴的距离是点的横坐标的绝对值,点到x轴的距离是点的纵坐标的绝对值.4.【分析】将四个选项中的点分别代入解析式,成立者即为函数图象上的点.【解答】解:将x=2代入y=﹣x+5得,y=3,将x=3代入y=﹣x+5得,y=2,将x=4代入y=﹣x+5得,y=1,将x=1代入y=﹣x+5得,y=4,故选:C.【点评】本题考查了一次函数图象上点的坐标特征,将点的坐标代入解析式,解析式成立者即为正确答案.5.【分析】令y=0,求出x的值即可得出结论.【解答】解:令y=0,则x=3,∴直线y=x﹣3与x轴的交点坐标为(3,0).故选:B.【点评】本题考查的是一次函数图象上点的坐标特点,熟知一次函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.6.【分析】设直线的解析式为y=kx(k≠0),把(2,3)代入函数解析式,根据待定系数法即可求得.【解答】解:∵直线经过原点,∴设直线的解析式为y=kx(k≠0),把(2,3)代入得3=2k,解得k,该直线的函数解析式为y=x.故选:A.【点评】此题主要考查了用待定系数法求函数的解析式.熟练掌握待定系数法是解题的关键.7.【分析】根据图象得出两图象的交点坐标是(1,2)和当x<1时,ax<bx+c,推出x<1时,ax <bx+c,即可得到答案.【解答】解:由图象可知,两图象的交点坐标是(1,2),当x>1时,ax>bx+c,∴关于x的不等式ax﹣bx>c的解集为x>1.故选:D.【点评】本题主要考查对一次函数与一元一次不等式的关系的理解和掌握,能根据图象得出正确结论是解此题的关键.8.【分析】根据平行四边形的判定方法对A进行判断;根据矩形的判定方法对B进行判断;根据正方形的判定方法对C进行判断;根据菱形的判定方法对D进行判断.【解答】解:A、对角线互相平分的四边形是平行四边形,所以A选项正确;B、对角线相等的平行四边形是矩形,所以B选项错误;C、对角线相等且互相垂直平分的四边形是正方形,所以C选项错误;D、对角线互相垂直的平行四边形是菱形,所以D选项错误.故选:A.【点评】本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.9.【分析】n边形的内角和可以表示成(n﹣2)•180°,外角和为360°,根据题意列方程求解.【解答】解:设多边形的边数为n,依题意,得:(n﹣2)•180°=2×360°,解得n=6,故选:C.【点评】本题考查多边形的内角和计算公式,多边形的外角和.关键是根据题意利用多边形的外角和及内角和之间的关系列出方程求边数.10.【分析】根据平行四边形的性质和角平分线的性质求解.【解答】解:在▱ABCD中,∵DC∥AB,∴∠AED=∠BAE.∵AE平分∠DAB,∴∠DAE=∠BAE,∴∠DAE=∠DEA,∵∠DEA=40°,∴∠D=180°﹣40°﹣40°=100°,故选:B.【点评】本题利用了两直线平行,同旁内角互补,内错角相等和角的平分线的性质.11.【分析】通过菱形性质及勾股定理求出边AB的值,周长为4AB即可.【解答】解:因为四边形ABCD是菱形,所以AC⊥BD,设AC与BD交于点O,则AO=1,BO=2,所以AB=.周长为4AB=4.故选:C.【点评】本题主要考查了菱形的性质,解决四边形问题一般转化为三角形问题.12.【分析】由矩形的性质和勾股定理得出AC,再证明EF是△OAD的中位线,由中位线定理得出OE=OF=OA,即可求出△OEF的周长.【解答】解:∵四边形ABCD是矩形,∴∠ABC=90°,AD=BC=4,OA=AC,OD=BD,AC=BD,∴AC===8,OA=OD=AC=4,∵点E、F分别是DO、AO的中点,∴EF是△OAD的中位线,OE=OF=OA=2,∴EF=AD=2,∴△OEF的周长=OE+OF+EF=6.故选:A.【点评】本题考查了矩形的性质、勾股定理、三角形中位线定理、三角形周长的计算;熟练掌握矩形的性质,并能进行推理计算是解决问题的关键.13.【分析】利用平行四边形为中心对称图形进行判断.【解答】解:∵平行四边形为中心对称图形,∴经过平行四边形的对称中心的任意一条直线可把这个平行四边形分成的四部分面积相等.故选:D.【点评】本题考查的是中心对称,掌握平行四边形是中心对称图形以及中心对称图形的性质是解题的关键.14.【分析】先确定直线y=kx+b经过第一、二、三限,即可对各选项进行判断.【解答】解:∵直线y=kx+b,k>0,b>0,∴直线y=kx+b经过第一、二、三象限,故选:C.【点评】本题考查了一次函数与系数的关系:对于一次函数y=kx+b,它与y轴交于(0,b),当b>0时,(0,b)在y轴的正半轴上,直线与y轴交于正半轴;当b<0时,(0,b)在y轴的负半轴,直线与y轴交于负半轴.当k>0,b>0⇔y=kx+b的图象在一、二、三象限;k>0,b <0⇔y=kx+b的图象在一、三、四象限;k<0,b>0⇔y=kx+b的图象在一、二、四象限;k<0,b<0⇔y=kx+b的图象在二、三、四象限.15.【分析】依题意,可以知道点P从O到A匀速运动时,OP的长s逐渐变大;在上运动时,长度s不变;从B到O匀速运动时,OP的长s逐渐变小直至为0.依此即可求解.【解答】解:可以看出从O到A逐渐变大,而弧AB中的半径不变,从B到O中OP逐渐减少直至为0.故选:D.【点评】此题考查了函数随自变量的变化而变化的问题,能够结合图形正确分析距离y与时间x 之间的大小变化关系,从而正确选择对应的图象.二、填空题(每空2分,共20分)16.【分析】用CD×AF可求平行四边形的内角,再借助面积12=CD×AF可求AF.【解答】解:根据平行四边形的面积=底×高,可得BC×AE=6×2=12;则CD×AF=12,即4×AF=12,所以AF=3.故答案为12,3.【点评】本题主要考查了平行四边形的性质,面积法求解平行四边形的高或某边长是解决此类问题常用的方法.17.【分析】根据矩形的性质求出∠BAD=90°,根据勾股定理求出AD,根据含30°角的直角三角形的性质求出AE=AD,即可求出AE.【解答】解:∵四边形ABCDD是矩形,∴∠BAD=90°,在Rt△BAD中,由勾股定理得:AD===2,∵在Rt△BAD中,AB=2,BD=4,∴AB=BD,∴∠ADB=30°,∵AE⊥BD,∴∠AED=90°,∴AE=AD==,故答案为:2,.【点评】本题考查了勾股定理,矩形的性质和含30°角的直角三角形的性质,能灵活运用性质进行推理是解此题的关键.18.【分析】根据平移中解析式的变化规律是:横坐标左移加,右移减;纵坐标上移加,下移减,可得出答案.【解答】解:直线y=﹣x+2是由直线y=﹣x向上平移2个单位长度得到的一条直线.由直线y=﹣x向右平移4个单位长度得到y=﹣(x﹣4)=﹣x+2.故答案是:2;4.【点评】本题考查一次函数图象与几何变换,掌握平移中解析式的变化规律是:左加右减;上加下减是解题的关键.19.【分析】(1)设捐款5元,10元,15元,20元,30元的人数分别为3x人,4x人,5x人,8x 人,2x人.构建方程即可解决问题.(2)根据捐款人数以及捐款金额,求出总金额即可.【解答】解:(1)设捐款5元,10元,15元,20元,30元的人数分别为3x人,4x人,5x人,8x人,2x人.由题意:5x+8x=26,解得x=2,∴一共有:6+8+10+16+4=44人,故答案我44.(2)总共捐款额=6×5+8×10+10×15+16×20+4×30=700(元).故答案我700.【点评】本题考查频数分布直方图,抽样调查等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.20.【分析】(1)由图象直接可得答案;(2))在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,有两种情况:一是甲出发,乙还未出发时,此时从图象直接可得解;二是乙追上甲后,直至乙到达终点时,此时需要先求出甲和乙的函数解析式,并求二者交点才能得解.【解答】(1)由函数图象可知,乙比甲晚出发1小时.故答案为:1.(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,有两种情况:一是甲出发,乙还未出发时:此时0≤x≤1;二是乙追上甲后,直至乙到达终点时:设甲的函数解析式为:y=kx,由图象可知,(4,20)在函数图象上,代入得:20=4k,∴k=5,∴甲的函数解析式为:y=5x①设乙的函数解析式为:y=k′x+b,将坐标(1,0),(2,20)代入得:,解得,∴乙的函数解析式为:y=20x﹣20 ②由①②得,∴,故≤x≤2符合题意.故答案为:0≤x≤1或≤x≤2.【点评】本题是一次函数结合图象的综合应用题,数形结合是本类习题解答的关键.本题属于中档题.三、解答下列各题(本题共5小题,共50分)21.【分析】连接AC,利用平行四边形的性质易证△ADC≌△CBA,由全等三角形的性质:对应边相等即可得到平行四边形的两组对边分别相等.【解答】解:已知:四边形ABCD是平行四边形,求证:平行四边形ABCD的对边分别相等.证明:连接AC,∵四边形ABCD为平行四边形,(已知)∴AB∥CD,AD∥BC,(平行四边形对应边相等)∴∠DAC=∠BCA、∠BAC=∠DCA,(两直线平行,内错角相等)∵AC=CA,(公共边),∴在△ADC和△CBA中,,∴△ADC≌△CBA,(AAS)∴AB=CD,BC=AD,(全等三角形的对应边相等),即平行四边形的对边分别相等.【点评】本题考查了平行四边形的性质,属于证明命题的题目,此类题目解题的步骤是,先画出图形,再根据图形和原命题写出已知、求证和证明.22.【分析】(1)用4次的人数除以所占百分比即可得到总人数,人数最多的次数即为该组数据的众数;(2)用总人数减去其他各组的人数即可得到成绩为5次的人数;(3)用总人数乘以达标率即可得到达标人数.【解答】解:(1)从条形统计图和扇形统计图可知,达到4次的占总人数的20%,∴总人数为:10÷20%=50人,众数为5次;(2)如图.(3)∵被调查的50人中有36人达标,∴350名九年级男生中估计有350×=252人.【点评】题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.23.【分析】证得∠ADE=∠GAB,由ASA证得△DAE≌△ABF,即可得出结论.【解答】证明:∵ABCD是正方形,∴AD=AB,∠DAE=∠ABF=90°,∴∠DAG+∠BAG=90°,∵AF⊥DE,∴∠ADE+∠DAG=90°,∴∠ADE=∠GAB,在△DAE和△ABF中,,∴△DAE≌△ABF(ASA),∴AE=BF.【点评】本题考查了正方形的性质、直角三角形的性质、全等三角形的判定与性质、熟练掌握正方形的性质是关键.24.【分析】(1)运用待定系数法求出射线AC的解析式,得出点C的横坐标,再运用待定系数法求射线BC的解析式即可;(2)根据图象解答即可;(3)根据图象解答即可.【解答】解:(1)设射线AC的解析式为y=k1x+b1,根据题意得,,解得,∴射线AC的解析式为y=,解方程得x=300,即点C的坐标为(300,275),设射线BC的解析式为y=k2x+b2,根据题意得,,解得,∴射线BC的解析式为y=;(2)根据图象可知,张华说他必须选择乙商场,由此推理张华计划购物所需费用x(元)(标价)的范围是:x>300.故答案为:x>300;(3)根据图象可知,李明说他必须选择甲商场,由此推理李明计划购物所需费用x(元)(标价)的范围是:50<x<300.故答案为:50<x<300【点评】本题考查了一次函数解实际问题的运用,运用一次函数建立不等式确定优惠方案在实际问题中的运用,解答时根据条件求出函数的解析式是解答本题的关键.25.【分析】(1)根据平行四边形的性质以及A、B两点的坐标可得CD∥AB∥x轴,CD=AB=4,再利用平移的性质得出点C的坐标;根据平行四边形的对角线互相平分得出E是BD的中点,再利用线段的中点坐标公式求出点E的坐标;(2)①将点A(1,1)代入y=kx﹣3k+4,求出k的值即可;②将点B(5,1)代入y=kx﹣3k+4,求出k的值即可;③将两直线的解析式联立组成方程组,求得,即可判断①、②中两条直线的位置关系是相交;(3)当直线y=kx﹣3k+4平分▱ABCD的面积时,直线y=kx﹣3k+4经过▱ABCD对角线的交点E(2,0),将E点坐标代入y=kx﹣3k+4,求出k的值即可;(4)将x=2代入y=kx﹣2k+1,求出y=1≠0,即直线y=kx﹣2k+1不经过▱ABCD对角线的交点E(2,0),即可判断一次函数y=kx﹣2k+1的图象不能平分▱ABCD的面积.【解答】解:(1)∵四边形ABCD是平行四边形,A(1,1),B(5,1),∴CD∥AB∥x轴,CD=AB=4,∵D(﹣1,﹣1),∴点C的坐标是(﹣1+4,﹣1),即(3,﹣1),∵E是对角线AC与BD的交点,∴E是BD的中点,∵B(5,1),D(﹣1,﹣1),∴点E的坐标是(2,0).故答案为(3,﹣1),(2,0);(2)①将点A(1,1)代入y=kx﹣3k+4,得1=k﹣3k+4,解得k=,则所求的解析式是y=x﹣.故答案为y=x﹣;②将点B(5,1)代入y=kx﹣3k+4,得1=k﹣3k+4,解得k=﹣,则所求的解析式是y=﹣x+.故答案为y=﹣x+;③由,得,∴①、②中两条直线的位置关系是相交,交点是(3,4).故答案为相交;(3)∵直线y=kx﹣3k+4平分▱ABCD的面积时,∴直线y=kx﹣3k+4经过▱ABCD对角线的交点E(2,0),∴0=2k﹣3k+4,解得k=4.故答案为4;(4)∵x=2时,y=kx﹣2k+1=1≠0,∴直线y=kx﹣2k+1不经过▱ABCD对角线的交点E(2,0),∴一次函数y=kx﹣2k+1的图象不能平分▱ABCD的面积.故答案为不能.【点评】本题考查了两条直线的交点问题:两条直线的交点坐标,就是由这两条直线相对应的一次函数表达式所组成的二元一次方程组的解.也考查了平行四边形的性质,一次函数的性质,一次函数图象上点的坐标特征,线段的中点坐标公式等知识.。
2018-2019学年八年级(下)期末考试数学试卷一、填空题(每小题3分,共24分)1.当x时,在实数范围内有意义.2.在▱ABCD中,∠A=70°,则∠C=度.3.正比例函数y=kx(k≠0)的图象经过点A(﹣1,5),则k=.4.如图,分别以Rt△ABC的三边为边长,在三角形外作三个正方形,若正方形P的面积等于89,Q的面积等于25,则正方形R的边长是.5.如图,在平行四边形ABCD中,点E、F分别在边BC、AD上,请添加一个条件,使四边形AECF是平行四边形(只填一个即可).6.有两名学员小林和小明练习射击,第一轮10枪打完后两人打靶的环数如图所示,通常新手的成绩不太稳定,那么根据图中的信息,估计小林和小明两人中新手是.7.如图,在矩形ABCD中,对角线AC、BD相交于点O,点E、F分别是AO、AD的中点,若AB=6cm,BC=8cm,则△AEF的周长=cm.8.一次函数y1=kx+b与y2=x+a的图象如图所示,则不等式kx+b<x+a的解集为.二、选择题(每小题3分,共24分)9.下列二次根式中,最简二次根式是()A.B.C. D.10.下列计算正确的是()A.2B. C.D.=﹣311.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD是AB边上的中线,则CD的长是()A.20 B.10 C.5 D.12.一次函数y=kx+b的图象如图所示,则k、b的符号()A.k<0,b>0 B.k>0,b>0 C.k<0,b<0 D.k>0,b<013.下列命题中,为真命题的是()A.有一组邻边相等的四边形是菱形B.有一个角是直角的平行四边形是矩形C.有一组对边平行的四边形是平行四边形D.对角线互相垂直平分的四边形是正方形14.为了调查某小区居民的用水情况,随机抽查了若干户家庭的月用水量,结果如下表:3458月用水量(吨)户数2341则关于这若干户家庭的月用水量,下列说法错误的是()A.平均数是4.6吨B.中位数是4.5吨C.众数是4吨D.调查了10户家庭的月用水量15.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度为h(cm),燃烧时间为t(小时),则下列图象能反映h与t的函数关系的是()A. B. C. D.16.如图,菱形ABCD的周长为40cm,对角线AC、BD相交于点O,DE⊥AB,垂足为E,DE:AB=4:5,则下列结论:①DE=8cm;②BE=4cm;③BD=4cm;=80cm,正确的有()④AC=8cm;⑤S菱形ABCDA.①②④⑤B.①②③④C.①③④⑤D.①②③④⑤三、解答题(共72分)17.(12分)计算:(1)2(2)÷﹣2×+(3)﹣(+2)(﹣2)18.(6分)如图所示,沿海城市B的正南方向A处有一台风中心,沿AC的方向以30km/h的速度移动,已知AC所在的方向与正北成30°的夹角,B市距台风中心最短的距离BD为120km,求台风中心从A处到达D处需要多少小时?(,结果精确到0.1)19.(6分)已知水银体温计的读数y(℃)与水银柱的长度x(cm)之间是一次函数关系,现有一支水银体温计,其部分刻度线不清晰(如图),表中记录的是该体温计部分清晰刻度线及其对应水银柱的长度.(1)求y关于x的函数关系式(不需要写出函数自变量x的取值范围);(2)用该体温计测体温时,水银柱的长度为6.0cm,求此时体温计的读数.20.(6分)已知:如图,在▱ABCD中,E、F是对角线BD上的两点,BE=DF,求证:AE=CF.21.(6分)某中学为了丰富学生的体育活动,决定根据学生的兴趣爱好采购一批体育用品供学生课后锻炼使用,学校随机抽取了部分同学调查他们的兴趣爱好,将收集的数据整理并绘制成下列两幅统计图,请根据图中的信息,完成下列问题:(1)设学校这次调查共抽取了n名学生,n=;(2)请你补全条形统计图;(3)设该校共有学生1200名,请你估计该校有多少名学生喜欢跳绳?22.(9分)在昆明市“创文”工作的带动下,某班学生开展了“文明在行动”的志愿者活动,准备购买一些书包送到希望学校,已知A品牌的书包每个40元,B 品牌的书包每个42元,经协商:购买A品牌书包按原价的九折销售;购买B品牌的书包10个以内(包括10个)按原价销售,10个以上超出的部分按原价的八折销售.(1)设购买x个A品牌书包需要y1元,求出y1关于x的函数关系式;(2)购买x个B品牌书包需要y2元,求出y2关于x的函数关系式;(3)若购买书包的数量超过10个,问购买哪种品牌的书包更合算?说明理由.23.(8分)如图,四边形ABCD中,对角线AC、BD相交于点O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.(1)求证:四边形ABCD是矩形.(2)DF⊥AC,若∠ADF:∠FDC=3:2,则∠BDF的度数是多少?24.(9分)如图,在平面直角坐标系xOy中,直线y=﹣2x+a与y轴交于点C (0,6),与x轴交于点B.(1)求这条直线的解析式;(2)直线AD与(1)中所求的直线相交于点D(﹣1,n),点A的坐标为(﹣3,0).①求n的值及直线AD的解析式;②求△ABD的面积;③点M是直线y=﹣2x+a上的一点(不与点B重合),且点M的横坐标为m,求△ABM的面积S与m之间的关系式.25.(10分)如图,正方形ABCD中,AC是对角线,今有较大的直角三角板,一边始终经过点B,直角顶点P在射线AC上移动,另一边交DC于Q.(1)如图1,当点Q在DC边上时,探究PB与PQ所满足的数量关系;小明同学探究此问题的方法是:过P点作PE⊥DC于E点,PF⊥BC于F点,根据正方形的性质和角平分线的性质,得出PE=PF,再证明△PEQ≌△PFB,可得出结论,他的结论应是;(2)如图2,当点Q落在DC的延长线上时,猜想并写出PB与PQ满足的数量关系,并证明你的猜想.2018-2019学年八年级(下)期末考试八年级数学参考答案一、填空题(每小题3分,共24分) 1.3≥x 2. 70º3. -54. 85. AF=CE 或DF=BE 或AE ∥CF 或∠AEB=∠FCB 或∠DFC=∠DAE 或∠AEC=∠CFA 或∠EAF=∠FCE 或∠AEB=∠CFD6. 小林7. 98. x >3三、解答题:17.计算:(每小题4分,共12分) (1)483316122+- 解: 原式=3123234+- …………………………3分 =314= …………………………4分(2)810512-327+⨯÷ 解: 原式=22223+- …………………………3分 =3 …………………………4分 (3)()()()2525232-+-+解: 原式= 12623-++ …………………………3分 =624+ …………………………4分18. 解:在Rt △ADB 中,∠ADB=90º∵∠BAD=30º,BD=120km∴ AB=240km …………………………2分 又∵ 222AB BD AD =+∴312012024022=-=AD km …………………………4分∵73.13≈∴从A 处到达D 处需要34303120=9.6≈小时 …………………………5分答:求台风中心从A 处到达D 处大约6.9小时 …………………………6分19. 解:设函数的解析式为:b kx y +=(k ≠0)依题意得:⎩⎨⎧=+=+408354b k b k …………………………2分…………………………3分∴ 3045+=x y …………………………4分 (2)当 x=6.0cm 时,y=7.5+30=37.5 …………………………5分 答:此时体温计的读数为37.5ºC . …………………………6分20.证明:∵四边形ABCD 是平行四边形,∴AB=CD ,AB ∥CD . …………………………1分 ∴∠ABE=∠CDF . …………………………2分 在△ABE 和△CDF 中⎪⎩⎪⎨⎧==∠=DF BE CDF ABE CD AB ∴△ABE ≌△CDF (SAS ). …………………………5分∴AE=CF …………………………6分 (其它做法参照给分)21. 解:(1)n =100;…………………………1分(2)∵喜欢羽毛球的人数=100×20%=20人,…………………………2分∴条形统计图如图;…………………………3分(3)由已知得,1200×20%=240(人). …………………………5分答;该校约有240人喜欢跳绳. …………………………6分22. 解:(1)由题意得:x y 361= ………1分(2)⎩⎨⎧+≤≤=)>10(846.33)100(422x x x x y …………………………4分(分开书写:当0≤x ≤10时,x y 422=,当x >10时;()846.33108.04210422+=-⋅⨯+⨯=x x y ,得满分) (列对一个解析式得一分,取值范围共一分)(3)若x >10则:846.332+=x y①当21y y =时,846.3336+=x x ,解得35=x ;………5分 ②当1y >2y 时,846.3336+x x >,解得35>x ;………6分当21y y <时,846.3336+x x <,解得35<x ,………7分 ∵x >10∴3510<<x ………8分答:若购买35个书包,选A 、B 品牌都一样;若购买35个以上书包,选B 品牌划算;若购买书包个数超过10个但小于35个,选A 品牌划算. ………9分23. 证明:(1)证明:∵A0=C0,B0=D0∴四边形ABCD 是平行四边形 …………………………2分∴∠ABC=∠ADC ∵∠ABC+∠ADC=180°∴∠ABC=∠ADC=90° …………………………3分∴平行四边形ABCD 是矩形 …………………………4分 (2)解:∵∠ADC=90°,∠ADF :∠FDC=3:2∴∠FDC=36° …………………………5分 ∵DF ⊥AC ,∴∠DCO=90°-36°=54°, …………………………6分 ∵四边形ABCD 是矩形,∴OC=OD ,∴∠DCO =∠ODC=54° …………………………7分 ∴∠BDF=∠ODC-∠FDC=18° …………………………8分24. 解:(1)∵直线y=-2x+a 与y 轴交于点C (0,6),∴a=6,…………………………1分 ∴y=-2x+6,…………………………2分(2) ①∵点D (-1,n )在y=-2x+6上,∴n=8,…………………………3分设直线AD 的解析式为y=kx+b(K ≠0)⎩⎨⎧=+-=+83-b k b k 解得:k=4,b=12 …………………………4分∴直线AD 的解析式为y=4x+12;…………………………5分 ②令y=0,则-2x+6=0,解得:x=3,∴B (3,0),…………………………6分∴AB=6,∵点M 在直线y=-2x+6上,设M (m ,-2m+6),∴S= 21×6×62-+m =362-+m …………………………7分 ∴①当m <3时,S=3(-2m+6),即S=-6m+18;…………………………8分 ②当m >3时,S=21×6×[-(-2m+6)],即S=6m-18;…………………………9分25..(1)答:PB=PQ ………………………2分(2)证明:过P 作PE ⊥BC 的延长线于E 点,PF ⊥CQ 于F 点, ………………………3分∵AC 是正方形的对角线∴ PA 平分∠DCB ,∴∠DCA=∠ACB ………………………4分∵ ∠ACB=∠PCE , ∠DCA=∠FCP∴∠PCE=∠FCP∴ PC 平分∠FCE ,又∵PE ⊥BC ,PF ⊥CQ∴ PF=PE , ………………………5分∴∠ECF=∠CEP=∠CFP = 90°=∠QFP∴ 四边形CEPF 是矩形………………………6分 ∴∠EPF=90°∴∠BPE=∠QPF ,………………………7分 在△PEB 和△PFQ 中⎪⎩⎪⎨⎧∠=∠=∠=∠BPEQPF PF PE QFPBEP∴△PEB ≌△PFQ (ASA )………………………9分 ∴PB=PQ .………………………10分 (其它做法参照给分)。
秦皇岛市数学八年级下学期期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)要使式子在实数范围内有意义,字母a的取值必须满足A . a≥2B . a≤2C . a≠2D . a≠02. (2分) (2020八下·通榆期末) 下列二次根式中为最简二次根式的是()A .B .C .D .3. (2分)(2019·惠来模拟) 在同平面直角坐标系中,函数y=x﹣1与函数y=的图象大致是()A .B .C .D .4. (2分)(2020·海门模拟) 勾股定理是几何中的一个重要定理,在我国古算书《周髀算经》中就有“若勾三,股四,则弦五”的记载.如图1是由边长相等的小正方形和直角三角形构成的,可以用其面积关系验证勾股定理.图2是由图1放入矩形内得到的,已知∠BAC=90°,AB=6,AC=8,点D、E、F、G、H、I都在矩形KLMJ的边上,则矩形KLMJ的周长为()A . 40B . 44C . 84D . 885. (2分)在平面中,下列说法正确的是()A . 四边相等的四边形是正方形B . 四个角相等的四边形是矩形C . 对角线相等的四边形是菱形D . 对角线互相垂直的四边形是平行四边形6. (2分) (2019八下·融安期中) 如图是我国古代著名的“赵爽弦图”的示意图,此图是由四个全等的直角三角形拼接而成,其中AE=5,BE=12,则EF的长是()A . 7B . 8C . 7D . 7二、填空题 (共8题;共9分)7. (1分) (2018八下·宁波期中) 长方形的面积是,其中一边长是,则另一边长是________。
8. (2分)(2019·道外模拟) 如图,两个圆都以为圆心,大圆的弦与小圆相切于点,若,则圆环的面积为________.9. (1分)如图,直线y=kx+b(k>0)与x轴的交点为(﹣2,0),则关于x的不等式kx+b<0的解集是________10. (1分)(2011·镇江) 已知关于x的一次函数y=kx+4k﹣2(k≠0).若其图象经过原点,则k=________,若y随着x的增大而减小,则k的取值范围是________.11. (1分) (2020八上·温州期末) 如图是高空秋千的示意图,小明从起始位置点A处绕着点O经过最低点B,最终荡到最高点C处,若∠AOC=90°,点A与点B的高度差AD=1米,水平距离BD=4米,则点C与点B的高度差CE为________米。
河北省秦皇岛市抚宁区台营学区2018-2019学年八年级数学下学期期末教学质量检测试题1.某新品种葡萄试验基地种植了10亩新品种葡萄,为了解这些新品种葡萄的单株产量,从中随机抽查了400株葡萄,在这个统计工作中,400株葡萄的产量是()A.总体 B.总体中的一个样本 C.样本容量D.个体2.下列说法中正确的是()A.点(2,3)和点(3,2)表示同一个点B.点(-4,1)与点(4,-1)关于x轴对称C.坐标轴上的点的横坐标和纵坐标只能有一个为0D.第一象限内的点的横坐标与纵坐标均为正数3.一名老师带领x名学生到动物园参观,已知成人票每张30元,学生票每张10元.设门票的总费用为y元,则y与x的函数关系为()A. y=10x+30 B. y=40x C. y=10+30x D. y=20x4.在平面直角坐标系中,点P(2x-6,x-5)在第四象限,则x的取值范围是()A.3<x<5 B.-3<x<5 C.-5<x<3 D.-5<x<-35 .一组数据共50个,分为6组,第1—4组的频数分别是5,7,8,10,第5组的频率是0.1,则第6组的频数是()A. 10B. 11C. 12D. 156.关于▱ABCD的叙述,正确的是( )A.若AB⊥BC,则▱ABCD是菱形B.若AC⊥BD,则▱ABCD是正方形C.若AC=BD,则▱ABCD是矩形D.若AB=AD,则▱ABCD是正方形7.一次函数y=-2x-1的图像大致是( )8.如右图是某班全体学生到校时乘车、步行、骑车人数的频数分布直方图和扇形统计图(两图都不完整),则下列结论中错误的是( )A.该班总人数为50人B.步行人数为30人C.骑车人数占总人数的20%D.乘车人数是骑车人数的2.5倍9.已知点(-1,y1),(4,y2)在一次函数y=3x-2的图像上,则y1,y2,0的大小关系是( ) A.0<y1<y2 B.y1<0<y2 C.y1<y2<0 D.y2<0<y110.学校升旗仪式上,徐徐上升的国旗的高度与时间的关系可以用一幅图近似地刻画,这幅图是下图中的( )11.一根蜡烛长30cm,点燃后每小时燃烧5cm,燃烧时蜡烛剩余的长度y(cm)和燃烧时间t(h)之间的函数关系用图像可以表示为( )12.如图所示,某产品的生产流水线每小时可生产100件产品,生产前没有产品积压,生产3h后安排工人装箱,若每小时装产品150件,未装箱的产品数量(y)是时间(x)的函数,那么这个函数的大致图像只能是()A B CD13.小强骑自行车去郊游,9时出发,15时返回.如图表示他离家的路程y(千米)与相应的时刻x(时)之间的函数关系的图像.根据图像可知小强14时离家的路程是( ) A.13千米 B.14千米 C.15千米 D.16千米13题图 14题图14.如图,P是矩形ABCD的边AD上一个动点,PE⊥AC于E,PF⊥BD于F,P从A向D运动(P与A,D不重合),则PE+PF的值( )A.增大 B.减小 C.不变 D.先增大再减小二、填空题(简洁的结果,表达的是你敏锐的思维,需要的是细心!每小题3分,共18分)15.已知点A(a,2),B(-3,b)关于y轴对称,则ab= .16.如果一个多边形的内角和是1440°,那么这个多边形的边数是______.17.如右图,在△ABC中,点D,E分别是边AB,BC的中点.若△DBE的周长是6,则△ABC的周长是.18.如图,正方形ABCD的顶点B,C都在直角坐标系的x轴上,若点A的坐标是(-1,4),则点C的坐标是________.18题图 19题图 20题图19.如图,在□ABCD中,对角线AC、BD相交于点O,如果AC=14,BD=8,AB=x,那么x的取值范围是.20.如图,折线ABC 是某市在2018年乘出租车所付车费y (元)与行车里程x (km )之间的函数关系图像,观察图像回答,乘客在乘车里程超过3千米时,每多行驶1km ,要再付费 __________元.三、解答题(耐心计算,认真推理,表露你萌动的智慧!共60分) 21.(本题满分8分)已知,一次函数12)31(-+-=k x k y ,试回答: (1)k 为何值时,y 随x 的增大而减小? (2)k 为何值时,图像与y 轴交点在x 轴上方?(3) 若一次函数12)31(-+-=k x k y 经过点(3,4)请求出一次函数的表达式.22.(本题满分8分)某农户种植一种经济作物,总用水量y (米3)与种植时间x (天)之间的函数图像如图所示.(1)第20天的总用水量为多少米3?(2)当x ≥20时,求y 与x 之间的函数关系式; (3)种植时间为多少天时,总用水量达到7000米3?23.(本题满分10分)嘉淇同学要证明命题“两组对边分别相等的四边形是平行四边形”是正确的,她先用尺规作出了如图①所示的四边形ABCD,并写出了如下不完整的已知和求证.已知:如图①,在四边形ABCD中,BC=AD,AB=________.求证:四边形ABCD是________四边形.(1)在方框中填空,补全已知和求证;(2)按嘉淇的想法(如图②)写出证明.24.(本题满分10分)阅读可以增进人们的知识,也能陶冶人们的情操.我们要多阅读有营养的书.某校对学生的课外阅读时间进行了抽样调查,将收集的数据分成A,B,C,D,E五组进行整理,并绘制成如图所示的统计图表(图中信息不完整).阅读时间分组统计表请结合以上信息解答下列问题:(1)求a,b,c的值;(2)补全“阅读人数分组统计图”;(3)估计全校课外阅读时间在20h以下(不含20h)的学生所占百分比.25.(本小题满分10分)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.26.(本题满分14分)甲、乙两辆汽车沿同一路线赶赴距出发地480千米的目的地,乙车比甲车晚出发2小时(从甲车出发时开始计时),图中折线OABC、线段DE分别表示甲、乙两车所行路程y(千米)与时间x(小时)之间的函数关系对应的图像线段AB表示甲出发不足2小时因故停车检修),请根据图像所提供的信息,解决如下问题:(1)求乙车所行路程y与时间x的函数关系式;(2)求两车在途中第二次相遇时,它们距出发地的路程;(3)乙车出发多长时间,两车在途中第一次相遇?(写出解题过程)八年级数学答案1.B2.D3.A4.A5.D6.C7.D8.B9.B 10.A 11.B 12.A 13.C 14.C 15. 6 16. 10 17. 12 18. (3,0) 19. 3<x <11 20. 1.421. (1)……………………2分(2)……………………………..4分(3)………………………………6分…………………………8分22.解:(1)第20天的总用水量为1000米3 ……………………1分(2)当x ≥20时,设y=kx+b…………………………………………………………2分 ∵函数图象经过点(20,1000),(30,4000) ∴………………………………………………………3分解得………………………………………………………………………………..5分 ∴y与x之间的函数关系式为:y=300x ﹣5000……………………………..6分 (3)当y=7000时,由7000=300x ﹣5000,解得x=40……………………………………………………7分 ∴种植时间为40天时,总用水量达到7000米3……………………. 8分23.(1)解:CD 平行………………………………………………………2分 (2)证明:如图,连接BD.在△ABD 和△CDB 中, BD =DB ,AD =CB ,………3分 ∴△ABD ≌△CDB ,………………………………………………………..4分 ∴∠ADB =∠DBC ,…………………………………………………………5分 ∠ABD =∠CDB ,……………………………………………………………..6分 ∴AD ∥CB ,…………………………………………………………………7分 AB ∥CD ,……………………………………………………………………8分 ∴四边形ABCD 是平行四边形.……………………………………………10分 24.解:(1)由图表可知,调查的总人数为 140÷28%=500(人),……………..2分 ∴b =500×40%=200,……………………………………………………………3分c =500×8%=40,………………………………………………………………….4分则a =500-(100+200+140+40)=20…………………………………………….5分 (2)补全图形如图所示.……………………7分 (3)由(1)可知50020+100×100%=24%..........9分答:估计全校课外阅读时间在20h 以下(不含20h)的学生所占百分比为24%.............................10分25证明:∵四边形ABCD 是矩形, ∴AD ∥BC ,∴∠PDO=∠QBO ,……………………………………..1分又∵O 为BD 的中点,∴OB=OD ,……………………………………………..2分 在△POD 与△QOB 中, ∵∴△POD ≌△QOB (ASA ),……………………….3分 ∴OP=OQ ;……………………………………………4分 (2)解:PD=8﹣t ,…………………………………5分 若四边形PBQD 是菱形, 则PD=BP=8﹣t , ∵四边形ABCD 是矩形, ∴∠A=90°,在Rt △ABP 中,由勾股定理得:AB 2+AP 2=BP 2, 即62+t 2=(8﹣t )2,…………………………………7分 解得:t=,………………………………………….9分 即运动时间为秒时,四边形PBQD 是菱形.…..10分26.解:(1)设乙车所行使路程y与时间x的函数关系式为y=k1x+b1,……………………1分把(2,0)和(10,480)代入,得,…………………………………………2分解得:, (3)分故y与x的函数关系式为y=60x﹣120; (4)分(2)由图可得,交点F表示第二次相遇,F点的横坐标为6,此时y=60×6=120=240,则F点坐标为(6,240),………………………………………………………………………………………..6分故两车在途中第二次相遇时它们距出发地的路程为240千米;………………………………..7分(3)设线段BC对应的函数关系式为y=k2x+b2,把(6,240)、(8,480)代入,得……………………………………………………………………………………………………..9分解得故y与x的函数关系式为y=120x﹣480, (11)分则当x=4.5时,y=120×4.5﹣480=60. (12)分可得:点B的纵坐标为60,∵AB表示因故停车检修,∴交点P的纵坐标为60,把y=60代入y=60x﹣120中,有60=60x﹣120,解得x=3,则交点P的坐标为(3,60), (13)分∵交点P表示第一次相遇,∴乙车出发3﹣2=1小时,两车在途中第一次相遇.……………………………………………….14分。
2018—2019学年度第二学期期末教学质量检测八年级数学试题(满分120分,时间:120分钟)一、选择题:本大题共8个小题,每小题3分,共24分,在每小题给出的四个选项A 、B 、C 、D 中,只有一项是正确的,请把正确的选项填在答题卡的相应位置1.在数轴上与原点的距离小于8的点对应的x 满足A.x <8B.x >8C.x <-8或x >8D.-8<x <82.将多项式﹣6a 3b 2﹣3a 2b 2+12a 2b 3分解因式时,应提取的公因式是A .-3a 2b 2B .-3abC .-3a 2bD .-3a 3b 33.下列分式是最简分式的是A .11m m --B .3xy y xy -C .22x y x y -+D .6132m m- 4.如图,在Rt △ABC 中,∠C=90°,∠ABC=30°,AB=8,将△ABC 沿CB 方向向右平移得到△DEF.若四边形ABED 的面积为8,则平移距离为A .2B .4C .8D .165.如图所示,在△ABC 中,AB=AC ,AD 是中线,DE ⊥AB ,DF ⊥AC ,垂足分别为E 、F ,则下列四个结论中:①AB 上任一点与AC 上任一点到D 的距离相等;②AD 上任一点到AB 、AC 的距离相等;③∠BDE=∠CDF ;④∠1=∠2.正确的有A.1个B.2个C.3个D.4个6.每千克m 元的糖果x 千克与每千克n 元的糖果y 千克混合成杂拌糖,这样混合后的杂拌糖果每千克的价格为 A.y x my nx ++元 B.yx ny mx ++元 C.y x n m ++元 D.12x y m n ⎛⎫+ ⎪⎝⎭元 7.如图,□ABCD 的对角线AC ,BD 交于点O ,已知AD=8,BD=12,AC=6,则△OBC 的周长为A .13B .26C .20D .178.如图,DE 是△ABC 的中位线,过点C 作CF ∥BD 交DE 的延长线于点F ,则下列结论正确的是A .EF=CFB .EF=DEC .CF <BD D .EF >DE二、填空题(本大题共6个小题,每小题3分,共18分,只要求把最后的结果填写在答题卡的相应区域内)9.利用因式分解计算:2012-1992= ;10.若x+y=1,xy=-7,则x 2y+xy 2= ;11.已知x=2时,分式31x k x ++的值为零,则k= ; 12.公路全长为skm ,骑自行车t 小时可到达,为了提前半小时到达,骑自行车每小时应多走 ;13.一个多边形的内角和是外角和的2倍,则这个多边形的边数为 ;14.如图,△ACE 是以□ABCD 的对角线AC 为边的等边三角形,点C 与点E 关于x 轴对称.若E 点的坐标是(7,﹣D 点的坐标是 .三、解答题(本大题共78分,解答要写出必要的文字说明、演算步骤)15.(6分)分解因式(1)20a 3-30a 2 (2)25(x+y )2-9(x-y )216.(6分)计算:(1)22122a a a a+⋅-+ (2)211x x x -++ 17.(6分)A 、B 两地相距200千米,甲车从A 地出发匀速开往B 地,乙车同时从B 地出发匀速开往A 地,两车相遇时距A 地80千米.已知乙车每小时比甲车多行驶30千米,求甲、乙两车的速度.18.(7分)已知:如图,在△ABC 中,AB=AC ,点D 是BC 的中点,作∠EAB=∠BAD ,AE 边交CB 的延长线于点E ,延长AD 到点F ,使AF=AE ,连结CF .求证:BE=CF .19.(8分) “二广”高速在益阳境内的建设正在紧张地进行,现有大量的沙石需要运输.“益安”车队有载重量为8吨、10吨的卡车共12辆,全部车辆运输一次能运输110吨沙石.(1)求“益安”车队载重量为8吨、10吨的卡车各有多少辆?(2)随着工程的进展,“益安”车队需要一次运输沙石165吨以上,为了完成任务,准备新增购这两种卡车共6辆,车队有多少种购买方案,请你一一写出.20.(8分)如图,在Rt △ABC 中,∠ACB=90°,点D ,E 分别在AB ,AC 上,CE=BC ,连接CD ,将线段CD 绕点C 按顺时针方向旋转90°后得CF ,连接EF.(1)补充完成图形;(2)若EF ∥CD ,求证:∠BDC=90°.21.(8分)下面是某同学对多项式(x 2-4x+2)(x 2-4x+6)+4进行因式分解的过程.解:设x 2-4x=y ,原式=(y+2)(y+6)+4(第一步)=y 2+8y+16 (第二步)=(y+4)2(第三步)=(x 2-4x+4)2(第四步)(1)该同学第二步到第三步运用了因式分解的 .A .提取公因式B .平方差公式C .两数和的完全平方公式D .两数差的完全平方公式(2)该同学因式分解的结果是否彻底? .(填“彻底”或“不彻底”)若不彻底,请直接写出因式分解的最后结果 .(3)请你模仿以上方法尝试对多项式(x 2-2x)(x 2-2x+2)+1进行因式分解.22.(8分)如图,四边形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 分别在OA ,OC 上(1)给出以下条件;①OB=OD ,②∠1=∠2,③OE=OF ,请你从中选取两个条件证明△BEO ≌△DFO ;(2)在(1)条件中你所选条件的前提下,添加AE=CF ,求证:四边形ABCD 是平行四边形.23.(10分)如图,在□ABCD 中,E 是BC 的中点,连接AE 并延长交DC 的延长线于点F .(1)求证:AB=CF ;(2)连接DE ,若AD=2AB ,求证:DE ⊥AF .24.(11分)如图,在直角梯形ABCD 中,AD ∥BC ,∠B=90°,且AD=12cm ,AB=8cm ,DC=10cm ,若动点P 从A 点出发,以每秒2cm 的速度沿线段AD 向点D 运动;动点Q 从C 点出发以每秒3cm 的速度沿CB 向B 点运动,当P 点到达D 点时,动点P 、Q 同时停止运动,设点P 、Q 同时出发,并运动了t 秒,回答下列问题:(1)BC= cm ;(2)当t 为多少时,四边形PQCD 成为平行四边形?(3)当t 为多少时,四边形PQCD 为等腰梯形?(4)是否存在t ,使得△DQC 是等腰三角形?若存在,请求出t 的值;若不存在,说明理由.八年级数学试题参考答案一、选择题(每小题3分,共24分)1、D2、A3、C4、A5、C6、B7、D8、B二、填空题(每小题3分,共18分)9. 800 10.-7 11.-6 12.221s t --s t 13.6(六) 14.(5,0) 三、解答题 (共78分)15.(1)解:20a 3﹣30a 2=10a 2(2a ﹣3)…………………………………………3分(2)解:25(x+y )2﹣9(x ﹣y )2=[5(x+y )+3(x ﹣y )][5(x+y )﹣3(x ﹣y )]=(8x+2y )(2x+8y );=4(4x+y)(x+4y)……………………………………………………………3分16.(1)解:22122a a a a+⋅-+ =2(2)(2)a a a a +-⋅+ =212a a -1(2)a a -或………………………………………………3分 (2)211x x x -++ =2(1)1x x x --+ =2(1)(1)11x x x x x -+-++ =2(1)(1)1x x x x --++=11x +…………………………………………………………………………3分 17.设甲车的速度是x 千米/时,乙车的速度为(x+30)千米/时,……………1分308020080+-=x x ………………………………………………………………………3分 解得,x=60,………………………………………………………………………4分经检验,x=60是原方程的解.……………………………………………………5分则x+30=90,即甲车的速度是60千米/时,乙车的速度是90千米/时.……………………6分18.证明:∵AB=AC ,点D 是BC 的中点,∴∠CAD=∠BAD .…………………………………………………………………2分 又∵∠EAB=∠BAD ,∴∠CAD=∠EAB .…………………………………………………………………4分 在△ACF 和△ABE 中,∴△ACF ≌△ABE (SAS ).∴BE=CF .……………………………………………………………………………7分19.解:(1)设“益安”车队载重量为8吨、10吨的卡车分别有x 辆、y 辆,根据题意得:,解之得:. 答:“益安”车队载重量为8吨的卡车有5辆,10吨的卡车有7辆;…………………4分(2)设载重量为8吨的卡车增加了z 辆,依题意得:8(5+z )+10(7+6﹣z )>165,解之得:z <,………………………………………………………………………………6分 ∵z ≥0且为整数,∴z=0,1,2;∴6﹣z=6,5,4.∴车队共有3种购车方案:①载重量为8吨的卡车购买1辆,10吨的卡车购买5辆;②载重量为8吨的卡车购买2辆,10吨的卡车购买4辆;③载重量为8吨的卡车不购买,10吨的卡车购买6辆.………………………………8分20.(1)解:补全图形,如图所示.………………………………………………………3分(2) 证明:由旋转的性质得∠DCF=90°,DC=FC ,∴∠DCE +∠ECF=90°.………………………………………………………………4分∵∠ACB=90°,∴∠DCE +∠BCD=90°,∴∠ECF=∠BCD∵EF ∥DC ,∴∠EFC +∠DCF=180°,∴∠EFC=90°.………………………………………………………………………6分在△BDC 和△EFC 中,⎩⎪⎨⎪⎧DC =FC ,∠BCD =∠ECF ,BC =EC ,∴△BDC ≌△EFC(SAS),∴∠BDC=∠EFC=90°.………………………………………………………………8分21.解:(1)该同学第二步到第三步运用了因式分解的两数和的完全平方公式;故选:C ;……………………………………………………………………………2分(2)该同学因式分解的结果不彻底,原式=(x 2﹣4x+4)2=(x ﹣2)4;故答案为:不彻底,(x ﹣2)4…………………………………………………………4分(3)(x 2﹣2x )(x 2﹣2x+2)+1=(x 2﹣2x )2+2(x 2﹣2x )+1=(x 2﹣2x+1)2=(x ﹣1)4.………………………………………………………………………………8分22.证明:(1)选取①②,∵在△BEO和△DFO中,∴△BEO≌△DFO(ASA);……………………………………………………………………4分(2)由(1)得:△BEO≌△DFO,∴EO=FO,BO=DO,∵AE=CF,∴AO=CO,∴四边形ABCD是平行四边形.……………………………………………………………8分23.证明:(1)∵四边形ABCD是平行四边形,∴AB∥DF,∴∠ABE=∠FCE,∵E为BC中点,∴BE=CE,在△ABE与△FCE中,,∴△ABE≌△FCE(ASA),∴AB=FC;………………………………………………………………………………6分(2)∵AD=2AB,AB=FC=CD,∴AD=DF,∵△ABE≌△FCE,∴AE=EF,∴DE⊥AF.………………………………………………………………………………10分24.解:根据题意得:PA=2t,CQ=3t,则PD=AD-PA=12-2t.(1)如图,过D点作DE⊥BC于E,则四边形ABED为长方形,DE=AB=8cm,AD=BE=12cm,在直角△CDE中,∵∠CED=90°,DC=10cm,DE=8cm,∴EC=,∴BC=BE+EC=18cm.…………………………………………………………………2分(直接写出最后结果18cm即可)(2)∵AD∥BC,即PD∥CQ,∴当PD=CQ时,四边形PQCD为平行四边形,即12-2t=3t,解得t=125秒,故当t=125秒时四边形PQCD为平行四边形;………………………………………4分(3)如图,过D点作DE⊥BC于E,则四边形ABED为长方形,DE=AB=8cm,AD=BE=12cm,当PQ=CD时,四边形PQCD为等腰梯形.过点P作PF⊥BC于点F,过点D作DE⊥BC于点E,则四边形PDEF是长方形,EF=PD=12-2t,PF=DE.在Rt△PQF和Rt△CDE中,PQ CD PF DE ==⎧⎨⎩, ∴Rt △PQF ≌Rt △CDE (HL ),∴QF=CE ,∴QC-PD=QC-EF=QF+EC=2CE ,即3t-(12-2t )=12,解得:t=245, 即当t=245时,四边形PQCD 为等腰梯形;……………………………………………8分 (4)△DQC 是等腰三角形时,分三种情况讨论:①当QC=DC 时,即3t=10,∴t=103; ②当DQ=DC 时,362t = ∴t=4; ③当QD=QC 时,3t ×6510= ∴t=259. 故存在t ,使得△DQC 是等腰三角形,此时t 的值为103秒或4秒或259秒.………11分③在Rt△DMQ中,DQ2=DM2+QM2222 (3)8(38) t t=+-36t=100t=259第11 页共11 页。
八年级下册数学秦皇岛数学期末试卷测试卷(含答案解析)一、选择题1.函数3y x =+中,自变量x 的取值范围是( )A .x >3B .x ≥3C .x >﹣3D .x ≥﹣3 2.若线段a ,b ,c 首尾顺次连接后能组成直角三角形,则它们的长度比可能为( ) A .2:3:4 B .3:4:5C .4:5:6D .5:6:73.如图,四边形ABCD 的对角线AC 和BD 交于点O ,则下列不能..判断四边形ABCD 是平行四边形的是( )A .OA=OC ,AD //BCB .∠ABC=∠ADC ,AD//BC C .AB=DC ,AD=BCD .∠ABD=∠ADB ,∠BAO=∠DCO4.甲、乙两个同学在四次数学模拟测试中,平均成绩都是112分,方差分别是25S =甲,212S =乙,则甲、乙两个同学的数学成绩比较稳定的是( )A .甲B .乙C .甲和乙一样D .无法确定5.如图,ABCD 的对角线AC 、BD 交于点O ,顺次连接ABCD 各边中点得到一个新的四边形,如果添加下列四个条件中的一个条件:①AC BD ⊥;②ΔΔABO CBO C C =;③DAO CBO ∠=∠;④DAO BAO ∠=∠,可以使这个新的四边形成为矩形,那么这样的条件个数是( )A .1个B .2个C .3个D .4个6.如图,菱形ABCD 中,150D ∠=︒ ,则1∠=( )A .30°B .25°C .20°D .15°7.如图,在正方形ABCD 的外侧作等边CDE △,对角线AC 与BD 相交于点O ,连接AE 交BD 于点F ,若1OF =,则AB 的长度为( )A.2 B.6C.22D.38.一次函数y=kx+b(k≠0)的图象经过点B(﹣6,0),且与正比例函数y=13x的图象交于点A(m,﹣3),若kx﹣13x>﹣b,则()A.x>0 B.x>﹣3 C.x>﹣6 D.x>﹣9二、填空题9.若225b a a=-+--,则a b-=_______________________.10.如图,菱形ABCD的对角线AC=32cm,BD=42cm,则菱形ABCD的面积是_____.11.如图一根竹子长为8米,折断后竹子顶端落在离竹子底端4米处,折断处离地面高度是________米.12.如图,在矩形ABCD中,点E在AD上,且EC平分∠BED,若BC=22,∠CBE=45°,则AB=___.13.如图,直线y=kx+6与x轴、y轴分别交于点E、F.点E的坐标为(﹣8,0),点A 的坐标为(﹣6,0).若点P(x,y)是第二象限内的直线上的一个动点.当点P运动到_____(填P点的坐标)的位置时,△OPA的面积为9.14.如图,在四边形ABCD 中,AB //CD ,AB =CD ,当AB =_________时,四边形ABCD 为菱形.15.将正方形111A B C O ,2221A B C C ,3332A B C C 按如图所示方式放置,点1A ,2A ,3A ,…和点1C ,2C ,3C ,…分别在直线1y x =+和x 轴上,则点4B 的坐标是______,2021B 的纵坐标是______.16.在矩形ABCD 中,3AB =,4=AD ,将ABD △沿对角线BD 对折得到EBD △,DE 与BC 交于F ,则EF 等于________.三、解答题17.计算:(1)545842 (2)2(32)(12)(12);(3)解方程组23405x y x y +=⎧⎨-=-⎩;(4)解方程组743832x yx y ⎧+=⎪⎪⎨⎪+=⎪⎩. 18.如图,货船和快艇分别从码头A 同时出发.其中,货船沿着北偏西54°方向以15海里/小时的速度匀速航行,快艇沿着北偏东36°方向以36海里/小时的速度航行,1小时后.两船分别到达B 、C 点.求B 、C 两点之间的距离.19.如图所示,在77⨯的方格纸中,每个小正方形的边长均为1,线段AB 的端点A 、B 均在小正方形的顶点上.(1)在图中画出以AB 为边的菱形ABCD ,菱形的面积为8;(2)在图中画出腰长为5的等腰三角形ABE ,且点E 在小正方形顶点上; (3)连接CE ,请直接写出线段CE 的长.20.如图,ABCD 的对角线AC 的垂直平分线与AD 、BC 分别交于E 、F ,垂足为点O .(1)求证:四边形AFCE 是菱形.(2)若2AE ED =,6AC =,4EF =,则ABCD 的面积为 .21.先阅读下面的解题过程,然后再解答,形如2m n ±的化简,我们只要找到两个数a ,b ,使a b m +=,ab n =,即22()()a b m +=,a b n ⋅=,那么便有:22()(0)m n a b a b a b ±=±=±>>. 例如化简:743+解:首先把743+化为7212+, 这里7m =,12n =, 由于437+=,4312⨯=,所以22(4)(3)7,4312+=⨯=,所以27437212(43)23+=+=+=+ (1)根据上述方法化简:4+23 (2)根据上述方法化简:13242- (3)根据上述方法化简:415-22.亮亮奶茶店生产A 、B 两种奶茶,由于地处旅游景点区域,每天都供不应求,经过计算,亮亮发现A 种奶茶每杯生产时间为4分钟,B 种奶茶每杯生产时间为1分钟,由于原料和运营时间限制,每天生产的总时间为300分钟.(1)设每天生产A 种奶茶x 杯,生产B 种奶茶y 杯,求y 与x 之间的函数关系式; (2)由于A 种奶茶比较受顾客青睐,亮亮决定每天生产A 种奶茶不少于73杯,那么不同的生产方案有多少种?(3)在(2)的情况下,若A 种奶茶每杯利润为3元,B 种奶茶每杯利润为1元,求亮亮每天获得的最大利润.23.如图1,在Rt △ABC 中,∠A =90°,AB =AC ,点D ,E 分别在边AB ,AC 上,AD =AE ,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是 ,位置关系是 ;(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,连接MN,BD,CE,判断△PMN的形状,并说明理由;(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=4,AB=10,请直接写出△PMN面积的最大值.24.如图,A,B是直线与坐标轴的交点,直线过点B,与x轴交于点C.(1)求A,B,C三点的坐标.(2)当点D是AB的中点时,在x轴上找一点E,使的和最小,画出点E的位置,并求E点的坐标.(3)若点D是折线上一动点,是否存在点D,使为直角三角形,若存在,直接写出D点的坐标;若不存在,请说明理由.25.等腰Rt△ABC,CA=CB,D在AB上,CD=CE,CD⊥CE.(1)如图1,连接BE,求证:AD=BE.(2)如图2,连接AE,CF⊥AE交AB于F,T为垂足,①求证:FD=FB;②如图3,若AE交BC于N,O为AB中点,连接OC,交AN于M,连FM、FN,当S OF2+BF2的最小值.52FMN【参考答案】一、选择题1.D解析:D【分析】根据二次根式的意义,被开方数是非负数即可求解.【详解】解:根据题意得:x+3≥0,解得x≥﹣3.故自变量x的取值范围是x≥﹣3.故选D.【点睛】本题主要考查了二次根式有意义的条件,自变量的取值范围,解题的关键在于能够熟练掌握二次根式有意义的条件.2.B解析:B【分析】根据勾股定理的逆定理对各选项进行逐一判断即可.【详解】解:A、∵22+32≠42,∴不能够成直角三角形,故本选项不符合题意;B、∵32+42=52,∴能够成直角三角形,故本选项符合题意;C、∵52+42≠62,∴不能够成直角三角形,故本选项不符合题意;D、∵52+62≠72,∴不能够成直角三角形,故本选项不符合题意.故选:B . 【点睛】本题考查的是勾股定理的逆定理,即如果三角形的三边长a ,b ,c 满足a 2+b 2=c 2,那么这个三角形就是直角三角形.3.D解析:D 【解析】 【分析】平行四边形的判定定理:(1)两组对边分别平行的四边形是平行四边形;(2)两组对边分别相等的四边形是平行四边形;(3)一组对边平行且相等的四边形是平行四边形;(4)两组对角分别相等的四边形是平行四边形;(5)对角线互相平分的四边形是平行四边形;根据平行四边形的判定即可解答. 【详解】 解:∵//AD BC∴DAO BCO ∠∠=,ADO CBO ∠=∠ 在△ADO 和△CBO 中 DAO BCO ADO CBO OA OC ∠∠⎧⎪∠=∠⎨⎪=⎩= ∴△ADO 全等△CBO ∴AD =CD∴四边形ABCD 是平行四边形. 此选项A 正确; ∵//AD BC ∴ADB CBD ∠=∠ 又∵ABC CDA ∠∠=, ∴ABD BDC ∠=∠ ∴AB ∥CD∴四边形ABCD 是平行四边形. 此选项B 正确; ∵AB =CD ,AD =BC∴四边形ABCD 是平行四边形. 此选项C 正确;根据∠ABD=∠ADB ,∠BAO=∠DCO 不能判断四边形ABCD 是否为平行四边形 ∴选项D 错误. 故选D. 【点睛】本题主要考查平行四边形的判定定理,解决本题的关键是要熟练掌握平行四边形的判定定理.解析:A 【解析】 【分析】平均成绩相同情况下,方差越小越稳定即可求解. 【详解】解:∵甲、乙两个同学在四次数学模拟测试中,平均成绩都是112分,方差分别是25S =甲,212S =乙,2S 甲<2S 乙,∴甲同学的数学成绩比较稳定. 故选择A . 【点睛】本题考查用平均数,方差进行决策,掌握平均数是集中趋势的物理量,方差是离散程度的物理量,方差越小波动越小,方差越大波动越大越不稳定是解题关键.5.C解析:C 【分析】根据顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形.逐一对四个条件进行判断. 【详解】解:顺次连接四边形的中点,得到的四边形形状和四边形的对角线位置、数量关系有关,利用三角形中位线性质可得:当对角线垂直时,所得新四边形是矩形. ①,AC BD ⊥∴新的四边形成为矩形,符合条件;②四边形ABCD 是平行四边形,,AO OC BO DO ∴==. ΔΔ,ABO CBO C C AB BC =∴=.根据等腰三角形的性质可知,BO AC BD AC ⊥∴⊥.所以新的四边形成为矩形,符合条件;③四边形ABCD 是平行四边形,CBO ADO ∠∠∴=.,DAO CBO ADO DAO ∠∠∠∠=∴=.AO OD ∴=.,AC BD ∴=∴四边形ABCD 是矩形,连接各边中点得到的新四边形是菱形,不符合条件;④,DAO BAO BO DO ∠∠==,AO BD ∴⊥,即平行四边形ABCD 的对角线互相垂直,∴新四边形是矩形.符合条件.所以①②④符合条件.故选:C . 【点睛】本题考查特殊四边形的判定与性质,掌握矩形、平行四边形的判定与性质是解题的关键.解析:D 【解析】 【分析】直接利用菱形的性质得出//DC AB ,1DAC ∠=∠,进而结合平行四边形的性质得出答案. 【详解】解:四边形ABCD 是菱形,//DC AB ∴,1DAC ∠=∠,150D ∠=︒,18015030DAB ∴∠=︒-︒=︒,11152DAB ∴∠=∠=︒.故选:D . 【点睛】此题主要考查了菱形的性质,正确得出DAB ∠的度数是解题关键.7.B解析:B 【解析】 【分析】先根据正方形和等边三角形的性质证明△ADE 是等腰三角形,求出∠DAE =∠DEA ,再求出∠OAF =30°,在直角三角形OAF 中即可得出结论. 【详解】解:∵四边形ABCD 是正方形,△CDE 是等边三角形,∴AD =CD ,∠ADC =90°,DC =DE ,∠CDE =∠DEC =60°,∠DAC =45°,AC ⊥BD , ∴AD =DE ,∠ADE =90°+60°=150°,∠AOD =90°,∴∠DAE =∠DEA =12(180°−150°)=15°,∠OAF =45°−15°=30°, ∴AF =2OF =2,∴OA∴AB故选:B . 【点睛】本题考查了正方形的性质和等边三角形的性质、含30°角的直角三角形的性质以及等腰三角形的判定方法;根据正方形和等边三角形的性质弄清各个角之间的关系是解决问题的关键.8.D解析:D 【分析】先利用正比例函数解析式,确定A 点坐标;然后利用函数图像,写出一次函数y=kx+b (k≠0)的图像,在正比例函数图像上方所对应的自变量的范围.【详解】解:把A (m ,﹣3)代入y =13x 得13m =﹣3,解得m =﹣9, 所以当x >﹣9时,kx +b >13x , 即kx ﹣13x >﹣b 的解集为x >﹣9. 故选D .【点睛】本题考查了一次函数与一元一次不等式:从函数的角度看,就是寻求使一次函数y=kx+b 的值大于(或小于)0的自变量x 的取值范围;从函数图像的角度看,就是确定直线y=kx+b 在x 轴上(或下)方部分所有的点的横坐标所构成的集合.二、填空题9.7【解析】【分析】先由二次根式有意义可得20,20a a -≥⎧⎨-≥⎩从而依次求解,a b 的值,可得答案. 【详解】解: 5b =20,20a a -≥⎧∴⎨-≥⎩解得:2,a =5,b ∴=-()257.a b ∴-=--=故答案为:7.【点睛】本题考查的是二次根式有意义的条件,一元一次不等式组的解法,掌握二次根式有意义的条件是解题的关键.10.A解析:12cm 2【解析】【分析】利用菱形的面积公式可求解.【详解】解:因为菱形的对角线互相垂直平分,∵AC =,BD =,则菱形ABCD 的面积是1122⨯cm 2. 故答案为12cm 2.【点睛】此题主要考查菱形的面积计算,关键是掌握菱形的面积计算方法.11.3【解析】【分析】竹子折断后刚好构成一直角三角形,设竹子折断处离地面x 米,则斜边为(8-x )米.利用勾股定理解题即可.【详解】解:设竹子折断处离地面x 米,则斜边为(8-x )米,根据勾股定理得:x 2+42=(8-x )2解得:x=3.∴折断处离地面高度是3米,故答案为:3.【点睛】此题考查了勾股定理的应用,解题的关键是利用题目信息构造直角三角形,从而运用勾股定理解题.12.D解析:2【分析】由矩形的性质和角平分线的定义得出∠DEC =∠ECB =∠BEC ,推出BE =BC ,进而求得AE =AB =2.【详解】解:∵四边形ABCD 是矩形,∴AD ∥BC .∴∠DEC =∠BCE .∵EC 平分∠DEB ,∴∠DEC =∠BEC .∴∠BEC =∠ECB .∴BE =BC∵四边形ABCD 是矩形,∴∠A =∠ABC =90°,∵∠CBE =45°,∴∠ABE =90°-45°=45°,∴∠ABE=∠AEB =45°.∴AB =AE.故答案为:2.【点睛】本题考查了矩形的性质,等腰三角形的判定,勾股定理的应用;熟练掌握矩形的性质,证出BE=BC是解题的关键.13.E解析:(﹣4,3).【分析】求出直线EF的解析式,由三角形的面积公式构建方程即可解决问题.【详解】解:∵点E(﹣8,0)在直线y=kx+6上,∴﹣8k+6=0,∴k=34,∴y=34x+6,∴P(x,34x+6),由题意:12×6×(34x+6)=9,∴x=﹣4,∴P(﹣4,3),故答案为(﹣4,3).【点睛】本题考查一次函数图象上的点的坐标特征,三角形的面积等知识,解题的关键是学会构建方程解决问题,属于中考常考题型.14.B解析:BC(答案不唯一)【分析】首先根据AB∥CD,AB=CD可得四边形ABCD是平行四边形,再根据一组邻边相等的平行四边形是菱形可得添加条件AB=AD或AB=BC.【详解】解:可添加的条件为AB=AD或BC.∵AB∥CD,AB=CD,∴四边形ABCD是平行四边形,∵AD=AB(或AB=BC),∴四边形ABCD为菱形.故答案是:AD或BC.【点睛】本题主要考查了菱形的判定,关键是掌握菱形的判定方法:①菱形定义:一组邻边相等的平行四边形是菱形;②四条边都相等的四边形是菱形.③对角线互相垂直的平行四边形是菱形(或“对角线互相垂直平分的四边形是菱形”).15.【分析】先根据解析式求得的坐标,再根据正方形的性质求得的坐标,以相同的方法求得;,继而得到坐标的规律,据此求得的纵坐标【详解】当时,四边形是正方形当时,四边形是解析:()15,8 20202【分析】先根据解析式求得1A 的坐标,再根据正方形的性质求得1B 的坐标,以相同的方法求得33(3,4),(7,4)A B ;44(7,8),(15,8)A B ,继而得到n B 坐标的规律,据此求得2021B 的纵坐标【详解】当0x =时,11y x =+=1(0,1)A ∴四边形111A B C O 是正方形111,1BC OC ∴==1(1,1)B ∴当1x =时,12y x =+=2(1,2)A ∴四边形2221A B C C 是正方形2112123OC OC C C ∴=+=+=,22122C B C A ==2(3,2)B ∴同理可得:33(3,4),(7,4)A B ;44(7,8),(15,8)A B ……∴点n B 的坐标为1(21,2)n n --∴4(15,8)B ,202120202021(21,2)B -故答案为:①()15,8②20202【点睛】本题考查了一次函数的性质,正方形性质,找到点n B 坐标的规律是解题的关键. 16.【分析】根据折叠的性质和矩形的性质得到BF=DF ,设BF=DF=x ,在△CDF 中,利用勾股定理列出方程,求出x 值,得到DF ,即可计算EF 的值.【详解】解:由折叠可知:AB=BE=CD=3, 解析:78【分析】根据折叠的性质和矩形的性质得到BF =DF ,设BF =DF =x ,在△CDF 中,利用勾股定理列出方程,求出x 值,得到DF ,即可计算EF 的值.【详解】解:由折叠可知:AB =BE =CD =3,∠E =∠A =90°,DE =AD =4,∠ADB =∠EDB ,∵四边形ABCD 是矩形,∴AD ∥BC ,∴∠ADB =∠CBD ,∴∠CBD =∠EDB ,∴BF =DF ,设BF =DF =x ,则CF =4-x ,在△CDF 中,222+=CD CF DF ,即()22234x x +-=, 解得:x =258,即DF =258, ∴EF =DE -DF =2548-=78, 故答案为:78. 【点睛】本题主要考查了矩形的性质,翻折的性质,勾股定理,等角对等边,解题的关键是利用折叠的性质得到相等线段,利用勾股定理列出方程.三、解答题17.(1);(2);(3);(4)【分析】(1)根据二次根式的性质化简各项,然后再合并同类项即可;(2)先结合平方差公式和完全平方公式计算,再去括号即可;(3)利用代入消元法求解即可;(4)利解析:(1)2)11--3)510x y =⎧⎨=⎩;(4)6024x y =⎧⎨=-⎩ 【分析】(1)根据二次根式的性质化简各项,然后再合并同类项即可;(2)先结合平方差公式和完全平方公式计算,再去括号即可;(3)利用代入消元法求解即可;(4)利用加减消元法求解即可.【详解】解:(1)原式==;(2)原式()22921⎡⎤=+⨯-⎢⎥⎣⎦(()111=+⨯-11=-- (3)23405x y x y +=⎧⎨-=-⎩①② 由②可得:5x y =-,将5x y =-代入①得:()25340y y -+=,解得:10y =,∴1055x =-=,∴原方程组解为:510x y =⎧⎨=⎩; (4)743832x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩①② 由①×4-②×3可得:43748332y y -=⨯-⨯, 解得:24y =-, 将24y =-代入①可得:24743x -+=, 解得:60x =,∴原方程组解为:6024x y =⎧⎨=-⎩. 【点睛】本题考查二次根式的混合运算,解二元一次方程组等,掌握基本解法,并熟练运用乘法公式是解题关键.18.B 、C 两点之间的距离为海里【分析】根据题意可知,然后根据勾股定理计算即可.【详解】解:根据题意可知,1小时后,海里,海里,在中,海里,∴B 、C 两点之间的距离为海里.【点睛】本题考解析:B 、C 两点之间的距离为39海里【分析】根据题意可知90BAC ∠=︒,然后根据勾股定理计算即可.【详解】解:根据题意可知90BAC ∠=︒,1小时后,15AB =海里,36AC =海里,在Rt ABC 中,39BC 海里,∴B 、C 两点之间的距离为39海里.【点睛】本题考查了方向角以及勾股定理,读懂题意,得出90BAC ∠=︒是关键.19.(1)见解析;(2)见解析;(3).【解析】【分析】(1)根据菱形的性质:菱形的四边都相等,利用网格画出对应的菱形即可;(2)根据图中所给的AB 计算出AB 的长不等于5,即AB 为底,然后利用勾解析:(1)见解析;(2)见解析;(3)CE =【解析】【分析】(1)根据菱形的性质:菱形的四边都相等,利用网格画出对应的菱形即可;(2)根据图中所给的AB 计算出AB 的长不等于5,即AB 为底,然后利用勾股定理找出E 点即可;(3)利用勾股定理进行相应的计算即可得到答案.【详解】解:(1) 根据菱形的性质:菱形的四边都相等,菱形的面积为8,画出的图形如下图所示(2)如图所示22105∵=+=≠AB BP AP∴AB为等腰三角形ABE的底∴AE=BE=5225∵=+==BE BT ET AE∴下图即为所求(3)如图所示,连接EC则由题意得2217+=CE CH EH【点睛】本题主要考查了应用设计与作图,正确利用网格结合勾股定理是解题的关键. 20.(1)见解析;(2)18【分析】(1)由四边形ABCD 是平行四边形易证△AOE ≌△COF ,从而可得OE=OF ,所以四边形AFCE 是平行四边形,又EF ⊥AC ,根据菱形的判定定理即可得证; (2)由解析:(1)见解析;(2)18【分析】(1)由四边形ABCD 是平行四边形易证△AOE ≌△COF ,从而可得OE =OF ,所以四边形AFCE 是平行四边形,又EF ⊥AC ,根据菱形的判定定理即可得证;(2)由(1)可求三角形ACE 的面积,又2AE ED =,从而可得三角形CED 的面积,则ABCD 的面积即可求解.【详解】(1)∵四边形ABCD 是平行四边形,∴AE //FC .∴∠EAO =∠FCO ,∠AEO =∠CFO .∵EF 平分AC ,∴OA =OC .∴△AOE ≌△COF .∴OE =OF .∴四边形AFCE 是平行四边形.又∵EF ⊥AC ,∴四边形AFCE 是菱形(对角线互相垂直的平行四边形是菱形).(2)∵四边形AFCE 是菱形,6AC =,4EF =,∴三角形ACE 的面积为16262⨯⨯=, ∵2AE ED =,∴三角形CED 的面积等于三角形ACE 的面积的一半,即三角形CED 的面积为1632⨯=, ∴三角形ACD 的面积为639+=,∴ABCD 的面积等于三角形ACD 的面积的2倍,即ABCD 的面积为1892=⨯. 故答案为:18.【点睛】本题考查了菱形的判定及平行四边形面积的求法,解题的关键是熟练掌握菱形的判定定理.21.(1);(2);(3)【解析】【分析】根据题意把题目中的无理式转化成的形式,然后仿照题意化简即可.【详解】解:(1)∵,∴,,∵,,∴,,∴;(2)∵,∴,,∵,,∴,,解析:(11;(23【解析】【分析】【详解】解:(1)∵ ∴4m =,3n =,∵314+=,313⨯=, ∴224+=∴1;(2)∵∴13m =,42n =, ∵7613+=,7642⨯=, ∴2213+==∴(3)∵ ∴8m =,15n =, ∵358+=,3515⨯=, ∴228+==∴==【点睛】本题考查了二次根式的化简,根据题中的范例把根号内的式子整理成完全平方的形式是解答此题的关键.22.(1);(2)3种;(3)227元 【分析】(1)依据每天生产的时间为300分钟列出函数关系式即可;(2)由种奶茶不少于73杯,种奶茶的杯数为非负数列不等式组求解即可; (3)列出利润与的函数关解析:(1)4300y x =-+;(2)3种;(3)227元 【分析】(1)依据每天生产的时间为300分钟列出函数关系式即可;(2)由A 种奶茶不少于73杯,B 种奶茶的杯数为非负数列不等式组求解即可; (3)列出利润与x 的函数关系式,然后依据一次函数的性质求解即可. 【详解】(1)∵每天生产的时间为300分钟, 由题意得:4300x y +=,4300y x ∴=-+(2)由题意得:7343000x x ≥⎧⎨-+≥⎩解得:7375x ≤≤x 为整数,73x ∴=,74,75∴不同的生产方案有3种. (3)设每天的利润为w 元,则()343001300W x x x =+-+⨯=-+即300w x =-+∴随x的增大而减小k=-<,w10∴当73x=时,w取最大值,W=-+=(元)此时73300227答:每天获得的最大利润为227元【点评】本题主要考查的是一次函数的应用,列出关于x的不等式组是解题的关键.23.(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.理由见解析;(3)S△PMN最大=.【分析】(1)由已知易得,利用三角形的中位线得出,,即可得出数量关系,再利用三角形的中位线得出得解析:(1)PM=PN,PM⊥PN;(2)△PMN是等腰直角三角形.理由见解析;(3)S△PMN最大=.【分析】(1)由已知易得,利用三角形的中位线得出,,即可得出数量关系,再利用三角形的中位线得出得出,最后用互余即可得出位置关系;(2)先判断出,得出,同(1)的方法得出,,即可得出,同(1)的方法由,即可得出结论;(3)方法1:先判断出最大时,的面积最大,进而求出AN,,即可得出最大,最后用面积公式即可得出结论.方法2:先判断出BD最大时,的面积最大,而BD最大是,即可得出结论.【详解】解:(1)点P,N是BC,CD的中点,,,点P,是CD,DE的中点,,,,,∴=,BD CE,,,,,,,,,故答案为:,;(2)是等腰直角三角形.由旋转知,,,,,,,利用三角形的中位线得,,,,是等腰三角形,同(1)的方法得,,,同(1)的方法得,,,,,,,,是等腰直角三角形;(3)方法1:如图2,同(2)的方法得,是等腰直角三角形,MN∴最大时,的面积最大,且DE在顶点A上面,∴最大,MN连接,AN,在ADE∆中,,,,在中,,,,.方法2:由(2)知,是等腰直角三角形,,最大时,面积最大, ∴点D 在BA 的延长线上,,,.【点睛】此题属于几何变换综合题,主要考查了三角形的中位线定理,等腰直角三角形的判定和性质,全等三角形的判断和性质,直角三角形的性质的综合运用;解(1)的关键是判断出,,解(2)的关键是判断出,解(3)的关键是判断出最大时,的面积最大.24.(1)A(-4,0),B(0,4),C(2,0);(2)画图见解析;E(-34,0);(3)存在,点的坐标为(-1,3)或45,125. 【解析】 【分析】(1)分别令x=0,y=0即可确定A 、B解析:(1)A(-4,0),B(0,4),C(2,0);(2)画图见解析;E;(3)存在,D 点的坐标为或.【解析】 【分析】(1)分别令x=0,y=0即可确定A 、B 的坐标,然后确定直线BC 的解析式,然后再令y=0,即可求得C 的坐标;(2)先根据中点的性质求出D 的坐标,然后再根据轴对称确定的坐标,然后确定DB 1的解析式,令y=0,即可求得E 的坐标;(3)分别就D 点在AB 和D 点BC 上两种情况进行解答即可. 【详解】 解:(1)在中, 令0x =,得,令0y =,得4x =-,,(0,4)B .把(0,4)B 代入,,得∴直线BC 为:24y x =-+.在24y x =-+中, 令0y =,得2x =, 点的坐标为(2,0); (2)如图点E 为所求 点D 是AB 的中点,,(0,4)B ..点B 关于x 轴的对称点的坐标为.设直线的解析式为y kx b =+. 把,代入, 得. 解得3k =-,.故该直线方程为:. 令0y =,得E 点的坐标为.(3)存在,D 点的坐标为或.①当点D 在AB 上时,由得到:,由等腰直角三角形求得D 点的坐标为;②当点D 在BC 上时,如图,设AD 交y 轴于点F .在与中,. ,∴点F 的坐标为(0,2),易得直线AD 的解析式为,与24y x =-+组成方程组,解得.∴交点D 的坐标为【点睛】本题是一次函数的综合题,考查了利用待定系数法求一次函数的解析式、轴对称等知识点,掌握一次函数的函数的知识和差分类讨论的思想是解答本题的关键.25.(1)见解析;(2)①见解析;② 【分析】(1)利用SAS 证明△ACD ≌△BCE ,从而利用全等三角形的性质即可得出结论;(2)①过点D 作DH ⊥CF 于H ,过点B 作BG ⊥CF ,交CF 的延长线于G ,首解析:(1)见解析;(2)①见解析;②202【分析】(1)利用SAS 证明△ACD ≌△BCE ,从而利用全等三角形的性质即可得出结论; (2)①过点D 作DH ⊥CF 于H ,过点B 作BG ⊥CF ,交CF 的延长线于G ,首先证明△ACT ≌△BCG 及△DCH ≌△ECT ,得到CT =BG ,CT =DH ,通过等量代换得出DH =BG ,再证明△DHF ≌△BGF ,则可证明结论;②首先利用等腰三角形的性质和ASA 证明△AOM ≌△COF ,则有OM =OF ,然后利用等腰直角三角形的性质得出FK 2,然后利用三角形的面积得出OF×BF =2,最后利用平方的非负性和完全平方公式求解即可. 【详解】证明:(1)∵△ABC 是等腰直角三角形,AC =BC , ∴∠ACB =90°, ∵CD ⊥CE ,∴∠ACB =∠DCE =90°,∴∠ACD +∠BCD =∠BCE +∠BCD ,即∠ACD =∠BCE , 在△ACD 和△BCE 中,AC BC ACD BCE CD CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ACD ≌△BCE (SAS ), ∴AD =BE ;(2)①如图2,过点D 作DH ⊥CF 于H ,过点B 作BG ⊥CF ,交CF 的延长线于G ,∵CF ⊥AE , ∴∠ATC =∠ATF =90°, ∴∠ACT +∠CAT =90°, 又∵∠ACT +∠BCG =90°, ∴∠CAT =∠BCG ,在△ACT 和△CBG 中, 90CAT BCG ATC CGB AC CB ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ∴△ACT ≌△CBG (AAS ), ∴CT =BG ,同理可证△DCH ≌△ECT , ∴CT =DH , ∴DH =BG , 在△DHF 和△BGF 中, 90DFH BFG DHF BGF DH BG ∠=∠⎧⎪∠=∠=︒⎨⎪=⎩, ∴△DHF ≌△BGF (AAS ), ∴DF =BF ;②如图3,过点F 作FK ⊥BC 于K ,∵等腰Rt △ABC ,CA =CB ,点O 是AB 的中点, ∴AO =CO =BO ,CO ⊥AB ,∠ABC =45°, ∴∠OCF +∠OFC =90°, ∵AT ⊥CF , ∴∠ATF =90°, ∴∠OFC +∠FAT =90°, ∴∠FAT =∠OCF , 在△AOM 和△COF 中, 90MAO FCO OA OCAOM COF ∠=∠⎧⎪=⎨⎪∠=∠=︒⎩, ∴△AOM ≌△COF (ASA ), ∴OM =OF , 又∵CO ⊥AO ,∴∠OFM =∠OMF =45°,222MF OF OM =+, ∴∠OFM =∠ABC ,MFOF , ∴MF //BC , ∴∠MFK =∠BKF =90°, ∵∠ABC =45°,FK ⊥BC , ∴∠ABC =∠BFK =45°, ∴FK =BK ,∵222BF FK BK =+,∴FK=2BF,2∵S△FMN=52,∴1×MF×FK=52,2∴2OF×2BF=102,2∴OF×BF=102,∵(BF﹣OF)2≥0,∴BF2+OF2﹣2BF×OF≥0,∴BF2+OF22=2,∴BF2+OF2的最小值为2【点睛】本题主要考查全等三角形的判定及性质,等腰直角三角形的性质与判定,平行线的性质与判定,三角形面积,完全平方公式等等,掌握等腰直角三角形的性质与判定和全等三角形的判定方法及性质是解题的关键.。
2024届河北省秦皇岛海港区四校联考八年级数学第二学期期末质量检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。
2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
回答非选择题时,将答案写在答题卡上,写在本试卷上无效。
3.考试结束后,将本试卷和答题卡一并交回。
一、选择题(每题4分,共48分)M N P Q中,一次函数y=kx+2(k<0)的图象不可能经过的点是()1.如图,在点,,,A.M B.N C.P D.Q2.某班实行每周量化考核制,学期末对考核成绩进行统计,结果显示甲、乙两组的平均成绩相同,方差分别是S2甲=36,S2乙=30,则两组成绩的稳定性( )A.甲组比乙组的成绩稳定B.乙组比甲组的成绩稳定C.甲、乙两组的成绩一样稳定D.无法确定3.点A,B,C,D都在如图所示的由正方形组成的网格图中,且线段CD与线段AB成位似图形,则位似中心为( )A.点E B.点FC.点H D.点G4.如图,在平行四边形ABCD中,∠B=60°,将△ABC沿对角线AC折叠,点B的对应点落在点E处,且点B,A,E在一条直线上,CE交AD于点F,则图中等边三角形共有( )A.4个B.3个C.2个D.1个5.在下列交通标志中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D .6.如图,在□ABCD 中,点E 、F 分别在边AB 、DC 上,下列条件不能..使四边形EBFD 是平行四边形的条件是( )A .DE =BFB .AE =CFC .DE ∥FBD .∠ADE =∠CBF7.用科学记数法表示0.0005为( )A .1510-⨯B .4510-⨯C .3510⨯D .4510⨯8.若平行四边形的一边长为7,则它的两条对角线长可以是( )A .12和2B .3和4C .14和16D .4和89.如图,动点P 从()0,3出发,沿箭头所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角.当点P 第2018次碰到矩形的边时,点P 的坐标为( )A .()1,4B .()5,0C .()7,4D .()8,310.下列各点中,在函数y =-6x 图象上的是( ) A .()2,4-- B .()2,3 C .()1,6- D .1,32⎛⎫- ⎪⎝⎭11.如图,在ABCD 中,对角线AC ,BD 交于点O .若4AC =,5BD =,3BC =,则BOC ∆的周长为( )A .6B .7.5C .8D .1212.一次函数与图象如图:则下列结论①k<0;②a>0;③不等式x+a<kx+b的解集是x<3;④a−b=3k−3中,正确的个数是( )A.1个B.2个C.3个D.4个二、填空题(每题4分,共24分)13.正方形A1B1C1O,正方形A2B2C2C1,正方形A3B3C3C2,按如图所示的方式放置在平面直角坐标系中,若点A1、A2、A3和C1、C2、C3…分别在直线y=x+1和x轴上,则点B2019的坐标是_____.14.如图,已知点P是∠AOB角平分线上的一点,∠AOB=60°, PD⊥OA,M是OP的中点,DM=4cm,如果点C 是OB上一个动点,则PC的最小值为________cm.15.比较大小:32_____23--(填“>”或“<”或“=”).16.若代数式35x-有意义,则x的取值范围是______。
2024届河北省秦皇岛海港区四校联考八年级数学第二学期期末调研模拟试题 考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题(每题4分,共48分)1.要使分式有意义,则的取值应满足( ) A . B . C . D .2.下列事件:①上海明天是晴天,②铅球浮在水面上,③平面中,多边形的外角和都等于360度,属于确定事件的个数有( )A .0个B .1个C .2个D .3个 3.63x ⋅是整数,那么整数x 的值是( ) A .6和3 B .3和1 C .2和18 D .只有184.一个直角三角形斜边上的中线为5,斜边上的高为4,则此三角形的面积为( )A .25B .16C .20D .105.下列各组条件中,不能判定四边形ABCD 是平行四边形的是( )A .AB CD ∥,AD BC ∥B .AB CD ∥,AD BC = C .AB CD ∥,AB CD = D .AB CD =,AD BC =6.某专卖店专营某品牌的衬衫,店主对上一周中不同尺码的衬衫销售情况统计如下:衬衫尺码39 40 41 42 43平均每天销售件数1012 20 12 12 该店主决定本周进货时,增加一些41码的衬衫,影响该店主决策的统计量是( )A .平均数B .方差C .中位数D .众数 7.如图,在▱ABCD 中,AB =3,BC =5,AC 的垂直平分线交AD 于E ,则△CDE 的周长是( )A .8B .6C .9D .108.不等式组2232x x x x +>⎧⎨<+⎩的解集是( ) A .x >-2B .x <1C .-1<x <2D .-2<x <19.下列函数中,自变量x 的取值范围是2x ≥-的是( )A .2y x =-B .12y x =-C .24y x =-D .2y x =+10.如图是由四个全等的直角三角形拼接而成的图形,其中5AE =,12BE =,则EF 的长是( )A .7B .8C .2D .311.下列调查中,适合用全面调查方法的是( )A .了解某校数学教师的年龄状况B .了解一批电视机的使用寿命C .了解我市中学生的近视率D .了解我市居民的年人均收入125x -x 的取值范围是( )A .x ≥5B .x ≤5C .x ≥﹣5D .x <5二、填空题(每题4分,共24分)13.八年级(1)班安排了甲、乙、丙、丁四名同学参加4×100米接力赛,打算抽签决定四人的比赛顺序,则甲跑第一棒的概率为______.14.在一个不透明的布袋中装有8个白球和4个红球,它们除了颜色不同外,其余均相同.从中随机摸出一个球,投到红球的概率是__________.15.菱形的边长为5,一条对角线长为8,则菱形的面积为____.16.人数相同的八年级甲,乙两班同学在同一次数学单元测试中,班级平均分和方差如下:80x x ==甲乙,2200S =甲,2210S =乙则成绩较为稳定的班级是_______.17.当m _____时,函数y =(m ﹣3)x ﹣2中y 随x 的增大而减小.18.若关于x 的一元二次方程()221534m x x m m +++-=的常数项为0,则m 的值是__________. 三、解答题(共78分)19.(8分)解下列方程:(1)2410x x -+=(2)(54)(45)0x x x +-+=20.(8分)学校决定从甲、乙两名同学中选拔一人参加“诵读经典”大赛,在相同的测试条件下,甲、乙两人5次测试成绩(单位:分)如下:甲:79,86,82,85,83.乙:88,81,85,81,80.请回答下列问题:(1)甲成绩的中位数是______,乙成绩的众数是______;(2)经计算知83x =乙,2465s =乙.请你求出甲的方差,并从平均数和方差的角度推荐参加比赛的合适人选. 21.(8分)如图,已知在△ABC 中,∠B=90°,AB=8cm ,BC=6cm ,点P 开始从点A 开始沿△ABC 的边做逆时针运动,且速度为每秒1cm ,点Q 从点B 开始沿△ABC 的边做逆时针运动,且速度为每秒2cm ,他们同时出发,设运动时间为t 秒.(1)出发2秒后,求PQ 的长;(2)在运动过程中,△PQB 能形成等腰三角形吗?若能,则求出几秒后第一次形成等腰三角形;若不能,则说明理由; 22.(10分)已知:AC 是平行四边形ABCD 的对角线,且BE ⊥AC ,DF ⊥AC ,连接DE 、BF .求证:四边形BFDE 是平行四边形.23.(10分)(1)解不等式组13(1)83312x x x x --<-⎧⎪⎨-+≥+⎪⎩ (2)先化简分式2222936931a a a a a a a a a ---÷-+++-,然后在0,1,2,3中选一个你认为合适的a 值,代入求值。
图3 2018—2019学年度第二学期期末教学质量检测试卷 八年级 数学(总分:100分 作答时间:100分钟)一、选择题(本题共10小题,每小题3分,共30分. 在每小题给出的四个选项中只有一项是符合要求的。
)1、下列式子中,是最简二次根式的是( )A. 21B. 313C. 51 D.8 2、已知一个直角三角形的两边长分别为3和5,则第三边的长是( ) A.5 B.4 C. 34 D.4或343.如图1,在□ABCD 中,O 是对角线AC ,BD 的交点,下列结论中错误的是( )A. AB ∥CDB.AB=CDC. AC=BDD.OA=OC4、如图2,函数3221+=-=ax y x y 与的图像相交于点 A (m ,2),则关于x 的不等式32+>-ax x 的解集是( )A.x>2B. x<2C.x>-1D.x<-15、在某次义务植树活动中,10名同学植树的棵数如图3所示.若他们植树的棵树的平均数是a 棵,中位数是b 棵,众数是c 棵,则下列结论中正确的是( )A. a=bB. b>aC. b=cD. c>b6、如图4,在Rt △ABC 中,∠ACB=90°,CD ⊥AB 于点D ,∠ACD=3∠AB 上的中点,则∠ECD 的度数是( )A. 30°B. 45°C. 50°D.55°7、小李与小陆从A 地出发,骑自行车沿同一条路行驶到B 地.他们离出发地的距离s(km)和行驶时间t(h)之间的函数关系如图5所示.根据图中提供的信息,有下列说法:①他们都行驶了20km;②小陆全程共用了1.5h ;③小李与小陆相遇后,小李的速度小于小陆的速度;④小李在途中停留了0.5h.其中正确的说法有几个( )A.1个B. 2个C. 3个D. 4个8、如图6,E 是边长为4的正方形ABCD 的对角线BD 上一点,且BE=BC.P 为CE 上任意一图2 图1 图4点,PQ ⊥BC 于点Q ,PR ⊥BD 于点R.则PQ+PR 的值是( )A.22B. 2C. 32D.389、如图7,已知等腰△ABC 的底边BC=20,D 是腰AB 上一点,且CD=16,BD=12.则△ABC的周长是( )A. 56B. 40C. 3153 D. 5347 10、如图8,在锐角△ABC 中,点O 是AC 边上的一个动点,过O 作直线MN ∥BC ,设MN交∠ACB 的平分线于点E ,交∠ACB 的外角平分线于点F ,有下列四个结论:①OE=OF ;②CE=CF ;③若CE=12,CF=5,则OC 的长为6;④当AO=CO 时,四边形AECF 是矩形.其中正确的有( )A. ①②B. ①④C. ①③④D.②③④二、填空题(本题共8小题,每小题3分,共24分)11、在函数72-=x y 中,自变量x 的取值范围是_______________.12、若0131=-++b a ,则___________20182017=+b a13、已知点A (2,0),B (0,2),C (-1,m )在同一条直线上,则m 的值为_____________14、甲、乙、丙、丁四位同学最近5次数学考试成绩的平均分分别是80、85、85、80,方差分别是42、42、54、59.如果从这四位同学中选出一位成绩较好且状态稳定的同学参加即将举行的数学竞赛,那么应该选________.15、如图9,在△ABC 中,D ,E 分别是AB 和AC 的中点,F 是BC 延长线上的一点,点G是CE 的中点,CF=2,则BC=___________.16、将矩形纸片ABCD 按图10的方式折叠,得到菱形AECF ,若AB=3,则BC 的长为_____.17、如图11,在平面直角坐标系中,有点A (1,6),B (5,0).点C 是y 轴上的一个动点.当△ABC 的周长最小时,点C 的坐标为____________.图5 图6 图8 图11 图9 图10 图718、 图12是一个“羊头”图案.其作法是:从正方形①开始,以它的一边为斜边,向外作等腰直角三角形,然后再以其直角边为边,分别向外作正方形②和②’……若正方形①的边长为64cm,则正方形⑦的边长为___________cm 。
2018-2019学年(下)八年级质量检测数学试卷(试卷满分:150分 考试时间:120分钟)一、选择题(本大题共10题,每小题4分,共40分))A .4B .2C . 0D .-1 2.某函数图象经过点(1,1),该函数的解析式可以是( ) A .y =x 2 B . y =2xC . y =2x -2D . y =x +13.如图1,四边形ABCD 的对角线AC ,BD 交于点O ,则∠DAC 的内错角是( ) A .∠ABD B .∠BDC C .∠ACB D .∠DOC4.计算(-2)2正确的是( )A .4B .2C .-2D .±25.2017年世界未来委员会与联合国防治荒漠化公约授予我国“未来政策奖”,以表彰我国在防治土地荒漠化方面的突出成就.图2是我国荒漠化土地面积统计图,则荒漠化土地面积是五次统计数据中的中位数的年份是( ) A .1999年 B .2004年 C .2009年 D .2014年6.如图3,某个函数的图象由线段AB 和线段BC 组成,其中A (0,2),B (32,1),C (4,3),则正确的结论是( )A .当x ≥0时,y 随x 的增大而增大B .当0≤x ≤32时,y 随x 的增大而增大C .当1≤x ≤3时,y 随x 的增大而增大D .当32≤x ≤4时,y 随x 的增大而增大DB20142009200419991994年份荒漠化土地 面积(km 2)图1 图2 图37.如图4,矩形ABCD的对角线AC、BD交于点O,在BD上截取BE=BC,连接CE并延长,交AD边于点F,若∠DBC=36°,则下列正确的是( )A.CF=BCB.CF=AFC.OE=2EDD.BC=2OE图48.下列命题都是正确的命题,其中逆命题也正确的是( )A.若a>b,则a≠bB.若a>b+1,则a>bC.若a>2b>0,则a>bD.若a>b,则a-b>09.在平面直角坐标系中xOy中,点A、B在直线y=x上,且横坐标分别为1,2,过点A作AC⊥x轴于点C,过点B向y轴作垂线段,与直线y=kx+b( k<0)交于点D,若BD=OC,则下列结论一定成立的是( )A.b=2-kB.b=2kC.b=2-3kD.b=k10.用若干个大小相同的正方形拼成矩形,若正方形的个数是6,则有两种拼法(如图5),则下列只有一种拼法的正方形的个数是( )A.25B.52C.91D.101图513.有一组数据:a,b,c,d,e(a<b<c<d<e),将这组数据改变成a-2,b,c,d,e+2.设这组数据改变前后的方差分别是S12,S22,则S12与S22的大小关系是__________.14.已知整数a为实数,若有整数b,m,满足(a+b) (a-b)=m2,则称a是b,m的弦数,若a<15且a为整数,请写出一组a,b,m,使得a是b,m的弦数:__________.15.某电信公司推出两种上宽带网的按月收费方式,两种方式都采取包时上网,即上网时间在一定范围内,收取固定的月使用费;超过该范围,则加收超时费,若两种方式所收费用y(元)与上宽带网时间x(时)的函数关系如图7所示,且超时费都为0.05元/分钟,则这两种方式所收的费用最多相差__________元.16.在菱形ABCD中,M是BC边上的点(不与B、C两点重合),AB=AM,点B关于直线AM对称的点是N,连接DN,设∠ABC,∠CDN的度数分别为x,y,则y关于x的函数解析式是______________________.三、解答题(本大题有9小题,共86分)17.(本题满分12分)(1)计算;12-212+8(2)当x=3+1,y=3-1时,求代数式x2-y2+xy的值.18.(本题满分7分)如图8,在□ABCD 中,BE 平分∠ABC ,且与AD 边交于点E ,∠AEB =45°,证明四边形ABCD 是矩形.图819.(本题满分7分)下表是厦门市某品牌专卖店全体员工9月8日的销售量统计资料.(1)写出该专卖店全体员工9月8日销售量的众数; (2)求该专卖店全体员工9月8日的平均销售量.20.(本题满分8分) 已知一次函数y =2x +1(1)在平面直角坐标系中,画出该函数的图象;(2)点(12,5)在该函数图象的上方还是下方?请做出判断说明理由.21.(本题满分8分)某区要在面积为128平方米的正方形空地上建造一个休闲园地,并进行规划(如图9):在体闲园地内建一个面积为72平方米的正方形儿童游乐场,游乐场两边铺设健身道,剩下的区域作为休息区.现计划在休息区摆放占地面积为3×1.5平方米“背靠背”休闲椅(如图10),并要求休闲椅摆放在东西方向或南北方向上,请通过计算说明休息区内最多能摆放几张这样的休闲椅.图9 图1022.(本题满分8分)如图11,四边形ABCD是平行四边形,E是BC边的中点,DF∥AE,DF与BC的延长线交于点F,AE,DC的延长线交于点G,连接FG.若AD=3,AG=2,FG=22,求在线AG与DF之间的距离.23.(本题满分11分)在平面直角坐标系xOy中,直线l1:y=mx+n(m<0且n>0)与x轴交于点A,过点C(1,0)作直线l2⊥x轴,且与l1交于点B.(1)当m=-2时,n=1时,求BC的长;(2)若BC=1-m,D(4,3+m),且BD∥x轴,判断四边形OBDA的形状,并说明理由.24. (本题满分11分)在正方形ABCD中,E是△ABD内的点,EB=EC.(1)如图12,若EB=BC,求∠EBD的度数;(2)如图13,EC与BD交于点F,连接AE,若S四边形ABFE=a,试探究线段FC与BE之间的等量关系,并说明理由.25.(本题满分14分)一条笔直跑道上的A ,B 两处相距500米甲.从A 处,乙从B 处,两人同时相向匀速而跑,直到乙到达A 处时停止,且甲的速度比乙大,甲、乙到A 处的距离y (米)与跑动时间x (秒)的函数关系如图14所示. (1)若点M 的坐标为(100,0),求乙从B 处跑到A 处的过程中y 与x 的函数解析式; (2)若两人之间的距离不超过200米的时间持续了40秒,①当x =x 1时,两人相距200米.请在图14中画出点P (x 1+40,0),保留画图痕迹,并写出画图步骤; ②请判断起跑后112分钟,两人之间的距离能否超过420米,并说明理由.(秒)。
秦皇岛市数学八年级下学期期末考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分)(2020·洞头模拟) 式子有意义的x的取值范围是()A . x≥﹣且x≠1B . x≠1C .D . x>﹣且x≠12. (2分)计算:(﹣)0=()A . 1B . ﹣C . 0D .3. (2分)二次函数y=ax2+bx+c的图象如图所示,则一次函数y=bx+a的图象不经过()A . 第一象限B . 第二象限C . 第三象限D . 第四象限4. (2分)(2018·甘孜) 某校篮球队五名主力队员的身高分别是 173,180,181,176,178(单位:cm),则这五名运动员身高的中位数是()A . 181cmB . 180cmC . 178cmD . 176cm5. (2分)(2018·鹿城模拟) 已知点,在一次函数的图象上,则,,0的大小关系是A .B .C .D .6. (2分)如图,函数y=3x和y=ax+4的图象相交于点A(m , 3),则不等式3x<ax+4的解集为()A . x<B . x<1C . x>D . x>17. (2分)(2017·汉阳模拟) 根据如图所示的三个图所表示的规律,依次下去第n个图中平行四边形的个数是()A . 3nB . 3n(n+1)C . 6nD . 6n(n+1)8. (2分) (2019八上·如皋期末) 如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于点E.若BD=3,DE=5,则线段EC的长为()A . 3B . 4C . 2D . 2.5二、填空题 (共6题;共8分)9. (1分) (2019七下·漳州期末) 流感病毒的直径为0.00000008m,用科学记数法表示为________m.10. (2分)(2019·青海) 根据如图所示的程序,计算的值,若输入的值是1时,则输出的值等于________.11. (1分)方程的解是________12. (1分)(2020·历下模拟) 有一组数据如下:2,3,3,4,则这组数据的方差是________.13. (2分) (2017八下·林州期末) 如图,平行四边形ABCD的对角线相交于点O,BC=7,BD=10,AC=6,则△AOD的周长是________.14. (1分)(2020·旌阳模拟) 已知双曲线与在第一象限内交于两点,,则扇形的面积是________.三、综合题 (共10题;共65分)15. (5分)(2011·常州) ①解分式方程;②解不等式组.16. (6分)(2017·冠县模拟) 解方程(1)先化简:(1﹣)• ,再从1,2,3中选取的一个合适的数代入求值.(2)求不等式组的整数解.17. (5分)(2017·崇左) 今年入春以来,湖南省大部分地区发生了罕见的旱灾,连续几个月无有效降水.为抗旱救灾,驻湘某部计划为驻地村民新建水渠3600米,为使水渠能尽快投入使用,实际工作效率是原计划工作效率的1.8倍,结果提前20天完成修水渠任务.问原计划每天修水渠多少米?18. (5分) (2019八上·海州期中) 如图,已知在AB、AC上各取一点E、D,使AE=AD,连结BD、CE相交于点O,连结AO,∠1=∠2,求证:∠B=∠C.19. (2分) (2019八上·洛宁期中) 如图,在△ABC中,AB=AC , DE是过点A的直线,BD DE于点D ,CE DE 于点 E.(1)若BC在DE的同侧(如图所示),且AD=CE ,求证:(2)若B、C在的两侧(如图所示),其他条件不变,AB与AC仍垂直吗?若是请给出证明;若不是,请说明理由.20. (10分)如图,在矩形ABCD中,M为对角线BD的中点,过点M作直线分别交AD,BC于点E,F.若直线绕点M从与BD重合的位置开始逆时针旋转,设旋转角为 .(1)求证:DE=BF;(2)已知∠ABD=60°,AB= .①若△BMF为等腰三角形,求;②连结BE,若△DEM是直角三角形,用含的代数式表示BE.21. (2分)(2018·定兴模拟) “校园安全”受到全社会的广泛关注,我县某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如下两幅尚不完整的统计图.请你根据统计图中所提供的信息解答下列问题:(1)接受问卷调查的学生共有________人,扇形统计图中“基本了解”部分所对应扇形的圆心角为________;(2)请补全条形统计图;(3)已知对校园安全知识达到“了解”程度的学生中有3个女生,其余为男生,若从中随机抽取2人参加校园安全知识竞赛,请用画树状图或列表法求出恰好抽到1个男生和1个女生的概率.22. (10分) (2020八上·巴东期末) 如图a,P、Q是△ABC的边BC上的两点,且△APQ为等边三角形,AB=AC,(1)求证:BP=CQ.(2)如图a,若∠BAC=120 ,AP=3,求BC的长.(3)若∠BAC=120 ,沿直线BC向右平行移动△APQ得到△A′P′Q′(如图b),A′Q′与AC交于点M.当点P移动到何处时,△AA′M≌△CQ′M?证明你的结论.23. (10分)(2020·郑州模拟) 某商场销售10台A型和20台B型加湿器的利润为2500元,销售20台A 型和10台B型加湿器的利润为2000元(1)求每台A型加湿器和B型加湿器的销售利润;(2)该商店计划一次购进两种型号的加湿器共100台,其中B型加湿器的进货量不超过A型加湿器的2倍,设购进A型加湿器x台.这100台加湿器的销售总利润为y元①求y关于x的函数关系式;②该商店应怎样进货才能使销售总利润最大?(3)实际进货时,厂家对A型加湿器出厂价下调m(0<m<100)元,且限定商店最多购进A型加湿器70台,若商店保持两种加湿器的售价不变,请你根据以上信息及(2)中条件,设计出使这100台加湿器销售总利润最大的进货方案.24. (10分)某公司今年如果用原线下销售方式销售一产品,每月的销售额可达100万元,由于该产品供不应求,公司计划于3月份开始全部改为线上销售,这样,预计今年每月的销售额(万元)与月份(月)之间的函数关系的图象如图1中的点状图所示(5月及以后每月的销售额都相同),而经销成本(万元)与销售额(万元)之间函数关系的图象如图2中线段AB所示.(1)求经销成本(万元)与销售额(万元)之间函数关系式;(2)分别求该公司3月、4月的利润;(3)把3月作为第一个月开始往后算,最早到第几个月止,该公司改用线上销售后所获得利润总额比同期用线线下方式销售所能获得的利润总额至少多出200万元?(利润=销售额-经销成本)参考答案一、选择题 (共8题;共16分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、二、填空题 (共6题;共8分)9-1、10-1、11-1、12-1、13-1、14-1、三、综合题 (共10题;共65分)15-1、16-1、16-2、17-1、18-1、19-1、19-2、20-1、20-2、21-1、21-2、21-3、22-1、22-2、22-3、23-1、23-2、23-3、24-1、24-2、24-3、。
河北省秦皇岛市海港区2018-2019学年八年级(下)期末数学试卷一、选择题(每小题2分,共30分)1.在平面直角坐标系中,点(0,-5)在()A.x轴正半轴上B.x轴负半轴上C.y轴正半轴上D.y轴负半轴上2.点(-2,3)关于y轴对称的点的坐标是()A.(2,-3)B.(2,3)C.(-2,-3)D.(3,-2)3.点(3,4)到y轴的距离为()A.3 B.4 C.5 D.44.下列点在直线y=-x+5上的是()A.(2,-1)B.(3,-32)C.(4,1)D.(1,2)5.直线y=x-3与x轴的交点坐标为()A.(0,3)B.(3,0)C.(-3,0)D.(0,-3)6.过原点和点(2,3)的直线的解析式为()A.y=32x B.y=23x C.-y=32x D.-y=23x7.观察图中的函数图象,则关于x的不等式ax-bx>c的解集为()A.x<2 B.x<1 C.x>2 D.x>18.下列命题中,真命题是()A.对角线互相平分的四边形是平行四边形B.对角线相等的四边形是矩形C.对角线相等且互相垂直的四边形是正方形D.对角线互相垂直的四边形是菱形9.已知一个多边形的内角和等于它的外角和的2倍,则这个多边形的边数为()A.8 B.7 C.6 D.510.如图,▱ABCD中,AE平分∠DAB,∠DEA=40°,则∠D等于()A.80°B.100°C.110°D.120°11.如图,菱形ABCD中,AC=2,BD=4,这个菱形的周长是()A B.C.D.A.6 B.C.D.13.如图是一个平行四边形,要在上面画两条相交的直线,把这个平行四边形分成的四部分面积相等,不同的画法有()A.1种B.2种C.4种D.无数种14.已知直线y=kx+b,k>0,b>0,则下列说法中正确的是()A.这条直线与x轴交点在正半轴上,与y轴交点在正半轴上B.这条直线与x轴交点在正半轴上,与y轴交点在负半轴上C.这条直线与x轴交点在负半轴上,与y轴交点在正半轴上D.这条直线与x轴交点在负半轴上,与y轴交点在负半轴上15.如图所示,AB是半圆O的直径,点P从点O出发,沿O→A→B→O的路径运动一周.设OP为s,运动时间为t,则下列图形能大致地刻画s与t之间关系的是()A.B.C.D.二、填空题(每空2分,共20分)16.如图,已知▱ABCD中,AB=4,BC=6,BC边上的高AE=2,则▱ABCD的面积是,DC边上的高AF的长是.17.如图,矩形ABCD中,AB=2,BD=4,对角线AC、BD交于点O,AE⊥BD,则AD= ,AE= .18.直线y=-12x+2是由直线y=-12x向上平移个单位长度得到的一条直线.直线y=-12x+2是由直线y=-12x向右平移个单位长度得到的一条直线.19.某学生会倡导的“爱心捐款活动结束后,学生会干部对捐款情况作了抽样调查,并绘制了统计图,图中从左到右各长方形高度之比为3:4:5:8:2,又知此次调查中捐15元和20元的人数共26人.(1)他们一共抽查了人;(2)抽查的这些学生,总共捐款元.20.已知A、B两地之间的距离为20千米,甲步行,乙骑车,两人沿着相同路线,由A地到B地匀速前行,甲、乙行进的路程s与x(小时)的函数图象如图所示.(1)乙比甲晚出发小时;(2)在整个运动过程中,甲、乙两人之间的距离随x的增大而增大时,x的取值范围是.三、解答下列各题(本题共5小题,共50分)21.求证:平行四边形的对边分别相等.22.为了解某校九年级男生的体能情况,体育老师随机抽取部分男生进行引体向上测试,并对成绩进行了统计,绘制成图1和图2两幅尚不完整的统计图.(1)本次抽测的男生有人,抽测成绩的众数是;(2)请你将图2的统计图补充完整;(3)若规定引体向上5次以上(含5次)为体能达标,则该校350名九年级男生中估计有多少人体能达标?23.如图,在正方形ABCD中,点E、F分别是AB、BC上的点,且AF⊥DE.求证:AE=BF.24.季末打折促销,甲乙两商场促销方式不同,两商场实际付费y(元)与标价x(元)之间的函数关系如图所示折线O-A-C(虚线)表示甲商场,折线O-B-C表示乙商场.(1)分别求射线AC、BC的解析式;(2)张华说他必须选择乙商场,由此推理张华计划购物所需费用x(元)(标价)的范围是;(3)李明说他必须选择甲商场,由此推理李明计划购物所需费用x(元)(标价)的范围是.25.如图,在平面直角坐标系中,▱ABCD,顶点A(1,1),B(5,1),D(-1,-1);直线y=kx-3k+4.(1)点C的坐标是,对角线AC与BD的交点E的坐标是;(2)①过点A(1,1)的直线y=kx-3k+4的解析式是;②过点B(5,1)的直线y=kx-3k+4的解析式是;③判断①、②中两条直线的位置关系是;(3)当直线y=kx-3k+4平分▱ABCD的面积时,k的值是;(4)一次函数y=kx-2k+1的图象(填能”或“不能”)平分▱ABCD的面积.参考答案与试题解析1.【分析】根据各象限内点的坐标特征解答.【解答】解:点P(1,-5)在第四象限.故选:D.【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(-,-);第四象限(+,-).2.【分析】根据关于x轴对称的点,横坐标相同,纵坐标互为相反数,可得答案.【解答】解:M(-2,3)关于x轴对称点的坐标为(-2,-3),故选:A.【点评】本题考查了关于x轴对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x轴对称的点,横坐标相同,纵坐标互为相反数;关于y轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.3.【分析】根据点到x轴的距离等于纵坐标的长度解答.【解答】解:点P(3,-4)到x轴的距离是4.故选:B.【点评】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.4.【分析】将四个选项中的点分别代入解析式,成立者即为函数图象上的点.【解答】解:将x=2代入y=-x+1得,y=-1,将x=3代入y=-x+1得,y=-2,将x=4代入y=-x+1得,y=-3,将x=1代入y=-x+1得,y=0,故A正确;故选:A.【点评】本题考查了一次函数图象上点的坐标特征,将点的坐标代入解析式,解析式成立者即为正确答案.5.【分析】设多边形的边数为n,则根据多边形的内角和公式与多边形的外角和为360°,列方程解答.【解答】解:设多边形的边数为n,根据题意列方程得,(n-2)•180°=360°,n-2=2,n=4.故选:B.【点评】本题考查了多边形的内角与外角,解题的关键是利用多边形的内角和公式并熟悉多边形的外角和为360°.6.【分析】根据勾股定理的逆定理得到△ABC是直角三角形,根据三角形中位线定理得到DE=12BC,DF=12AC,EF=12AB,根据相似三角形的判定和性质计算即可.【解答】解:32+42=25,52=25,∴32+42=52,∴△ABC是直角三角形,∴△ABC的周长=3+4+5=12,△ABC的面积=12×3×4=6,∵点D、E、F分别是△ABC各边中点,∴DE=12BC,DF=12AC,EF=12AB,∴△DEF∽△CBA,且相似比为12,∴△DEF的周长和面积分别为6、12,故选:C.【点评】本题考查的是三角形中位线定理、勾股定理的逆定理,掌握三角形的中位线平行于第三边,且等于第三边的一半是解题的关键.7.【分析】先根据平行四边形的性质得出∠DAB的度数,再由AE平分∠DAB即可得出结论.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAB=180°-∠B=180°-100°=80°,∵AE平分∠DAB,∴∠DAE=12∠DAB=12×80°=40°.故选:D.【点评】本题考查的是平行四边形的性质及角平分线的性质,熟知平行四边形的对边相互平行是解答此题的关键.8.【分析】根据菱形的性质逐个进行证明,再进行判断即可.【解答】解:A、∵四边形ABCD是平行四边形,AB=BC,∴平行四边形ABCD是菱形,故本选项错误;B、∵四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形,故本选项错误;C、∵四边形ABCD是平行四边形和∠ABC=90°不能推出,平行四边形ABCD是菱形,故本选项正确;D、∵四边形ABCD是平行四边形,∴AB∥CD,∴∠2=∠ADB,∵∠1=∠2,∴∠1=∠ADB,∴AB=AD,∴平行四边形ABCD是菱形,故本选项错误;故选:C.【点评】本题考查了平行四边形的性质,菱形的判定的应用,注意:菱形的判定定理有:①有一组邻边相等的平行四边形是菱形,②四条边都相等的四边形是菱形,③对角线互相垂直的平行四边形是菱形.9.【分析】由y随x的增大而增大可得出k>0,结合b>0利用一次函数图象与系数的关系可得出一次函数y=kx+b的图象经过第一、二、三象限,此题得解.【解答】解:∵一次函数y=kx+b中,y随x的增大而增大,∴k>0,又∵b>0,∴一次函数y=kx+b的图象经过第一、二、三象限.故选:D.【点评】本题考查了一次函数的性质以及一次函数图象与系数的关系,牢记“k>0,b>0⇔直线y=kx+b经过第一、二、三象限”是解题的关键.10.【分析】y1>y2时x的范围是一次函数y1=kx+b的图象在y2=mx+n的图象上边时对应的未知数的范围,据此即可求解.【解答】解:当y1>y2时,x的取值范围是x<1.故选:C.【点评】本题考查了一次函数图象与一元一次不等式的关系,理解y1>y2时x的范围是一次函数y1=kx+b的图象在y2=mx+n的图象上边时对应的未知数的范围是关键.11.【分析】根据正方形的性质,过对角线的交点,作两条互相垂直的直线即可.【解答】解:∵正方形是中心对称图形,∴经过正方形的对称中心作互相垂直的两条直线,则这两条直线把草地分成的四部分面积相等,故选:D.【点评】本题考查的是中心对称,掌握正方形是中心对称图形以及中心对称图形的性质是解题的关键.12.【分析】连接AC交BD于点O.利用三角形中线的性质解决问题即可;【解答】解:连接AC交BD于点O.∵四边形ABCD是平行四边形,∴OA=OC,∴S△BAO=S△BCO,S△PAO=S△POC,∴S△BAO-S△PAO=S△BOC-S△POC,即S△BAP=S△BCP,∴S1=S2,故选:B.【点评】本题考查平行四边形的性质、三角形的中线的性质、等高模型等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.13..【分析】由条形统计图和扇形统计图得到喜欢篮球的人数而后所占的百分比,求出人数,根据人数求出m、n,根据表示“足球”的百分比求出扇形的圆心角.【解答】解:由图①和图②可知,喜欢篮球的人数是12人,占30%,12×30%=40,则九(1)班的学生人数为40,A正确;4÷40=10%,则m的值为10,B正确;1-40%-30%-10%=20%,n的值为20,C正确;360°×20%=72°,D错误,故选:D.【点评】本题考查的是条形统计图和扇形统计图的综合运用,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.14.【分析】依据函数图象中端点的坐标,即可得到一天的盈利y(元)与这天的销售量x (个)之间的函数关系,进而得出正确结论.【解答】解:A.一天售出这种电子元件300个时盈利最大为400元,故正确;B.当x=0时,y=-200,即批发部每天的成本是200元,故正确;C.当y=0时,x=100,即批发部每天卖100个时不赔不赚,故正确;D.这种电子元件每件盈利400300100=2元,故错误;故选:D.【点评】本题考查了一次函数的图象的运用,一次函数的性质的运用,解答时理解函数图象的数据的含义是解答本题的关键.15. 【分析】令y=0,求出x 的值即可.【解答】解:∵令y=0,则x=-2,∴直线y=x+2与x 轴的交点坐标为(-2,0).故答案为:(-2,0).【点评】本题考查的是一次函数图象上点的坐标特点,熟知x 轴上点的坐标特点是解答此题的关键.16. 【分析】根据OA 的长确定出A 的坐标,利用待定系数法求出直线OA 解析式即可.【解答】解:过A 作AB ⊥x 轴,交x 轴于点B ,在Rt △AOB 中,OA=4,∠AOB=30°,∴AB=12AO=2,∴A (2),设直线OA 解析式为y=kx ,把A 坐标代入得:则直线OA 解析式为x ,故答案为:(2);y=3x 【点评】此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键.17. 【分析】根据函数图象平移的规则“上加下减”,即可得出将y=-12x 的函数图象向上平移4个单位即可得到函数y=-12x+4的图象,此题得解. 【解答】解:根据图形平移的规则“上加下减”,即可得出:将y=-12x的函数图象向上平移4个单位即可得到函数y=-12x+4的图象.故答案为:y=-12x;上;4.【点评】本题考查了一次函数图象与几何变换,解题的关键是熟练掌握函数图象平移的规则.本题属于基础题,难度不大,解决该题型题目时,熟练掌握函数图象平移的规则“左加右减,上加下减”是关键.18.【分析】首先判断出△ABO是等边三角形,然后根据BD的长求出DC的长.【解答】解:∵四边形ABCD是矩形,∴AO=OB,∵AE⊥BD于E,DB=4,∴△ABO、CDO是等边三角形,∴AB=BO=CO=DO=2,∴CD=2,故答案为:2.【点评】本题主要考查了矩形的性质,解题的关键是判断出△ABO是等边三角形,此题难度不大.19.【分析】先根据多边形的外角和求出n,再求出答案即可.【解答】解:小亮走出的这个n边形的每个内角是180°-30°=150°,n=36030=12,12×5m=60m,故答案为:150,60.【点评】本题考查了多边形的内角和定理和多边形的外角和定理,能根据题意求出n的值是解此题的关键,注意:边数为n的多边形的内角和=(n-2)×180°,多边形的外角和=360°.20.【分析】由题可得B(4,0),C(6,-2),D(8,0),依据2017=8×252+1,即可得到点P在x轴上方,且点P离x轴的距离等于AO的中点离x轴的距离,进而得出b的值.【解答】解:∵OA=AB,点A的坐标为(2,4),∴B(4,0),由旋转可得,C(6,-2),D(8,0),∴OD=8,∵2017=8×252+1,∴点P 在x 轴上方,且点P 离x 轴的距离与AO 的中点离x 轴的距离相等,又∵点A 的坐标为(2,4),∴AO 的中点离x 轴的距离为2,∴点P 离x 轴的距离为2,∴b 的值为2,故答案为:2.【点评】本题考查的是坐标与图形变化-旋转,理解有关图形绕点顺时针旋转180°,得到的图形与原图形中心对称是解题的关键.21. 【分析】直接利用正方形的性质结合全等三角形的判定与性质得出∠ADE=∠BAF ,进而得出∠AGE=90°.【解答】证明:∵四边形ABCD 为正方形,∴DA=AB ,∠DAE=∠ABF=90°,在△DAE 和△ABF 中AD AB DAE ABF AE BF ⎪∠⎪⎩∠⎧⎨===,∴△DAE ≌△ABF (SAS ),∴∠ADE=∠BAF ,∵∠ADE+∠AED=90°,∴∠FAE+∠AED=90°,∴∠AGE=90°,∴AF ⊥DE .【点评】此题主要考查了正方形的性质以及全等三角形的判定与性质,正确得出△DAE ≌△ABF 是解题关键.22. 【分析】(1)根据营销人员的工资由两部分组成,一部分为基本工资,每人每月3000元;另一部分是按月销售量确定的奖励工资,每销售1件产品奖励10元,得出y 与x 的函数关系式即可;(2)将y=4100代入求得对应的x 的值即可;(3)依据每月工资超过4500元,列不等式求解即可.【解答】解:(1)∵销售人员的工资由两部分组成,一部分为基本工资,每人每月3000元;另一部分是按月销售量确定的奖励工资,每销售1件产品奖励10元,设营销员李亮月销售产品x件,他应得的工资为y元,∴y=10x+3000(x≥0,且x为整数);(2)∵若该销售员的工资为4100元,则10x+3000=4100,解之得:x=110,∴该销售员的工资为4100元,他这个月销售了110件产品;(3)根据题意可得:10x+3000>4500,解得x>150,∴要使每月工资超过4500元,该月的销售量应当超过150件.【点评】此题考查了一次函数的应用,关键是读懂题意得出y与x之间的函数关系式,进而利用不等量关系分别求解.23.【分析】(1)求出OP和OQ的值,即可判断出结论;(2)由矩形得出PQ=AC=6,分两种情况,即可得出结论;(3)分两种情况,利用线段的和差即可得出结论.【解答】(1)证明:∵四边形ABCD是平行四边形,∴OA=OC=3,OB=OD=5,当t=2时,BP=QD=2,∴OP=OQ=3,∴四边形APCQ是平行四边形;(2)解:t=2或t=8;理由如下:∵四边形APCQ是矩形,∴PQ=AC=6,如图1,∴BP=12(BD-PQ)=2,则此时t=2,如图2BQ=12(BD-PQ)=2∴BP=6+2=8,则此时t=8;即以A、P、C、Q为顶点的四边形为矩形时,t的值为2或8;(3)解:当0≤t≤5时,如图1,y=PQ=BD-BP-DQ=10-t-t=10-2t当t>5时,如图2,y=PQ=OP+OQ=BP-OB+DQ-OD=t-5+t-5=2t-10,即:y=() 10205 2105()t tt t-≤⎩≤-⎧⎨>【点评】此题是四边形综合题,主要考查了平行四边形的性质,矩形的性质,用方程的思想和分类讨论的思想解决问题是解本题的关键.24.【分析】(1)联立两个解析式,解方程组即可得到点B坐标;(2)①利用函数解析式,即可得到点E,F的坐标,进而得出EF的长;②当x≤3时,y=-x+4-x+2=-2x+6;当x>3时,y=x-2-(-x+4)=2x-6;据此可得y与x的函数关系式,并画出函数图象L.③根据直线y=kx+b与L只有一个公共点,即可得到k的取值范围.【解答】解:(1)联立两个解析式可得42y xy x+⎩--⎧⎨==,解得31 xy⎧⎨⎩==,∴点B的坐标为(3,1);(2)①如图:当x=2时,y=-x+4=2,∴E(2,2),当x=2时,y=x-2=0,∴F(2,0),∴EF=2;如图:当x=4时,y=-x+4=0,∴E(4,0),当x=4时,y=x-2=2,∴F(4,2),∴EF=2;②当x≤3时,y=-x+4-x+2=-2x+6;当x>3时,y=x-2-(-x+4)=2x-6;∴线段EF的长y与x的函数关系式为:y=() 263 26()3x xx x-+≤-⎧⎨⎩>,图象如图所示:③∵直线y=kx+b与L只有一个公共点,∴k的取值范围为k>2或k<-2.【点评】本题考查了两直线相交的问题,待定系数法求一次函数解析式,一次函数图象与系数的关系,仔细观察图形,数形结合是解题的关键.。
2018-2019学年八年级(下)期末数学试卷一、选择题(共12小题,每小题3分,满分36分)1.下列二次根式中,是最简二次根式的是()A.B.C.D.2.矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等 D.对角线互相平分3.下列四组线段中,可以组成直角三角形的是()A.4,5,6 B.3,4,5 C.5,6,7 D.1,,34.小明和小李两位同学这学期数学六次测试的平均成绩恰好都是85分,方差分别为S小明2=1.5,S小李2=2,则成绩最稳定的是()A.小明B.小李C.小明和小李 D.无法确定5.正方形的一条对角线长为6,则正方形的面积是()A.9 B.36 C.18 D.36.在函数y=中,自变量x的取值范围是()A.x≥1 B.x≤1 C.x≤1且x≠5 D.x≥1且x≠57.一次函数y=3x+5的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限8.不能判断四边形ABCD是平行四边形的是()A.AB=CD,AD=BC B.AB=CD,AB∥CD C.AB=CD,AD∥BC D.AB ∥CD,AD∥BC9.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=2,则AC的长为()A.2 B.4 C.6 D.810.菱形两条对角线长为6和8,菱形的边长为a,面积为S,则下列正确的是()A.a=5,S=24 B.a=5,S=48 C.a=6,S=24 D.a=8,S=4811.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.28 B.20 C.14 D.1812.小明为备战体育中考,每天早晨坚持锻炼,他花20分钟慢跑到离家900米的江边,在江边休息10分钟后,再用15分钟快跑回家,下列图中表示小明离家的距离y(米)与时间x(分)的函数图象是()A.B.C.D.二、填空题(共6小题,每小题3分,满分18分)13.当x时,有意义.14.一组数据1,3,2,5,x的平均数为3,那么这组数据的方差是.15.如图,在▱ABCD中,已知AD=6cm,AB=4cm,AE平分∠BAD交BC边于点E,则EC=cm.16.直线y=﹣3x+5向下平移6个单位得到直线.17.已知一个直角三角形的两条直角边分别为6和8,则它斜边上的中线的长为.18.一次函数y=(m﹣8)x+5中,y随x的增大而减小,则m的取值范围是.三、解答题(共6小题,满分46分)19.计算:﹣|﹣2|﹣(2﹣π)0+(﹣1)2017.20.如图,在▱ABCD中,E、F分别为BC、AD边上的一点,BE=DF.求证:AE=CF.21.某校举办的“读好书、讲礼仪”活动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书,下面是八年级(1)班全体同学捐献图书的情况统计图:请你根据以上统计图中的信息,解答下列问题:(1)该班有学生多少人?(2)补全条形统计图;(3)八(1)班全体同学所捐图书的中位数和众数分别是多少?22.已知:如图,O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,DE、CE交于点E.(1)猜想:四边形CEDO是什么特殊的四边形?(2)试证明你的猜想.23.某长途汽车站规定,乘客可以免费携带一定质量的行李,若超过该质量则需购买行李票,且行李票y(元)与行李质量x(千克)间的一次函数关系式为y=kx ﹣5(k≠0),现知贝贝带了60千克的行李,交了行李费5元.(1)若京京带了84千克的行李,则该交行李费多少元?(2)旅客最多可免费携带多少千克的行李?24.甲乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系,折线BCD表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式.2018-2019学年八年级(下)期末数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.下列二次根式中,是最简二次根式的是()A.B.C.D.【考点】74:最简二次根式.【分析】根据最简二次根式的概念即可求出答案.【解答】解:(A)原式=2,故A不是最简二次根式;(B)原式=4,故B不是最简二次根式;(C)原式=,故C不是最简二次根式;故选(D)2.矩形具有而平行四边形不一定具有的性质是()A.对角相等B.对边相等C.对角线相等 D.对角线互相平分【考点】LB:矩形的性质;L5:平行四边形的性质.【分析】矩形的对角线互相平分且相等,而平行四边形的对角线互相平分,不一定相等.【解答】解:矩形的对角线相等,而平行四边形的对角线不一定相等.故选:C.3.下列四组线段中,可以组成直角三角形的是()A.4,5,6 B.3,4,5 C.5,6,7 D.1,,3【考点】KS:勾股定理的逆定理.【分析】由勾股定理的逆定理,只要验证两小边的平方和等于最长边的平方即可.【解答】解:A、42+52≠62,不能构成直角三角形,故不符合题意;B、32+42=52,能构成直角三角形,故符合题意;C、52+62≠72,不能构成直角三角形,故不符合题意;D、12+()2≠32,不能构成直角三角形,故不符合题意.故选B.4.小明和小李两位同学这学期数学六次测试的平均成绩恰好都是85分,方差分别为S小明2=1.5,S小李2=2,则成绩最稳定的是()A.小明B.小李C.小明和小李 D.无法确定【考点】W7:方差;W1:算术平均数.【分析】方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定,据此判断即可.【解答】解:∵1.5<2,∴S小明2<S小李2,∴成绩最稳定的是小明.故选:A.5.正方形的一条对角线长为6,则正方形的面积是()A.9 B.36 C.18 D.3【考点】LE:正方形的性质.【分析】根据正方形的面积=对角线的乘积的一半.【解答】解:因为正方形的对角线互相垂直且相等,所以正方形的面积=对角线的乘积的一半=×6×6=18,故选C.6.在函数y=中,自变量x的取值范围是()A.x≥1 B.x≤1 C.x≤1且x≠5 D.x≥1且x≠5【考点】E4:函数自变量的取值范围.【分析】根据被开方数是非负数且分母不能为零,可得答案.【解答】解:由题意,得x﹣1≥0且x﹣5≠0,解得x≥1且x≠5,故选:D.7.一次函数y=3x+5的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限【考点】F5:一次函数的性质.【分析】利用一次函数的性质求解.【解答】解:∵k=3>0,b=5>0,∴一次函数y=3x+5的图象经过第一、二、三象限.故选D.8.不能判断四边形ABCD是平行四边形的是()A.AB=CD,AD=BC B.AB=CD,AB∥CD C.AB=CD,AD∥BC D.AB ∥CD,AD∥BC【考点】L6:平行四边形的判定.【分析】A、B、D,都能判定是平行四边形,只有C不能,因为等腰梯形也满足这样的条件,但不是平行四边形.【解答】解:根据平行四边形的判定:A、B、D可判定为平行四边形,而C不具备平行四边形的条件,故选:C.9.如图,在矩形ABCD中,对角线AC,BD交于点O,已知∠AOD=120°,AB=2,则AC的长为()A.2 B.4 C.6 D.8【考点】LB:矩形的性质.【分析】只要证明△AOB是等边三角形即可解决问题.【解答】解:∵四边形ABCD是矩形,∴AC=BD,OA=OC,OB=OD,∴OA=OB,∵∠AOD=120°,∴∠AOB=60°,∴△AOB是等边三角形,∴OA=OB=AB=2,∴AC=2OA=4,故选B.10.菱形两条对角线长为6和8,菱形的边长为a,面积为S,则下列正确的是()A.a=5,S=24 B.a=5,S=48 C.a=6,S=24 D.a=8,S=48【考点】L8:菱形的性质.【分析】画出几何图形,利用菱形的面积等于对角线乘积的一半即可得到此菱形的面积,根据菱形的性质得AC⊥BD,AO=OC=4,OB=OD=3,然后根据勾股定理计算AB即可.【解答】解:如图,菱形ABCD的对角线AC=8,BD=6,菱形的面积=•AC•BD=×8×6=24,∵四边形ABCD为菱形,∴AC⊥BD,AO=OC=4,OB=OD=3,在Rt△AOB中,AB===5,即菱形的边长为5.∴a=5,S=24,故选A.11.如图,△ABC中,AB=AC=10,BC=8,AD平分∠BAC交BC于点D,点E为AC的中点,连接DE,则△CDE的周长为()A.28 B.20 C.14 D.18【考点】KP:直角三角形斜边上的中线;KH:等腰三角形的性质.【分析】根据等腰三角形三线合一的性质可得AD⊥BC,CD=BD,再根据直角三角形斜边上的中线等于斜边的一半可得DE=CE=AC,然后根据三角形的周长公式列式计算即可得解.【解答】解:∵AB=AC,AD平分∠BAC,BC=8,∴AD⊥BC,CD=BD=BC=4,∵点E为AC的中点,∴DE=CE=AC=5,∴△CDE的周长=CD+DE+CE=4+5+5=14.故选C.12.小明为备战体育中考,每天早晨坚持锻炼,他花20分钟慢跑到离家900米的江边,在江边休息10分钟后,再用15分钟快跑回家,下列图中表示小明离家的距离y(米)与时间x(分)的函数图象是()A.B.C.D.【考点】E6:函数的图象.【分析】在江边休息10分钟后,应是一段平行与x轴的线段,B是10分钟,而A是20分钟,依此即可作出判断.【解答】解:根据题意,从20分钟到30分钟在江边休息,离家距离没有变化,是一条平行于x轴的线段.故选B.二、填空题(共6小题,每小题3分,满分18分)13.当x≥2时,有意义.【考点】72:二次根式有意义的条件.【分析】根据二次根式有意义的条件可得3x﹣6≥0,再解不等式即可.【解答】解:由题意得:3x﹣6≥0,解得:x≥2,故答案为:≥2.14.一组数据1,3,2,5,x的平均数为3,那么这组数据的方差是2.【考点】W7:方差;W1:算术平均数.【分析】先由平均数的公式计算出x的值,再根据方差的公式计算.一般地设n个数据,x1,x2,…x n的平均数为,=(x1+x2+…+x n),则方差S2= [(x1﹣)2+(x2﹣)2+…+(x n﹣)2].【解答】解:x=5×3﹣1﹣3﹣2﹣5=4,s2= [(1﹣3)2+(3﹣3)2+(2﹣3)2+(5﹣3)2+(4﹣3)2]=2.故答案为2.15.如图,在▱ABCD中,已知AD=6cm,AB=4cm,AE平分∠BAD交BC边于点E,则EC=2cm.【考点】L5:平行四边形的性质.【分析】根据平行四边形的性质和角平分线的性质可以推导出等角,进而得到等腰三角形,推得AB=BE,根据AD、AB的值,求出EC的长.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,∴∠DAE=∠BEA,∵AE平分∠BAD,∴∠BAE=∠DAE,∴∠BAE=∠BEA,∴BE=AB=4cm,∵BC=AD=6cm,∴EC=BC﹣BE=2cm,故答案为:2.16.直线y=﹣3x+5向下平移6个单位得到直线y=﹣3x﹣1.【考点】F9:一次函数图象与几何变换.【分析】直接根据“上加下减”的原则进行解答即可.【解答】解:由“上加下减”的原则可知,y=﹣3x+5向下平移6个单位,所得直线解析式是:y=﹣3x+5﹣6,即y=﹣3x﹣1.故答案为:y=﹣3x﹣1.17.已知一个直角三角形的两条直角边分别为6和8,则它斜边上的中线的长为5.【考点】KQ:勾股定理;KP:直角三角形斜边上的中线.【分析】根据勾股定理求得斜边的长,从而不难求得斜边上和中线的长.【解答】解:∵直角三角形两条直角边分别是6、8,∴斜边长为10,∴斜边上的中线长为5.18.一次函数y=(m﹣8)x+5中,y随x的增大而减小,则m的取值范围是m <8.【考点】F5:一次函数的性质.【分析】先根据一次函数的增减性判断出(m﹣8)的符号,再求出m的取值范围即可.【解答】解:∵一次函数y=(m﹣8)x+5中,若y的值随x值的增大而减小,∴m﹣8<0,∴m<8.故答案为:m<8.三、解答题(共6小题,满分46分)19.计算:﹣|﹣2|﹣(2﹣π)0+(﹣1)2017.【考点】2C:实数的运算;6E:零指数幂.【分析】首先计算乘方、乘法,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:﹣|﹣2|﹣(2﹣π)0+(﹣1)2017=3﹣2﹣×1﹣1=﹣﹣1=﹣120.如图,在▱ABCD中,E、F分别为BC、AD边上的一点,BE=DF.求证:AE=CF.【考点】L5:平行四边形的性质;KD:全等三角形的判定与性质.【分析】根据平行四边形的性质得出AB=CD,∠B=∠D,根据SAS证出△ABE ≌△CDF即可推出答案.【解答】证明:∵四边形ABCD是平行四边形,∴AB=CD,∠B=∠D,∵BE=DF,∴△ABE≌△CDF,∴AE=CF.21.某校举办的“读好书、讲礼仪”活动,各班图书角的新书、好书不断增多,除学校购买外,还有师生捐献的图书,下面是八年级(1)班全体同学捐献图书的情况统计图:请你根据以上统计图中的信息,解答下列问题:(1)该班有学生多少人?(2)补全条形统计图;(3)八(1)班全体同学所捐图书的中位数和众数分别是多少?【考点】VC:条形统计图;VB:扇形统计图;W4:中位数;W5:众数.【分析】(1)用2册的人数除以其所占百分比可得;(2)总人数减去其余各项目人数可得答案;(3)根据中位数和众数定义求解可得.【解答】解:(1)15÷30%=50,答:该班有学生50人;(2)捐4册的人数为50﹣(10+15+7+5)=13,补全图形如下:(3)八(1)班全体同学所捐图书的中位数=3(本),众数为2本.22.已知:如图,O是菱形ABCD对角线的交点,DE∥AC,CE∥BD,DE、CE交于点E.(1)猜想:四边形CEDO是什么特殊的四边形?(2)试证明你的猜想.【考点】L8:菱形的性质;JA:平行线的性质.【分析】(1)猜想:四边形CEDO是矩形;(2)根据平行四边形的判定推出四边形是平行四边形,根据菱形性质求出∠DOC=90°,根据矩形的判定推出即可;【解答】(1)解:猜想:四边形CEDO是矩形.(2)证明:∵DE∥AC,CE∥BD,∴四边形OCED是平行四边形,∵四边形ABCD是菱形,∴AC⊥BD,∴∠DOC=90°,∴四边形OCED是矩形.23.某长途汽车站规定,乘客可以免费携带一定质量的行李,若超过该质量则需购买行李票,且行李票y(元)与行李质量x(千克)间的一次函数关系式为y=kx ﹣5(k≠0),现知贝贝带了60千克的行李,交了行李费5元.(1)若京京带了84千克的行李,则该交行李费多少元?(2)旅客最多可免费携带多少千克的行李?【考点】FH:一次函数的应用.【分析】把x=60,y=5代入里待定系数法求解即可得到解析式,再把x=84代入求解即可;令y=0,即可求得旅客最多可免费携带30千克行李.【解答】解:(1)将x=60,y=5代入了y=kx﹣5中,解得,∴一次函数的表达式为,将x=84代入中,解得y=9,∴京京该交行李费9元;(2)令y=0,即,解得,解得x=30,∴旅客最多可免费携带30千克行李.答:京京该交行李费9元,旅客最多可免费携带30千克行李.24.甲乙两地相距300千米,一辆货车和一辆轿车先后从甲地出发向乙地,如图,线段OA表示货车离甲地距离y(千米)与时间x(小时)之间的函数关系,折线BCD表示轿车离甲地距离y(千米)与时间x(小时)之间的函数关系.请根据图象解答下列问题:(1)轿车到达乙地后,货车距乙地多少千米?(2)求线段CD对应的函数解析式.【考点】FH:一次函数的应用.【分析】(1)根据图象可知货车5小时行驶300千米,由此求出货车的速度为60千米/时,再根据图象得出货车出发后4.5小时轿车到达乙地,由此求出轿车到达乙地时,货车行驶的路程为270千米,而甲、乙两地相距300千米,则此时货车距乙地的路程为:300﹣270=30千米;(2)设CD段的函数解析式为y=kx+b,将C(2.5,80),D(4.5,300)两点的坐标代入,运用待定系数法即可求解.=60(千米/时).【解答】解:(1)根据图象信息:货车的速度V货=∵轿车到达乙地的时间为货车出发后4.5小时,∴轿车到达乙地时,货车行驶的路程为:4.5×60=270(千米),此时,货车距乙地的路程为:300﹣270=30(千米).答:轿车到达乙地后,货车距乙地30千米;(2)设CD段函数解析式为y=kx+b(k≠0)(2.5≤x≤4.5).∵C(2.5,80),D(4.5,300)在其图象上,∴,解得,∴CD段函数解析式:y=110x﹣195(2.5≤x≤4.5).。
秦皇岛市海港区2018-2019学年度第二学期期末质量检测试卷
八年级数学
一、选择题(每题2分,共20分)
1.下列二次根式中属于最简二次根式的是( )
2.十二位参加歌唱比赛的同学的成绩各不相同,按成绩取前6位进入决赛.如果小英知道了自己的成绩后,要判断能否进入决赛,小英需要知道这十二位同学成绩的( )
A.平均数
B.众数
C.中位数
D.方差
3.如果某函数的图象如图所示,那么y随x的增大而( )
A.增大
B.减小
C.不
变 D.有时增大有时减小 4.在下列命题中,正确的是( ) A.对角线相等的四边形是平行四边形
B.有一个角是直角的四边形是矩形
c.有一组邻边相等的平行四边形是菱形
D.对角线互相垂直平分的四边形是正方形
5.如果P(2,n),A(1,1),B(4,0)三点在同一直线上,则m的值为( )
A.2
B.1
6.一次函数y=kx+b中,y随x的增大而减小,b <0,则这个函数的图象不经过( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
7.甲、乙两班举行电脑汉字输入比赛参赛学生每分钟并输汉字的个数统计结果如下表:
某同学分析上表后得到如下结论:
①甲、乙两班平均成绩相同;
②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字的字数多于150为优秀);
③甲班成绩的波动比乙班大.上述结论中正确的是( )
A.①②③
B.①②
C.①③
D.②③
8.如图是一块正方形草地,要在上面修建两条交叉的小路,使得这两条小路将草地分成的四部
分面积相等,修路的方法有( )
A.1种
B.2种
C.4种
D.无数种
9.将矩形纸片ABCD按如图所示的方式折叠.恰好得到菱形AECF.
若AD=√3,则菱形AECF的面积为( )
10.在全民健身环城越野赛中,甲、乙两选手的行程y(千米)随时间x(时)变化的图象(全程)如图所示.有下列说法: ①起跑后1小时内,甲在乙的前面; ②第1小时两人都跑了10千米; ③甲比乙
先到达终点; ④两人都
跑了20千米.其中正确的说法有( ) A.1个
B.2个
C.3个
D.4个
二、填空题(11题、16题、18题每空1分,其他每小题3分,共36分)
11.化简: =
________.
12.已知a为实数,那么=_____________.
13.小明所在班级为希望工程捐款,他统计了全班同学的捐款情况,并绘制成如图
所示的统计图,根据统计图,可计算出全班同学平均每人捐款_______元.
____
14.已知x,y满足∣x-4∣+ √ y-8 =0,以x,y的值为直角三角形的两条直角边长,则这个直角三角形斜边的长为_______
15.矩形的长为96cm、宽为12cm,正方形的边长为acm,它的面积与矩形面积相等,则a=_______.
16.以方程2x-3y=6的解为坐标的所有点组成的图形是函数_______的图象,以方程3x-2y=5的解为坐标的所有点组成的图形是函数_______的图象,从函数的观
点看,方程组的解的含义是:当自变量x取_______时,函数
_______和函数_______有相同的函数值.
17.如图,正方形ABCD边长为a,O为正方形ABCD的对角线的交点,正方形A1B1C1O绕点O旋转,则两个正方形重叠部分的面积为_______
18.一次函数的图象是由正比例函数_______的图象向
_______ (选填“上”或“下”)平移_______个单位长度得到的一条直线或由正比例函数
_______的图象向_______(选填“左”或“右”)平移_______个单位长度得到的一条直线. 19.如果直线y=k1x+b1和直线y=k2x+b2(k1>k2>0)的交点为(a,b),则不等式的解集为
_______.
20.已知正方形ABCD,作等边三角形ADE,则∠AEB=_______.
三、解答题(本题共6小题,共44分)
21.(本题满分10分)
(3)(4分)已知x=2-√3,求代数式(7+ 4√3)x2+(2+√3)x+√3的值.
22.(本题满分6分)一家公司14名员工的月薪(单位:元)是:
3000 2450 2600 3000 2200 2100 3900 14000 2800 500 0 2550 3000 21000 2400 (1)直接写出这组数据的
平均数、中位数和众数;
(2)用平均数、中位数和众数哪个量能反映员工的工资水平?并说明理由.
23.(本题满分7分)如图,是一个6×10的正方形网格(每个小正方形的边长均为1),点A,B,C 都在格点上,请按要求完成下列各题:
(1)过A作AD//BC(D为格点),连接BD;求证:四边形ADBC是矩形;
(2)在图中画出AB的中点E,并求CE的长;
(3)在图中,使得OPBC为等腰三角形(BC为腰)的格点P的个数是_______.
24.(本题满分8分)一次函数y1=kx+b的图象经过点A(5,1),且和正比例函数y2=2x的图象交于点B(2,m).
(1)求一次函数的解析式;
(2)在同一直角坐标系中画出两个函数的图象;
(3)求直线y1=kx+b和两条坐标轴围成的图形面积;
(4)在x轴上求作点P使PA + PB最小,求出P点坐标,并求出PA + PB的最小值.
25.(本题满分6分)如图,过平行四边形ABCD的对角线BD的中点O作两条互相垂直的直线,分别交BC,CD,DA,AB于E,F,G,H四点,连接EF,FG,GH,HE.
试判断四边形EFGH的形状,并证明.
26. (本题满分7分)A市和B市分别有库存的某联合收割机12台和6台,现决定开往C市10台和D市8台.
(1)设B市开往C市的联合收割机为x台,求x满足的条件;
(2)从A市开往C市,D市的油料费分别为每台400元和800元,从B市开往C市和D市的油料费分别为每台300元和500元.
①求总油料费w关于x的函数关系式;
②若总油料费不超过9000元,问有几种调运方案?
③在②的条件下,求总油料费最低的调运方案,并求出最低油料费.
参考答案。