表面张力系数的测定
- 格式:doc
- 大小:213.50 KB
- 文档页数:9
实验三 表面张力系数的测定[实验目的]1. 学习FD-NST-I 型液体表面张力系数测定仪的使用方法;2. 用拉脱法测定室温下液体的表面张力系数 [实验原理]表面张力f 方向沿液体表面,且恒与分界线垂直,大小与分界线的长度成正比,α为液体的表面张力系数即 L f α= (1) 将内径为D 1,外径为D 2的金属环悬挂在测力计上,然后把它浸入盛水的玻璃器皿中。
当缓慢地向上金属环时,金属环就会拉起一个与液体相连的水柱。
由于表面张力的作用,测力计的拉力逐渐达到最大值F(超过此值,水柱即破裂),则F 应当是金属环重力G 与水柱拉引金属环的表面张力f 之和,即f G F += (2)水柱两液面的直径与金属环的内外径相同,则有)(21D D f +=απ (3) 则表面张力系数为 )(21D D f+=πα (4)本实验用FD-NST-I 型液体表面张力系数测定仪进行测量。
若力敏传感器拉力为F 时,数字式电压表的示数为U ,B 表示力敏传感器的灵敏度,则有BUF =(5) 吊环拉断液柱的前一瞬间,吊环受到的拉力为f G F +=1;拉断时瞬间,吊环受到的拉力为G F =2。
若吊环拉断液柱的前一瞬间数字电压表的读数值为U 1,拉断时瞬间数字电压表的读数值为U 2,则有BU U F F f 2121-=-= (6) 故表面张力系数为 BD D U U D D f)()(212121+-=+=ππα (7)[实验仪器]FD-NST-I 型液体表面张力系数测定仪、片码、铝合金吊环、吊盘、玻璃器皿、镊子 游标卡尺、纯净水、NaOH 溶液、电吹风 [实验内容]1. 开机预热15分钟;2. 清洗玻璃器皿和吊环;3. 调节支架的底脚螺丝,使玻璃器皿保持水平;4. 测定力敏传感器的灵敏度①. 预热15分钟以后,在力敏传感器上吊上吊盘,并对电压表清零;②. 将7个质量均为0.5g 的片码依次放入吊盘中,分别记下电压表的读数U 0~U 7;再依次从吊盘中取走片码,记下读数U 7~U 0。
液体表面张力系数的测定实验报告数据液体表面张力系数的测定实验报告数据引言:液体表面张力是指液体分子表面层内部的相互吸引力。
它是液体分子间的一种特殊力,决定了液体在表面上的性质和行为。
本实验旨在通过测定液体表面张力系数,探究液体分子间的相互作用力,并分析实验数据。
实验仪器与试剂:1. 测量液体表面张力的仪器:纸片法测量仪2. 实验液体:蒸馏水、乙醇、甲苯实验步骤:1. 实验前准备:a. 将实验室温度调至恒定,避免温度变化对实验结果的影响。
b. 清洗测量仪器,确保无杂质干扰。
2. 测定蒸馏水的表面张力系数:a. 将测量仪器放置于水平台上,调整纸片的位置,使其悬垂于平台边缘。
b. 缓慢地将蒸馏水滴入纸片上,观察纸片的形态变化,直至纸片完全沉没。
c. 记录滴入蒸馏水的体积,并根据纸片的形态变化确定表面张力系数。
3. 测定乙醇的表面张力系数:a. 重复步骤2中的操作,将乙醇滴入纸片上。
b. 记录滴入乙醇的体积,并根据纸片的形态变化确定表面张力系数。
4. 测定甲苯的表面张力系数:a. 重复步骤2中的操作,将甲苯滴入纸片上。
b. 记录滴入甲苯的体积,并根据纸片的形态变化确定表面张力系数。
实验结果与分析:根据实验数据,我们计算得到了蒸馏水、乙醇和甲苯的表面张力系数。
以下是实验结果的总结:1. 蒸馏水的表面张力系数为X N/m。
通过对纸片的形态变化观察,我们发现蒸馏水的表面张力较大,纸片在滴入水滴后能够悬垂一段时间,表明水分子间的相互作用力较强。
2. 乙醇的表面张力系数为Y N/m。
与蒸馏水相比,乙醇的表面张力系数较小,纸片在滴入乙醇后迅速沉没,表明乙醇分子间的相互作用力较弱。
3. 甲苯的表面张力系数为Z N/m。
与蒸馏水和乙醇相比,甲苯的表面张力系数更小,纸片在滴入甲苯后几乎立即沉没,表明甲苯分子间的相互作用力非常弱。
结论:通过本实验,我们成功测定了蒸馏水、乙醇和甲苯的表面张力系数,并分析了实验数据。
实验结果表明,不同液体的表面张力系数与其分子间的相互作用力有关。
实验二表面张力系数的测定一、实验目的(一)用毛细管法测定水的表面张力系数;(二)掌握读数显微镜的使用方法。
二、实验器材读数显微镜(1台)玻璃毛细管(1支)精密温度计(1支)洗耳球(1只)培养皿(1只)吸水纸(1张)毫米分度尺(1支)木支架(1只)三、实验原理与仪器使用(一)毛细现象与表面张力系数将很细的玻璃管插入水中时管内液面会升高;而将玻璃细管插入水银中时,管内的液面会下降。
这种润湿管壁的液体在细管内升高,不润湿管壁的液体在细管内下降的现象称为毛细现象。
如图2—1所示表示润湿情况下的毛细现象。
实验与理论都证明,液体在毛细管中上升或下降的高度为:式中为液体的表面张力系数,即垂直作用于液面上单位长度直线段两侧的表面张力。
单位为牛顿/米。
不同的液体不同,同一种液体的数值与温度有关,温度升高,减小。
称为接触角,为锐角,表示细管内液体表面形成凹弯月面,液体在管内上升,h为正值,如图2—1所示。
为钝角,表示细管内液体表面形成凸弯月面,液体在管内下降,h为负值。
水与玻璃间的约为8度。
为液体的密度,水在不同温度下值不同,可从讲义后面的附图曲线中查出。
g为重力加速度,南京地区的g=9.7944米/秒2。
r为毛细管内半径,D为其直径。
式2—1可变换为:通过测量h、D,可计算出值。
(二)读数显微镜的构造与使用方法读数显微镜可用于测量微小物体的长度,其精确度为0.01毫米。
读数显微镜包括两个主要部分,即观察部分和读数部分。
观察部分就是一架低倍显微镜。
其成像光路如图2—2所示,被观察物体AB位于物镜O的焦点之外适当距离处,物体产生的实象A1B1位于目镜E的焦点之内。
目镜再将此实象放大,在离人眼约25厘米处得到一个放大的虚象A2B2,在第一次实象A1B1的位置上,装有十字叉丝K,以便对准物体或物体的某一部分进行测量。
显微镜的物镜和目镜装在镜筒内。
在使用显微镜时,测量前应先调节目镜中上下两透镜的距离(微微转动上透镜),至所见叉丝清晰为止,然后再对待测物调焦。
测量液体表面张力系数实验报告液体表面张力是液体分子之间的吸引力导致液体表面上发生的现象。
在液体表面,靠近空气的分子受到的吸引力是其他分子所没有的,因此它们会被吸引向液体内部,形成一层相对稳定的表面。
表面张力系数是量化液体表面张力大小的常数。
一、实验目的本实验的主要目的是通过测量液体表面张力来了解液体分子之间的相互作用和物理性质。
具体的实验目标有:1. 掌握测量液体表面张力的方法和技巧;2. 了解不同条件对液体表面张力的影响;3. 理解液体表面张力与液体分子性质的关系。
二、实验原理1. 测量液体表面张力的方法:本实验使用的是悬铂铁环法。
液体样品放置在一个玻璃片上,然后将铂铁环轻轻悬挂在液体表面上,通过调节悬挂的长度,使铂铁环在液体表面平衡,此时液体表面张力F为mg,其中m为铂铁环质量,g为重力加速度。
通过测量悬挂铂铁环的长度,可以计算出液体表面张力系数。
2. 影响液体表面张力的因素:液体表面张力受到温度、溶质浓度和杂质含量等因素的影响。
一般情况下,随着温度升高,液体表面张力降低;溶质浓度的增加会导致液体表面张力增加;杂质的存在也会降低液体表面张力。
三、实验步骤1. 准备工作:清洗实验仪器和玻璃片,确保其表面没有杂质。
2. 精密称量:使用天平和电子天平分别测量铂铁环的质量和液体样品的质量。
3. 处理液体样品:将液体样品倒入一个干净的容器中,并待其静止片刻,让其温度稳定。
4. 实验操作:将磁力搅拌器调至适当速度,加热样品并保持液体温度稳定。
然后将玻璃片浸入液体中,等待液体温度均匀。
5. 开始测量:取出玻璃片,用吹气球将其吹干,再将其置于铂铁环上。
然后通过调节铂铁环长度,在液体表面平衡,记录铂铁环长度。
6. 实验重复:根据实验需要,重复测量多组数据,确保结果的准确性。
7. 数据处理:根据实验原理的公式,计算液体表面张力系数。
如果有多组数据,则计算平均值。
四、实验注意事项1. 实验时应小心操作,避免液体样品溅出或对仪器造成损害。
滴重法测定液体的表面张力原理:当液体在滴重计(滴重计市售商品名屈氏粘力管)口悬挂尚未下滴时: 2r mg πσ=r :若液体润湿毛细管时为外半径,若不润湿时应使用内半径。
σ: 液体的表面张力。
m :液滴质量(一滴液体)。
g ;重力加速度,当采用厘米.克.秒制时为 981cm /S 2但从实际观察可知,测量时液滴并未全部落下,有部分收缩回去,故需对上式进行校正:2'r f m g πσ=m ’为滴下的每滴液体质量(用分析天平称量)。
f 称为哈金斯校正因子,它是r /v 1/3的函数;v 是每滴液体的体积;可由每滴液体的质量除液体密度得到。
在上式中r 和f 是未知数,可采用已知表面张力的液体(如蒸馏水)做实验,采用迭代法得到:设每滴水质量为m ’,体积为v ;先用游标卡尺量出滴重计管端的外直径D ;可得半径r 0;用r 0作初值;求得r 0/ v 1/3;查哈金斯校正因子表(插值法)得f 1;用水的表面张力σ和f 1代入12'r f m g πσ=;求的第一次迭代结果r 1;再由r 1/ v 1/3查表得f 2 ;再代入:22'r f m g πσ=求得第二次迭代值r 2,同法再由r 2/ v 1/3代入查表求f 3 ,这样反复迭代直至相邻两次迭代值的相对误差:┃(r i-1-r i )/ r i ┃≤eps (eps 表示所需精度,如1‰)这时的r 就是要求的结果,记录贴在滴重管上的标签上,半径就标定好了。
求得半径r 后,对待测液体只要测得每滴样品重和密度,就可由r/ v 1/3查表得f ;由:2'r f m g πσ= 就可求得样品的表面张力。
最大泡压法测定溶液的表面张力实际上,最大泡压法测定溶液的表面张力是毛细管上升法的一个逆过程。
其装置如图所示,将待测表面张力的液体装于表面张力仪中使毛细管的端面与液面相切(这样做是为了数据处理方便,如果做不到相切,每次实验毛细管浸没的深度应保持一致,此时数据处理参见其它文献),由于毛细现象液面即沿毛细管上升,打开抽气瓶的活塞缓缓抽气,系统减压,毛细管内液面上受到一个比表面张力仪瓶中液面上(即系统)大的压力,当此压力差——附加压力(∆p =p大气-p 系统)在毛细管端面上产生的作用力稍大于毛细管口液体的表面张力时,气泡就从毛细管口脱出,此附加压力与表面张力成正比,与气泡的曲率半径成反比,其关系式为拉普拉斯公式:Rp σ2=∆ (4-2) 式中,∆p 为附加压力;σ为表面张力;R 为气泡的曲率半径。
测液体表面张力系数实验报告
1.实验内容
本实验旨在测定液体表面张力系数(CST),通过应用DuNoRiTz-Weber系统技术,根据凝胶原理计算表面张力系数,并评估实验中所采用的不同液体对表面张力系数的影响。
2.实验原理
表面张力是一种描述液体表面特征的量,它表示两种介质(气体与液体)在表面上吸引力的大小。
它由层与层之间的力组成,受到凝胶原理和液体分子的性质等多种因素的影响。
因此,表面张力的测量是对液体表面特性的客观评价的重要手段。
DuNoRiTz-Weber系统是一种用于测量表面张力系数的装置,采用改进的“锥形空心圆柱”(Capillary Cylinder)技术,利用弹力理论,将球形接触角的测量结果,转换为表面张力系数(CST)的结果,测量表面张力主要依靠的是气液界面的张力梯度,即表面张力的变化率。
CST可以用来评估液体的表面特征,如分子结构、气体和液体的相互作用能力等。
3.实验仪器
DuNoRiTz-Weber系统,液体样品(清水、乙醇、醋酸和氢氧化钠),计算机,滴定管等。
4.实验步骤
(1)准备DuNoRiTz-Weber系统:把液体样品放入滴定管中,将滴定管放入系统内,并用塑料密封好。
(2)连接计算机:将电脑与DuNoRiTz-Weber系统连接,运行软件,准备测量。
(3)测量:在软件上,设置参数,使系统进行测量,测量过程中注意检查系统状态,并及时用棉签清除油污或水滴,以确保测量精度。
(4)数据记录:测量完毕后,根据测量结果记录下每种液体的表面张力系数(CST),以及批次号等信息。
表面张力系数的测定实验报告一、引言(引言部分可以介绍表面张力的概念和重要性,以及测定表面张力系数的目的和意义)二、实验原理2.1 表面张力的定义(在这一部分可以详细解释表面张力的概念和其对液体性质的影响)2.2 表面张力系数的测定方法1.球法测定法2.悬滴法测定法3.比重法测定法2.3 实验所用仪器和试剂1.试验仪器:球法测定仪、悬滴法测定仪、比重测定仪2.试验试剂:去离子水、甲醇等三、实验步骤3.1 球法测定法的实验步骤1.准备实验器材,如球法测定仪、试验瓶等2.将试验瓶中装满去离子水活得其他试剂3.将试验瓶放入球法测定仪中,记录下实验环境条件4.通过测量实验瓶和球法测定仪的重量差来计算表面张力系数3.2 悬滴法测定法的实验步骤1.准备实验器材,如悬滴法测定仪、试验液等2.将试验液滴在悬滴法测定仪上,注意控制滴液量3.观察滴液在测定仪上的形态,记录下实验环境条件4.根据滴液的形态和重量来计算表面张力系数3.3 比重法测定法的实验步骤1.准备实验器材,如比重测定仪、试验液等2.将试验液倒入比重测定仪中,注意加入量的控制3.观察试验液的形态和重量,记录下实验环境条件4.通过测定试验液在不同条件下的密度来计算表面张力系数四、实验数据和结果(分别列出球法测定法、悬滴法测定法和比重法测定法的实验数据和计算结果)五、实验讨论(可以对实验结果进行讨论,分析不同测定方法的优缺点,并解释可能产生的误差来源)六、结论(根据实验结果和讨论部分的分析,得出关于表面张力系数测定的结论)七、参考文献(列出实验中所参考的相关文献)八、致谢(感谢支持和帮助过你实验的人)。
用拉脱法测定液体的表面张力系数实验报告用拉脱法测定液体的表面张力系数实验报告引言:表面张力是液体分子间相互作用力在液体表面上的表现形式,是液体分子间引起的一种特殊的内聚力。
测定液体的表面张力系数对于研究液体的性质、表面现象以及应用领域具有重要意义。
本实验通过拉脱法测定液体的表面张力系数,旨在探究液体分子间的相互作用力以及表面现象的规律。
实验原理:拉脱法是一种常用的测定液体表面张力系数的方法。
其基本原理是通过测量液体在一根细管内的上升高度来计算液体的表面张力系数。
根据拉脱法的原理,我们可以得到以下公式:γ = ρgh实验步骤:1. 准备工作:清洗实验器材,确保无杂质干净。
2. 实验器材准备:取一根细管,将一段长度为L的细管浸入待测液体中。
3. 测量液体上升高度:将细管取出,放置在标尺上,测量液体上升的高度h。
4. 重复实验:重复以上步骤,记录多组数据。
实验数据处理:根据实验步骤记录的数据,我们可以计算出液体的表面张力系数。
根据公式γ= ρgh,其中ρ为液体的密度,g为重力加速度,h为液体上升的高度。
通过多组数据的平均值,可以得到较为准确的表面张力系数。
实验结果与讨论:根据实验数据处理的结果,我们得到了液体的表面张力系数。
通过对不同液体进行实验,我们可以发现不同液体的表面张力系数存在差异。
这是因为不同液体分子间的相互作用力不同,导致表面张力系数的差异。
在实验过程中,我们还可以观察到一些有趣的现象。
例如,液体表面张力越大,液体在细管内上升的高度越高。
这是因为表面张力越大,液体分子间的相互作用力越强,液体在细管内上升的高度也就越大。
此外,我们还可以通过实验探究液体的性质。
例如,对于不同液体,其表面张力系数与温度的关系可以进行研究。
通过改变温度,我们可以观察到液体表面张力系数的变化规律,进一步了解液体的性质。
结论:通过拉脱法测定液体的表面张力系数,我们可以得到液体的表面张力系数,并探究液体分子间的相互作用力以及表面现象的规律。
用焦利氏秤测定液体的表面张力系数焦利氏秤是一种专门用于测量液体表面张力系数的仪器。
其原理是基于拉脱法,通过测量液滴从毛细管中滴出时的力矩来计算表面张力。
下面将详细说明使用焦利氏秤测定液体的表面张力系数的步骤和可能的注意事项。
一、实验准备1.焦利氏秤:包括支架、尺子、砝码、滴定管、毛细管等部件。
在实验前需对所有部件进行检查,确保其清洁干燥,且无损坏。
2.待测液体:选择适当的液体进行测试。
要求液体的纯度高,无杂质,以减少误差。
3.其他设备:烧杯、吸水管、纸巾等。
二、实验步骤1.安装焦利氏秤:将支架放置在水平桌面上,然后依次安装尺子、砝码、滴定管和毛细管。
确保所有部件都安装牢固,无倾斜或摇晃。
2.准备待测液体:将待测液体倒入烧杯中,确保液体的纯度和清洁度。
3.毛细管插入液体:用吸水管将毛细管插入待测液体中,注意不要让液面超过毛细管的顶部,以免液体进入滴定管。
4.滴定开始:轻轻挤压滴定管,使液体从毛细管中滴出。
当液滴达到一定大小后,松开手,让液滴从毛细管中自然下落。
用纸巾擦拭滴定管下端的残留液体,以备下次使用。
5.数据记录:观察并记录液滴从毛细管中滴出时的力矩。
这可以通过测量砝码的移动距离来实现。
注意要记录多次测量得到的数据,以便后续分析。
6.计算表面张力:根据记录的数据,可以利用公式计算液体的表面张力系数。
公式为:γ = (mgh)/(2πR) 其中,γ为表面张力系数,m为液滴的质量,g为重力加速度,h为液滴的高度,R为毛细管的半径。
三、注意事项1.实验过程中要保持桌面水平,以免影响测量的准确性。
2.毛细管插入液体时要小心,避免产生气泡,否则会影响液体的表面张力测量。
3.在滴定过程中,要控制好液滴的大小,以便于观察和测量。
同时,要注意液滴下落的速度,这也可以反映液体的表面张力情况。
4.实验过程中要保证所有设备干燥清洁,避免杂质对测量结果的影响。
5.在数据记录过程中,要保证砝码的位置和测量尺的位置在同一水平线上,以减少误差。
表面张力系数的测定实验报告一、实验目的本实验旨在通过测量液体表面张力系数,掌握液体表面张力的概念及其测量方法。
二、实验原理1.液体表面张力的概念液体表面张力是指单位长度内液体表面所需的能量,它是由于分子间相互作用力引起的。
在液体中,分子间存在吸引作用,因此分子会向内聚拢;而在液体与外界相接触的表面上,由于没有上方分子的吸引作用,因此分子会向下聚拢。
这种内聚和外聚之间产生了一个平衡状态,即所谓的表面张力。
2.测定表面张力系数的方法(1)自由下落法:利用小球在液体中自由下落时所受到的阻力与重力平衡来测定表面张力系数。
(2)静水压差法:利用两个相距较近且水平放置的玻璃板之间形成水柱时所受到压强差来测定表面张力系数。
(3)环法:将一根环形线圈放入液体中,在环和液体交界处形成一个弧形截面,利用截面积和液体重量之间的关系来测定表面张力系数。
三、实验步骤及记录1.实验器材:环形线圈、容量瓶、电子天平、测微计、滴管等。
2.实验前准备:清洗器材,将环形线圈放入热水中加热至沸腾,使其表面完全湿润后取出晾干。
3.测定液体的密度:用容量瓶称取一定质量的液体,记录质量和容积,计算出液体密度。
4.测定环形线圈的质量:用电子天平称取环形线圈的质量。
5.测定液体对环形线圈的重力作用力:将干净且完全干燥的环形线圈悬挂在滴管上,并用滴管滴入一定数量的液体,使其完全覆盖住环形线圈。
记录此时液体重量和滴管内残留液体重量,并计算出所添加的液体重量。
6.测定环形线圈对液面所受到的支持力:将带有一定数量液体的容器放在水平台上,并将悬挂有一定数量残留液体的环形线圈轻轻放入液面上,记录此时环形线圈所受到的支持力。
7.测定表面张力系数:根据公式γ=2mg/πr,计算出表面张力系数γ。
四、实验结果分析1.实验数据记录:液体密度ρ=1.2g/cm³环形线圈质量m=0.5g添加液体重量m1=0.2g环形线圈所受支持力F=0.05N环形线圈半径r=0.01m2.计算过程:(1)计算液体重量m2=m+m1-残留液体重量;(2)计算环形线圈受到的重力作用力mg=m2g;(3)根据公式γ=2mg/πr,计算出表面张力系数γ。
测量液体表面张力系数实验报告
实验目的:
本实验旨在通过测量液体表面张力系数,掌握测量液体表面张力系数的方法,并深入理解表面张力的概念及其与液体性质的关系。
实验原理:
液体表面张力是指液体表面上单位长度的表面自由能,通常用$\gamma$表示。
表面张力的大小与液体分子间相互作用力有关,表面张力越大,液体分子间的相互作用力越强。
测量液体表面张力的方法有很多种,本实验采用的是测量液滴下落时间法。
设液滴下落高度为h,下落时间为t,则液滴表面张力系数为:
$\gamma$ = $\frac{2\pi r^2 m g}{t}$
其中,r为液滴半径,m为液滴质量,g为重力加速度。
实验步骤:
1.将测量装置清洗干净,并用吹风机将其吹干。
2.将液体注入测量装置中,液体表面与盖子上的孔平齐。
3.将装置架在支架上,调整仪器高度使液滴能够自由下落。
4.用手控制磁铁的开关,使液滴在磁铁的作用下自由下落,记录下落时间t。
5.重复上述步骤,分别测量不同高度下液滴的下落时间,并记录数据。
6.根据测量结果计算液体表面张力系数。
实验结果:
本次实验测得的液体表面张力系数为X,其误差为X%。
实验分析:
通过本次实验,我们掌握了一种测量液体表面张力系数的方法,深入理解了表面张力的概念及其与液体性质的关系。
同时,我们还发现液体表面张力系数与液体种类、温度等因素相关。
实验结论:
本实验通过测量液滴下落时间,计算液体表面张力系数,得出液体表面张力系数与液体性质相关,并且液体表面张力系数与液体种类、温度等因素有关。
溶液中的吸附作用和表面张力的测定一、实验目的1、 掌握最大气泡法和滴重法测定表面活性物质正丁醇的表面张力, 并且利用Gibbs 吸附公式和Langmuir 吸附等温式测定正丁醇分子的横截面积。
训练学生利用毛细管和数字式微压测量仪以及滴重管测定表面张力的方法, 并通过曲线及直线拟合处理得到不同数据。
培养学生在实验中严谨的实验作风和态度, 并对学生的科研兴趣进行初步的指导。
二、实验原理物体表面分子和内部分子所处的境遇不同, 表面层分子受到向内的拉力, 所以液体表面都有自动缩小的趋势。
如果把一个分子由内部迁移到表面, 就需要对抗拉力而做功。
在温度、压力和组成恒定时, 可逆地表面增加 所需对体系做的功, 叫表面功, 可以表示为:W dA δσ'-=式中σ为比例常数。
σ在数值上等于当T 、p 和组成恒定的条件下增加单位表面积所必须对体系做的可逆非膨胀功, 也可以说是每增加单位表面积时体系自由能的增加值。
环境对体系作的表面功转变为表面层分子比内部分子多余的自由能。
因此, σ称为表面自由能, 其单位是焦耳每平方米(J/m2)。
若把σ看作为作用在界面上每单位长度边缘上的力, 通常称为表面张力。
从另外一方面考虑表面现象, 特别是观察气液界面的一些现象, 可以觉察到表面上处处存在着一种张力, 它力图缩小表面积, 此力称为表面张力, 其单位是牛顿每米(N/m )。
表面张力是液体的重要特性之一, 与所处的温度、压力、浓度以及共存的另一相的组成有关。
纯液体的表面张力通常是指该液体与饱和了其本身蒸气的空气共存的情况而言。
2、 纯液体表面层的组成与内部层相同, 因此, 液体降低体系表面自由能的唯一途径是尽可能缩小其表面积。
对于溶液则由于溶质会影响表面张力, 因此可以调节溶质在表面层的浓度来降低表面自由能。
根据能量最低原则, 溶质能降低溶剂的表面张力时, 表面层中溶质的浓度应比溶液内部来得大。
反之溶质使溶剂的表面张力升高时, 它在表面层中的浓度比在内部的浓度来得低, 这种表面浓度与溶液内部浓度不同的现象叫“吸附”。
用拉脱法测定液体的表面张力系数实验报告实验报告:用拉脱法测定液体的表面张力系数摘要:本实验使用拉脱法测定了两种不同液体的表面张力系数。
通过拉脱法的实验原理和方法,成功测量出了不同液体的表面张力系数,并对实验结果进行了数据分析和讨论。
实验目的:1.了解表面张力的基本概念和相关原理2.掌握使用拉脱法测定液体表面张力系数的实验方法3.通过实验获取两种不同液体的表面张力系数,并分析比较不同液体之间的表面张力性质。
实验原理:拉脱法是一种通过拉伸液体表面的方法来测定液体表面张力系数的实验方法。
当一根细长的金属丝端部被液体浸泡后,其自重会拉伸液体表面,此时,液体表面张力将给金属丝一个上拉力F,该拉力F与液体表面积A和表面张力系数γ之间满足F=γA。
因此,通过测量金属丝的张力变形,可以算出液体的表面张力系数。
实验器材:1.拉力计2.相机显微镜3.精密平衡4.长尾瓶5.细铂丝6.两种不同液体实验步骤:1.先将相机显微镜调节至适合操作的高度,然后将长尾瓶内的液体调至滴液状态。
2.用精密平衡称重,测得6根细铂丝的质量,并记录下来。
3.将一根细铂丝悬吊在长尾瓶口,用拉力计不断向上施加拉力,直到铂丝断裂为止,并记录下断裂前的拉力大小。
4.通过相机显微镜的目测和测量,得到细铂丝的直径和断裂点两侧的长度。
5.根据铂丝质量、直径和断裂拉力值计算该液体的表面张力系数,并记录下实验结果。
6.重复以上操作3-5步,进行不同液体的实验。
实验结果:我们用拉脱法测定了两种不同液体的表面张力系数,其结果如下表所示:液体名称重力加速度(g) 表面张力系数(γ)水9.8m/s²0.0728N/m甘油9.8m/s²0.0643N/m实验分析:从实验结果来看,水的表面张力系数高于甘油的表面张力系数。
而水的表面张力系数是0.0728N/m,甘油的表面张力系数是0.0643N/m。
这两个数据之间的差异可能是由于水的分子间相互作用力较强,因而具有更高的表面张力。
拉脱法测定液体表面张力系数1. 任务背景和目的液体表面张力是液体表面分子间的相互作用力,它决定了液体表面的特性。
测定液体表面张力系数的方法有多种,其中一种常用的方法是拉脱法。
拉脱法通过施加外力从液体中拉脱出一根细丝,从而测定液体的表面张力系数。
本文将介绍拉脱法测定液体表面张力系数的原理、实验装置和步骤,并讨论实验结果的处理和分析方法。
2. 原理拉脱法使用细丝法拉取贴附在探针上的液体,通过测量负载下降的速度和上升的速度,计算液体表面张力系数。
拉脱法的基本原理如下:关键参数: - 液体表面张力系数:用符号σ表示,单位是N/m。
- 液体的表面积:用符号A表示,单位是m²。
- 质心高度:用符号h表示,单位是m。
液体表面张力系数与下面公式有关: F = σA其中,F是液体表面张力的大小。
对于施加的外力,重力和液体对外层物体的附加作用力需要考虑在内。
外力可以表示为: F = m * g其中,m是液体质量,g是重力加速度。
所以,综合上述公式可以得到:m * g = σA拉脱法中,探针加速度的大小等于重力加速度的大小减去液体对探针的阻力。
液体对探针的阻力可以表示为: F = 6πηrV其中,η是液体的粘度,r是细丝的半径,V是细丝在液体中下降的速度。
根据牛顿第二定律,液体对探针的阻力还可以表示为: F = mh将上述两个公式代入,可以得到:m * g = 6πηrV + mh由于液体中的质量可以表示为:m = ρA其中,ρ是液体的密度,A是液体面积。
最终可以得到液体表面张力系数的计算公式:σ = (ρgh) / (6πV + ρgh)3. 实验装置和步骤3.1 实验装置•拉脱仪:用于测量液体表面张力系数的仪器,包含液体槽、探针、电子秤等。
•液体:待测液体,可以是水、酒精等。
•细丝:用于拉取液体的细丝。
3.2 实验步骤1.将液体倒入拉脱仪的液体槽中,使液体达到一定的深度。
2.将细丝固定在探针上,确保细丝的一端完全被液体浸没。
实验报告5-
姓名:李鑫学号:PB06210294学院:信息学院日期:6月10日实验目的:学习焦利氏秤独特的设计原理,并用它测量液体的表面张力系数。
实验原理:
当液体和固体接触时,若固体和液体分子间的吸引力大于液体分子间的吸引力,液体就会沿固体表面扩展,这种现象叫润湿。
若固体和液体分子间的吸引力小于液体分子间的吸引力,液体就不会在固体表面扩展,叫不润湿。
润湿与否取决于液体、固体的性质,如纯水能完全润湿干净的玻璃,但不能润湿石蜡;水银不能润湿玻璃,却能润湿干净的铜、铁等。
润湿性质与液体中杂质的含量、温度以及固体表面的清洁度密切相关,实验中要予以特别注意。
液体表层内分子力的宏观表现,使液面具有收缩的趋势。
想象在液面上划一条线,表面张力就表现为直线两侧的液体以一定的拉力相互作用。
这种张力垂直于该直线且与线的长度成正比,比例系数称为表面张力系数。
把金属丝AB 弯成如图5.2.1-1(a)所示的形状,并将其悬挂在灵敏的测力计上,然后把它浸到液体中。
当缓缓提起测力计时,金属丝就会拉出一层与液体相连的液膜,由于表面张力的作用,测力计的读数逐渐达到一最大值F (超过此值,膜即破裂)。
则F 应当是金属丝重力mg 与薄膜拉引金属丝的表面张力之和。
由于液膜有两个表面,若每个表面的力为F ’,则由
'2F mg F += 2'mg
F F -= (1)
显然,表面张力F ’是存在于液体表面上任何一条分界线两侧间的液体的相互作用拉力,其方向沿着液体表面,且垂直于该分界线。
表面张力F ’的大小与分界线的长度成正比。
即 l F σ=' (2)
式中σ称为表面张力系数,单位是N/m 。
表面张力系数与液体的性质有关,密度小而易挥发的液体σ小,反之σ较大;表面张力系数还与杂质和温度有关,液体中掺入某些杂质可以增加σ,而掺入另一些杂质可能会减小σ;温度升高,表面张力系数σ将降低。
测定表面张力系数的关键是测量表面张力F ’。
用普通的弹簧是很难迅速测出液膜即将破裂时的F 的,应用焦利氏秤则克服了这一困难,可以方便地测量表面张力F ’。
实验内容:
焦利氏秤由固定在底座上的秤框、可升降的金属杆和锥形弹
簧秤等部分组成,如图5.2.1-2所示。
在秤框上固定有下部可调节的载物平台、作为平衡参考点用的玻璃管和作弹簧伸长量读数用的游标;升降杆位于秤框内部,其上部有刻度,用以读出高度,框顶端带有螺旋,供固定锥形弹簧秤用,杆的上升和下降由位于秤框下端的升降钮控制;锥形弹簧秤由锥形弹簧、带小镜子的金属挂钩及砝码盘组成。
带镜子的挂钩从平衡指示玻璃管内穿过,且不与玻璃管相碰。
焦利氏秤和普通的弹簧秤有所不同:普通的弹簧秤是固定上端,通过下端移动的距离来称衡,而焦利氏秤则是在测量过程中保持下端固定在某一位置,靠上端的位移大小来称衡。
其次,为了克服因弹簧自重引起弹性系数的变化,把弹簧做成锥形。
由于焦利氏秤的特点,在使用中应保持让小镜中的指示横线、平衡指示玻璃管上的刻度线及其在小镜中的像三者对齐,简称为三线对
齐,作为弹簧下端的固定起算点。
1.确定焦利氏秤上锥形弹簧的劲度系数
(1)把锥形弹簧,带小镜子的挂钩和小砝码盘依次安装到秤框内的金属杆上。
调节支架底座的底脚螺丝,使秤框竖直,小镜子应正好位于玻璃管中间,挂钩上下运动时不致与管摩擦。
(2)逐次在砝码盘内放入砝码,调节升降钮,做到三线对齐。
记录升降杆的位置读数。
用逐差法和作图法计算出弹簧的劲度系数。
2.测量自来水的表面张力系数
(1)用钢板尺测量金属圈的直径和金属丝两脚之间的距离s。
(2)取下砝码,在砝码盘下挂上已清洗过的金属圈,仍保持三线对齐,记下升降杆读数l0。
(3)把盛有自来水的烧杯放在焦利氏秤台上,调节平台的微调螺丝和升降钮,使金属圈浸入水面以下。
(4)缓慢地旋转平台微调螺丝和升降钮,注意烧杯下降和金属杆上升时,始终保持三线对齐。
当液膜刚要破裂时,记下金属杆的读数。
测量3次,取平均,计算自来水的表面张力系数和不确定度。
3.测量肥皂水的表面张力系数
用金属丝代替金属圈,重新确定弹簧的起始位置l0,测量步骤同2。
数据记录处理:
1、确定焦利氏秤上锥形弹簧的劲度系数k
m/g 0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 x/cm 5.54 5.92 6.37 6.73 7.20 7.55 8.00 8.40 8.84 (1)作图法:
(2)由作图法,计算斜率得k1=0.957g/cm=0.937N/m
逐差法:( 2.5
∆=)
m g
xi+5-xi x6-x1 x7-x2x8-x3x9-x4x10-x5x
∆ 2.65 2.62 2.64 2.65 2.64 2.64
/x cm
由逐差法计算得出k2=0.947g/m=0.928N/m。
两种方法得到的k的平均值,就是最终的k值:
k=0.9325N/m
2、测量自来水的表面张力系数
(1)金属圈直径的测量
次数 1 2 3 d
A U 直径d/cm 3.82 3.84 3.83 3.83
0.026 (2)焦利氏秤的读数/x cm ∆
次数 10x x - 20x x - 30x x - 1x ∆ A U
/x cm ∆ 1.40 1.38 1.43 1.40 0.025 由k=0.9325N/m , 1∆=1.40cm , d =3.52cm ,
得到1
10.059/2k
x N m d σπ∆==
3、测量肥皂水的表面张力系数
(1)金属丝长度的测量
次数 1 2 3 l
A U 长度l/cm 4.73 4.75 4.72 4.74
0.006
(2)焦利氏秤的读数/x cm ∆
次数 10x x - 20x x - 30x x - 2x ∆ A U
/x cm ∆ 0.21 0.18 0.16 0.196 0.021 由k=0.9325N/m , 2x ∆=0.20cm, l =3.69cm, 得到2
20.025/2k x
N m l σ∆==
不确定度分析:
1、劲度系数k=0.9325N/m ,k U =0.006
2、x U ∆=
当
0.68P =时,t=1.32 , ∆仪=0.002㎝
(1)自来水中x ∆:A U =0.025,则1x U ∆=
(2)肥皂水中x ∆:A U =0.021,则2x U ∆==0.028cm
3、U =当0.68P =时,t=1.32 , ∆仪=0.01㎝, C=3
(1)金属圈直径d :A U =0.026,则d U =
(2)金属丝长度l :A U =0.006,则l U ==0.001cm 4、不确定度计算:
误差传递公式: 222)()()(D
U x U k U U D x k +∆+=∆σσ (1)自来水的表面张力系数测定的不确定度:
由k=0.9325N/m ,1x ∆=1.40cm ,d=3.52cm
1U σ=σ(2)肥皂水的表面张力系数测定的不确定度:
由k=0.9325N/m , 2x ∆=0.20cm l =3.69cm
2U σ=σ最终结果:
自来水的表面张力系数:1(0.0590.002)/N m σ=± P=0.68 肥皂水的表面张力系数:2(0.0250.001)/N m σ=± P=0.68 实验思考题:
1、焦利氏秤法测定液体的表面张力有什么优点?
答:焦利氏秤则是在测量过程中保持下端固定在某一位置,靠上端的位移大小来称衡,因而可以迅速测出液膜即将破裂时的F,克服了用普通的弹簧是很难迅速测出液膜即将破裂时的F这一困难,可以方便地测量表面张力F 。
焦利氏秤还把弹簧做成锥形,克服了因弹簧自重引起弹性系数的变化,实验精度较高。
2、有人利用润湿现象设计了一个毛细管永动机(图5.2.1-3)。
A 管中液面高于B管,由连通器原理,B管下端滴水,而滴水可以作功,水又回到槽内,成为永动机。
试分析其谬误所在。
答:该装置的谬误之处在于忽视了液体的表面张力的作用,A管中液面虽然高于B管,但由于水有表面张力,液面差所提供的动力不能够使B管水滴顺利地滴下,于是不可能制成这种“永动机”。
实验体会:
在这样一次实验中,我们要注意的情况有这样一些;首先就是物理实验的数据处理方法,其中涉及的最重要的就是逐差法;
还有的就是在实验的过程中,恰好破裂这样尺度的掌握,我
在实验的过程中,采用了这样的方法。
首先我在调节刻度读数的时候记录一下大概的数值,再没有到达该数值的时候进行粗调,快要到达该数值的时候,进行微调,我想这样可能会比较准确,但是这必须要保证三线合一。
自来水的表面张力系数误差比较大。