江苏省仪征市第三中学苏科版九年级数学下册课件:66图形的位似(共19张PPT)
- 格式:pptx
- 大小:169.26 KB
- 文档页数:19
苏科版数学九年级下册《6.6 图形的位似》教学设计一. 教材分析苏科版数学九年级下册第六章《图形的位似》的内容包括位似的概念、位似图形的性质以及位似的应用。
本节课通过引入位似的概念,让学生了解位似图形的特点,学会用位似来描述和解决实际问题。
教材以学生的生活经验为背景,逐步引导学生探究位似图形的性质,培养学生的空间想象能力和抽象思维能力。
二. 学情分析九年级的学生已经掌握了相似图形的知识,具备一定的学习能力和探究能力。
但在实际应用中,对位似图形的理解和运用还需加强。
学生在学习本节课时,应能主动运用已知的相似图形知识,探究位似图形的性质,并在实际问题中灵活运用。
三. 教学目标1.理解位似的概念,掌握位似图形的性质。
2.能运用位似的概念解决实际问题,提高学生的应用能力。
3.培养学生的空间想象能力和抽象思维能力。
四. 教学重难点1.位似的概念及位似图形的性质。
2.在实际问题中灵活运用位似的概念。
五. 教学方法1.情境教学法:通过生活实例引入位似的概念,激发学生的学习兴趣。
2.启发式教学法:引导学生主动探究位似图形的性质,培养学生的探究能力。
3.互动式教学法:引导学生相互讨论,共同解决问题,提高学生的合作能力。
六. 教学准备1.教学课件:制作课件,展示位似的概念和位似图形的性质。
2.教学素材:准备一些实际问题,供学生练习。
3.黑板、粉笔:用于板书重要概念和性质。
七. 教学过程1.导入(5分钟)利用生活实例,如放大或缩小照片,引入位似的概念。
提问:你们知道这是怎么做到的吗?引导学生思考,激发学习兴趣。
2.呈现(10分钟)展示位似图形的图片,引导学生观察并说出位似图形的特点。
总结位似的概念:在平面内,如果两个图形的形状相同,但大小不同,那么这两个图形称为位似图形。
3.操练(10分钟)让学生分组讨论,探究位似图形的性质。
每组选取一个位似图形,分析其大小、形状和对应点的关系。
引导学生发现位似图形的性质:对应点连线相交于一点,对应边成比例。
图形的位似【学习目标】1、了解位似多边形的概念,知道位似变换是特殊的相似变换,能利用位似的方法,将一个图形放大或缩小;2、能在同一坐标系中,感受图形放缩前后点的坐标的变化.【要点梳理】要点一、位似多边形1.位似多边形定义:如果两个相似多边形任意一组对应顶点所在的直线都经过同一个点O,且每组对应点与点O 点的距离之比都等于一个定值k,例如,如下图,OA′=k·OA(k≠0),那么这样的两个多边形叫做位似多边形,点O叫做位似中心.要点诠释:位似图形与相似图形的区别:位似图形是一种特殊的相似图形,而相似图形未必能构成位似图形.2.位似图形的性质:(1)位似图形的对应点相交于同一点,此点就是位似中心;(2) 位似图形的对应点到位似中心的距离之比等于相似比;(3)位似图形中不经过位似中心的对应线段平行.3.平移、轴对称、旋转和位似四种变换的异同:图形经过平移、旋转或轴对称的变换后,虽然对应位置改变了,但大小和形状没有改变,即两个图形是全等的;而位似变换之后图形是放大或缩小的,是相似的.4.作位似图形的步骤第一步:在原图上找若干个关键点,并任取一点作为位似中心;第二步:作位似中心与各关键点连线;第三步:在连线上取关键点的对应点,使之满足放缩比例;第四步:顺次连接各对应点.要点诠释:位似中心可以取在多边形外、多边形内,或多边形的一边上、或顶点,下面是位似中心不同的画法.要点二、坐标系中的位似图形在平面直角坐标系中,将一个多边形每个顶点的横坐标、纵坐标都乘同一个数k (k ≠0),所对应的图形与原图形位似,位似中心是坐标原点,它们的相似比为|k |.要点诠释:在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k ,那么位似图形对应点的坐标等于原来点的坐标乘以(或除以)k 或-k.【典型例题】类型一、位似多边形例1. 下列每组的两个图形不是位似图形的是( ).A. B. C. D.【答案】D【解析】解:对应顶点的连线相交于一点的两个相似多边形叫位似图形.据此可得A 、B 、C 三个图形中的两个图形都是位似图形;而D 的对应顶点的连线不能相交于一点,故不是位似图形.故选D .举一反三【变式】在小孔成像问题中, 根据如图4所示,若O 到AB 的距离是18cm ,O 到CD 的距离是6cm ,则像CD 的长是物AB 长的 ( ).A. 3倍B.21 C.31 D.不知AB 的长度,无法判断【答案】C例2. 利用位似图形的方法把五边形ABCDE 放大1.5倍.【答案与解析】即是要画一个五边形A ′B ′C ′D ′E ′,要与五边形ABCDE 相似且相似比 为1.5.画法是:1.在平面上任取一点O.2.以O 为端点作射线OA 、OB 、OC 、OD 、OE.3.在射线OA 、OB 、OC 、OD 、OE 上分别取点A ′、B ′、C ′、D ′、E ′,使OA ′:OA = OB ′:OB =OC ′:OC =OD ′:OD =OE ′:OE =1.5.4.连结A ′B ′、B ′C ′、C ′D ′、D ′E ′、E ′A ′.这样:A ′B ′AB =B ′C ′BC =C ′D ′CD =D ′E ′DE =A ′E ′AE=1.5. 则五边形A ′B ′C ′D ′E ′为所求. 另外一种情况,所画五边形跟原五边形分别在位似中心的两侧.【总结升华】由本题可知,利用位似的方法,可以把一个多边形放大或缩小.举一反三【变式】在已知三角形内求作内接正方形.A 1B 1C 1D 1E 1 A B C DE【答案与解析】作法:(1)在AB 上任取一点G ′,作G ′D ′⊥BC;(2)以G ′D ′为边,在△ABC 内作一正方形D ′E ′F ′G ′;(3)连接BF ′,延长交AC 于F ;(4)作FG∥CB,交AB 于G ,从F 、G 分别作BC 的垂线FE , GD ;∴四边形DEFG 即为所求.类型二、坐标系中的位似图形例3.如图,在10×10的正方形网格中,点A ,B ,C ,D 均在格点上,以点A 为位似中心画四边形AB ′C ′D ′,使它与四边形ABCD 位似,且相似比为2.(1)在图中画出四边形AB ′C ′D ′;(2)填空:△AC ′D ′是 三角形.【思路点拨】(1)延长AB 到B ′,使AB ′=2AB ,得到B 的对应点B ′,同样得到C 、D 的对应点C ′,D ′,再顺次连接即可;(2)利用勾股定理求出AC ′2=42+82=80,AD ′2=62+22=40,C ′D ′2=62+22=40,那么AD ′=C ′D ′,AD ′2+C ′D ′2=AC ′2,即可判定△AC ′D ′是等腰直角三角形.【答案与解析】解:(1)如图所示:B C(2)∵AC′2=42+82=16+64=80,AD′2=62+22=36+4=40,C′D′2=62+22=36+4=40,∴AD′=C′D′,AD′2+C′D′2=AC′2,∴△AC′D′是等腰直角三角形.故答案为:等腰直角.例4.如图△ABC的顶点坐标分别为A(1,1),B(2,3),C(3,0).(1)以点O为位似中心画△DEF,使它与△ABC位似,且相似比为2.(2)在(1)的条件下,若M(a,b)为△ABC边上的任意一点,则△DEF的边上与点M 对应的点M′的坐标为.【思路点拨】(1)把点A、B、C的横、纵坐标都乘以2可得到对应点D、E、F的坐标,再描点可得△DEF;把点A、B、C的横、纵坐标都乘以﹣2可得到对应点D′、E′、F′的坐标,然后描点可得△D′E′F′;(2)利用以原点为位似中心的位似变换的对应点的坐标特征求解.【答案与解析】解:(1)如图,△DEF和△D′E′F′为所作;(2)点M对应的点M′的坐标为(2a,2b)或(﹣2a,﹣2b).故答案为(2a,2b)或(﹣2a,﹣2b).举一反三:【变式】如图,将△AOB中各顶点的纵坐标,横坐标分别乘-1,•得到的图形与原图形相比有什么变化?作出所得的图形,这个过程可以看作是一个什么图形变换?【答案】解:图形的形状和大小都没有变化;可以看作是△AOB绕O•点按逆时针方向旋转180°得到的.【巩固练习】一. 选择题1.下面给出了相似的一些命题:(1)菱形都相似;(2)等腰直角三角形都相似;(3)正方形都相似;(4)矩形都相似;(5)正六边形都相似;其中正确的有().A.2个 B.3个 C.4个 D.5个2.下列说法错误的是().A.位似图形一定是相似图形.B.相似图形不一定是位似图形.C.位似图形上任意一对对应点到位似中心的距离之比等于相似比.D.位似图形中每组对应点所在的直线必相互平行.3.下列说法正确的是() .A.分别在ABC的边AB、AC的反向延长线上取点D、E,使DE∥BC,则ADE是ABC放大后的图形.B.两位似图形的面积之比等于相似比.C.位似多边形中对应对角线之比等于相似比.D.位似图形的周长之比等于相似比的平方.4.如图,在平面直角坐标系中,已知点A(﹣3,6),B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(﹣1,2)B.(﹣9,18)C.(﹣9,18)或(9,﹣18)D.(﹣1,2)或(1,﹣2)5. 下列命题:①两个正方形是位似图形;②两个等边三角形是位似图形;③两个同心圆是位似图形;④平行于三角形一边的直线截这个三角形的两边,所得的三角形与原三角形是位似图形.其中正确的有( ).A.1个B.2个C.3个D.4个二. 填空题8. 如果两个位似图形的对应线段长分别为3cm 和5cm ,且较小图形周长为30cm ,则较大图形周长为__________.9.如图,在平面直角坐标系中,已知A (1,0),D (3,0),△ABC 与△DEF 位似,原点O 是位似中心.若AB=1.5,则DE= .10.如图,以点O 为位似中心,将五边形ABCDE 放大后得到五边形,已知OA =10cm ,OA ′=20cm ,则五边形ABCDE 的周长与五边形的周长的比值是__________.11. △ABC 中,D 、E 分别在AB 、AC 上,DE ∥BC ,△ADE 是△ABC 缩小后的图形.若DE 把△ABC 的面积分成相等的两部分,则AD :AB=________.12. 把一矩形纸片对折,如果对折后的矩形与原矩形相似,则原矩形纸片的长与宽之比为____________________.13.如图,以O 为位似中心,将边长为256的正方形OABC 依次作位似变换,经第一次变化后得正方形OA 1B 1C 1,其边长OA 1缩小为OA 的,经第二次变化后得正方形OA 2B 2C 2,其边长OA 2缩小为OA 1的,经第,三次变化后得正方形OA 3B 3C 3,其边长OA 3缩小为OA 2的,…,依次规律,经第n 次变化后,所得正方形OA n B n C n 的边长为正方形OABC 边长的倒数,则n= .A B C D E '''''A B C D E '''''14. 如图,△ABC中,AB=AC=4,∠BAC=36°,∠ABC的平分线与AC边的交点D为边AC的黄金分割点(AD>DC),则BC=______________.三.综合题15.如图,D、E分别AB、AC上的点.(1)如果DE∥BC,那么△ADE和△ABC是位似图形吗?为什么?(2)如果△ADE和△ABC是位似图形,那么DE∥BC吗?为什么?16.如图,F在BD上,BC、AD相交于点E,且AB∥CD∥EF,(1)图中有哪几对位似三角形,选其中一对加以证明;(2)若AB=2,CD=3,求EF的长.17. 如图1,矩形ODEF 的一边落在矩形ABCO 的一边上,并且矩形ODEF ∽矩形ABCO ,其相(1)求矩形ODEF 的面积;(2)将图1中的矩形ODEF 绕点O 逆时针旋转一周,连接EC 、EA ,△ACE 的面积是否存在最大值或最小值?若存在,求出最大值或最小值;若不存在,请说明理由.【答案与解析】一、选择题1.【答案】B【解析】(1)菱形的角不一定对应相等,故错误;(2)(3)(5)符合相似的定义,故正确;(4)对应边的比不一定相等.故错误.故正确的是:(2)(3)(5).故选B .2.【答案】D.3.【答案】C.4.【答案】D.【解析】∵A (﹣3,6),B (﹣9,﹣3),以原点O 为位似中心,相似比为,把△ABO 缩小,∴点A 的对应点A ′的坐标为(﹣3×,6×)或[﹣3×(﹣),6×(﹣)],即A ′点的坐标为(﹣1,2)或(1,﹣2).5.【答案】B【解析】由位似图形的概念可知③和④对,故选B.6.【答案】D.【解析】∵AC >BC ,∴AC 是较长的线段,AC ≈0.618AB .故选D .7.【答案】B.【解析】∵AB=1,设AD=x ,则FD=x-1,FE=1,∵四边形EFDC 与矩形ABCD 相似, AB AC,二、填空题 8.【答案】50cm. 9.【答案】4.5.【解析】∵△ABC与DEF 是位似图形,它们的位似中心恰好为原点,已知A 点坐标为(1,0),D 点坐标为(3,0),∴AO=2,DO=5,∴==,∵AB=1.5,∴DE=4.5.故答案为:4.5.10.【答案】1:2.【解析】∵五边形ABCDE 与五边形A ′B ′C ′D ′E ′位似,OA=10cm ,OA ′=20cm ,∴五边形ABCDE ∽五边形A ′B ′C ′D ′E ′,且相似比为:OA :OA ′=10:20=1:2, ∴五边形ABCDE 的周长与五边形A ′B ′C ′D ′E ′的周长的比为:OA :OA ′=1:2. 故答案为:1:2.11.【答案】 .【解析】由BC ∥DE 可得△ADE ∽△ABC ,所以,故.111x x =-13. 【答案】16.【解析】由图形的变化规律可得×256=, 解得n=16.14. 【解析】∵AB=AC,∠A=36°,∴∠ABC=∠C=72°,又BD 平分∠ABC ,∴∠ABD=∠CBD=36°,∴∠BDC=72°,∴BC=BD=AD ,∵D 点是AC 的黄金分割点,三.解答题15.【答案与解析】(1)△ADE 和 △ABC 是位似图形.理由是:DE ∥BC ,所以∠ADE=∠B , ∠AED=∠C.所以△ADE ∽△ABC ,所以. 又因为 点A 是△ADE 和 △ABC 的公共点,点D 和点B 是对应点,点E 和点C是对应点,直线BD 与CE 交于点A ,所以△ADE 和 △ABC 是位似图形.(2)DE ∥BC.理由是:因为△ADE 和△ABC 是位似图形,所以△ADE ∽△ABC所以∠ADE=∠B所以DE ∥BC.16.【答案与解析】解:(1)△DFE 与△DBA ,△BFE 与△BDC ,△AEB 与△DEC 都是位似图形, 理由:∵AB ∥CD ∥EF ,∴△DFE ∽△DBA ,△BFE ∽△BDC ,△AEB ∽△DEC ,且对应边都交于一点,∴△DFE与△DBA,△BFE与△BDC,△AEB与△DEC都是位似图形;(2)∵△BFE∽△BDC,△AEB∽△DEC,AB=2,CD=3,∴==,∴==,解得:EF=.17.【答案与解析】(1)∵矩形ODEF∽矩形ABCO,其相似比为1:4,(2)存在.。
课题:6.6 图形的位似(导学案) (新课)一、教学目标1.通过“观察——操作——思考”的活动过程,认识位似图形;2.会利用位似的性质将一个图形放大或者缩小.二、教学过程1.自主先学,温故知新操作思考①.操作:(1)如图,已知点O 和△ABC .画射线OA 、OB 、OC ,分别在OA 、OB 、OC 上取点A′、B′、C′,使12OA OB OC OA OB OC '''===.(2)画△A′B′C′. ②.观察:通过刚才的操作,你发现了③.思考:你能否再编一个问题,把△ABC 放大?巩固练习阅读课本P76-77,解决下面问题:①.下列说法中,错误的是 ( )A .位似图形一定是相似图形;B .相似图形不一定是位似图形;C .位似图形上任意一对对应点到位似中心的距离之比等于位似比;D .位似图形中每组对应点所在的直线必互相平行.②. 如图,△ABC 与△A ′B ′C ′是位似图形,且位似比是1:2,若AB =2cm ,则A′B′= ,请在图中画出位似中心O .2.组织互学,巩固提高①.如图所示△ABC 与△A′B′C′及△ABC 与△A′′B′′C′′是否分别相似?②.△ABC 与△A′B′C′及△ABC 与△A′′B′′C′′中,对应顶点所在的直线,在位置上有什么特点?③.对应边在位置上又有什么特点? AB B④.位似形定义:如果两个多边形不仅相似,而且对应顶点所在直线相交于一点,那么这两个多边形叫做位似形,这个点叫做位似中心.如上图,△ABC与△A′B′C′及△ABC与△A′′B′′C′′是位似形,点O是位似中心.利用位似可以按所给相似比把一个图形放大或缩小.3.提升研学,适度强化例1.如图,在平面直角坐标系中,△OAB的顶点坐标分别为O(0,0)、A(5,4)、B(3,0),分别将点A,B的横坐标、纵坐标都乘2.得到相应的点A′,B′坐标.(1)画△OA′B′;(2)△OA′B′与△OAB是位似形吗?为什么?归纳结论:位似图形的性质:①.两个位似形一定是相似形;②.对应顶点所在的直线都经过同一点;③.对应边互相平行(或在同一直线);④.任意一组对应点到位似中心的距离之比等于相似比.4.迁移再学,拓展延申例2.如图①,E是线段BC的中点,分别以B、C为直角顶点的△EAB和△EDC均是等腰直角三角形,且在线段BC的同侧.(1) AE和ED的数量关系为,AE和ED的位置关系为.(2) 在图①中,以点E为位似中心,作△EGF与△EAB位似,H是BC所在直线上的一点,连接GH、HD,分别得到图②和图③.①在图②中,点F在BE上,△EGF与△EAB的相似比为1∶2,H是EC的中点.求证:GH=HD,且GH⊥HD.②在图③中,点H在BC的延长线上,△EGF与△EAB的相似比是k∶1.若BC=2,请直接写出当CH的长为多少时,恰好使得GH=HD,且GH⊥HD(用含k的代数式表示).5.当堂训练,及时反馈1.如图,以点O为位似中心,把△ABC放大为原图形的2倍得到△A′B′C′,下列说法错误的是()A. △ABC∽△A′B′C′B. 点C、O、C′在同一条直线上C. AO∶AA′=1∶2D. AB∥A′B′2. 如图,“小鱼”与“大鱼”是位似图形.如果“小鱼”上的一个“顶点”的坐标为(a,b),那么“大鱼”上对应“顶点”的坐标为()A. (-a,-2b)B. (-2a,-b)C. (-2a,-2b)D. (-2b,-2a)3. 如图,在平面直角坐标系中,矩形OABC的顶点坐标分别为O(0,0)、A(2,0)、B(2,1)、C(0,1).以坐标原点O为位似中心,将矩形OABC放大为原图形的2倍,记所得矩形为OA1B1C1,点B的对应点为B1,且点B1在OB的延长线上,则点B1的坐标为.4.如图,△ABC与△DEF位似,点O为位似中心.已知OA∶OD=1∶2,则△ABC与△DEF的面积比为.5. 已知△ABC的三个顶点的坐标分别是A(0,0)、B(2,2)、C(3,1),以点A为位似中心将△ABC放大得到△DEF,使△DEF与△ABC的对应边的比为2∶1(△DEF∽△ABC),请求出△DEF各顶点的坐标.6.归纳小结,颗粒归仓(1)知识层面:(2)方法层面:。
y图形的位似学习目标:1、了解位似图形的意义,能根据位似图形的特征,将一个图形进行放大和缩小。
2、理解位似图形的性质、选择适当的方式进行图形的放大和缩小。
3、从具体操作活动中,培养学生动手操作能力,空间想象能力。
重点:能根据位似图形的特征,将一个图形进行放大和缩小难点:理解位似图形的性质、选择适当的方式进行图形的放大和缩小教学流程预习导航1.公安人员在侦破案件中,有时会从一枚指纹来确定罪犯的身份,最终破案。
借助放大镜可以将它放大,保持形状不变。
再如微型胶卷所拍摄的照片就是把实物缩小,保持形状不变。
你还能举出生活中将一个图形放大或缩小的例子吗?如 等。
2. 经过不同位似中心将同一图形进行放大和缩小,试问放大后的图形和缩小后的图形能否也是位似图形?谈谈你的看法。
3.如图,已知ΔABC ,过点O 引OA 并延长到A1,使OA1=2AO ,请画出ΔA1B1C1,使ΔA1B1C1 ∽ ΔABC 。
合作探究1、将“情境”活动中的实际问题抽象为数学问题.已知点O 和△ABC ,画射线OA 、OB 、OC ,在OA 、OB 、OC 上分别取点A /、B /、C ′,使OA /OA =OB /OB =OC /OC=2,画△A /B /C ′. 2、探究△A /B /C ′与△ABC 的特征.问题1:△A /B /C ′与△A BC 相似吗?位似形的性质当堂达标1.用作位似形的方法,可以将一个图形放大或缩小,位似中心( )。
(A )只能选在原图形的外部 (B )只能选在原图形的内部(C )只能选在原图形的边上 (D )可以选择任意位置 2.设四边形ABCD 与四边形A ′B ′C ′D ′是位似图形,且位似比为k 。
给出下列4个等式:①''''AC BD k A C B D ==;②△ABC ∽△A ′B ′C ′③''''''''AB BC CD DA k A B B C C D D A +++=+++④2'''ABC k A B C ∆=∆的面积的面积。