FANUC数控系统简介
- 格式:pdf
- 大小:238.29 KB
- 文档页数:15
发那科数控系统培训资料一、发那科数控系统简介发那科(FANUC)数控系统是目前全球应用广泛且性能卓越的数控系统之一。
它以其高度的可靠性、稳定性和强大的功能,在机械加工、模具制造、汽车工业等众多领域发挥着重要作用。
发那科数控系统具有丰富的产品线,能够满足不同类型机床和加工需求。
其操作界面友好,编程方式灵活多样,为操作人员提供了便捷的工作环境。
二、发那科数控系统的特点1、高精度控制发那科数控系统采用先进的控制算法和反馈技术,能够实现高精度的位置、速度和加速度控制,从而确保加工零件的精度和表面质量。
2、强大的功能具备多种加工模式和工艺功能,如车削、铣削、钻孔、攻丝等,并且支持复杂轮廓的加工和多轴联动。
3、高可靠性采用高品质的硬件和严格的生产工艺,保证了系统在恶劣工作环境下的稳定运行,降低了故障率和停机时间。
4、易于编程和操作提供了直观的人机界面和简单易懂的编程语言,使得操作人员能够快速上手,提高生产效率。
5、良好的开放性支持与其他设备和系统的通信和集成,方便实现自动化生产线的构建。
三、发那科数控系统的组成发那科数控系统主要由以下几个部分组成:1、数控装置(CNC)这是系统的核心部分,负责处理和运算加工程序,生成控制指令。
2、驱动单元包括伺服驱动器和电机,用于驱动机床的各坐标轴运动。
3、反馈装置如编码器、光栅尺等,用于实时监测机床的运动位置和速度,并反馈给数控装置,形成闭环控制。
4、操作面板操作人员通过操作面板输入指令、设置参数和监控机床运行状态。
5、电气控制系统包括电源、接触器、继电器等,为整个系统提供电力和控制信号。
四、发那科数控系统的编程1、编程基础(1)坐标系的设定:包括机床坐标系、工件坐标系等。
(2)指令格式:如 G 代码、M 代码等。
(3)编程方法:手动编程和自动编程。
2、常用编程指令(1)运动指令:如 G00 快速定位、G01 直线插补、G02/G03 圆弧插补等。
(2)辅助功能指令:如 M03 主轴正转、M05 主轴停止等。
FANUC数控系统的工作原理FANUC数控系统是一种广泛应用于机床领域的自动化控制系统,它的工作原理基于计算机技术和电子控制技术的结合。
它通过精确的控制机床的运动,实现对工件的加工和加工过程的自动化控制。
本文将从数控系统的基本组成、工作原理和应用领域等方面进行介绍。
一、基本组成FANUC数控系统的基本组成包括数控装置、数控伺服系统和执行系统。
数控装置是整个系统的核心部分,它由数控主机和操作面板组成。
数控主机负责解析和执行加工程序,并控制伺服系统和执行系统的运动。
操作面板则提供了人机交互的界面,操作人员通过它来输入加工程序和控制机床的运动。
数控伺服系统是控制机床运动的关键部分,它由伺服电机、编码器和伺服放大器等组成。
伺服电机负责驱动机床的各个轴向运动,编码器用于反馈运动信息,伺服放大器则负责控制伺服电机的运动。
执行系统主要包括机床的各个运动轴和刀具系统,它们负责实际的加工操作。
二、工作原理FANUC数控系统的工作原理可以简单概括为以下几个步骤:首先,操作人员通过操作面板输入加工程序,包括加工路径、工艺参数等信息。
然后,数控主机根据加工程序生成一系列控制指令,通过通信接口发送给数控伺服系统。
数控伺服系统接收到控制指令后,根据编码器的反馈信息,通过控制伺服电机的转动来控制机床的运动。
同时,执行系统根据伺服系统的控制信号,控制机床的刀具进行加工操作。
整个过程中,数控主机不断地从编码器获取反馈信息,并进行实时的控制调整,以保证机床的精确运动和加工质量。
三、应用领域FANUC数控系统广泛应用于各种机床中,包括车床、铣床、钻床等。
它在制造业中发挥着重要的作用,能够实现高精度、高效率的加工操作。
例如,在汽车制造业中,FANUC数控系统可以控制机床完成车削、铣削、钻孔等多种工艺,实现零件的精确加工。
在航空航天领域,FANUC数控系统可以应用于制造飞机的结构件和发动机零部件,确保其精度和质量。
FANUC数控系统还广泛应用于其他工业领域,如电子、电器、模具等。
FANUC数控系统简介FANUC数控系统简介FANUC是世界上最大的数控设备制造商之一,其数控系统被广泛应用于各种机械加工领域,例如飞行器制造、汽车工业、电子产业和医学设备等。
在本文中,我们将介绍FANUC数控系统的基本概念和其在数控机床上的应用。
一、FANUC数控系统FANUC数控系统是由FANUC公司开发的一种高性能、可靠的控制系统,它采用了最新的数控技术和计算机技术,能够实现各种复杂加工过程的自动化控制。
其主要组成部分包括数控系统主机、数控程序控制器、电机驱动器等。
FANUC数控系统具有多种功能,例如高速定位、高速插补、离散化控制等,能够满足各种加工要求。
二、数控系统主机数控系统主机是FANUC数控系统的核心部分,它包括计算机、控制器、显示器、键盘等。
为了保证计算机的高速性能,FANUC公司使用了最新的微处理器和操作系统,确保系统的高效工作。
控制器是数控系统的重要组成部分,负责对各种加工过程进行控制。
显示器显示加工的各项参数和控制信息,键盘用于输入加工程序和指令等。
三、数控程序控制器数控程序控制器是FANUC数控系统用于控制加工程序执行的部分,其主要功能是解释加工程序,进行插补计算,生成加工轨迹和产生控制信号等。
FANUC公司开发的数控程序控制器性能卓越,操作简单,可提高加工效率和加工质量。
四、电机驱动器电机驱动器是用于控制机床各个轴的电机驱动器,主要包括伺服驱动器和步进驱动器。
伺服驱动器用于控制机床的伺服电机,可以保证机床的高速、高精度加工。
步进驱动器用于控制步进电机,主要用于一些低速小力量的加工过程。
五、数控系统操作FANUC数控系统的操作相对简单,使用前需要进行简单的培训。
操作系统界面直观方便,一般分为程序编辑界面、参数设置界面和监控界面。
在程序编辑界面,用户可以输入自定义加工程序和指令。
在参数设置界面,用户可以对各项加工参数进行设置,例如每分钟进给量、转速、加工深度等。
监控界面可以实时监控机床的运行状态和加工质量,保证加工质量和生产效率。
(二) 常见FANUC 数控系统0-C/0-D 系列1985年开发,系统的可靠性很高,使得其成为世界畅销的CNC,该系统2004年9月停产,共生产了35万台。
至今有很多该系统还在使用中。
FANUC 0-C/0-D 系列16/18/21 系列1990年-1993年间开发。
FANUC 16/18/21 系列16i/18i/21i 系列1996年开发,该系统凝聚了FANUC过去CNC开发的技术精华,广泛应用于车床,加工中心,磨床等各类机床。
FANUC 16i/18i/21i系列FANUC 0i-AFANUC 0i-BFANUC 0i mate-B0i-A 系列2001年开发,是具有高可靠性,高性能价格比的CNC 。
0i-B/0i mate-B 系列2003年开发,是具有高可靠性,高性能价格比的CNC ,和0i-A 相比,0i-B/0i mate-B 采用了FSSB (串行伺服总线)代替了PWM 指令电缆。
0i-C/0i mate-C 系列2004年开发,是具有高可靠性,高性能价格比的CNC,和0i-B/0imate-B相比,其特点是CNC与液晶显示器构成一体,便于设定和调试。
FANUC 0i-C30i/31i/32i 系列2003年开发,适合控制5轴加工机床、复合加工机床、多路径车床等尖端技术机床的纳米级CNC。
通过采用高性能处理器和可确保高速的CNC内部总线,使得最多可控制10个路径和40个轴。
同时配备了15英寸大型液晶显示器,具有出色的操作性能。
通过CNC,伺服,检测器可进行纳米级单位的控制,并可实现高速,高质量的模具加工。
FANUC 30i/31i/32i 系列二FANUC 数控系统的共同结构特点下图是典型的FANUC 数控系统的构成框图,请先参考,后面内容还有关于构成框图的进一步介绍。
CNC内部模块FANUC 数控系统应用到机床上的情况:三查看系统的类型主要有两种方法:(1) 通过显示器上面的黄色条形标牌如下图FANUC SERIES 18i-MB特殊情况:有些系统上的黄色条形标牌写不是FANUC系统的类型,而是机床的名称,这样的标牌是FANUC公司专门给某些机床厂家做的。