油藏工程基础
- 格式:ppt
- 大小:11.10 MB
- 文档页数:164
油藏工程基础课程设计一、设计背景油藏工程是石油工业的核心技术之一,对油气资源的开发、利用和管理具有重要的作用。
在石油工业的生产过程中,油藏工程是最基础的环节,掌握好油藏工程的基础知识是影响整个油田生产效益的核心因素。
因此,为了培养具有油藏工程基础知识和技能的人才,本课程设计将详细介绍油藏工程的原理、方法和技术,旨在为学生打下坚实的基础。
二、设计目标1. 理论目标:通过本课程的学习,学生应该掌握以下理论知识:1.油藏地质和物理性质的基本概念。
2.油藏储量数量估算方法。
3.储层流体流动规律和流动模型。
4.油藏压力动态及其规律。
5.油藏采收率的计算和提高方法。
6.油藏工程常用工具和技术。
2. 技能目标:通过本课程的学习,学生应该掌握以下技能:1.针对不同种类的油藏,进行储量估算和投资评估。
2.解决不同油藏储层中油气流动的基本问题。
3.收集、处理和分析油藏数据的基本能力。
4.把握油藏工程技术发展方向,掌握油藏工程常用技术的原理和应用。
三、教学内容及形式1. 教学内容:本课程的教学内容主要包括以下几个方面:1.油藏地质和物理性质的基本概念。
2.油藏储量数量估算方法。
3.储层流体流动规律和流动模型。
4.油藏压力动态及其规律。
5.油藏采收率的计算和提高方法。
6.油藏工程常用工具和技术。
2. 教学形式:本课程的教学形式主要包括以下几个方面:1.理论授课。
采用讲解和演示的形式,帮助学生掌握基本理论和方法。
2.综合案例分析。
通过案例分析的方式,加深学生对知识点的理解和应用能力。
3.室内实验。
通过模拟实验,让学生实际操作,掌握油藏工程常用工具和技术。
4.实地考察。
通过实地考察,让学生对油藏工程的实际应用有更深刻的理解和认识。
四、教学方法1. 英文授课:本课程将全英文授课,以提高学生的英语听说读写能力,同时也为学生将来的国际化发展打下良好的基础。
2. 良好的互动环境:在英文授课的基础上,我们将建立良好的师生互动平台,在课程中提供丰富的教学资源,鼓励学生积极发起交流,讨论问题,提高学生的主动参与和学习兴趣。
油藏工程基础试题及答案一、单项选择题(每题2分,共20分)1. 油藏中流体的流动属于哪种类型的流动?A. 层流B. 湍流C. 非牛顿流动D. 牛顿流动答案:D2. 油藏压力下降会导致哪种现象?A. 油藏体积增大B. 油藏体积减小C. 油藏温度升高D. 油藏温度降低答案:A3. 油藏工程中,储层渗透率的单位是?A. mDB. psiC. m³D. m/s答案:A4. 油藏模拟中,以下哪个参数不是必须输入的?A. 储层厚度B. 储层压力C. 储层温度D. 储层深度答案:D5. 油藏中的水驱油效率主要取决于?A. 油藏压力B. 储层渗透率C. 油水界面张力D. 油藏温度答案:C6. 油藏中的气顶对油藏开发有什么影响?A. 提高油藏压力B. 降低油藏压力C. 增加油藏体积D. 减少油藏体积答案:A7. 油藏中水驱油过程中,水的注入方式有哪几种?A. 水平注入B. 垂直注入C. 混合注入D. 以上都是答案:D8. 油藏工程中,储层含水饱和度的计算公式是什么?A. Sw = (Vw / Vp) * 100%B. Sw = (Vp / Vw) * 100%C. Sw = (Vw / Vt) * 100%D. Sw = (Vt / Vw) * 100%答案:C9. 油藏中,油水界面的移动速度与哪些因素有关?A. 油藏压力B. 储层渗透率C. 油水界面张力D. 以上都是答案:D10. 油藏工程中,储层有效厚度的确定依据是什么?A. 储层总厚度B. 储层渗透率C. 储层孔隙度D. 储层渗透率和孔隙度答案:D二、多项选择题(每题3分,共15分)1. 油藏工程中,影响油藏采收率的因素包括?A. 储层渗透率B. 储层孔隙度C. 油藏压力D. 油藏温度E. 油水界面张力答案:A, B, C, E2. 油藏模拟中,以下哪些参数是必须输入的?A. 储层厚度B. 储层压力C. 储层温度D. 储层深度E. 储层渗透率答案:A, B, E3. 油藏中,以下哪些因素会影响油藏的储集能力?A. 储层孔隙度B. 储层渗透率C. 储层厚度D. 储层深度E. 储层岩石类型答案:A, B, C, E4. 油藏工程中,以下哪些因素会影响油藏的流动特性?A. 储层渗透率B. 储层孔隙度C. 油藏压力D. 油藏温度E. 油水界面张力答案:A, C, D, E5. 油藏中,以下哪些因素会影响油藏的开发策略?A. 储层渗透率B. 储层孔隙度C. 油藏压力D. 油藏温度E. 油水界面张力答案:A, B, C, E三、简答题(每题5分,共30分)1. 简述油藏工程中储层渗透率的定义及其重要性。
油藏工程基础一、油藏的驱动方式及开采特征:1、弹性驱动-----油藏无边水或底水,又无气顶,且原始油层压力高于饱和压力时,随着油层压力的下降,依靠油层岩石和流体弹性膨胀能驱油的方式。
一般为封闭油藏和断块油藏。
2、溶解气驱-----在弹性驱阶段,当油层压力下降到低于饱和压力时,随着油层压力的进一步降低,原处于溶解状态的气体将分离出来,气泡的膨胀能将原油驱向井底。
其弹性能主要来自气泡的膨胀,而不是来自液体和岩石的膨胀。
在开采过程中,随着井底流压的急剧下降,井底附近严重脱气,油层孔隙中很快形成混合流动,随着压力的进一步降低,逸出的气体增加。
由于气体的流度大于原油的流度,气体抢先流入井底,使驱油的动力很快丧失。
同时,原油中的溶解气逸出后原油的粘度增加,使流度进一步恶化。
表现为生产气油比急剧上升,当能量极大的消耗后生产气油比很快下降,同时产量下降。
3、水压驱动----当油藏与外部的水体相连通时,油藏开采后由于压力下降,使其周围水体中的水流入油藏进行补给。
分刚性水驱和弹性水驱。
刚性水驱是以油藏压力基本保持不变为其特征,驱动能量主要是边水的重力作用,水侵量完全补偿了采液量,总压降越大采液量越大。
形成条件是:油层与边水或底水连通性较好,有良好的供水水源,油水层有良好的渗透性。
通常也将注水开发看成刚性水驱(当注采比等于1时)。
油藏进入稳产期,由于有充足的边水、底水或注入水,能量消耗得到及时补充,压力基本保持不变。
当边水、底水或注入水推至油井后,油井开始见水,含水不断增加,产油量开始下降,但产液量可保持不变。
弹性水驱主要依靠含油区和含水区压力降低而释放的弹性能量进行开采。
当压降范围扩大到水体边界后,没有充足的能量供给,整个水动力学系统将呈现拟稳态流动,整个系统的压力降落与采液量的增加成正比关系,直到油层压力低于饱和压力而转为溶解气驱为主。
形成条件是:有边水或底水,但活跃程度不能弥补采液量,人工注水的注水速度小于采液速度开发看成刚性水驱。
物质平衡方程一、假设条件:① 储层流体物性均质②任何时间压力平衡③开发指标平均值④不考虑油藏温度变化 应用:① 计算弹性产量②确定弹性产油量③预测油藏动态④判断油藏的封闭性⑤求地质储量 二、体积变化量的分解:(1)液体油的膨胀量:-oi o N B N B (2)通过气体膨胀量:()si s g -N R R B (3)气顶气的膨胀量:goi gi m -1B N B B ⎛⎫⎪ ⎪⎝⎭ (4)束缚水体积的变化量:()oi w c w w c 1+m 1-N B S C P S (5)地层孔隙体积变化量:()oi f w c1+m 1-N B C P S (6)天然气水侵量:w e W B ; 人工注水量:i w W B(7)累计产液量:p p ppN R W ⎧⎪⎪⎨⎪⎪⎩产油:N 地上产气:产水:;()p op p s gp -wB N R R B W B ⎧⎪⎪⎨⎪⎪⎩产油:N 地下产气:产水:三、地下产量=油藏中体积变化量之和()()()()()g oi oi 0w si s g oi wc w f w i wgi wc wc 1+m 1+m +-R +W B =N -B +-+m -1++++1-1-p p s g p oi o e B N B N B N B R B B N R R B N B S C P C P W B W B B S S ⎛⎫⎡⎤ ⎪⎣⎦ ⎪⎝⎭引入两项体积系数:=ti oi B B ; ()t o =+-si s g B B R R B 得:()()()()p -+-+N R B -++1+1-ptsi g e i p wp gw w c fti t ti ggi t giw cNBR B W W W BN S S Cm B B B BB m B P B S -=⎛⎫--⎪⎝⎭=()()()()si p g e i ---+--1+-++B +1-pt p w g gi t ti ti ti f w c w gi w cNB R R B W W W B B B mB B m BC S C P B S ⎡⎤⎣⎦3.①()-0.01*12*2t =Q =2046=1609.4t/d ie Q at e ②()()()()--0.12*2p 2046*365t =1-=1-=13278700.12atQ iN e et ai③a=1%;④112046t=ln =ln=13.30.124.6l tQ a Q 年⑤ ()()()-*25-*24-0.12*252046*365=1--1-=1-=39420(t)0.12a a lip Q Q N e eeaiai4.①2046===1650(/)1+1+0.12*2i t Q Q t d ait ②()()62046*365=ln 1+=ln 1+0.12*2=1.34*10(t)0.12i p Q N ait ai③0.12===9.7%1+1+0.12*2aiait ait ④-2046-416===32.50.12*416i Q Q t aiQ年⑤()()p 2046*3652046*365=ln 1+0.12*25-ln 1+0.12*24=189435(t)0.120.12N ⎡⎤⎡⎤⎢⎥⎢⎥⎣⎦⎣⎦5)某油藏水驱特征方程为4lg =N /+lg ,a=24.0*10,=1.2p p W a b t b 且1>去含水率f=0.5时的累积产量np 和累计产水量wp ;2>若地质储量为500*104t ,采出程度η为多少?解1>()5/1-=1.04*102.3P a f f W t =;()=lg lg =1.2*106p P N a W b t -;2>641.2*10==24%500*10P N Nη=;。
油藏工程基础ppt课件contents •油藏工程概述•油藏地质基础•油藏流体性质与渗流规律•油藏开发方式与开采特征•油藏动态监测与资料分析•油藏评价与开发方案设计目录01油藏工程概述油藏工程定义与任务定义油藏工程是研究油藏(包括气藏)开发过程中油、气、水的运动规律和驱替机理,以及相应的工程调整措施,以求合理地提高开采速度和采收率的一门综合性技术科学。
任务油藏工程的主要任务是研究油藏(包括气藏和水驱油藏)的地质特征和开发过程中的动态特征,确定油田开发方案,编制油田开发计划,进行油田动态监测,提出改善油田开发效果的措施,预测油田开发趋势等。
油藏工程发展历程初始阶段20世纪初至40年代,以试井和油田动态分析为主要内容。
发展阶段20世纪50年代至70年代,以渗流力学和油层物理为基础,形成了系统的油藏工程理论和方法。
成熟阶段20世纪80年代至今,随着计算机技术的发展和应用,油藏工程实现了由定性到定量、由静态到动态、由单一到综合的转变。
油藏工程研究内容与方法研究内容主要包括油藏描述、渗流力学、试井分析、油田动态监测、油田开发方案设计与优化、提高采收率技术等。
研究方法综合运用地质、地球物理、钻井、测井、试油试采等多方面的资料和信息,采用数值模拟、物理模拟和现场试验等手段进行研究。
同时,注重与其他相关学科的交叉融合,如地球科学、石油工程、化学工程等。
02油藏地质基础沉积环境与沉积相沉积环境包括海洋、湖泊、河流、风成等不同类型的沉积环境,每种环境都有其特定的沉积物来源、搬运方式、沉积作用和保存条件。
沉积相指在一定沉积环境中形成的沉积物或岩石特征的综合,包括岩性、结构、构造、古生物等。
常见的沉积相有河流相、湖泊相、三角洲相、海滩相等。
沉积相与油气藏的关系不同沉积相带发育不同类型的储集层,控制着油气藏的分布和类型。
例如,河流相砂体常发育在古河床和河漫滩,是油气聚集的有利场所。
储层特征与类型储层特征01包括物性特征(如孔隙度、渗透率)、岩石学特征(如岩石类型、矿物组成)、储集空间类型(如孔隙、裂缝)等。