2015希望杯小学六年级二试(含答案)(word版)
- 格式:doc
- 大小:345.50 KB
- 文档页数:4
第十一届小学“希望杯”全国数学邀请赛六年级 第Ⅱ试试题一、填空题(每题5分,共60分)1.计算:()()()()()3243542012201120132012÷⨯÷⨯÷⨯⨯÷⨯÷= 解析:原式3452012201323420112012=⨯⨯⨯⨯⨯ 20132= 110062= 2.计算:11.5 3.1657.0512+++= 解析:原式111.5357.05612=+++ 1.58.257.05=+++16.8=3.地震时,震中同时向各个方向发出纵波和横波,传播速度分别是5.94千米/秒和3.87千米/秒。
某次地震,地震监测点的地震仪先接收到地震的纵波,11.5秒后接收到这个地震的横波,那么这次地震的震中距离地震监测点 千米。
(答案取整数) 解析:行程问题,类追及问题。
11.5×3.87÷(5.94-3.87)×5.94≈128km或用方程解,设距离是x ,列方程得:11.53.87 5.94x x -=。
整理得:5.94 3.8711.5 3.87 5.94x x -=⨯⨯,解得:128x =。
4.宏福超市购进一批食盐,第一个月售出这批食盐的40%,第二个月又售出120袋,这时已售出的和剩下的食盐的数量比是3:1,则宏福超市购进的这批食盐有 袋。
解析:分数应用题。
已售出的占全部的:33134=+; 超市购进的这批食盐有:342040%12004⎛⎫÷-= ⎪⎝⎭(袋)。
5.把一个自然数分解质因数,若所有质因数每个数位上的数字的和等于原数每个数位上的数字的和,则称这样的数为“史密斯数”。
如:27333,33327=⨯⨯++=+,即27是史密斯数。
那么,在4,32,58,65,94中,史密斯数有 个。
解析:(1)422,224,=⨯+=符合条件; (2)3222222,2222232=⨯⨯⨯⨯++++≠+,不符合条件。
学习奥数的重要性1. 学习奥数是一种很好的思维训练。
奥数包含了发散思维、收敛思维、换元思维、反向思维、逆向思维、逻辑思维、空间思维、立体思维等二十几种思维方式。
通过学习奥数,可以帮助孩子开拓思路,提高思维能力,进而有效提高分析问题和解决问题的能力,与此同时,智商水平也会得以相应的提高。
2. 学习奥数能提高逻辑思维能力。
奥数是不同于且高于普通数学的数学内容,求解奥数题,大多没有现成的公式可套,但有规律可循,讲究的是个“巧”字;不经过分析判断、逻辑推理乃至“抽丝剥茧”,是完成不了奥数题的。
所以,学习奥数对提高孩子的逻辑推理和抽象思维能力大有帮助3. 为中学学好数理化打下基础。
等到孩子上了中学,课程难度加大,特别是数理化是三门很重要的课程。
如果孩子在小学阶段通过学习奥数让他的思维能力得以提高,那么对他学好数理化帮助很大。
小学奥数学得好的孩子对中学阶段那点数理化大都能轻松对付。
4. 学习奥数对孩子的意志品质是一种锻炼。
大部分孩子刚学奥数时都是兴趣盎然、信心百倍,但随着课程的深入,难度也相应加大,这个时候是最能考验人的:少部分孩子凭着天分,凭着在困难面前的百折不挠和愈挫愈坚的毅力,坚持了下来、学了进去、收到了成效;一部分孩子在家长的“威逼利诱”之下,硬着头皮熬了下来;不少孩子更是或因天资不足、或惧怕困难、或受不了这份苦、再或是其它原因而在中途打了退堂鼓。
我以为,只要能坚持学下来,不论最后取得什么样的结果,都会有所收获的,特别是对孩子的意志力是一次很好的锻炼,这对他今后的学习和生活都大有益处。
第十三届小学“希望杯”全国数学邀请赛六年级第2试试题2015年4月12日上午9:00-----11:00一、填空题(每小题5分,共60分)1.计算:111...,1212312 (10)+++++++++得_____________。
2.某商品单价先上调,再下降20%才能降回原价。
该商品单价上调了_________%. 3.请你想好一个数,将它加上5,其结果乘以2,再减去4,得到的差除以2,再减去你最初想好的那个数,最后的计算结果是_____________。
新希望杯六年级数学试卷及解析答案(满分120分;时间120分钟)一、填空题(每题5分;共60分)1、计算:=-+••114154.0625.3________________. 解析:原式=625.3+••54.0-••63.1=625.2+(••54.1-••63.1)=625.2+••90.0=••09715.2或 原式=8823911108291115115829=-=-+ 2、对于任意两个数x 和y ;定义新运算◆和⊗;规则如下:x ◆y =y x y x 22++;x ⊗y =3÷+⨯y x y x ;如 1◆2=221212⨯++⨯;1⊗2=5115632121==+⨯; 由此计算••63.0◆=⊗)2114(__________. 解析:=⊗)2114(345.465.045.14==+⨯;而11463.0=••;所以原式=25173211132112342114341142=++=⨯++⨯3、用4根火柴;在桌面上可以拼成一个正方形;用13根火柴可以拼成四个正方形;…;如图1;拼成的图形中;若最下面一层有15个正方形;则需火柴__________根.解析:第二个图形比第一个图形多9根火柴;第三个图形比第二个图形多13根火柴;经尝试;第四个图形比第三个图形多17根火柴;而最下面一层有15根火柴的是第8个图形;所以共需要火柴4+(9+13+17+21+25+29+33)=151根.4、若自然数N 可以表示城3个连续自然数的和;也可以表示成11个连续自然数的和;还可以表示成12个连续自然数的和;则N 的最小值是_________.(注:最小的自然数是0)解析:因为奇数个连续自然数之和等于中间数乘以数的个数;所以N 能被3和11整除;也就是能被33整除;因为偶数个连续自然数之和等于中间两个数的平均值乘以数的个数;所以N 等于一个整数加上0.5再乘以12;也就是被12除余6;最小为66.(66可以表示成0到11的和)5、十进制计数法;是逢10进1;如141022410⨯+⨯=;15106103365210⨯+⨯+⨯=;计算机使用的是二进制计数法;是逢2进1;如22101111121217=⨯+⨯+⨯=;2231011001020212112=⨯+⨯+⨯+⨯=;如果一个自然数可以写成m 进制数m 45;也可以写成n 进制数n 54;那么最小的m =_______;n =________.(注:4434421an n a a a a a 个⨯⋅⋅⋅⨯⨯⨯=)解析:4m+5=5n+4;也就是说4(m-1)=5(n-1);如果m-1=5;n-1=4;则m=6;n=5;但此时n进制中不能出现数字5;如果m-1=10;n-1=8;则m=11;n=9;符合题意.6、我国除了用公历纪年外;还采用干支纪年;根据图2中的信息回答:公历1949年按干支纪年法是____________年.解析:干支纪年法60年一循环;1949+60=2009;而2009年是己丑年;所以1949年是己丑年7、盒子中装有很多相同的,但分红、黄、蓝三种颜色的玻璃球,每次摸出两个球;为了保证有5次摸出的结果相同;则至少需要摸球__________次.解析:每次摸出的结果可能是两个球颜色相同;有3种可能;或颜色不同;也有3种可能;共6种可能.最不利情况是每种可能各出现4次;则再摸一次就保证有5次相同;6×4+1=258、根据图3中的信息回答;小狗和小猪同时读出的数是___________.解析:相当于分别从1和1002处以2:5的速度比进行相遇问题;(1002-1)÷7×2+1=2879、图4中的阴影部分的面积是__________平方厘米.( 取3)解析:分别连接两个正方形的"\"的对角线;发现它们平行;所以阴影部分的面积就等于一个扇形的面积;为15×15×3÷4=168.7510、甲、乙两人合买了n 个篮球;每个篮球n 元.付钱时;甲先乙后;10元;10元地轮流付钱;当最后要付的钱不足10元时;轮到乙付.付完全款后;为了使两人所付的钱数同样多;则乙应给甲________元.解析:总共价格为2n 元;最后乙付说明2n 的十位数字为奇数;所以个位为6;乙最后一次付了6元;应该给甲2元11、某代表队共有23人参加第16届广州亚运会;他们按身高从高到低排列;前5位队员的平均身高比前8位队员的平均身高多3厘米;后15位队员的平均身高比后18位队员的平均身高少0.5厘米.那么前8位队员的平均身高比后15位队员的平均身高多_______厘米.解析:前5位队员的平均身高比前8位队员的平均身高多3厘米;也就是说;加入第6~8名后;平均身高减少了3厘米;因此第6~8名的平均身高比前5名的平均身高少3÷3×8=8厘米.第9~23位队员的平均身高比第6~23位队员的平均身高少0.5厘米;也就是说;加入第6~8名后;平均身高增加了0.5厘米;因此第6~8名的平均身高比第9~23名的平均身高多0.5÷3×18=3厘米.因此;前8名的平均身高比第9~23名的平均身高多8-3+3=8厘米12、甲、乙、丙三人同时从A 地出发到B 地;他们的速度的比是12:5:4;其中甲、乙两人步行;丙骑自行车;丙可以带一人同行(速度保持不变).为了使三人在最短的时间内同时到达B 地;则甲、乙两人步行的路程之比是___________.解析:根据对称性;丙先带谁没有区别.设先带甲;返回接乙.设乙步行的路程为x ;丙骑车返回的路程为y ;甲步行的路程为z .乙比骑车从A 地到B 地多用时间(5x -12x );甲比骑车从A 地到B 地多用时间(4z -12z );丙比骑车从A 地到B 地多用时间122y .三人同时到达即这三个相等时;5x -12x =4z -12z =122y ;求得x :y :z =10:7:7;所求路程比为7:10二、解答题(每题15分;共60分)13、一辆汽车从甲地开往乙地;若车速提高%20;可提前25分钟到达;若以原速行驶100千米;再将车速提高%25;可提前10分钟到达;求甲乙两地的距离.解析:车速提高20%;也就是变成原来的56;则时间变成原来的65;减少25分钟;原定时间为25×6=150分钟;车速提高25%;也就是变成原来的45;则时间变成原来的54;减少10分钟;则这段路程的原定时间为10÷5=50分钟.因此;原速行驶100千米需要150-50=100分钟;距离为150÷100×100=150千米14、如图5;在一个棱长为20厘米的正方体密闭容器的下底固定了一个实心圆柱体;容器内盛有m 升水时;水面恰好经过圆柱体的上底面.如果将容器倒置;圆柱体有8厘米露出水面.已知圆柱体的底面积是正方体底面积的81;求实心圆柱体的体积. 解析:两次的空白部分体积相等;而第二次的空白部分的横截面积为第一次的87811=-;所以第一次的空白部分的高度为第二次的87;即7厘米.正方体的底面积为20×20=400平方厘米;所以圆柱体的底面积为400÷8=50平方厘米;高度为20-7=13厘米;体积为50×13=650立方厘米15、有8个足球队进行循环赛;胜队得1分;负队得0分;平局的两队各得0.5分.比赛结束后;将各队的得分按从高到低排名后发现:各队得分互不相同;且第二名的得分与最后四名所得的总分一样多.求这次比赛中;取得第二名的队的得分.解析:全胜的队得7分;而最后四队之间赛6场至少共得6分;所以第二名的队得分至少为6分.如果第一名全胜;则第二名只输给第一名;得6分;如果第二名得6.5分;则第二名6胜1负;第一名最好也只能是6胜1负;与题目中得分互不相同不符.所以;第二名得分为6分16、将两个不同的自然数中较大的数换成他们的差;称为一次操作;如此继续下去;直到这两个数相同为止.如对20和26进行这样的操作;过程如下:(20;26)→(20;6)→(14;6)→(8;6)→(2;6)→(2;4)→(2;2)(1)对45和80进行上述操作.(2)若对两个四位数进行上述操作;最后得到的相同数是17.求这两个四位数的和的最大值.解析:(45,80)→(45,35)→(10,35)→(10,25)→(10,15)→(10,5)→(5,5).这就是用辗转相除法求最大公约数的运算;所以两个四位数的最大公约数为17;9999÷17=588……3;所以最大的四位数是9999-3=9996;第二大的四位数是9996-17=9979;和为19975(祝各位同学学习进步!)。
数学竞赛第六届“希望杯”全国数学邀请赛六年级第2试一、填空题(每小题5分,共60分)1.(1+0.12+0.23)×(0.12+0.23+0.34)-(1+0.12+0.23+0.34)×(0.12+0.23)=__________2.若甲数是乙数的23,乙数是丙数的45,那么甲、乙、丙三数的比是。
3.若一个长方形的宽减少20%,而面积不变,则长应当增加百分之。
4.已知三位数abc与它的反序数cba的和等于888,这样的三位数有个。
5.节日期间,小明将6个彩灯排成一列,其中有2个红灯,4个绿灯如果两个红灯不相邻,则不同的排法有。
(其中“红绿红绿绿绿”与“绿绿绿红绿红”类型的算作一种)6.某小学的六年级有一百多名学生。
若按三人一行排队,则多出一人;若按五人一行排队,则多出二人;若按七人一行排队,则多出一人。
该年级的人数是。
7.如图1,棱长分别为1厘米,2厘米,3厘米,5厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是平方厘米。
8.甲、乙、丙三个生产一批玩具,甲生产的个数是乙、丙两个生产个数之和的12,乙生产的个数是甲、丙两人生产个数之和的13,丙生产了50个。
这批玩具共有个。
9.有一个不等于零的自然数,它的12是一个立方数,它的13是一个平方数,则这个数最小是。
10.在如图2所示的九宫图中,不同的汉字代表不同的数,每行,每列和两条对角线上各数的和相等。
已知中=21,学=9,欢=12,则希、望、杯的和是。
11.如图3,三角形ABC和三角形DEC都是等腰直角三角形,A和E是直角等点,阴影部分是正方形。
如果三角形DEC的面积是24平方米,那么三角形ABC的面积是平方米。
12.A、B两地相距950米。
甲、乙两人同时由A地出发往返锻炼半小时。
甲步行,每分钟走40米;乙跑步,每分钟行150米。
则甲、乙二人第次迎面相遇时距B地最近。
二、解答题(本大题共4小题,每小题15分,共60分)要求:写出过程13.有一片草场,草每天的生长速度相同。
第六届小学“希望杯”全国数学邀请赛六年级第2试一、填空题(每小题5分,共60分)1.(1+0.12+0.23)×(0.12+0.23+0.34)-(1+0.12+0.23+0.34)×(0.12+0.23)=2.若甲数是乙数的23,乙数是丙数的45,那么甲、乙、丙三数的比是。
3.若一个长方形的宽减少20%,而面积不变,则长应当增加百分之。
4.已知三位数abc与它的反序数cba的和等于888,这样的三位数有个。
5.节日期间,小明将6个彩灯排成一列,其中有2个红灯,4个绿灯如果两个红灯不相邻,则不同的排法有。
(其中“红绿红绿绿绿”与“绿绿绿红绿红”类型的算作一种)6.某小学的六年级有一百多名学生。
若按三人一行排队,则多出一人;若按五人一行排队,则多出二人;若按七人一行排队,则多出一人。
该年级的人数是。
7.如图1,棱长分别为1厘米,2厘米,3厘米,5厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是平方厘米。
8.甲、乙、丙三个生产一批玩具,甲生产的个数是乙、丙两个生产个数之和的12,乙生产的个数是甲、丙两人生产个数之和的13,丙生产了50个。
这批玩具共有个。
9.有一个不等于零的自然数,它的12是一个立方数,它的13是一个平方数,则这个数最小是。
10.在如图2所示的九宫图中,不同的汉字代表不同的数,每行,每列和两条对角线上各数的和相等。
已知中=21,学=9,欢=12,则希、望、杯的和是。
11.如图3,三角形ABC和三角形DEC都是等腰直角三角形,A和E是直角等点,阴影部分是正方形。
如果三角形DEC的面积是24平方米,那么三角形ABC的面积是平方米。
12.A、B两地相距950米。
甲、乙两人同时由A地出发往返锻炼半小时。
甲步行,每分钟走40米;乙跑步,每分钟行150米。
则甲、乙二人第次迎面相遇时距B地最近。
二、解答题(本大题共4小题,每小题15分,共60分)要求:写出过程13.有一片草场,草每天的生长速度相同。
第六届小学“希望杯”全国数学邀请赛六年级第二试一、填空题(每小题5分,共60分)1.(1+0.12+0.23)×(0.12+0.23+0.34)-(1+0.12+0.23+0.34)×(0.12+0.23)=2.若甲数是乙数的23,乙数是丙数的45,那么甲、乙、丙三数的比是。
3.若一个长方形的宽减少20%,而面积不变,则长应当增加百分之。
4.已知三位数abc与它的反序数cba的和等于888,这样的三位数有个。
5.节日期间,小明将6个彩灯排成一列,其中有2个红灯,4个绿灯如果两个红灯不相邻,则不同的排法有。
(其中“红绿红绿绿绿”与“绿绿绿红绿红”类型的算作一种)6.某小学的六年级有一百多名学生。
若按三人一行排队,则多出一人;若按五人一行排队,则多出二人;若按七人一行排队,则多出一人。
该年级的人数是。
7.如图1,棱长分别为1厘米,2厘米,3厘米,5厘米的四个正方体紧贴在一起,则所得到的多面体的表面积是平方厘米。
8.甲、乙、丙三个生产一批玩具,甲生产的个数是乙、丙两个生产个数之和的12,乙生产的个数是甲、丙两人生产个数之和的13,丙生产了50个。
这批玩具共有个。
9.有一个不等于零的自然数,它的12是一个立方数,它的13是一个平方数,则这个数最小是。
10.在如图2所示的九宫图中,不同的汉字代表不同的数,每行,每列和两条对角线上各数的和相等。
已知中=21,学=9,欢=12,则希、望、杯的和是。
11.如图3,三角形ABC和三角形DEC都是等腰直角三角形,A和E是直角等点,阴影部分是正方形。
如果三角形DEC的面积是24平方米,那么三角形ABC的面积是平方米。
12.A、B两地相距950米。
甲、乙两人同时由A地出发往返锻炼半小时。
甲步行,每分钟走40米;乙跑步,每分钟行150米。
则甲、乙二人第次迎面相遇时距B地最近。
二、解答题(本大题共4小题,每小题15分,共60分)要求:写出过程13.有一片草场,草每天的生长速度相同。
第十四届小学“希望杯”全国数学邀请赛六年级 第2试试题1、 填空题.1. 计算:________.【答案】6【考点】计算,提取公因数【解析】2. 已知,,则是的_______倍.【答案】13【考点】计算,分数【解析】,3. 若,则自然数的最小值是_______.【答案】3【考点】计算,分数【解析】,,则最小为3.4. 定义:如果,那么称为和的比例中项.如,则2是1和4的比例中项.已知0.6是0.9和的比例中项,是和的比例中项,则=______.【答案】0.48【考点】计算,比例【解析】根据比例的基本性质得:,,解得:,,则5. A、B、C三人单独完成一项工程所用的时间如图所示.若A上午8:00开始工作,27分钟后,B和C加入,三人一起工作,则他们完成这项工程的时刻是______时______分.Image【答案】9时57分【考点】应用题,工程问题【解析】如图得A、B、C的工作效率分别是,27分钟为小时,则A单独的工作量:,三人合作时间:(小时),共花时间:(小时),(分钟),即完成这工程时刻为9时57分.6. 如图,A,B盘的盘面各被四等分和五等分,并且分别标有数字,两盘各自按不同的速度绕盘心转运,若指针指向A盘的数字是,指针指向B盘的数字是b,则两位数是质数的概率是________.Image【答案】【考点】数论,质数【解析】根据乘法原理可得:组成两位数共有:(个),两位数是质数的情况有:11,13,17,23,31,37,53,共7个,则两位数是质数的概率为:.7. 在算式“”中,不同的汉字代表不同的数字,则所代表的六位偶数是______.【答案】256410【考点】数论,位值原理【解析】,,所以得:当时,结果不是六位偶数,当,符合要求;当扩大4倍时,出现重复数字,当扩大6倍及以上的倍数,不是六位数,不符合要求;综合得:.8. 如图,正方形ABCD中,点E在边AD上,点F在边DC上,AE=2ED,DF=3FC,则△BFE的面积与正方形ABCD的面积的比值是_______.Image【答案】5:12【考点】几何,比例模型【解析】设正方形面积ABCD为1,连接BD、AC,,,,,.9. 如图是由两个直径为2的圆和四个腰长为2的等腰直角三角形组成,则图中阴影部分的面积等于_______.(圆周率取3)【答案】4.5【考点】几何,圆的面积【解析】通过平移将阴影部分补成2个小直角三角形和2个小弓形的面积和.2个三角形的面积:;剩余阴影面积:阴影部分面积:10. 已知三个最简真分数的分母分别是6,15和20,它们的乘积是.则在这三个最简真分数中,最大的数是_______.【答案】【考点】数论,分解质因数【解析】设3个最简真分数的分子分别为,则三个最简真分数为, ,,则分析得三个最简真分数为:,最大为.11. 将100个乒乓球放入从左到右排成一行的26个盒子中.如果最左边的盒子中有4个乒乓球,且任意相邻的4个盒子中乒乓球的个数和都是15.那么最右边的盒子中有乒乓球________个.【答案】6【考点】找规律【解析】由题意得:每4个盒子为一组,每组的乒乓球数之和为15个,每组的第1个盒子有4个乒乓球,,将100个乒乓球分成6组余2个盒子,,.12. 两根粗细相同,材料相同的蜡烛,长度比是,它们同时开始燃烧,18分钟后,长蜡烛与短蜡烛的长度比是,则较长的那根蜡烛还能燃烧_________分钟.【答案】150【考点】比例应用题【解析】因为是同时燃烧,两根蜡烛原来与现在的长度差是不变的原来现在原来现在第一根2115第二根1611差542020,较长那根还能燃烧:(分钟)2、 解答题13. 如图,图①由1个棱长为1的小正方体堆成,图②由5个棱长为1的小正方体堆成,图③由14个棱长为1的小正方体堆成,按照此规律,求:(1) 图⑥由多少个棱长为1的小正方体堆成?(2) 图⑩所示的立体图形的表面积.① ② ③【答案】(1)91;(2)420【考点】几何,正方体【解析】(1)图⑥正方体个数为:(个)(2)堆积体的表面积包括:前后2面、左右2面和上下2面,其中前后左右4个面的面积相等,上下2个面的面积相等;前后左右:上下:总表面积:14. 解方程:,其中表示的整数部分,表示的小数部分,如,.(要求写出所有的解)【答案】、、、【考点】计算【解析】 因,原式可化简为:,整理得,,,因为,则,.当,;当;当;当;当不满足;则符合题意取值有:.15. 阿春、阿天、阿真、阿美、阿丽五个小朋友按顺序取出盒子中的糖果,取完后,他们依次说了下面的的话:阿春:“大家取的糖果个数都不同!”阿天:“我取了剩下的糖果的个数的一半.”阿真:“我取了剩下糖果的.”阿美:“我取了剩下的全部糖果.”阿丽:“我取了剩下的糖果的个数的一半.”请问:(1)阿真是第几个取糖果的?(2)已知每人都取到糖果,则这盒糖果最少有多少颗?【答案】(1)第4个;(2)15颗;【考点】逻辑推理【解析】根据题意得:由于阿天、阿真、阿美、阿丽取的是剩下的糖果,则第1个为阿春,又因为阿美取了剩下的全部糖果,则第5个为阿美.设阿美最后取1份,当第4个为阿丽或阿丽时,都取1份,矛盾,则第4个为阿真.当第4个为阿真时,阿真取2份,倒推得阿真说的“剩下的”为3份,阿天和阿丽说法一致,不妨设第3个为阿天,阿真取3份,此时“剩下的”6份,第2个为阿丽,阿丽取6份,此时“剩下的”12份,第1个为阿春,因个数不同,则阿春最少取3份,所以这盒糖果最少有(份),则最少为15颗.综上,阿真是第4个取糖果的,这盒糖果最少有15颗.16. 甲乙两人同时从山底开始沿同一条路爬山,到达山顶后就立即沿原路返回.已知他们两人下山的速度都是各自上山速度的3倍.甲乙在离山顶150米处相遇,当甲回到山底时,乙刚好下到半山腰,求山底到山顶的路程.【答案】1550【考点】行程问题【解析】设山底到山顶全程为S,我们可以把下山的路程转化成上山的路程.在第一个过程中,甲下山的150米可以转化成上山的50米,则甲以上山的速度可以走,乙以上山的速度可以走,则;在第二个过程中,甲下山的S可以转化成上山的,则甲以上山的速度可以走,乙以上山的速度可以走,则.,计算得,米.。
第十三届小学“希望杯”全国数学邀请赛六年级第 1 试试题2015 年 3 月 15 日上午 8:30 至以下每题 6 分,共 120 分. 1. 计算:1 + 1 + 1 + 1+ 1 ________. 2 4 8 1632【出处】2015 年希望杯六年级初赛第 1 题【考点】借来还去——分数计算【难度】☆31【答案】 32【解析】原式 =12 + 14 + 18 + 161 + ( 321 + 321 ) - 321= 12 +14 +18 + (161 + 161 ) - 321= 12 + 14 + ( 18 + 18 ) - 321= 12 + ( 14 + 14 ) - 321 =12 + 12 - 321= 1 - 321= 32312. 将 99913化成小数,小数部分第 2015 位上的数字是________.【出处】2015 年希望杯六年级初赛第 2 题【考点】循环小数与分数——计算【难度】☆【答案】1【解析】 99913= 0.013 , 2015 ÷ 3 = 671 2 ,所以数字为 1.13.若四位数2AB7能被13整除,则两位数AB的最大值是________.【出处】2015年希望杯六年级初赛第3题【考点】整除问题——数论【难度】☆☆【答案】97【解析】13 2AB7⇒13AB0+2007,2007÷135,所以AB0÷138 ,13 AB5 ,利用数字谜或倒除法,可确定AB=97。
数字谜方法如下:根据乘积的个位,可确定第二个因数的个位为5,因为构造最大值,所以十位为最大为7,积为9751 3 1 3 1 3⇒ 6 5 6 55 5 9 7 54.若一个分数的分子减少20%,并且分母增加28%,则新分数比原来的分数减少了________%.【出处】2015年希望杯六年级初赛第4题【考点】分数应用题——应用题【难度】☆☆【答案】37.5a a ⨯1 - 20% ) a 5 5 ⎛ 5 ⎫= ⨯ - ÷ 1 ⨯ 100% = 37.5% 【解析】设原分数为,则新分数为,所以新分数为原分数的⎪b b ⨯(1 + 28% ) b8 8 ⎝ 8 ⎭5. 若a< 1 < a +1 ,则自然数a=________.1 + 1 + 1 + 1 + 12011 2012 2013 2014 2015【出处】2015年希望杯六年级初赛第5题【考点】比较与估算——计算【难度】☆☆【答案】402【解析】设x= 1 x> 1 = 2011 = 402 1 x < 1 = 2015 = 403 ,所1+ 1+1+1+1 1⨯ 51⨯ 52011 2012 2013 2014 2015 2011 2015 以402 1 < x <403, a =4025x 3.14 = 0.14 0.5 = 0.5 ⎧ 2015 ⎫ + ⎧ 315 ⎫ + ⎧412 ⎫ =6. .那么,⎨ ⎬ ⎨ ⎬ ⎬5⎩ 3 ⎭ ⎩ 4 ⎭ ⎩ ⎭ ________.(结果用小数表示)【出处】2015年希望杯六年级初赛第6题【考点】高斯记号与循环小数——计算2【难度】☆☆【答案】1.816⎧ 2015 ⎫ ⎧ 315 ⎫ ⎧ 412 ⎫ 2 3 2【解析】⎨ ⎬ + ⎨ ⎬ + ⎨ ⎬ = + + = 0.6 + 0.75 + 0.4 =1.8164 5 3 4 5⎩ 3 ⎭ ⎩ ⎭ ⎩ ⎭7.甲、乙、丙三人共同制作了一批零件,甲制作了总数的30%,乙、丙制作的件数之比是3:4.已知丙制作了20件,则甲制作了________件.【出处】2015年希望杯六年级初赛第7题【考点】比例应用题——应用题【难度】☆☆【答案】15【解析】甲制作了总数的30%,乙、丙制作的件数是总数的1-30%=70%,乙、丙制作的件数之比是3:4,则乙做了30%,丙做了40%,则甲:乙:丙= 3 : 3 : 4,甲制作了20÷4⨯3=15(件)。
学习奥数的重要性1. 学习奥数是一种很好的思维训练。
奥数包含了发散思维、收敛思维、换元思维、反向思维、逆向思维、逻辑思维、空间思维、立体思维等二十几种思维方式。
通过学习奥数,可以帮助孩子开拓思路,提高思维能力,进而有效提高分析问题和解决问题的能力,与此同时,智商水平也会得以相应的提高。
2. 学习奥数能提高逻辑思维能力。
奥数是不同于且高于普通数学的数学内容,求解奥数题,大多没有现成的公式可套,但有规律可循,讲究的是个“巧”字;不经过分析判断、逻辑推理乃至“抽丝剥茧”,是完成不了奥数题的。
所以,学习奥数对提高孩子的逻辑推理和抽象思维能力大有帮助3. 为中学学好数理化打下基础。
等到孩子上了中学,课程难度加大,特别是数理化是三门很重要的课程。
如果孩子在小学阶段通过学习奥数让他的思维能力得以提高,那么对他学好数理化帮助很大。
小学奥数学得好的孩子对中学阶段那点数理化大都能轻松对付。
4. 学习奥数对孩子的意志品质是一种锻炼。
大部分孩子刚学奥数时都是兴趣盎然、信心百倍,但随着课程的深入,难度也相应加大,这个时候是最能考验人的:少部分孩子凭着天分,凭着在困难面前的百折不挠和愈挫愈坚的毅力,坚持了下来、学了进去、收到了成效;一部分孩子在家长的“威逼利诱”之下,硬着头皮熬了下来;不少孩子更是或因天资不足、或惧怕困难、或受不了这份苦、再或是其它原因而在中途打了退堂鼓。
我以为,只要能坚持学下来,不论最后取得什么样的结果,都会有所收获的,特别是对孩子的意志力是一次很好的锻炼,这对他今后的学习和生活都大有益处。
第十三届小学“希望杯”全国数学邀请赛六年级第2试试题2015年4月12日上午9:00-----11:00一、填空题(每小题5分,共60分)1.计算:111...,1212312 (10)+++++++++得_____________。
2.某商品单价先上调,再下降20%才能降回原价。
该商品单价上调了_________%. 3.请你想好一个数,将它加上5,其结果乘以2,再减去4,得到的差除以2,再减去你最初想好的那个数,最后的计算结果是_____________。
2019年小学第十五届“希望杯”全国数学邀请赛六年级(特1) 第2试试题一、填空题(每题5分,共60分)1、2019=AAA +AAA +AA +AA +A +A +A +A +A +A +A +B ,字母“A,B”均代表一个非零数字,则B = 。
2、将一个两位数ab 的个位数字和十位数字交换,得到两位数ba ,若ba —ab =63,则满足条件的两位数ab 有 个。
3、如图1,一只青蛙从五边形ABCDE 的顶点A 出发顺时针跳跃,每步从五边形的一个顶点跳到另一个顶点,A B C D E ,若这只青蛙第一次跳1步,第二次跳2步,……,第n 次跳n 步,则它在跳完10次时,到达顶点 。
4、按顺时针方向不断取图中的12个数,可组成不超过1000的循环小数x ,如23.067823••,678.230678••等,若将x 的所有数字从左至右依次相加,在加完某个循环节的所有数字之后,得到2019,则x = 。
5、若A :B =213:546,C :A =125:233,则A :B :C 用最简整数比表示是 。
6、电视机厂接到生产一批电视机的订单,订单价每台2019元,预计可以获利30万元,实际上,由于生产成本提高了16,所以利润减少了25%,则此次订单需要电视机 台。
7、已知某些两位数,若把它分解成两个自然数的乘积可以有5种方法(a ×b 与b ×a 算一种方法),则这样的两位数有 个。
8、A 、B 两个健步行走着,沿围绕旗杆的同心圆跑道行走,旗杆刚好位于两圆的圆心,沿外跑道走的人五分钟走完一圈,沿内跑道走的人三分钟走完一圈,如图3,O ,A ,B 在同一条半径上,A ,B 反向而行,则他们下一次与旗杆又在同一半径上时,所需要的时间是 分钟。
9、如图4,六边形ABCDEF 的周长是16厘米,六个角都是120°,若AB =BC =CD =3厘米,则EF = 厘米。
10、如图5所示的容器中放入底面相等且高都是3分米的圆柱和圆锥形铁块,根据图5和图6的变化知,圆柱形铁块的体积是 立方分米。
2015年第十三届小学“希望杯”全国数学邀请赛试卷(六年级第1试)一、每题6分,共120分1.(6分)++++.2.(6分)将化成小数,小数部分第2015位上的数字是.3.(6分)若四位数能被13整除,则两位数的最大值为.4.(6分)若一个分数的分子减少20%,并且分母增加28%,则新分数比原来的分数减少了%.5.(6分)若a<<a+1,则自然数a=.6.(6分)定义:符号{x}表示的x的小数部分,如:{3.14}=0.14,{0.5}=0.5.那么{}+{}+{}=.(结果用小数表示)7.(6分)甲、乙、丙三人共同制作了一批零件,甲制作了总数的30%,乙、丙制作的件数之比是3:4.已知丙制作了20件,则甲制作了件.8.(6分)已知都是最简真分数,并且他们的乘积是,则x+y+z=.9.(6分)有三只老鼠发现一堆花生米,商量好第二天来平分,第二天,第一只老鼠最早来到,他发现花生无法平分,就吃了一颗,余下的恰好可以分成3份,他拿了自己的一份.第二只,第三只老鼠随后依次来到,遇到同样的问题,也取了同样的方法,都是吃掉一粒后,把花生米分成三份,拿走其中的一份.那么这堆花生米至少有几粒?10.(6分)如图,分别以长方形的一条长边的两个顶点为圆心,以长方形的宽为半径作圆,若图中的两个阴影部分的面积相等,则此长方形的长和宽的比值是.11.(6分)六年级甲班的女生人数是男生人数的倍.新年联欢会中,的女生和的男生参加了演出,则参加演出的人数占全班人数的.12.(6分)有80颗珠子,5年前,姐妹两人按年龄的比例分配,恰好分完;今年,她们再次按年龄的比例重新分配,又恰好分完.已知姐姐比妹妹大2岁,那么,姐姐两次分到的珠子相差颗.13.(6分)如图,分别以B,C为圆心的两个半圆的半径都是1厘米,则阴影部分的周长是厘米.(π取3)14.(6分)一个100升的容器,盛满了纯酒精,倒出一部分后注满水;混合均匀后,倒出与第一次所倒出体积相等的液体,再注满水,此时容器内水的体积是纯酒精体积的3 倍,则第一次倒出的纯酒精是升.15.(6分)如图,甲,乙两个圆柱形容器的底面半径分别是2厘米和3厘米.已知甲容器装满水,乙容器是空的.现将甲容器中的水全部倒人乙容器,水面的高比甲容器高的少6厘米,则甲容器的高是厘米.16.(6分)如图,《经典童话》一书共有382页,则这本书的页码中数字0共有个.17.(6分)如图所示的7个圆相切于一点,若圆的半径分别是(单位:分米):1,2,3,4,5,6,7,则图中阴影部分的面积是平方米.(π取3)18.(6分)将一个棱长为6的正方体切割成若干个相同的棱长为整数的小正方体,若这些小正方体的表面积之和是切割前的大正方体的表面积的2倍,则切割成的小正方体的棱长是.19.(6分)有长度分别是1厘米,2厘米,3厘米,4厘米5厘米的小木棍各若干根,从中任取3根组成一个三角形,则最多可以组成几个不同的三角形?20.(6分)一条路有上坡、平路、下坡三段,各段路程之比是1:2:3,小羊经过各段路的速度之比是3:4:5,如图.已知小羊经过三段路共用1小时26分钟,则小羊经过下坡路用了小时.2015年第十三届小学“希望杯”全国数学邀请赛试卷(六年级第1试)参考答案与试题解析一、每题6分,共120分1.(6分)++++.【分析】把算式中的改写成(1﹣)、改写成()、改写成(﹣)、改写成(﹣)、改写成(﹣),进而去括号得解.【解答】解:++++,=(1﹣)+()+(﹣)+(﹣)+(﹣),=1﹣++﹣+﹣+﹣,=1﹣,=.【点评】解决此题关键是根据数据的特点,把每一个数据进行适当的改写,进而找出简便方法.2.(6分)将化成小数,小数部分第2015位上的数字是1.【分析】因为化成0.013013013013013013013013013013013…它的循环节是013,是3位数,2015÷3=671…2,所以小数部分的第2015位数字是672个循环节上的第2个数字,所以小数部分的第2015位置上的数字是1,据此解答.【解答】解:=13÷999=0.013013013013013013013013013013013…2015÷3=671 (2)所以小数部分的第2015位置上的数字是:1.故答案为:1.【点评】本题重点要确定循环节有几位小数,用2015除以循环节的位数,得出是第几个循环节,然后看余数是几就是循环节的第几个数字,没有余数就是循环节的最后一个数字.3.(6分)若四位数能被13整除,则两位数的最大值为97.【分析】要使四位数能被13整除,那么﹣2=的差能被13整除,最大是995,然后判断995能否被13整除,若不是则再调整比995小的数即可得出答案.【解答】解:要使四位数能被13整除,那么﹣2=的差能被13整除,最大是995,995÷13=76…7,所以995不合要求,则,985÷13=75…10,所以985不合要求,则,975÷13=75,能被13整除,所以,=2975,那么的最大值为97.答:的最大值为97.故答案为:97.【点评】本题考查了数位知识和数的整除的综合应用,关键是明确能被13整除的数的特征,即一个数的后三位数与前面的数的差能被13整除,这个数就能被13整除.4.(6分)若一个分数的分子减少20%,并且分母增加28%,则新分数比原来的分数减少了37.5%.【分析】先求出这个分数分子减少20%,而分母增加28%的新分数是多少,再据这个新分数的值,求出新分数比原来分数减少的百分比.可设原分数为,然后据此计算即可.【解答】解:设原分数为,则新分数为=×,所以新分数为原分数的,(1﹣)÷1==37.5%.故答案为:37.5.【点评】完成本题要注意是求新分数比原来分数减少的百分率是多少,而不是新分数占原来分数的百分比.5.(6分)若a<<a+1,则自然数a=402.【分析】由题意,可得<++++<,设++++=s,则<<,进而推出s的取值范围,进一步解决问题.【解答】解:因为<++++<,设++++=s,则<<,所以<s<,即402.2<s<403,因此a=402.故答案为:402.【点评】此题看起来有一定难度,但采取灵活的方法,可化难为易,轻而易举解决问题.6.(6分)定义:符号{x}表示的x的小数部分,如:{3.14}=0.14,{0.5}=0.5.那么{}+{}+{}= 1.82.(结果用小数表示)【分析】通过分析{3.14}=0.14,{0.5}=0.5,计算出{}+{}+{}的小数部分,然后相加即可.【解答】解:{}+{}+{}≈{671.66}+{78.75}+{82.4}=0.66+0.75+0.4=1.81故答案为:1.81.【点评】解答本题的关键是求出{}+{}+{}的值.7.(6分)甲、乙、丙三人共同制作了一批零件,甲制作了总数的30%,乙、丙制作的件数之比是3:4.已知丙制作了20件,则甲制作了15件.【分析】由“乙、丙制作的件数之比是3:4.已知丙制作了20件”可求出乙制作的件数,再求出乙丙共制作的件数;甲制作了总数的30%,那么乙丙制作了总数的70%,然后用乙丙制作的件数除以乙丙制作总数的70%,求出零件总数,最后即可求出甲制作的件数.【解答】解:20÷4×3=15(件)15+20=35(件)35÷(1﹣30%)=35÷70%=50(件)50×30%=15(件);答:甲制作了15件.故答案为:15.【点评】首先根据乙丙两人加工的个数比及丙加工的个数求出乙丙两人加工的总数是完成本题的关键.8.(6分)已知都是最简真分数,并且他们的乘积是,则x+y+z= 21.【分析】首先根据三个最简真分数的乘积是,可得xyz=9×15×14÷6=3×3×5×7;然后根据最简真分数的特征,可得3不是x,y的因数,5不是y的因数,7不是z的因数,则x=5,y=7,z=3×3=9,相加即可.【解答】解:根据题意,可得××=则,xyz=9×15×14÷6=3×3×5×7,根据最简真分数的特征,可得x=5,y=7,z=9,所以x+y+z=5+7+9=21.故答案为:21.【点评】此题主要考查了用字母表示数,解答此题的关键是熟练掌握最简真分数的特征.9.(6分)有三只老鼠发现一堆花生米,商量好第二天来平分,第二天,第一只老鼠最早来到,他发现花生无法平分,就吃了一颗,余下的恰好可以分成3份,他拿了自己的一份.第二只,第三只老鼠随后依次来到,遇到同样的问题,也取了同样的方法,都是吃掉一粒后,把花生米分成三份,拿走其中的一份.那么这堆花生米至少有几粒?【分析】假设最后一个老鼠拿了1,2,3…粒花生,分别计算【解答】解:(1)最后一只老鼠取走1粒,最后一位老鼠取前有:1×3+1=4(粒);第二只老鼠取前有:4×3÷2+1=7(粒);第一只老鼠取前有:7×3÷2+1=12.5(粒)不能整除,舍去.(2)最后一只老鼠取走2粒,最后一位老鼠取前有:2×3+1=7(粒);第二只老鼠取前有:7×3÷2+1=12.5不能整除,舍去.(3)最后一只老鼠取走3粒,最后一位老鼠取前有:3×3+1=10(粒);第二只老鼠取前有:10×3÷2+1=16(粒);第一只老鼠取前有:16×3÷2+1=25(粒),符合题意.所以,最初这堆花生至少有25粒.答:这堆花生至少有25粒.【点评】此题解答的关键是从后向前进行推算,逐步推出初始结果,解决问题.10.(6分)如图,分别以长方形的一条长边的两个顶点为圆心,以长方形的宽为半径作圆,若图中的两个阴影部分的面积相等,则此长方形的长和宽的比值是.【分析】由题意可知:图中的两个阴影部分的面积相等,则两个圆的面积和就等于长方形的面积,于是可以设长方形的长和宽分别为a和b,依据长方形和圆的面积公式分别表示出各自的面积,再根据比的意义即可求解.【解答】解:设长方形的长和宽分别为a和b,则×π×b2×2=abb=a所以=.答:长方形的长和宽的比值是.故答案为:.【点评】解答此题的关键是明白:两个圆的面积和就等于长方形的面积,从而解决问题.11.(6分)六年级甲班的女生人数是男生人数的倍.新年联欢会中,的女生和的男生参加了演出,则参加演出的人数占全班人数的.【分析】把男生人数看作单位“1”,则女生人数的分率为,则总人数分率为1+,参加演出人数的分率为×+1×,用参加演出的人数分率除以全班人数分率即可.【解答】解:(×+1×)÷(1+)=()÷=×=答:参加演出的人数占全班人数的.故答案为:.【点评】解答本题的关键是找准单位“1”,求出参加演出人数的分率.12.(6分)有80颗珠子,5年前,姐妹两人按年龄的比例分配,恰好分完;今年,她们再次按年龄的比例重新分配,又恰好分完.已知姐姐比妹妹大2岁,那么,姐姐两次分到的珠子相差4颗.【分析】设5年前妹妹的年龄是x,那么:5年前和今年分别按照年龄的比例分配,且恰好分完,所以2x+2与2x+12均为80的因数,且这两个因数的差为10;80的因数有1,2,4,5,8,10,16,20,40,80,所以只有10与20的差为10,所以2x+2=10,求得x=4.然后根据表格中的数据进行分配,分别求得5年前和今年姐姐分到的颗数解决问题.【解答】解:设5年妹妹的年龄是x,那么:5年前和今年分别按照年龄的比例分配,且恰好分完,所以2x+2与2x+12均为80的因数,且这两个因数的差为10;80的因数有1,2,4,5,8,10,16,20,40,80,所以只有10与20的差为10,所以2x+2=10,求得x=4.那么x+2=4+2=6,即5年前按照4:6的比例分配,姐姐分到:80÷(4+6)×6=80÷10×6=48(颗);x+5=9,x+7=11,即今年按照9:11的比例分配,姐姐分到:80÷(9+11)×11=80÷20×11=4×11=44(颗);两次分配相差:48﹣44=4(颗).答:姐姐两次分到的珠子相差4颗.故答案为:4.【点评】分别求出5年前和今年姐姐的年龄,是解答此题的关键.13.(6分)如图,分别以B,C为圆心的两个半圆的半径都是1厘米,则阴影部分的周长是3厘米.(π取3)【分析】由题意可知,三角形BCE为等边三角形,则其边长等于半径,每个角的度数都是60度,再依据弧长公式即可求阴影部分的周长.【解答】解:连接BE、CE,则BE=CE=BC=1(厘米)故三角形BCE为等边三角形.于是∠EBC=∠ECB=60°于是弧BE=弧CE=3×1×=1(厘米)则阴影部分周长为1×2+1=3(厘米)答:阴影部分周长是3厘米.故答案为:3.【点评】考查了巧算周长,此题关键是连接BE、CE,将阴影部分进行变形,再利用弧长公式即可作答.14.(6分)一个100升的容器,盛满了纯酒精,倒出一部分后注满水;混合均匀后,倒出与第一次所倒出体积相等的液体,再注满水,此时容器内水的体积是纯酒精体积的3 倍,则第一次倒出的纯酒精是50升.【分析】若设第一次倒出的纯酒精是x升,根据最后水的体积是纯酒精体积的3倍,可得溶质是溶液的列方程求解.因为一开始容器内装的都是纯酒精,所以第一次倒出的x是溶质,当用水加满后的溶液的浓度是,第二次倒出的溶质是,然后根据已知条件即可列出方程.【解答】解:设第一次倒出的纯酒精是x升,则100﹣x﹣=×100整理得x2﹣200x+7500=0解得x1=150>100,舍去,x2=50,所以x=50答:第一次倒出的纯酒精是50升.故答案为:50.【点评】此题要求学生能够熟练运用公式:溶液的浓度=溶质÷溶液×100%.15.(6分)如图,甲,乙两个圆柱形容器的底面半径分别是2厘米和3厘米.已知甲容器装满水,乙容器是空的.现将甲容器中的水全部倒人乙容器,水面的高比甲容器高的少6厘米,则甲容器的高是27厘米.【分析】半径分别为2厘米和3厘米,从而可以分别求得它们的底面积.设容器的高度为x厘米,则容器乙中的水深就是(x﹣6)厘米,根据等量关系:水的体积前后没有改变,利用圆柱的体积公式即可列出方程解决问题.【解答】解:设容器的高为x厘米,则容器B中的水深就是(x﹣6)厘米,根据题意可得方程:3.14×22×x=3.14×32×(x﹣6)3.14×4×x=3.14×9×(x﹣6),4x=6x﹣542x=54x=27答:甲容器的高度是27厘米.故答案为:27.【点评】此题考查圆柱体积计算公式的运用,掌握圆柱体积计算公式是解决问题的关键.16.(6分)如图,《经典童话》一书共有382页,则这本书的页码中数字0共有68个.【分析】1~99:10,20,…90共9个101~109,201~209,301~309共:9x3=27个110,120,…190;210~290;310~380共2x9+8=26个100,200,300共6个,所以共有0为:9+27+26+6=68,据此解答即可.【解答】解:9+27+26+6=68(次).答:则这本书的页码中数字0共有68次.故答案为:68.【点评】解答此题应结合题意,进行分段分析,进而根据分析,得出结论.17.(6分)如图所示的7个圆相切于一点,若圆的半径分别是(单位:分米):1,2,3,4,5,6,7,则图中阴影部分的面积是0.84平方米.(π取3)【分析】从半径为7分米的圆开始,用大圆的面积减相邻小圆的面积,再加半径为1分米圆的面积,即为阴影部分的面积.【解答】解:(3×72﹣3×62)+(3×52﹣3×42)+(3×32﹣3×22)+3×12=39+27+15+3=84(平方分米)84平方分米=0.84平方米答:图中阴影部分的面积是0.84平方分米.故答案为:0.84.【点评】解答本题的关键是将图形分为4部分,根据圆的面积公式解答即可.18.(6分)将一个棱长为6的正方体切割成若干个相同的棱长为整数的小正方体,若这些小正方体的表面积之和是切割前的大正方体的表面积的2倍,则切割成的小正方体的棱长是3.【分析】因为切割成若干个相同的棱长为整数的小正方体,所以需要平行于前面、右面、上面所切的次数是相同的,由于切割后的表面积之和是切割前的大正方体的表面积的2倍,所以增加的面积等于原表面积,又因为“切一刀多两面”,所以增加的部分为两个前面,两个后面和两个右面,即平行于三个面各切一刀,由此求出棱长.【解答】解:因为切一刀多两面;小正方体的表面积之和是切割前的大正方体的表面积的2倍;所以增加的面积等于原表面积;所以平行于三个面各切一刀;所以切割成的小正方体的棱长是:6÷2=3答:切割成的小正方体的棱长是3.故答案为:3.【点评】关键是明确如何切,才能够使这些小正方体的表面积之和是切割前的大正方体的表面积的2倍.19.(6分)有长度分别是1厘米,2厘米,3厘米,4厘米5厘米的小木棍各若干根,从中任取3根组成一个三角形,则最多可以组成几个不同的三角形?【分析】先确定取3根木棒的可能情况有几种,再利用三角形三边关系判断是否能构成三角形,从而得出结果.【解答】解:(1)1厘米,1厘米,1厘米;(2)1厘米,2厘米,2厘米;(3)1厘米,3厘米,3厘米;(4)1厘米,4厘米,4厘米;(5)1厘米,5厘米,5厘米;(6)5厘米,5厘米,5厘米;(7)2厘米,2厘米,2厘米;(8)2厘米,2厘米,3厘米;(9)2厘米,3厘米,3厘米;(10)2厘米,3厘米,4厘米;(11)2厘米,4厘米,4厘米;(12)2厘米,4厘米,5厘米;(13)2厘米,5厘米,5厘米;(14)3厘米,3厘米,3厘米;(15)3厘米,3厘米,4厘米;(16)3厘米,3厘米,5厘米;(17)3厘米,4厘米,4厘米;(18)3厘米,4厘米,5厘米;(19)3厘米,5厘米,5厘米;(20)4厘米,4厘米,4厘米;(21)4厘米,4厘米,5厘米;(22)4厘米,5厘米,5厘米.答:最多可以组成22个不同的三角形.【点评】考查了组合图形的计数,三角形的三边关系和发散思维的能力,解答的思想是分类讨论的思想.20.(6分)一条路有上坡、平路、下坡三段,各段路程之比是1:2:3,小羊经过各段路的速度之比是3:4:5,如图.已知小羊经过三段路共用1小时26分钟,则小羊经过下坡路用了0.6小时.【分析】根据路程÷速度=时间,由路程比1:2:3和速度比3:4:5,求出时间比::=10:15:18,则下坡路用的时间占总时间的,已知总时间是1小时26分=86分,根据一个数乘分数的意义用乘法解答.【解答】解:1÷3=2÷4=3÷5=::=10:15:181小时26分=86分86×=86×=36(分)=0.6(小时);答:小羊经过下坡路用了0.6小时.故答案为:0.6.【点评】此题条件比较多,理解题意是关键,除了用到按比例分配的知识,还要掌握路程,速度,时间之间的关系.。
第十四届小学“希望杯”全国数学邀请赛六年级第2试试题一、填空题.1.计算:323 1.33243⨯+÷=________.【答案】6【考点】计算,提取公因数【解析】32 3 1.332 43⨯+÷=3.75 1.330.375⨯+⨯0.375(133)=⨯+6=2.已知0.5a=,13b=,则a b-是178的_______倍.【答案】13【考点】计算,分数【解析】110.536a b-=-=,1113678÷=3.若111123452x+++<,则自然数x的最小值是_______.【答案】3【考点】计算,分数【解析】1111773023456060x+++=<,3077x >,则x 最小为3.4. 定义:如果::a b b c =,那么b 称为a 和c 的比例中项.如1:22:4=,则2是1和4的比例中项.已知0.6是0.9和x 的比例中项,15是12和y 的比例中项,则x y +=______.【答案】0.48【考点】计算,比例【解析】根据比例的基本性质得:0.60.60.9x ⨯=,111552y ⨯=,解得:0.4x =,0.08y =,则0.40.080.48x y +=+=5. A 、B 、C 三人单独完成一项工程所用的时间如图所示.若A 上午8:00开始工作,27分钟后,B 和C 加入,三人一起工作,则他们完成这项工程的时刻是______时______分.【答案】9时57分【考点】应用题,工程问题【解析】如图得A 、B 、C 的工作效率分别是111645、、,27分钟为920小时,则A 单独的工作量:19362040⨯=,三人合作时间:31113(1)()406452-÷++=(小时),共花时间:933920220+=(小时),396011720⨯=(分钟),即完成这工程时刻为9时57分.6. 如图,A ,B 盘的盘面各被四等分和五等分,并且分别标有数字,两盘各自按不同的速度绕盘心转运,若指针指向A 盘的数字是a ,指针指向B 盘的数字是b ,则两位数ab 是质数的概率是________.【答案】720【考点】数论,质数【解析】根据乘法原理可得:组成两位数ab 共有:4520⨯=(个),两位数ab 是质数的情况有:11,13,17,23,31,37,53,共7个,则两位数ab 是质数的概率为:720. 7. 在算式“8=5⨯⨯希望杯就是好就是好希望杯”中,不同的汉字代表不同的数字,则希望杯就是好所代表的六位偶数是______.【答案】256410【考点】数论,位值原理【解析】(1000)8(1000)5⨯+⨯=⨯+⨯希望杯就是好就是好希望杯8000850005⨯+⨯=⨯+⨯希望杯就是好就是好希望杯79954992⨯=⨯希望杯就是好,205128⨯=⨯希望杯就是好,所以得:当128,205==希望杯就是好时,结果不是六位偶数,当1282256,2052410=⨯==⨯=希望杯就是好,符合要求;当扩大4倍时,出现753213521重复数字,当扩大6倍及以上的倍数,不是六位数,不符合要求;综合得:256410=希望杯就是好.8. 如图,正方形ABCD 中,点E 在边AD 上,点F 在边DC 上,AE =2ED ,DF =3FC ,则△BFE的面积与正方形ABCD 的面积的比值是_______.【答案】5:12【考点】几何,比例模型【解析】设正方形面积ABCD 为1,连接BD 、AC ,121233AEB S ∆=⨯=,11312348EDF S ∆=⨯⨯=,111248BFC S ∆=⨯=,1115138812BEF S ∆=---=,5::15:1212BEF ABCD S S ∆==正方形.9. 如图是由两个直径为2的圆和四个腰长为2的等腰直角三角形组成,则图中阴影部分的面积等于_______.(圆周率π取3)【答案】4.5【考点】几何,圆的面积【解析】通过平移将阴影部分补成2个小直角三角形和2个小弓形的面积和.2个三角形的面积:422=4⨯÷;剩余阴影面积:2r 221231210.5π÷-⨯÷=⨯÷-=阴影部分面积:40.5=4.5+10. 已知三个最简真分数的分母分别是6,15和20,它们的乘积是130.则在这三个最简真分数中,最大的数是_______.【答案】56【考点】数论,分解质因数【解析】设3个最简真分数的分子分别为a b c ,,,则三个最简真分数为61520a b c、、,160615201800301800a b c abc ⨯⨯===,602235=⨯⨯⨯,则分析得三个最简真分数为:54361520、、,最大为56.11. 将100个乒乓球放入从左到右排成一行的26个盒子中.如果最左边的盒子中有4个乒乓球,且任意相邻的4个盒子中乒乓球的个数和都是15.那么最右边的盒子中有乒乓球________个.【答案】6【考点】找规律【解析】由题意得:每4个盒子为一组,每组的乒乓球数之和为15个,每组的第1个盒子有4个乒乓球,264=62÷,将100个乒乓球分成6组余2个盒子,100156=10-⨯,104=6-.12. 两根粗细相同,材料相同的蜡烛,长度比是21:16,它们同时开始燃烧,18分钟后,长蜡烛与短蜡烛的长度比是15:11,则较长的那根蜡烛还能燃烧_________分钟.【答案】150【考点】比例应用题【解析】因为是同时燃烧,两根蜡烛原来与现在的长度差是不变的8475180.5-÷=(),较长那根还能燃烧:750.5150÷=(分钟)二、解答题13.如图,图①由1个棱长为1的小正方体堆成,图②由5个棱长为1的小正方体堆成,图③由14个棱长为1的小正方体堆成,按照此规律,求:(1)图⑥由多少个棱长为1的小正方体堆成?(2)图⑩所示的立体图形的表面积.①②③【答案】(1)91;(2)420【考点】几何,正方体【解析】(1)图⑥正方体个数为:222222+++++=(个)12345691(2)堆积体的表面积包括:前后2面、左右2面和上下2面,其中前后左右4个面的面积相等,上下2个面的面积相等;+++++++++前后左右:12345678910=55⨯上下:1010=100总表面积:5541002420⨯+⨯=14. 解方程:[]{}{}29x x x x ⨯+=+,其中[]x 表示x 的整数部分,{}x 表示x 的小数部分,如[]3.143=,{}3.140.14=.(要求写出所有的解)【答案】9.0、187、173、365【考点】计算【解析】 因[]{}x x x =+,原式可化简为:[]{}[]{}{}29x x x x x ⨯++=+,整理得,[]{}[]{}+9x x x x ⨯-=,[]{}(1)(+1)8x x -⨯=,因为{}1+12x ≤≤,则[]418x ≤-≤,[]59x ≤≤.当[]9x =,9.0x =;当[]18,87x x ==;当[]17,73x x ==;当[]36,65x x ==;当[]45,54x x ==不满足;则符合题意取值有:1139.0876735x x x x ====、、、.15. 阿春、阿天、阿真、阿美、阿丽五个小朋友按顺序取出盒子中的糖果,取完后,他们依次说了下面的的话:阿春:“大家取的糖果个数都不同!”阿天:“我取了剩下的糖果的个数的一半.”阿真:“我取了剩下糖果的23.”阿美:“我取了剩下的全部糖果.”阿丽:“我取了剩下的糖果的个数的一半.”请问:(1)阿真是第几个取糖果的?(2)已知每人都取到糖果,则这盒糖果最少有多少颗?【答案】(1)第4个;(2)15颗;【考点】逻辑推理【解析】根据题意得:由于阿天、阿真、阿美、阿丽取的是剩下的糖果,则第1个为阿春,又因为阿美取了剩下的全部糖果,则第5个为阿美.设阿美最后取1份,当第4个为阿丽或阿丽时,都取1份,矛盾,则第4个为阿真.当第4个为阿真时,阿真取2份,倒推得阿真说的“剩下的”为3份,阿天和阿丽说法一致,不妨设第3个为阿天,阿真取3份,此时“剩下的”6份,第2个为阿丽,阿丽取6份,此时“剩下的”12份,第1个为阿春,因个数不同,则阿春最少取3份,所以这盒糖果最少有12+3=15(份),则最少为15颗.综上,阿真是第4个取糖果的,这盒糖果最少有15颗.16.甲乙两人同时从山底开始沿同一条路爬山,到达山顶后就立即沿原路返回.已知他们两人下山的速度都是各自上山速度的3倍.甲乙在离山顶150米处相遇,当甲回到山底时,乙刚好下到半山腰,求山底到山顶的路程.【答案】1550【考点】行程问题【解析】设山底到山顶全程为S ,我们可以把下山的路程转化成上山的路程.在第一个过程中,甲下山的150米可以转化成上山的50米,则甲以上山的速度可以走50S +,乙以上山的速度可以走150S -,则50150V S V S 甲乙+=-; 在第二个过程中,甲下山的S 可以转化成上山的3S ,则甲以上山的速度可以走43S ,乙以上山的速度可以走1766S S S +=,则483776S V V S 甲乙==. 5081507S S +=-,计算得,1550S =米.。
第十一届小学“希望杯”全国数学邀请赛六年级第2试试题2013年4月14日上午9:00-11:00一、填空题(每题5分,共60分)1. 计算:()()()()()÷⨯÷⨯÷⨯⨯÷⨯÷=32435420122011201320122. 计算:1+++=1.5 3.1657.05123. 地震时,震中同时向各个方向发出纵波和横波,传播速度分别是5.94千米/秒和3.87千米/秒。
某次地震,地震监测点的地震仪先接收到地震的纵波,11.5秒后接收到这个地震的横波,那么这次地震的震中距离地震监测点千米。
(答案取整数)4. 宏福超市购进一批食盐,第一个月售出这批食盐的40%,第二个月又售出120袋,这时已售出的和剩下的食盐的数量比是3:1,则宏福超市购进的这批食盐有袋。
5. 把一个自然数分解质因数,若所有质因数每个数位上的数字的和等于原数每个数位上的数字的和,则称这样的数为“史密斯数”。
如:27333,33327=⨯⨯++=+,即27是史密斯数。
那么,在4,32,58,65,94中,史密斯数有个。
6. 如图1,三个同心圆分别被直径AB,CD,EF,GH八等分,那么,图中阴影部分面积与非阴影部分面积之比是。
7. 有两列火车,车长分别时125米和115米,车速分别是22米/秒和18米/米,两车相向行驶,从两车车头相遇到车尾分别需要秒。
8. 老师让小明在100米的环形跑道上按照如下的规律插上一些棋子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备多少面旗子?9. 20132013201320132013++++除以5,余数是。
(注:2013a表示2013个a相乘)1234510. 从1开始的n个连续的自然数,如果去掉其中的一个数后,余下各数的平均数是152,7那么去掉的数是。
11. 若A、B、C三种文具分别有38个,78个和128个,将每种文具都平均分给学生,分完后剩下2个A,6个B,20个C,则学生最多有人。
第十三届小学“希望杯”全国数学邀请赛
六年级 第2试试题
2015年4月12日 上午 9:00-----11:00
一、填空题(每小题5分,共60分)
1.计算:
111...,1212312 (10)
+++++++++得_____________。
2.某商品单价先上调,再下降20%才能降回原价。
该商品单价上调了_________%. 3.请你想好一个数,将它加上5,其结果乘以2,再减去4,得到的差除以2,再减去你最初想好的那个数,最后的计算结果是_____________。
4.若111216 (242412)
n +++>(n 是大于0的自然数),则满足题意的n 的值最小是______。
5.小明把一本书的页码从1开始逐页相加,加到最后,得到的数是4979,后来他发现这本书中缺了一张(连续两个页码)。
那么,这本书原来有______页。
6.2015减去它的12,再减去余下的13,再减去余下的1
4
,…,最后一次减去余下的
1
2015
,最后得到的数是________。
7.已知两位数ab 与ba 的比是5:6,则ab =______。
8.如图1,将1个大长方形分成了9个小长方形,其中位于角上的3 个小长方形的面积分别为9,15和12,由第4个角上的小长方形的面积等于__________。
9.某项工程,开始由6人用35天完成了全部工程的1
3
,此后,增加了6人一起来完
成这项工程。
则完成这项工程共用______天。
10.将1至2015这2015个自然数依次写出,得到一个多位数123456789…20142015,这个多位数除以9,余数是______。
11.如图2,向装有1
3
水的圆柱形容器中放入三个半径都是
1分米的小球,此时水面没过小球,且水面上升到容器高度的2
5
处,则圆柱形容器最多可以装水_______立方分米。
12.王老师开车从家出发去A 地,去时,前1
2的路程以50千米/小时的速度行驶,
余下的路程行驶速度提高20%;返回时,前1
3
的路程以50千米/小时的速度行驶,余
下的路程行驶速度提高32%,结果返回时比去时少用31分钟,则王老师家与A 地相距_______千米。
二、解答题(每小题15分,共60分。
)每题都要写出推算过程。
13.二进制是计算机技术中广泛采用的一种数制,其中二进制数转换成十进制数的方法如下:
那么,将二进制数 11111011111 转化为十进制数,是多少?
14.如图3,半径分别是15厘米、10厘
米、5厘米的圆形齿轮A 、B 、C 为某传动机械的一部分,A 匀速转动后带动B 匀速转动,而后带动C 匀速转动,请问: (1)当A 匀速顺时针转动,C 是顺时针转动还是逆时针转动?
(2)当A 转动一圈时,C 转动了几圈?
15.一个棱长为6的正方体被切割成若干个棱长为整数的小正方形,若这些小正方
形的表面积之各是切割前的大正方形的表面积的10
3
倍,求切割成的小正方体中,棱
长为1的小正方体的个数。
16.如图4,点M 、N 分别是边长为4分米的正方形ABCD 的一组对边AD 、BC 的中点,P 、Q 两个动点同时从M 出发,P 沿正方形的边逆时针方向运动,速度是1米/秒;Q 沿正方形的边顺时针方向运动,速度是2米/秒。
求: (1)第1秒时ΔNPQ 的面积; (2)第15秒时ΔNPQ 的面积; (3)第2015秒时ΔNPQ 的面积;。