乙类互补推挽功率放大器
- 格式:doc
- 大小:207.50 KB
- 文档页数:8
1.3 乙类推挽功率放大器 1.3.1 变压器耦合乙类推挽功率放大器一、电路 结构特点:上下对称 Tr1:输入变压器,保证两管轮流工作;Tr2:输出变压器,实现输出信号合成。
二、定性工作原理输入信号正半周时,T1导通,T2截止; 输入信号负半周时,T2导通,T1截止。
两个管子轮流工作,一推一拉(挽)所以叫推挽。
三、定量性能分析 Q 点:1、 静态 0CQ I =直流通路: CEQ CC V V =2、 交流通路 2'L L R n R =,12w n w =为输出变压器变比3、 交流负载线:过Q 点,斜率为1'L R -。
4、 动态分析 设:sin i im v V t ω= 当正半周(0)t ωπ≤≤时, 有1sin C cm i I t ω=1sin CE CC cm v V V t ω=-同理,负半周(2)t πωπ≤≤时,2sin C cm i I t ω=-1sin CE CC cm v V V t ω=+两管叠加后21()sin (02)L C C cm i n i i nI t t ωωπ=-=-≤≤RL'.v v i i i oc1c2L L R ++--Tr1Tr2w2CEui i = n ( ic2 - ic1 )i iLC2C1ttttuotCE1i B1ti C1ttVccIcmIbmVcmVcm = Icm*RL'5、 定量计算(1) 输出功率('L R 上功率就是L R 上功率)o P22111'2'22cm o cm L cm cm L V P I R V I R ===每管输出功率1112o o o P P P ==引进集电极电压利用系数ξcmCCV V ξ=, ξ与激励bm I 有关,(01)ξ≤≤ cm CC V V ξ∴=⋅, 'CCcm L V I R ξ⋅=则:22222max ()112'2'2'cm CC CCo o L L L V V V P P R R R ξξξ⋅===⋅=⋅ 其中:2max2'CC o L V P R =为理想状态,满激励下的输出功率----最大输出功率。
1.1 CDIO 设计目的通过设计乙类互补推挽功率放大器,掌握利用分离原件组成OTL 功放电路的原理,提高电路原理图读图技能,熟练掌握较复杂电路的装调操作方法。
1.2 CDIO 设计正文1.2.1设计要求电压增益:20倍直流输入电压:不大于10V输出功率:1W 以上(负载RL =8Ω)频率特性:20Hz ~50KHz1.2.2 设计原理乙类工作时,为了在负载上合成完整的正弦波,必须采用两管轮流导通的推挽电路。
通常使用T1和T2两个特性配对的互补功率管(NPN 型和PNP 型),若忽略功率管发射结导通电压,则当输入信号正半周期时,两功率管分别导通和截止,输出为正半周的半个正弦波;当输出信号负半周期时,两功率功率管分别截止和导通,输出为负半周的半个正弦波,通过负载的电流通过合成形成完整的正弦波。
1.2.3设计过程负载RL =8Ω Vo= V Po R L 22*=,输出功率Po=1W峰值为Vp=4V ,峰峰值为Vp-p=8V若要实现输出功率为Po=1W ,则直流电源电压Vcc >8所以取Vcc=10V输出电流Io==L CC R V /221422mA 取β=100,1b I =Io/β=4.22mA 取5I =20mA ,所以5R =0.5cc V /5I =250Ω取E V =0.2Vcc=2VE R =2V/20mA=100Ω因为E 5V R /R A ==2.5<10,所以E R 取值不合适令64E R R R +=,4R =10Ω,5R =250Ω当交流分析时,6R 被短路,V A =25符合要求Q2三极管基极电流'b I = I5/β=20mA/100=0.2mA2I =5~10倍的'b I ,取2I =2mA E 2V V =b +0.7V=2.7V6R = 2b V /2mA=1.35k Ω4R =(Vcc-2V b )/2mA=3.65k Ω电路中R 、C 电路为高通滤波电路,频率在20Hz ~50KHz所以计算得2C =40uF ,3C =2mF ,旁路电容1C =100nF1.3仿真结果图1 乙类功放原理图图2 输入端电压与输出端电压比较图3 示波器仿真波形1.4设计总结通过这次的乙类推挽功率放大器的设计,发现了自己很多知识上的漏洞,通过查阅书籍和在网上搜索资料,以及询问同学,总算做出了这个波形不是真的仿真电路。
经常会看到XX功放是采用推挽式结构,或者说XX采用甲类放大器,效果出色什么的描述,但各位可否知道这些类型功放工作代表的意义呢?下面就简单介绍一下:1.甲类放大:晶体管静态工作点设置在截止区与饱和区的中分点的放大电路,叫做甲类放大电路,适合于小功率高保真放大。
甲类放大又称为A类放大,在信号的整个周期内(正弦波的正负两个半周),放大器的任何功率输出元件都不会出现电流截止(即停止输出)。
正弦信号的正负两个半周由单一功率输出原件连续放大输出的一类放大器。
当输入信号较小时,在整个信号周期中,晶体管都工作于它的放大区,电流的导通角为180度,且静态工作点在负载线的中点。
甲类放大器工作时会产生高热,效率很低,适用于小信号低频功率放大,但固有的优点是不存在交越失真。
单端放大器都是甲类工作方式。
2.乙类放大:晶体管静态工作点设置在截止点的放大电路,叫做乙类放大电路,适合于大功率放大。
乙类放大又称为B类放大,在信号的整个周期内(正弦波的正负两个半周),放大器的输出元件分成两组,轮流交替的出现电流截止(即停止输出)。
正弦信号的正负两个半周分别由推挽输出级的两“臂”轮流放大输出的一类放大器,每一“臂”的导电时间为信号的半个周期。
乙类功率放大其集电极电流只能在半个周期内导通,导通角为90度。
乙类放大器的优点是效率高,缺点是会产生交越失真。
3.甲乙类放大:管静态工作点设置在截止区与饱和区之间,靠近截止点的放大电路,叫做甲乙类放大电路,适合于大功率高保真音频放大,推挽电路通常就是甲乙类放大电路。
甲乙类放大又称AB类放大,它界于甲类和乙类之间,推挽放大的每一个“臂”导通时间大于信号的半个周期而小于一个周期。
甲乙类放大有效解决了乙类放大器的交越失真问题,效率又比甲类放大器高,因此获得了极为广泛的应用。
4.丙类放大:晶体管静态工作点设置在截止区内的放大电路,叫做丙类放大电路,适合于大功率射频放大。
丙类放大又称为C类放大,丙类放大器工作在开关状态,它只处理正半周信号,也就是脉动直流信号。
电子应用系统CDIO一级项目设计说明书题目:乙类互补推挽放大器设计专业班级:学生姓名:学号:指导教师:设计周数:设计成绩:2012年6月18日1、CDIO设计要求本次CDIO设计题目如下:运用课程《电子线路》的非线性部分相关知识及课外资料,设计一个符合要求的、合理的乙类互补推挽功率放大器。
设计要求为:1.电源电压U=10~15V2.输入阻抗Z≥1KΩ3.输出负载R=8Ω4.输出功率P=1~5W5.放大倍数X≥20倍6.带宽f =100~200KHZ7.无失真8.multisin仿真结果2、CDIO设计正文2.1 功率放大电路功率放大电路着眼于较大的输出。
其特点是在同样的供电电压下有着较大的电流输出能力,即具有较大的“负载能力”。
在实际应用中,需要功率放大电路的场合很多。
例如带动电机的转动、仪表的指示、继电器的动作、天线的发射、扬声器的发声等。
要实现这些控制,就要在电压放大之后,在用功率放大电路提供负载所需要的足够的电功率。
2.2 功率放大电路的特性1、有足够大的功率输出2、非线性失真小3、效率高2.3 功率放大电路的分类1、按功放管的工作状态分为甲类、乙类、甲乙类和丙类2、按工作频率的高低分为低频功率放大电路和高频功率放大电路3、按负载的性质分为非谐振功率放大电路和谐振放大电路4、按电路结构分为单管功率放大电路、变压器耦合推挽功率放大电路和无变压器的功率放大电路2.4 乙类互补推挽功率放大电路推挽的意思是两个晶体管一推一拉的工作。
如下图是乙类互补对称推挽功率放大电路的原理电路。
T1、T2分别为NPN和PNP型三极管,他们的特性要相同。
信号从两个晶体管的基极输入,从公共射极输出,RL为负载电阻。
这个电路可以看成是由两个射极输出器组合而成。
由于半导体三极管的发射结处于正向偏置它才能导通,因此,当输入信号u处于正半周时,T2截止,T1导通并处于放大状态,由电流ie 1流过负载RL;而当输入信号处于负半周时,T1截止,T2处于放大状态,由电流ie 2流过负载RL,由此便在负载上产生完整的电压波形。
科信学院CDIO项目设计说明书(2010 /2011学年第二学期)
CDIO项目名称:电子应用系统一级项目
专业班级:电子信息工程
学生姓名:
学号:
指导老师:
设计成绩:
2011年6月28日
1、互补对称OTL 功放电路装调 1.1 CDIO 设计目的
通过设计乙类互补推挽功率放大器,掌握利用分离原件组成OTL 功放电路的原理,提高电路原理图读图技能,熟练掌握较复杂电路的装调操作方法
1.2 CDIO 设计正文 1.
2.1设计要求
电压增益:10倍(20分贝)
输出功率:0.5W 以上(负载R L =8Ω) 频率特性:20Hz ~20KHz
1.2.2 设计原理
乙类工作时,为了在负载上合成完整的正弦波,必须采用两管轮流导通的推挽电路。
通常使用T1和T2两个特性配对的互补功率管(NPN 型和PNP 型),若忽略功率管发射结导通电压,则当输入信号正半周期时,两功率管分别导通和截止,输出为正半周的半个正弦波;当输出信号负半周期时,两功率功率管分别截止和导通,输出为负半周的半个正弦波,通过负载的电流通过合成形成完整的正弦波。
1.2.3设计过程
负载R1=8Ω V o=
Po R *1=2V ,输出功率Po=0.5W
峰值为Vp=22V ,峰峰值为Vp-p=4≈V 2 5.7V
若要实现输出功率为Po=0.5W ,则直流电源电压Vc c > 5.7V 所以取Vcc=15V 输出电流Io=
2
1
Vcc/RL ≈350mA 取β=100,Ib1=Io/β=3.5mA
取I5=30mA ,所以R5=(15V-8.5V)/30mA=220Ω 取VE=0.2Vcc=3V RE=3V/30mA=100Ω
因为Av=R5/RE=2.2<10,所以RE 取值不合适 令RE=R4+R6,R4=15Ω,R5=85Ω
当交流分析时,R6被短路,Av=15符合要求
Q2三极管基极电流Ib’= I5/β=30mA/100=0.3mA
I2=5~10倍的Ib’,取I2=2mA
VB2=VE+0.7V=3.7V
R6= VB2/2mA=1.8kΩ
R4=(Vcc-VB2)/2mA=6kΩ
电路中R、C电路为高通滤波电路,频率在20HZ~2KHZ
所以计算得C2=40uF,C3=2mF,旁路电容C1=100nF
1.3仿真结果
图1 乙类功放原理图
图2 输入端电压与输出端电压比较
图3 示波器仿真波形
1.4设计总结
通过对乙类功放的设计,对所学相关知识有了更深入的理解,更加熟练应用仿真工具进行波形仿真以及能够较为熟练使用所学知识设计和调试电路,并且在实践中发现了平时学习中没有遇到的问题,提高了查阅资料和动手操作能力,使对所学知识有了更加浓厚的兴趣。
2、555时基混合集成电路的应用
2.1 CDIO设计目的
⑴掌握利用555时基集成电路组成定时器、触发器的原理
⑵练习集成电路的测试
⑶加深对电路设计技巧及电子电路原理的理解
⑷提高动手能力
2.2 CDIO设计正文
2.2.1设计要求
⑴设计555波形产生电路(方波、三角波等)
⑵检查原件参数及好坏
⑶查阅资料,设计电路方案
⑷了解方波或三角波产生原理
2.2.2设计原理
多谐振荡器是一种自激振荡器,在接通电源以后不需要外加触发信号,便能自动地产生矩形脉冲,由于矩形波中含有丰富的高次谐波分量,所以又把矩形波振荡器称为多谐振荡器。
下图为设计原理
图4 多谐振荡器工作原理
2.2.3 设计过程
将555定时器的低触发端和高触发端连在一起,接通电源后,电容C2被充电,Vc上升,当Vc上升到2/3Vcc时,触发器被复位,同时放电,T导通,此时Vo为低电平,电容C2通过电阻放电,时Vc下降,当下降到1/3Vcc时,触发器又被置位,Vo翻转为高电平。
当C2放电结束时,T截止,Vcc将通过电阻向电容充电,Vc上升到2/3Vcc时,触发器又发生翻转,如此周而复始,在输出端就得到一个周期性的方波,再接一个积分电路就得到了三角波。
2.3仿真结果
图4 由555定时器构成的多谐振荡器
图5 555定时器输出端波形
图6 555定时器输出端接积分电路后输出三角波
2.4 设计总结
通过利用555定时器设计多谐振荡器,掌握了555的基本组成结构和基本工作原理,通过对电路的设计更加熟练的运用仿真软件进行仿真及调试,提高了查阅资料和动手操作能力,增强了对所学专业的兴趣,设计电路就是不断的尝试不断的修改,最终才能达到理想的效果,这是在平时学习中无法体会到的,通过实践对各方面知识能力都有所加深和提高,经常动手操作才会提高自己。
3、参考文献
[1]康华光.电子技术基础(模拟部分)第四版.北京:高等教育出版社,2000
[2]衣承斌,刘京南.模拟集成电子技术基础.南京:东南大学出版社,1993
[3]蔡惟铮,吴建强.常用电子元器件简明手册.哈尔滨:哈尔滨工业大学出版社,1989
[4]张风言.电子电路基础.北京:高等教育出版社,1995
[5]康华光.电子技术基础(数字部分)第四版.北京:高等教育出版社,2000
[6]谢嘉奎.电子线路(非线性).北京:高等教育出版社,2000
注:此表必须在同一页面。