随机信号分析-Matlab实验题目与代码
- 格式:ppt
- 大小:528.50 KB
- 文档页数:8
实验一、MATLAB编程基础及典型实例一、实验目的(1)熟悉MATLAB软件平台的使用;(2)熟悉MATLAB编程方法及常用语句;(3)掌握MATLAB的可视化绘图技术;(4)结合《信号与系统》的特点,编程实现常用信号及其运算。
示例一:在两个信号进行加、减、相乘运算时,参于运算的两个向量要有相同的维数,并且它们的时间变量范围要相同,即要对齐。
编制一个函数型m文件,实现这个功能。
function [f1_new,f2_new,n]=duiqi(f1,n1,f2,n2)a=min(min(n1),min(n2));b=max(max(n1),max(n2));n=a:b;f1_new=zeros(1,length(n));f2_new=zeros(1,length(n));tem1=find((n>=min(n1))&(n<=max(n1))==1);f1_new(tem1)=f1;tem2=find((n>=min(n2))&(n<=max(n2))==1);f2_new(tem2)=f2;四、实验内容与步骤− 2 t (2)绘制信号x(t)= esin( t=0:0.1:30; 23t ) 的曲线,t的范围在0~30s,取样时间间隔为0.1s。
y=exp(-sqrt(2)*t).*sin(2*t/3); plot(t,y);(3)在n=[-10:10]范围产生离散序列:x( n)=⎧2 n ,− 3⎨≤ n ≤ 3,并绘图。
⎩0, Othern=-10:1:10;z1=((n+3)>=0);z2=((n-3)>=0);x=2*n.*(z1-z2);stem(n,x);(4)编程实现如下图所示的波形。
t=-2:0.001:3;f1=((t>=-1)&(t<=1));f2=((t>=-1)&(t<=2));f=f1+f2;plot(t,f);axis([-2,3,0,3]);(5)设序列f1(k)={ 0 , 1 , 2 , 3 , 4 , 5 },f2(k)={ 6 , 5 , 4 , 3 , 2 , 1 , 0 }。
随机信号分析与处理实验报告1实验一熟悉MATLAB的随机信号处理相关命令一、实验目的1、熟悉GUI格式的编程及使用。
2、掌握随机信号的简单分析方法3、熟悉语音信号的播放、波形显示、均值等的分析方法及其编程二、实验原理1、语音的录入与打开在MATLAB中,[y,fs,bits]=wavread('11',[N1 N2]);用于读取语音,采样值放在向量y中,fs表示采样频率(Hz),bits表示采样位数。
[N1 N2]表示读取从N1点到N2点的值。
2、幅值对于随机信号的频域描述,常使用功率谱,它是表征信号的能量随着频率的分布情况。
当然,功率谱也可用于周期信号和瞬变信号的频域描述。
周期函数的幅值谱:一般周期信号均由一个直流分量、一个基波(正弦波)和无限个谐波(正弦波)所组成,各次谐波的频率是基波频率的整数倍,基波、各次谐波的幅值Ao和初相角是各不相同的,将幅值与频率的函数关系成为幅值谱。
3、语音信号自相关性三、实验结果与分析1、信号原始波形2、FFT变换利用fft变换,对语音信号进行进行分析,可以看出所能发出的音调应该是稳定的或是在一定的范围内浮动3、语音信号相位通过相位处理,将语音信号的声门激励信息及声道响应分别离开来4、自相关函数2004006008001000120014001600180000.51自相关函数根据自相关函数可以看出语音信号的周期。
自相关函数检测出淹没在随机噪声干扰中的信号,随机信号的自功率谱等于它的自相关函数的傅里叶变换。
自相关函数是描述随机信号X(t)在任意两个不同时刻t1,t2的取值之间的相关程度。
从图中可以看出,当t1=t2=900时,信号的自相关性最强。
5、语音自协方差函数从图中原始信号的自协方差函数与原始信号的自相关函数在波形上相差不大,原因是121212(,)(,)()()X X X X K t t R t t m t m t =-,此时12t t =,通过计算,可以得到1()X m t ,2()X m t 的值很小,所以得到的自协方差函数波形是正确的。
随机信号分析实验报告——基于MATLAB语言姓名:_班级:_学号:专业:目录实验一随机序列的产生及数字特征估计 (2)实验目的 (2)实验原理 (2)实验内容及实验结果 (3)实验小结 (6)实验二随机过程的模拟与数字特征 (7)实验目的 (7)实验原理 (7)实验内容及实验结果 (8)实验小结 (11)实验三随机过程通过线性系统的分析 (12)实验目的 (12)实验原理 (12)实验内容及实验结果 (13)实验小结 (17)实验四窄带随机过程的产生及其性能测试 (18)实验目的 (18)实验原理 (18)实验内容及实验结果 (18)实验小结 (23)实验总结 (23)实验一随机序列的产生及数字特征估计实验目的1.学习和掌握随机数的产生方法。
2.实现随机序列的数字特征估计。
实验原理1.随机数的产生随机数指的是各种不同分布随机变量的抽样序列(样本值序列)。
进行随机信号仿真分析时,需要模拟产生各种分布的随机数。
在计算机仿真时,通常利用数学方法产生随机数,这种随机数称为伪随机数。
伪随机数是按照一定的计算公式产生的,这个公式称为随机数发生器。
伪随机数本质上不是随机的,而且存在周期性,但是如果计算公式选择适当,所产生的数据看似随机的,与真正的随机数具有相近的统计特性,可以作为随机数使用。
(0,1)均匀分布随机数是最最基本、最简单的随机数。
(0,1)均匀分布指的是在[0,1]区间上的均匀分布, U(0,1)。
即实际应用中有许多现成的随机数发生器可以用于产生(0,1)均匀分布随机数,通常采用的方法为线性同余法,公式如下:,序列为产生的(0,1)均匀分布随机数。
定理1.1若随机变量X 具有连续分布函数,而R 为(0,1)均匀分布随机变量,则有2.MATLAB中产生随机序列的函数(1)(0,1)均匀分布的随机序列函数:rand用法:x = rand(m,n)功能:产生m×n 的均匀分布随机数矩阵。
(2)正态分布的随机序列函数:randn用法:x = randn(m,n)功能:产生m×n 的标准正态分布随机数矩阵。
班级:021012班学号:0210111X姓名:李X随机信号大作业利用matlab程序设计设计一个正旋信号加高斯白噪声的复合信号。
源代码:正旋sinx信号x=(0:0.01:2);y1=sin(10*pi*x);plot(x,y1,'r');title('y=sin(10*pi*x)');ylabel('y');xlabel('x/10pi');grid;正旋信号如下图:高斯白噪声,当白噪声的方差为10的-4次方时y2=0.01*randn(1,201);plot(x,y2,'r');title('高斯白噪声');ylabel('y');xlabel('x/10pi');grid;1:加入噪声之后的信号。
因为白噪声方差过小,变化过快,叠加信号大致显示出的是正旋波形y=y1+y2;plot(x,y,'r');title('叠加了高斯白噪声的sinx');ylabel('y');xlabel('x/10pi');grid;2:当增加白噪声的方差到0.01时,观察复合信号,可以发现,复合信号波形没有第一次平滑,较第一个复合波形而言更显无序性3:方差增加到1时:取方差为0.01时的白噪声作函数频谱图和白噪声自相关函数图:FY=fft(y);FY1=fftshift(FY);f=(0:200)*100/201-50;subplot(1,2,1);plot(f,abs(FY1),'r');ylabel('F(jw)');xlabel('w');grid;i=-0.49:1/100:0.49;for j=1:50R(j)=sum(y2(1:201-j-1).*y2(j:199),2)/(201-j);Rx(49+j)=R(j);Rx(51-j)=R(j);endsubplot(1,2,2);plot(i,Rx,'r');ylabel('Rx');xlabel('x');grid;左图为函数频谱图;右图为白噪声自相关函数图。
一、实验名称微弱信号的检测提取及分析方法二、实验目的1.了解随机信号分析理论如何在实践中应用2.了解随机信号自身的特性,包括均值、方差、相关函数、频谱及功率谱密度等3.掌握随机信号的检测及分析方法三、实验原理1.随机信号的分析方法在信号与系统中,我们把信号分为确知信号和随机信号。
其中随机信号无确定的变化规律,需要用统计特新进行分析。
这里我们引入随机过程的概念,所谓随机过程就是随机变量的集合,每个随机变量都是随机过程的一个取样序列。
随机过程的统计特性一般采用随机过程的分布函数和概率密度来描述,他们能够对随机过程作完整的描述。
但由于在实践中难以求得,在工程技术中,一般采用描述随机过程的主要平均统计特性的几个函数,包括均值、方差、相关函数、频谱及功率谱密度等来描述它们。
本实验中算法都是一种估算法,条件是N要足够大。
2.微弱随机信号的检测及提取方法因为噪声总会影响信号检测的结果,所以信号检测是信号处理的重要内容之一,低信噪比下的信号检测是目前检测领域的热点,而强噪声背景下的微弱信号提取又是信号检测的难点。
噪声主要来自于检测系统本身的电子电路和系统外空间高频电磁场干扰等,通常从以下两种不同途径来解决①降低系统的噪声,使被测信号功率大于噪声功率。
②采用相关接受技术,可以保证在信号功率小于噪声功率的情况下,人能检测出信号。
对微弱信号的检测与提取有很多方法,常用的方法有:自相关检测法、多重自相法、双谱估计理论及算法、时域方法、小波算法等。
对微弱信号检测与提取有很多方法,本实验采用多重自相关法。
多重自相关法是在传统自相关检测法的基础上,对信号的自相关函数再多次做自相关。
即令:式中,是和的叠加;是和的叠加。
对比两式,尽管两者信号的幅度和相位不同,但频率却没有变化。
信号经过相关运算后增加了信噪比,但其改变程度是有限的,因而限制了检测微弱信号的能力。
多重相关法将当作x(t),重复自相关函数检测方法步骤,自相关的次数越多,信噪比提高的越多,因此可检测出强噪声中的微弱信号。
实验 11、ones 语句:Y = ones(n) %生成n×n 全1 阵Y = ones(m,n) %生成m×n 全1 阵Y = ones([m n]) %生成m×n 全1 阵Y = ones(d1,d2,d3…) %生成d1×d2×d3×…全1 阵或数组Y = ones([d1 d2 d3…]) %生成d1×d2×d3×…全1 阵或数组Y = ones(size(A)) %生成与矩阵A 相同大小的全1 阵2、find 语句:k = find(x) %按行检索X 中非零元素的点,若没有非零元素,将返回空矩阵。
[i,j] = find(X) %检索X 中非零元素的行标i 和列标j 。
[i,j,v] = find(X) %检索X 中非零元素的行标i 和列标j 以及对应的元素值v 。
实验 31、编写一M 函数,a 和x 作为函数参数输入,函数里面分别用if 结构实现函数表示1()1x a x f x a x a ax a-≤-⎧⎪⎪=-<<⎨⎪≥⎪⎩function output=function1(x,a)result=0;if x<=-aresult=-1;elseif x>-a&x<aresult=x/a;else x>=aresult=1;endoutput=[result]; 2、编写一M 函数,迭代计算132n n x x +=+,给出可能的收敛值,其中x 的初值作为函数的参数输入。
function output=function2(x)y=0;while 1y=3/(x+2);if abs(y-x)<0.000001break;else x=y;endendoutput=[y]; end3、编写一M函数,实现212!!nxx xe xn=+++++L L近似计算指数,其中x为函数参数输入,当n+1步与n步的结果误差小于0.00001时停止,分别用for和while 结构实现。
随机信号分析与处理实验报告2实验二 随机信号处理的工程编程实现一、实验目的1、熟悉各种随机信号分析及处理方法。
2、掌握运用MATLAB 中的统计工具包和信号处理工具包绘制概率密度的方法 二、实验原理1.正态分布:其概率密度为221()()exp ,0,122x m f x m σσπσ⎡⎤--==⎢⎥⎣⎦Matlab 中的功能函数为: x=normpdf(x,mu,sigma)计算正太概率密度在x 处的值,x 为标量或矢量,对于标准正态分布而言,mu=0,sigma=1,这时 x=normpdf(x,mu,sigma),可以简写为 x=normpdf(x);正态分布概率分布函数Matlab 中的功能函数为; x=normcdf(x,mu,sigma)计算正太概率密度在x 处的值,x 为标量或矢量,对于标准正态分布而言,mu=0,sigma=1,这时 x=normcdf(x,mu,sigma),可以简写为 x=normcdf(x). 2.均匀分布0-1分布,其概率密度为101()0x f x <<⎧=⎨⎩其他其概率密度y=unifpdf(x,a,b)计算在[a,b]区间上均匀分布概率密度函数在x 处的值,x,a ,b 为矢量或者标量;均匀分布概率分布函数y=unifcdf(x,a,b)计算在[a,b]区间上均匀分布概率分布函数在x 处的值,x,a ,b 为矢量或者标量。
3.指数分布:其概率密度为1()e x p (),2x f x μμμ=-= 其概率密度y=exppdf(x,mu)计算参数为mu 的指数分布概率密度函数在x 处的值,x,xu 为矢量或者标量;指数分布概率分布函数y=expcdf(x,mu)计算参数为mu 的指数分布概率密度函数在x 处的值,x,xu 为矢量或者标量.4.瑞利分布概率密度y=raylpdf(x,a)计算参数为a(δ)的瑞利分布概率密度函数在x 处的值,x,a 为矢量或者标量;瑞利分布概率f 分布函数y=raylcdf(x,a)计算参数为a(δ)的瑞利分布概率分布函数在x 处的值,x,a 为矢量或者标量。