负载型催化剂的制备
- 格式:ppt
- 大小:19.16 MB
- 文档页数:134
负载型催化剂的制备方法1.沉积-沉淀法:沉积-沉淀法是最常用的负载型催化剂制备方法之一、该方法的步骤如下:(1)选择合适的载体材料,如氧化物、碳材料等。
确保载体具有高度的稳定性和活性表面。
(2)将载体通过悬浮剂悬浮在溶液中。
(3)通过沉积-沉淀过程,将活性催化剂沉积在载体表面上。
这可以通过添加适当的沉淀剂或通过化学反应来实现。
(4)通过干燥和煅烧等步骤,使催化剂固定在载体上。
2.浸渍法:浸渍法是一种简单而有效的负载型催化剂制备方法。
其步骤如下:(1)选择合适的载体材料。
(2)将载体放入催化剂溶液中浸泡。
(3)待催化剂充分浸渍到载体中后,通过干燥和煅烧等步骤,将催化剂固定在载体上。
(4)重复上述步骤,直至达到所需的催化剂浓度。
3.溶胶-凝胶法:溶胶-凝胶法是一种制备均匀负载型催化剂的有效方法。
其步骤如下:(1)将溶胶材料(如溶胶态金属盐或金属有机化合物)和凝胶材料混合在一起。
(2)通过搅拌或加热等方法,使溶胶和凝胶得以混合。
(3)进行溶胶-凝胶反应,形成凝胶。
(4)通过干燥和煅烧等步骤,固定催化剂在凝胶上。
4.物理吸附法:物理吸附法是负载型催化剂制备方法中最简单的一种。
(1)选择合适的载体材料。
(2)将载体放入催化剂溶液中。
催化剂会通过物理吸附作用附着在载体表面。
(3)通过干燥和煅烧等步骤,将催化剂固定在载体上。
物理吸附法的优点是简单易行,但催化剂的固定程度较弱,容易流失。
以上是几种常见的负载型催化剂制备方法。
根据不同的催化剂要求和应用场景,选择合适的制备方法可以得到具有优良性能的负载型催化剂。
负载型金属催化剂制备及应用
负载型金属催化剂是一种将活性金属固定在惰性载体上的催化剂,其制备和应用具有重要的意义。
负载型金属催化剂的制备通常分为两个步骤:载体的合成和金属的固定。
载体的合成可以选择各种不同的材料,如氧化铝、硅胶、炭黑等。
这些载体具有较高的比表面积和较好的热稳定性,能够提供良好的催化性能。
金属的固定是将活性金属沉积在载体上。
常用的方法包括浸渍法、共沉淀法和染料法等。
浸渍法是将载体浸入金属离子溶液中,使金属离子被载体吸附,然后通过加热还原使金属形成金属颗粒。
共沉淀法是将金属离子和载体共沉淀形成固体,然后通过还原使金属形成金属颗粒。
染料法是将金属离子与染料分子形成配合物,然后通过还原使金属形成金属颗粒。
负载型金属催化剂广泛应用于各个领域,包括化学工业、环境保护和能源转化等。
在化学工业中,负载型金属催化剂常用于有机合成反应,能够提高反应速率和选择性。
在环境保护中,负载型金属催化剂可以用于废水处理和大气污染控制,能够有效去除有机污染物和有害气体。
在能源转化中,负载型金属催化剂可以用于电池和燃料电池等能源设备,能够提高能源转化效率。
总的来说,负载型金属催化剂的制备和应用对于提高催化性能和促进工业发展具有重要的意义。
通过不断的研究和创新,负载型金属催化剂有望在更多领域发挥重要作用。
负载型镍催化剂的制备文稿归稿存档编号:[KKUY-KKIO69-OTM243-OLUI129-G00I-FDQS58-科技论文检索与写作作业——负载型镍催化剂的制备一、制备的目的和意义1.了解并掌握负载型金属催化剂的原理和制备方法。
2.制备一种以金属镍为主要活性组分的固体催化剂。
意义:催化剂在现代化学工业中占有重要地位。
镍基催化剂是一种常用的经典催化剂,具有催化活性高、稳定性好和价格较低等优点,已被广泛应用于加氢、脱氢、氧化脱卤、脱硫等转化过程。
二、制备方法、1.一种负载型镍催化剂的制备方法,其特征在于,具体包括如下步骤:(1)按钛酸丁酯与无水乙醇体积比为1:1.5~1:3的比例将钛酸丁酯与无水乙醇混合,强力搅拌后得到混合溶液,按无水乙醇与醋酸的体积比为10:1~30:1的比例在混合溶液中加入醋酸形成溶液A;(2)按去离子水与无水乙醇的体积比为1:5~1:10的比例将去离子水与无水乙醇混合得到混合溶液,在混合溶液中加入稀盐酸或稀硝酸调节混合溶液的pH为2~5得到溶液B;(3)按溶液B与溶液A的体积比为1:1~1:4的比例将B溶液加入到A溶液中,然后按钛酸丁酯和十六烷基三甲基溴化铵的摩尔比为1:0.05~1:0.3的比例加入十六烷基三甲基溴化铵形成钛溶胶;(4)按γ?Al2O3和钛酸丁酯的摩尔比为1:0.05~1:0.8的比例在步骤(3)中得到的钛溶胶中加入γ?Al2O3,然后按钛酸丁酯与去离子水的体积比为1:0.5~1:2的比例加入去离子水,静置1~5h后干燥、焙烧得到TiO2?Al2O3复合载体;(5)将TiO2?Al2O3复合载体于浓度为0.05~1mol/L的硝酸镍水溶液中浸渍4~24h,充分搅拌后干燥、焙烧、通氢还原,得Ni/TiO2?Al2O3负载型镍催化剂。
2.一种用于氨分解制氢的负载型镍催化剂,活性组分为Ni,载体为氧化硅、氧化铝或氧化钛;活性组份的质量百分含量为1-50%。
其制备步骤为:将可溶性镍盐、pH值调节剂、沉淀剂、载体以及去离子水配成悬浊液;悬浊液加热至70-110℃沉积60-300分钟;上述悬浮液降至20-30℃后并过滤,水洗涤、过滤;在80-120℃干燥18-24小时,400-900℃焙烧2-6小时;在氢气气氛,或者氢气和氦气的混合气气氛中,于400-900℃活化3-5小时,还原制成负载型纳米镍催化剂。
负载型催化剂常用的制备方法物理吸附法是将活性组分通过物理吸附的方式附着在基体表面上的制备方法。
常用的物理吸附剂包括活性炭、硅胶、氧化铝等。
物理吸附法的优点是制备简单,操作方便;缺点是吸附强度较弱,容易脱落。
浸渍法是将活性组分通过浸渍的方式沉积在基体上的制备方法。
首先将基体浸入活性组分的溶液中,活性组分会通过化学反应与基体表面发生反应并沉积。
浸渍法的优点是制备过程简单且易控制;缺点是易造成不均匀沉积。
沉淀法是通过控制溶液中沉淀反应来制备负载型催化剂的方法。
首先将包含活性组分的化学物质加入到溶液中,并在适当条件下进行混合反应,活性组分会在反应中以沉淀形式沉积在基体上。
沉淀法的优点是制备过程简单,反应速度较快;缺点是易形成堵塞和不均匀沉积。
共沉淀法是将活性组分和基体一起混合,并由于反应产物的沉淀而形成负载型催化剂的制备方法。
共沉淀法的优点是制备工艺相对简单,反应速度较快,反应产物均匀;缺点是选择适当的共沉淀物,防止反应不能进行。
胶体沉淀法是将活性组分通过胶体沉淀的方式沉积在基体上的制备方法。
活性组分首先通过溶胶-凝胶方法制备成胶体溶胶,然后将溶胶均匀涂覆在基体上,并通过凝胶反应形成负载型催化剂。
胶体沉淀法的优点是负载均匀性好,催化活性较高;缺点是制备过程较复杂,操作要求较高。
综上所述,负载型催化剂常用的制备方法包括物理吸附法、浸渍法、沉淀法、共沉淀法和胶体沉淀法等。
在制备过程中,可以根据具体需要选择适合的方法,并通过调整制备条件和材料配方等方式来得到性能优良的负载型催化剂。
《Co@NC复合二维SBA-15负载型催化剂的制备与氨分解催化性能调控机制研究》篇一一、引言随着环境保护意识的提升与工业发展对能源需求量的增长,寻找高效、环保的催化剂成为当前研究的热点。
氨分解作为一种重要的工业过程,其催化剂的研发尤为重要。
近年来,Co@NC 复合材料因其优异的催化性能和良好的稳定性受到了广泛关注。
本文旨在研究Co@NC复合二维SBA-15负载型催化剂的制备方法及其在氨分解过程中的催化性能调控机制。
二、材料与方法1. 材料准备实验所需的主要材料包括SBA-15基底、钴源、氮源和碳源等。
所有试剂均为分析纯,使用前未进行进一步处理。
2. 催化剂制备(1)SBA-15基底的制备:采用常规的溶胶-凝胶法合成SBA-15基底。
(2)Co@NC复合材料的制备:通过化学气相沉积法将钴、氮和碳源在SBA-15基底上沉积,形成Co@NC复合材料。
(3)负载型催化剂的制备:将Co@NC复合材料均匀负载于二维SBA-15基底上,形成Co@NC复合二维SBA-15负载型催化剂。
3. 催化性能测试采用氨分解实验评价催化剂的催化性能,通过XRD、SEM、TEM等手段对催化剂的结构和性能进行表征。
三、结果与讨论1. 催化剂的制备与表征通过上述方法成功制备了Co@NC复合二维SBA-15负载型催化剂。
通过XRD、SEM、TEM等手段对催化剂进行表征,结果表明催化剂具有较高的结晶度和良好的分散性。
2. 催化性能调控机制研究(1)负载量对催化性能的影响:研究发现,当Co@NC的负载量适中时,催化剂的催化性能最佳。
过多的负载量可能导致催化剂活性降低,而过少的负载量则可能无法充分发挥催化剂的作用。
(2)温度对催化性能的影响:随着反应温度的升高,氨分解速率加快,但过高的温度可能导致催化剂失活。
因此,存在一个最佳的反应温度使催化剂发挥最佳性能。
(3)Co@NC复合材料的作用:Co@NC复合材料中的钴、氮和碳元素相互协同作用,共同促进氨分解过程。
负载型催化剂的常用制备方法负载型催化剂是一种广泛应用于化学工业和环境治理领域的材料,其制备方法根据不同的应用场景和性能需求有多种。
以下是负载型催化剂的常用制备方法:1.浸渍法浸渍法是一种常用的负载型催化剂制备方法。
该方法是将载体材料浸泡在含有催化剂活性组分的溶液中,然后进行干燥、焙烧等后续处理,使活性组分均匀分布在载体表面上。
浸渍法的优点是简单易行,适用于制备大面积、高比表面积的负载型催化剂。
2.沉淀法沉淀法是通过化学反应,使催化剂活性组分沉积在载体表面上的一种制备方法。
该方法通常涉及将载体浸泡在含有催化剂活性组分的溶液中,然后加入沉淀剂,使活性组分沉淀并附着在载体表面上。
沉淀法的优点是活性组分与载体的结合力较强,制备的催化剂具有较好的稳定性。
3.热解法热解法是通过高温热处理,将催化剂活性组分与载体材料相结合的一种制备方法。
该方法通常涉及将载体材料与催化剂活性组分混合,然后进行高温热处理,使活性组分分解并附着在载体表面上。
热解法的优点是制备的催化剂具有较高的活性和稳定性,但制备过程需要高温条件,对设备的要求较高。
4.离子交换法离子交换法是通过离子交换,将催化剂活性组分引入载体材料中的一种制备方法。
该方法通常涉及将载体材料浸泡在含有催化剂活性组分的溶液中,然后进行离子交换反应,使活性组分与载体材料中的离子交换基团相互作用,从而附着在载体表面上。
离子交换法的优点是活性组分与载体的结合力较强,制备的催化剂具有较好的稳定性。
5.气相沉积法气相沉积法是通过化学反应,将催化剂活性组分沉积在载体材料表面上的制备方法。
该方法通常涉及将载体材料置于含有催化剂活性组分的化学气体中,通过化学反应使活性组分沉积在载体材料表面上。
气相沉积法的优点是制备的催化剂具有较高的活性和稳定性,但制备过程需要精密的控制和设备。
6.溶胶凝胶法溶胶凝胶法是通过溶胶凝胶反应,将催化剂活性组分与载体材料相结合的一种制备方法。
该方法通常涉及将载体材料与催化剂活性组分的溶胶凝胶溶液混合,然后进行热处理或室温固化,使溶胶凝胶反应发生,从而制备出负载型催化剂。
科技论文检索与写作作业——负载型镍催化剂的制备一、制备的目的和意义1.了解并掌握负载型金属催化剂的原理和制备方法。
2.1.1)按的比例将B溶液加入到A溶液中,然后按钛酸丁酯和十六烷基三甲基溴化铵的摩尔比为1:0.05~1:0.3的比例加入十六烷基三甲基溴化铵形成钛溶胶;(4)按γ?Al2O3和钛酸丁酯的摩尔比为1:0.05~1:0.8的比例在步骤(3)中得到的钛溶胶中加入γ?Al2O3,然后按钛酸丁酯与去离子水的体积比为1:0.5~1:2的比例加入去离子水,静置1~5h 后干燥、焙烧得到TiO2?Al2O3复合载体;(5)将TiO2?Al2O3复合载体于浓度为0.05~1mol/L的硝酸镍水溶液中浸渍4~24h,充分搅拌后干燥、焙烧、通氢还原,得Ni/TiO2?Al2O3负载型镍催化剂。
2.一种用于氨分解制氢的负载型镍催化剂,活性组分为Ni,载体为氧化硅、氧化铝或氧化钛;活性组份的质量百分含量为1-50%。
其制备步骤为:将可溶性镍盐、pH值调节剂、沉淀剂、载体以及去离子水配成悬浊液;悬浊液加热至70-110℃沉积60-300分钟;上述悬浮液降至20-30℃后并过滤,水洗涤、过滤;在80-120℃干燥18-24中,于3.%;载体6-24h,2-6h,4.化剂的制备工艺步骤包括:在钛酸丁酯中加入无水乙醇后强力搅拌,然后加入醋酸,充分搅拌形成溶液A;将去离子水与无水乙醇混合后调节pH值得到形成溶液B;把B 溶液滴加到A溶液中,加入十六烷基三甲基溴化铵搅拌形成钛溶胶;在钛溶胶中,加入γ-Al2O3与去离子水,充分搅拌,静置、干燥、焙烧得到复合载体;将复合载体在硝酸镍水溶液中浸渍后充分搅拌,干燥、焙烧、通氢气还原处理后得到Ni/TiO2-Al2O3负载型催化剂;本发明所述负载型镍催化剂用于α-蒎烯加氢反应,工艺流程简单,催化剂用量少,α-蒎烯转化率高,顺式蒎烷选择性好。
5.一种用于糠醇加氢中的高选择性、高活性负载型镍催化剂的制备方法,先将在500℃下焙烧过的一定量氧化铝粉末浸渍在0.2g/mL硝酸镍水溶液中,然后在红外灯烘烤下不断搅拌此混合物,直至水分蒸发干。
《Co@NC复合二维SBA-15负载型催化剂的制备与氨分解催化性能调控机制研究》篇一一、引言随着能源危机和环境污染问题的日益加剧,寻求高效、环保的催化剂成为化学工业领域的研究热点。
氨分解催化剂在工业生产中具有广泛的应用,如合成氨、氨气制备氢气等。
近年来,Co@NC复合材料因其优异的催化性能和良好的稳定性备受关注。
SBA-15作为一种有序的介孔二氧化硅材料,其独特的结构为催化剂提供了良好的负载平台。
本文以Co@NC复合二维SBA-15负载型催化剂为研究对象,对其制备方法和氨分解催化性能调控机制进行深入研究。
二、制备方法1. 原料准备本实验所需原料包括:钴盐、碳源、SBA-15载体、碱液等。
其中,钴盐作为活性组分,碳源与钴盐共同形成Co@NC结构,SBA-15作为负载基底。
2. 制备过程(1)首先,将钴盐与碳源混合,通过热解法形成Co@NC前驱体。
(2)将SBA-15载体与Co@NC前驱体进行复合,利用SBA-15的二维结构特点,使Co@NC均匀分布在载体表面。
(3)经过高温煅烧,使Co@NC与SBA-15形成稳定的负载关系。
三、催化性能调控机制研究1. 催化剂表征利用XRD、SEM、TEM等手段对制备的Co@NC复合二维SBA-15负载型催化剂进行表征,了解其形貌、结构及组成。
2. 氨分解性能测试在固定床反应器中,对催化剂进行氨分解性能测试。
通过改变反应温度、气体流量等条件,考察催化剂的活性、选择性和稳定性。
3. 催化性能调控机制(1)通过调整钴盐与碳源的比例,可以调控Co@NC的负载量及分散性,进而影响催化剂的活性。
(2)SBA-15的二维结构为催化剂提供了较大的比表面积和良好的孔道结构,有利于提高催化剂的分散性和反应物的传输。
(3)高温煅烧过程中,Co@NC与SBA-15之间的相互作用可能形成新的活性物种,进一步提高催化剂的活性。
(4)在氨分解过程中,Co@NC具有良好的氢解离能力,有助于提高氨分解的反应速率和选择性。