2017考研专业介绍:物理电子学介绍
- 格式:doc
- 大小:23.05 KB
- 文档页数:2
物理电子知识点总结电子学是研究电子器件和电子线路的学科,是物理学和工程学的交叉领域。
它主要研究电子的产生、传输、控制和利用等基本原理和应用技术,包括电子器件、电子线路、半导体器件、集成电路、电子元件的设计、制造和应用等内容。
电子学是现代信息技术和通信技术的基础,对电子设备的原理、制造和应用有重要意义。
本文将介绍一些电子学的基本知识点。
一、基本电子学理论1. 电子的基本特性电子是原子核外的负电荷粒子,带有基本的负电荷(-1.6×10^-19C)和一定的质量(9.11×10^-31kg)。
它是构成原子、分子和固体物质的基本粒子之一,具有波粒二象性。
在电子学中,我们通常关注电子的运动特性、行为规律以及其在半导体器件和电子器件中的应用。
2. 电子的发射和流动电子可以通过热发射、光发射、场发射等方式从固体表面或结构中发射出来,形成电子流。
电子流是电流的载体,它是在导体中带有电荷的自由电子在电场作用下的运动。
电子的输运特性是研究电子器件和材料的基本理论之一。
3. 电子的散射和能带结构散射是电子与原子核或其他电子相互作用后改变方向、速度和能量的过程。
能带结构是指固体中电子能量的分布规律,它直接决定了固体的导电性质和光电特性。
4. 电子的量子力学理论电子的运动是受到量子力学理论的限制和规律的,包括薛定谔方程、波函数、波粒二象性等概念。
电子在原子和分子中的行为以及在微观空间中的运动特性都需要通过量子力学来描述和解释。
二、半导体材料和器件1. 半导体的基本特性半导体是介于导体和绝缘体之间的一种材料,它的导电性介于金属和非金属之间,具有导电性能力而非金属一般的导电性能。
2. 硅(Si)、锗(Ge)等常见半导体材料硅和锗是电子学中常见的半导体材料,它们在电子器件和集成电路中有广泛的应用。
硅材料的制备、性能和加工工艺是电子学研究的重要内容之一。
3. PN结和半导体器件PN结是半导体器件的基础结构,它由P型半导体和N型半导体材料组成,具有整流、放大、开关等功能。
物理电子学(080901)、微电子学与固体电子学(080903)物理电子学(080901)、微电子学与固体电子学(080903)专业研究生培养方案一、培养目标培养我国社会主义建设事业需要,掌握马克思主义,毛泽东思想和邓小平理论基本原理,坚持四项基本原则,热爱祖国,遵纪守法,品德良好,具备严谨科学态度和优良学风,适应面向二十一世纪的德、智、体全面发展的微电子学与固体电子学专门人才。
b5E2RGbCb5E2RGbC1、硕士学位掌握微电子学与固体电子学的基本理论和基本实验技能, 了解本领域的研究动态, 基本上能独立开展与本学科有关的研究和教学工作。
学位论文应具有一定的创新性和应用前景。
p1EanqFDp1EanqFD2、博士学位博士学位获得者应系统掌握微电子学与固体电子学的基本理论,具有宽广和坚实的专业知识和实验操作技术,了解本学科的发展历史,现状和最新动态,能独立承担与本学科有关的研究课题及教学工作。
学位论文要求具有重要的学术意义,并具有一定的创新性。
论文在深度和广度两方面均需达到相应的要求。
DXDiTa9EDXDiTa9E二、学制1、硕、博连读和直博研究生学习期限一般为5-6 年;2、分阶段培养的博士生基本学制为 3 年,学术型硕士生学制为 3 年;三、研究方向 1、物理电子学专业的研究方向: 1 / 11(1)(2)(3)(4)(5)电磁薄膜器件物理与技术硅基 CMOS 器件与可靠性新型成像技术电磁波吸收材料氧化物半导体电子器件2、微电子学与固体电子学专业的研究方向:(1)(2)(3)(4)(5)(6)(7)半导体材料与光电子器件半导体电子器件半导体低维结构材料与纳电子器件集成电路设计有机半导体材料与器件自旋电子学材料与器件信息光子器件与超快光源系统RTCrpUDGRTCrpUDG三、课程设置:(一)硕士生阶段 A 类:科学社会主义理论与实践英语(以上必修)自然辩证法概论(1 学分) (2 学分) (4 学分) 马克思主义与社会科学方法论(1 学分)马克思主义原著选读(以上三门任选一门)(1 学分)B 类:电子信息前沿(以上必修)产业发展前沿(1 学分)(2 学分)2 / 11科研素质先导课工程素质先导课(2 学分)(3 学分)C 类:高等半导体物理半导体量子物理学集成电路工艺、器件及表征光电子材料与器件(3 学分)(2 学分)(3 学分)(3 学分)D 类:数字信号处理的 VLSI 架构 SoC 设计方法并行计算自旋电子学概论宽禁带半导体功能薄膜材料与器件基础信息产业应用(华为)(3 学分)(3 学分)(3 学分)(2 学分)(2 学分)(2 学分)(1 学分)(二)博士生阶段马克思主义与当代博士生学术交流英语【注】:博士研究生不专门开设专业课程,可根据需要选修硕士研究生的专业课四、培养方式1、博士研究生针对每位博士生的培养设立专门的导师指导小组,“学位论文为主,课程为辅” 。
物理电子学080901(一级学科:电子科学与技术)本学科博士点于1993年由国务院学位委员会批准建立,2001年批准为国家重点学科, 具有博士后科研流动站。
物理电子学是近代物理学、电子学、光学、光电子学、量子电子学及相关技术与学科的交叉与融合,主要在电子工程和信息科学技术领域进行基础和应用研究。
激光的发明标志着电子学的工作频段延伸到了光学频段,产生了光电子学、导波光学与集成光学等新兴学科分支,并已成为电子信息科学发展新技术的基础。
近年来本学科发展特别迅速,促进了电子科学与技术其它二级学科以及信息与通信系统、光学工程等相关一级学科的拓展,形成了若干新的科学技术增长点,如光波与光子技术、信息显示技术与器件、高速光通信系统与网络等,成为二十一世纪信息科学与技术的重要基石之一。
本学科博士点主要研究方向有:1.新型激光器件与技术:以光电子技术在信息科学、材料科学、生物医学、国防科技中的应用为背景,开展新型激光器件及相关技术的研究。
主要包括新型固体激光器、气体激光器、光纤激光器和高次谐波激光器等激光器件的研究,及相关激光技术和激光参数测试技术研究等。
2.光电子微器件与技术:以信息获取、传输、处理、对抗等各种光电子信息系统为应用背景,主要开展纤维光学、集成光学与导波光学、微小光学及微光机电的有源、无源器件、光电惯性器件、传感器件及其相关技术研究。
3.光电子信息技术与系统:以信息获取、传输、处理与对抗等光电子信息技术与系统在国防、工业、通信、交通、能源、农业和环保等领域的应用为背景,主要开展光学精确制导、光通信、光雷达、空间光学与自适应光学、激光与光纤传感等方面的系统与应用研究。
4.多电子高激发态结构和光谱研究:研究原子的电子结构和光谱、激光光谱和Auger电子谱以及多电子高激发态等问题,探求原子与分子态的能级结构和多电子高激发光谱规律,为光学材料的研制提供依据,对软X激光新材料的研发和优选机理的研究以及受控核聚变等均有重要应用意义。
北京航空航天大学2017年物理电子学专业介绍物理电子学是近代物理学、电子学、光学、光电子学、量子电子学、超导电子学、微波电子学、微波光子学、等离子体电子学及相关技术相结合的交叉学科,是一门用电子学、光电子学方法来研究物理信息的辐射、传输、散射、获取、处理以及显示的科学与技术的学科,主要在电子工程和信息科学技术领域内进行基础和应用研究,研究范围涉及材料、器件以及系统等诸多方面。
本学科为二级学科,其一级学科为电子科学与技术。
近年来信息科学技术的发展和现代物理学、现代材料科学的发展,促进了物理电子学学科的繁荣发展,知识的深度和广度在迅速拓展,使得像物理学、现代光学、信息科学与技术以及生物学、材料科学与技术等传统学科之间的壁垒逐渐消除,不断产生新兴的交叉学科,形成了若干新的科学技术增长点,如光波与光量子技术、微波光子学、信息显示技术与器件、高速光纤通讯与光网络等,成为未来信息科学与技术的重要基石之一。
物理电子学的从业人员逐年增多。
目前,物理电子学学科着重发展先进的电子学、光电子学技术,结合现代光学方法和计算机技术从事现代先进的科学实验、大型科学工程、国防科学与技术、新兴物理学科和材料学科发展中提出的有关信息获取、信息传输、信息处理、信息显示乃至信息应用的基础课题、应用基础课题研究以及工程技术研究。
本学科在20世纪70年代就开始了在光通讯和光电信息处理和光电检测方向的研究工作,所从事的研究主要为结合航空航天及国防需求的国家、军口及各类基金项目,曾获国家、省部级及其它科技进步奖多项,有的很有特色(如声光扩频通讯和航空光纤总线技术),于2003年建设成为博士点和博士后流动站,现已经培养出博士、硕士及博士后数十人。
目前从业教师10人,其中教授5人,副教授3人,讲师2人,8人具有博士学位。
支撑的科研条件除了学院公用的国防科工委航空电子重点实验室外,还有各教研室的红外光电技术实验室、光电信息传输与处理实验室、声光信号处理实验室等。
物理电子学硕士研究生培养方案一、专业学科、学制、学习方式一级学科名称:电子科学与技术(代码:0809 )二级学科名称:物理电子学(代码: 080901 )学制:三年学习方式:全日制二、本学科情况介绍物理电子学是近代物理学、电子学、光学、光电子学、量子电子学、超导电子学及相关技术与学科的交叉与融合,主要在光电子电子、传感技术和电子信息技术领域进行基础和应用研究,主要研究内容包括半导体照明技术、太阳能技术、半导体传感器、信息获取、信息传输、信息处理与信息应用等前沿课题。
近年来该学科发展特别迅速,促进了电子科学与技术其它二级学科以及信息与通信系统、光学工程等相关一级学科的拓展,形成了若干新的科学技术增长点,如半导体照明技术、信息显示技术与器件、高速光通信系统与网络等,成为二十一世纪信息科学与技术的重要基石之一。
光电子信息技术研究方向主要研究半导体照明、太阳能等战略新兴领域的关键技术,涉及固体物理、低维半导体物理、光学设计、热分析技术、光电转化等。
该研究方向的课题组与广东省相关企业开展了多种形式的产学研合作,在人才培养、成果转换、知识产权等方面取得一定的成绩。
该研究方向的硕士研究生紧紧围绕企业在LED照明技术、太阳能技术等方面的关键技术问题来选题,并利用企业优越的研发条件开展硕士毕业论文的研究工作。
该研究方向近年来承担国家自然科学基金、广东省自然科学基金、广东省科技计划及广州市科技计划等科研项目多项;每年在SCI源刊物上发表论文十多篇,申请专利3-5件,目前已有1件发明专利、3件实用新型专利授权。
传感器技术是现代测控系统中的关键环节,传感器技术的发展涉及新材料开发、集成化智能化和微纳技术等领域。
本方向致力于固体物理、材料科学和微系统技术的研究,重点在于氧化物和氮化物薄膜材料性质以及磁控溅射和光刻技术在半导体传感器方面的应用。
在光电薄膜、电压敏薄膜和透明导电薄膜以及微型传感器开发方面有研究特色;实验室具备微系统工艺技术和纳米材料实验设备,有较好的科研积累。
物理电子学/微电子和固体电子学Physical Electronics/ Microelectronics and Solid StateElectronics(专业代码:080901/080903)一、培养目标博士学位获得者应具有坚实的数学、物理基础知识,掌握本学科坚实的理论基础及系统的专门知识,掌握相关的实验技术及计算机技术。
掌握一门外语,具有从事科学研究及独立从事专门技术工作的能力以及严谨求实的科学态度和工作作风,能胜任研究机构、高等院校和产业部门有关方面的教学、研究、工程、开发及管理工作。
二、学科专业研究方向1.物理电子信息探测与处理2.物理电子器件与系统3.传感器与信号处理4.介质光波导与信息传输技术5.专用集成电路设计与工艺6.薄膜电子材料制备与测试分析三、学制和学分全日制博士研究生学制实行以四年为主的弹性学制;总学分≥14。
硕博连读研究生和提前攻博生学制一般为5-6年,优秀者可提前毕业;总学分≥41学分,博士生最长学习年限不超过8年。
四、课程设置表一、博士研究生课程设置五、资格考试为确保博士生培养质量,完善质量控制机制,增强和提高研究生的竞争意识和创新能力,学校对硕博连读生与提前攻博生实行转入博士资格考试制度,以期全面考核素质和能力,实现优胜劣汰。
考核内容包括从事本学科研究所需的基本理论知识、专业知识、相关学科知识以及分析问题、解决问题的能力。
可以进行综合知识考试或指定若干门核心课程的考试。
考试方式可以为笔试或口试、笔试相结合。
各学科应成立博士生考试资格委员会,考试委员会由本学科和相关学科5名专家组成。
考试委员会主席由教授(或相当职称的专家)担任。
导师可以参加,但不能担任主席。
资格考试一般于硕博连读研究生与提前攻博生的第四小学期初进行。
考试未通过者可有一次补考机会(时间为第四小学期末)。
六、开题报告大量阅读有关文献是做好选题和论文工作的基础。
本学科规定阅读文献不少于50篇,其中外文文献不少于25篇,由博士生导师对博士生阅读文献情况进行检查。
物理电子学学科硕士研究生培养方案(工学)一、学科、专业简介物理电子学是近代物理学、电子学、光电子学、现代通信技术及相关技术的交叉综合学科,近年来发展特别迅速,不断涵盖新的学科领域,极大地促进了电子科学与技术、信息与通信系统、光学工程等学科领域的发展,形成了若干新的学科技术方向,如光波与光子技术、光电集成技术与器件、高速光纤通信与光纤网等,成为本世纪信息科学与技术的重要基石之一。
我校物理电子学学科依托电子工程学院和理学院,由电子工程学院负责建设。
该学科2005年获得硕士学位授予权,目前有教授7人,副教授9人。
形成的主要研究方向为:光电信息技术、量子信息科学、光纤光学应用技术、计算物理学等。
近五年来,本学科在国内外重要学术刊物发表学术论文300余篇,其中被SCI、EI、ISTP收录60余篇;获得省部级奖励6项;承担国家863计划项目、国家“十五”科技攻关计划项目、国家自然科学基金项目、省部级科研项目20余项。
二、培养目标认真执行国家的教育方针,坚持德、智、体全面发展的培养路线,培养符合以下要求的高级专门人才:1.拥护中国共产党的领导,拥护社会主义制度,掌握马克思主义的基本原理,热爱祖国,遵纪守法,品行端正,诚实守信,身心健康,具有实践能力和创新精神,能积极为社会主义现代化建设服务。
2.掌握物理电子学学科专业坚实的基础理论、系统的专门知识和现代实验方法和技能,了解本学科的发展现状和趋势,较为熟练地掌握一门外国语,能够熟练地阅读本学科、专业的外文资料,具有独立从事科学研究、教学工作或独立担负专门技术工作的能力。
三、学制与学习年限硕士研究生学习年限一般为3年。
提前完成培养计划者,经过规定的审批程序可以提前毕业。
硕士研究生因特殊原因未能按时完成学习、研究任务或参加硕士论文答辩的,可由本人提前三个月提出申请,指导教师签署意见,经所属院系同意并报研究生部审核,可延长学习年限。
延长年限一般不超过一年。
四、主要研究方向1.光电信息技术光电信息技术是现代信息技术的前沿,具有多学科交叉的特点,是一个极富创新和挑战的领域,本方向研究光电信息系统中具有信息检测、传输、处理、存储、显示等功能的光学、光电和光电子相关理论与技术。
浅谈南昌航空大学专业物理电子学学科代码:080901物理电子学是近代物理学、电子学、光学、光电子学、量子电子学及相关技术与学科的穿插与融合,激光的创造标志着电子学延伸到了光学频段,产生了光电子学、波导光学与集成光学等新兴学科分支。
近年来本学科开展特别迅速,主要在现代电子工程、光信息科学及光子器件技术领域进行根底和应用研究。
本学科具有雄厚的师资队伍,近年来承当着多项“863”、国家自然科学基金研究工程、国防重大根底研究工程,积累了一批先进的仪器设备,形成了以光电检测技术、光电材料与器件、激光散射与激光雷达、微结构光学及应用、光学仪器等具有鲜明特色的稳定的研究方向,具有良好的光学工程硕士研究生培养条件。
物理电子学专业培养面向现代化、面向世界、面向未来,德、智、体全面开展的教学、科研型高层次专门人才。
具体要求如下:1.努力学习和掌握马列主义、毛泽东思想、邓小平理论的根本原理;热爱祖国,遵纪守法,品行端正,积极为国家社会主义建立事业效劳。
2.掌握一门外国语,能熟练地进行专业阅读和初步写作,具备一定的听说交流能力。
3.能熟练运用计算机和信息化技术,研究解决本专业领域的科学技术问题。
4.硕士生应掌握物理电子学领域坚实的根底理论和系统的专业知识,了解本学科有关研究领域国内外的现状和开展方向,具有从事本学科研究和教学或独立承当专业技术工作的能力。
5.勤奋求实,严谨治学,具有探索创新的科学精神和良好的学术道德。
6.具有健全的体魄和安康的心理。
1.光电检测技术2.光电材料与器件3.激光散射与激光雷达4.微结构光学及应用5.光学仪器6.光纤通信与光纤传感1.培养年限:硕士生学制为2.5年。
培养时间最少不低于20个月(不含寒、暑假),最多不超过5年。
2.培养方式:实行以科学研究为主导的导师负责制。
2017考研专业介绍:物理电子学介绍
物理电子学[077401]开设院校:
门类/领域代码:07
门类/领域名称:理学
一级学科/领域代码:0774
一级学科/领域名称:电子科学与技术
二级学科代码:077401
二级学科名称:物理电子学
物理电子学专业介绍
物理电子学是物理学和电子学相结合的交叉学科,主要研究粒子物理,等离子体物理,光物理等物理前沿对电子工程和信息科学的概念和方法产生的影响,及由此而形成新的电子学的新领域和新的生长点。
物理电子学同时也针对现代大型科学实验和新兴物理学科发展中提出的在强辐射照、低信噪比、高通道密度等极端条件下,处理小时间尺度信号技术和有关信号采集和信息处理的基础课题研究和应用基础研究。
物理电子学培养目标
(1)掌握物理电子学与光电子学科坚实的基础理论和系统的专门知识,了解本学科有关研究领域国内外的学术现状和发展方向。
(2)掌握一门外国语,能熟练地进行专业阅读和初步写作,具备一定的听说及交流能力。
(3)培养严谨求实的科学态度和作风,具有探索创新的科学精神和良好的科研道德,具备独立从事科学工作的能力。
(4)能熟练运用计算机和信息化技术,解决本学科领域的问题并有新的见解。
(5)可胜任本专业或相邻专业的教学、科研和工程技术工作以及相关的科技管理工作。
物理电子学就业前景
1、从学科属性看就业前景
物理电子学是电子科学与技术的下属二级学科。
电子科学与技术是信息科学与技术的基
础。
信息科学是二十一世纪三大科学研究领域之一,其诞生和发展始终与科技前沿和先进生产力密切相关。
本专业培养具备光电子或微电子及物理电子领域内宽厚理论基础、实验能力和专业知识,能在该领域从事新技术、新产品、新材料、新工艺的研究、开发等方面的高级工程技术人才。
毫无疑问,在信息时代和知识经济时代,电子科学与技术专业的地位显著,前景广阔。
2、从现实角度看就业前景
物理电子学专业自诞生之日起,就一直是各高校的热门专业,电子科学与技术是现代信息技术的重要支柱学科,是设计各种元器件、集成电路和集成电子系统的技术学科,也是我国正在大力发展并急需人才的重要专业技术领域。
物理电子学的应用显现在日常生活的各个方面:如电脑、摄影、冰箱、彩电、空调、洗衣机、手机等诸多领域。
几乎每一样带“电”的新产品都与它有着千丝万缕的联系。
学生毕业后能从事电子工程系统和设备的分析、研究、应用开发和技术管理工作,可在电子设计、自动化技术、测控或通信等相关领域工作。
青岛市诸如海尔、海信、澳柯玛等大型企业电子产品的生产和设计人才缺口比较大,学生毕业后就业前景非常广阔。
物理电子学推荐院校
全国高校中实力较强招生院校:
清华大学、华中科技大学、北京大学、电子科技大学、哈尔滨工业大学、北京理工大学、西安交通大学、西安电子科技大学、东南大学、浙江大学、中国科学技术大学、北京邮电大学、南开大学、天津大学、复旦大学……。