2013年高考二轮复习:第14讲直线和圆
- 格式:ppt
- 大小:4.19 MB
- 文档页数:41
高考数学第二轮专题复习直线与圆的方程教案一、重点知识结构本章以直线和圆为载体,揭示了解析几何的基本概念和方法。
直线的倾斜角、斜率的概念及公式、直线方程的五种形式是本章的重点之一,而点斜式又是其它形式的基础;两条直线平行和垂直的充要条件、直线l1到l2的角以及两直线的夹角、点到直线的距离公式也是重点内容;用不等式(组)表示平面区域和线性规划作为新增内容,需要引起一定的注意;曲线与方程的关系体现了坐标法的基本思想,是解决解析几何两个基本问题的依据;圆的方程、直线(圆)与圆的位置关系、圆的切线问题和弦长问题等,因其易与平面几何知识结合,题目解法灵活,因而是一个不可忽视的要点。
二、高考要求1、掌握两条直线平行和垂直的条件,掌握两条直线所成的角和点到直线的距离公式,能够根据直线的方程判断两条直线的位置关系;3、会用二元一次不等式表示平面区域;4、了解简单的线性规划问题,了解线性规划的意义,并会简单的应用;5、了解解析几何的基本思想,了解用坐标法研究几何问题的方法;6、掌握圆的标准方程和一般方程,了解参数方程的概念,理解圆的参数方程的概念。
三、热点分析在近几年的高考试题中,两点间的距离公式,中点坐标公式,直线方程的点斜式、斜率公式及两条直线的位置关系是考查的热点。
但由于知识的相互渗透,综合考查直线与圆锥曲线的关系一直是高考命题的大热门,应当引起特别注意,本章的线性规划内容是新教材中增加的新内容,在高考中极有可能涉及,但难度不会大。
四、复习建议本章的复习首先要注重基础,对基本知识、基本题型要掌握好;求直线的方程主要用待定系数法,复习时应注意直线方程各种形式的适用条件;研究两条直线的位置关系时,应特别注意斜率存在和不存在的两种情形;曲线与方程的关系体现了坐标法的基本思想,随着高考对知识形成过程的考查逐步加强,对坐标法的要求也进一步加强,因此必须透彻理解。
既要掌握求曲线方程的常用方法和基本步骤,又能根据方程讨论曲线的性质;圆的方程、直线与圆的位置关系,圆的切线问题与弦长问题都是高考中的热点问题;求圆的方程或找圆心坐标和半径的常用方法是待定系数法及配方法,应熟练掌握,还应注意恰当运用平面几何知识以简化计算。
第14讲 直线、圆的位置关系备注:【高三数学一轮复习必备精品共42讲 全部免费 欢迎下载】一.【课标要求】1.能用解方程组的方法求两直线的交点坐标;2.探索并掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离; 3.能根据给定直线、圆的方程,判断直线与圆、圆与圆的位置关系; 4.能用直线和圆的方程解决一些简单的问题;5.在平面解析几何初步的学习过程中,体会用代数方法处理几何问题的思想。
二.【命题走向】本讲考察重点是直线间的平行和垂直的条件、与距离有关的问题、直线与圆的位置关系(特别是弦长问题),此类问题难度属于中等,一般以选择题的形式出现,有时在解析几何中也会出现大题,多考察其几何图形的性质或方程知识预测2010年对本讲的考察是:(1)一个选择题或一个填空题,解答题多与其它知识联合考察;(2)热点问题是直线的位置关系、借助数形结合的思想处理直线与圆的位置关系,注重此种思想方法的考察也会是一个命题的方向;(3)本讲的内容考察了学生的理解能力、逻辑思维能力、运算能力三.【要点精讲】1.直线l 1与直线l 2的的平行与垂直 (1)若l 1,l 2均存在斜率且不重合: ①l 1⇔1⊥l ⇔0:,0:22221111=++=++C y B x A l C y B x A l ⇔212121C C B B A A ≠=1⊥l 2⇔A 1A⇔2121B B A A ≠⇔212121C C B B A A ==≠)y ,x (B ),y ,x (A 2211212212)()(y y x x AB -+-=x//AB =AB ||21x x -y //AB =AB ||21y y -:,0:2211=++=++C By Ax l C By Ax l 2221B A C C d +-=C By Ax :l ),y ,x (P =++ 22BA CBy Ax d +++==++C By Ax 222)()(r b y a x =-+-22BA C Bb Aa d +++=<∆⇔⇔>相离r d 0=∆⇔⇔=相切r d 0>∆⇔⇔<相交r d ⎩⎨⎧=++++=++022F Ey Dx y x C By Ax ⇔⇔⇔⇔⇔⇔d O O =21条公切线外离421⇔⇔+>r r d 条公切线外切321⇔⇔+=r r d 条公切线相交22121⇔⇔+<<-r r d r r 条公切线内切121⇔⇔-=r r d 无公切线内含⇔⇔-<<210r r d 522=+y x 21-2542552521=⨯⨯254(2)已知两条直线12:330,:4610.l ax y l x y +-=+-=若12//l l ,则a =___ _。
2013年高考数学学困生专用精品复习资料(07)直线与圆(教师版)(1)直线与方程①在平面直角坐标系中,结合具体图形,确定直线位置的几何要素。
②理解直线的倾斜角和斜率的概念,掌握过两点的直线斜率的计算公式。
③能根据两条直线的斜率判定这两条直线平行或垂直。
④掌握确定直线位置的几何要素,掌握直线方程的几种形式(点斜式、两点式及一般式),了解斜截式与一次函数的关系。
⑤能用解方程组的方法求两直线的交点坐标。
⑥掌握两点间的距离公式、点到直线的距离公式,会求两条平行直线间的距离。
(2)圆与方程①掌握确定圆的几何要素,掌握圆的标准方程与一般方程。
②能根据给定直线、圆的方程,判断直线与圆的位置关系;能根据给定两个圆的方程,判断两圆的位置关系。
③能用直线和圆的方程解决一些简单的问题。
④初步了解用代数方法处理几何问题的思想。
本专题在高考试卷中一般是结合圆锥曲线考查,直线与圆作为解析几何初步的基础知识与解题方法,直线与圆部分知识一般会考查一道选择题或者是填空题,解答题一般是与圆锥曲线结合,难度一般较大,对于学困生或者是艺术生来说,力争把小题拿下,争取解答题部分多写一些步骤,获得步骤分,主要是考查直线方程、圆的方程、直线与圆的位置关系等问题。
【专题知识网络】1.直线方程:(1)形式(5种)(2)直线的位置关系:平行、垂直2.圆: (1)方程(标准方程、一般方程) (2)直线与圆的位置关系【剖析高考真题】考点:直线方程与位置关系考点:圆的方程与圆的性质(2012年高考某某卷)圆22(2)4x y ++=与圆22(2)(1)9x y -+-=的位置关系为 A .内切 B .相交 C .外切 D .相离 【答案】B【解析】两圆的圆心分别为)0,2(-,)1,2(,半径分别为2=r ,3=R 两圆的圆心距离为17)10()22(22=-+--,则r R r R +<<-17,所以两圆相交,选B.考点:直线与圆的位置关系(2012年高考某某卷)在平面直角坐标系xOy 中,直线3450x y +-=与圆224x y +=相交于A 、B 两点,则弦AB 的长等于B.23C.3 D .1(2012年高考某某卷)设A ,B 为直线y x =与圆221x y += 的两个交点,则||AB = A .1 B 2 C 3D .2 【答案】D【解析】直线y x =过圆221x y +=的圆心(0,0)C ,则AB 为圆的直径,所以||AB =2,选D.(2012年高考某某卷)直线3y 与圆x 2+y 2=4相交于A,B 两点,则弦AB 的长度等于B 23. C. 3 D.1【考点梳理归纳】1.斜率公式:2121y y k x x -=-,其中111(,)P x y 、222(,)P x y .直线的方向向量()b a v ,=,则直线的斜率为k =(0)ba a≠. 2.直线方程的五种形式:(1)点斜式:11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式:y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式:112121y y x x y y x x --=--(111(,)P x y 、222(,)P x y 12x x ≠,12y y ≠).(4)截距式:1=+bya x (其中a 、b 分别为直线在x 轴、y 轴上的截距,且0,0≠≠b a ). (5)一般式:0Ax By C ++=(其中A 、B 不同时为0). 3.两条直线的位置关系:(1)若111:l y k x b =+,222:l y k x b =+,则: ①1l ∥2l 21k k =⇔,21b b ≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,则:①0//122121=-⇔B A B A l l 且01221≠-C A C A ; ②1212120l l A A B B ⊥⇔+=. 4.两个公式:⑴点P (x 0,y 0)到直线Ax+By+C=0的距离:2200B A C By Ax d +++=;⑵两条平行线Ax+By+C 1=0与 Ax+By+C 2=0的距离2221B A C C d +-=5.圆的方程:⑴标准方程:①222)()(r b y a x =-+- ;②222r y x =+ 。
高三数学二轮复习 ——直线、圆及其交汇问题一、高考定位:本问题是整个解析几何的基础,在解析几何的知识体系中占有重要位置,但解析几何的主要内容是圆锥曲线与方程,故在该部分高考考查的分值不多,在高考试卷中一般就是一个选择或填空题考查直线与方程、圆与方程的基本问题,偏向于考查直线与圆的综合,试题难度不大,对直线方程、圆的方程的深入考查则与圆锥曲线结合进行.二、必备知识1. 两直线平行、垂直的判定(1)①l 1:y =k 1x +b 1,l 2:y =k 2x +b 2(两直线斜率存在,且不重合),则有l 1∥l 2⇔k 1=k 2,l 1⊥l 2⇔k 1·k 2=-1.②若两直线的斜率都不存在,并且两直线不重合,则两直线平行;③若两直线中一条直线的斜率为0,另一条直线斜率不存在,则两直线垂直. (2)l 1:A 1x +B 1y +C 1=0, l 2:A 2x +B 2y +C 2=0, 则有l 1∥l 2⇔A 1B 2-A 2B 1=0,且B 1C 2-B 2C 1≠0,通常写成111222A B C A B C =≠(分母不为0) 便于记忆。
l 1⊥l 2⇔A 1A 2+B 1B 2=0.2.圆的方程:(1)圆的标准方程:(x -a )2+(y -b )2=r 2(r >0),圆心为(a ,b ),半径为r . (2)圆的一般方程:x 2+y 2+Dx +Ey +F =0(D 2+E 2-4F >0),圆心为⎝⎛⎭⎫-D 2,-E2,半径为r =D 2+E 2-4F2;(3)直线被圆所截得的弦长等于三、必备方法1.由于直线方程有多种形式,各种形式适用的条件、范围不同,在具体求直线方程时,由所给的条件和采用的直线方程形式所限,可能会产生遗漏的情况,尤其在选择点斜式、斜截式时要注意斜率不存在的情况.2.处理有关圆的问题,要特别注意圆心、半径及平面几何知识的应用,如弦心距、半径、弦长的一半构成直角三角形经常用到,利用圆的一些特殊几何性质解题,往往使问题简化.3.直线与圆中常见的最值问题(1)圆外一点与圆上任一点的距离的最值.(2)直线与圆相离,圆上任一点到直线的距离的最值. (3)过圆内一定点的直线被圆截得弦长的最值.(4)直线与圆相离,过直线上一点作圆的切线,切线长的最小值问题. (5)两圆相离,两圆上点的距离的最值.4.两圆相交,将两圆方程联立消去二次项,得到一个二元一次方程即为两圆公共弦所在的直线方程.四、典型例题解析:【例1】►待定系数法求圆的方程已知圆C与圆x2+y2-2x=0外切,并与直线x+3y=0相切于点Q(3,-3),求圆C方程.[审题] 先确定采用标准方程还是一般方程,然后求出相应的参数,即采用待定系数法.解:设圆C的圆心为(a,b),半径为r,由题设得13rrba⎧==+⎪=-⎪⎪⎩解得:42abr=⎧⎪=⎨⎪=⎩或6abr=⎧⎪=-⎨⎪=⎩.所以圆C的方程为(x-4)2+y2=4或x2+(y+43)2=36.【考题演练】(2010山东文数)已知圆C过点(1,0)且圆心在x轴的正半轴上,直线l:x-yC的标准方程为_____________________.解析:【例题2】►如图所示,已知以点A(-1,2)为圆心的圆与直线l1:x+2y+7=0相切.过点B(-2,0)的动直线l与圆A相交于M,N两点,Q是MN的中点,直线l与l1相交于点P.(1)求圆A的方程;(2)当|MN|=219时,求直线l的方程。