磁路与电路的异同比较
- 格式:pdf
- 大小:464.82 KB
- 文档页数:3
电机和变压器都是利用(磁场)作为介质来实现能量转换的装置。
在电机学分析中,通常将
电机中复杂的电磁场问题简化为(磁路)和(等效电路)的方法来分析。
用来产生磁通的电
流叫(励磁电流)。
根据励磁电流的性质不同,磁路可以分为(直流磁路)和(交流磁路)。
电路和磁路的区别:
Ø电路中有电动势可以无电流,而磁路中有磁动势必然有磁通
Ø在电路中,电动势与电流的方向或一致或相反;在磁路中,电流与磁动势之间符合(右手螺旋)定则
Ø在电路中,电流要引起功率损耗;而在磁路中,只有变化的磁通才引起功率损耗
Ø由于导体电阻率很大,可认为电流只在导体中流过;而磁路中除有主磁通外,介质周围还
存在(漏磁通)。
Ø电路中导体的电阻在一定温度下是常数,而磁路中铁磁材料的磁阻(不是常数)。
Ø对电路,当为线性电路时可以应用叠加原理。
但铁心磁路是(非线性)的,不可应用叠加
原理。
Ø在国际单位制中,磁场强度单位是A/m。
Ø电磁感应定律的物理意义是,当通过闭合线圈的磁通发生变化时,由线圈中的感应电流所
产生的磁场阻碍原来磁通的变化。
一个线圈产生的磁通所经过路径的磁阻越大,说明该线圈
的电感就越小。
什么是磁路?什么是电路?电路与磁路的区别我们首先来看两个概念:磁路和电路。
那么什么是磁路,什么是电路呢,只有搞清楚这两个概念是什么,我们才能分析二者之间到底有什么区别。
我们先来看什么是电路:在电动势或者电压的作用下,电流所流经的路径叫电路。
电路的组成是由电源、负载和开关三部分结构。
而电路又分为直流电路和交流电路。
流经电路的电流的大小和方向不随时间变化的电路,叫做直流电路。
流经电路的电流的大小和方向随时间变化的电路,叫做交流电路。
看完了电路,我们再来讲讲磁路。
当通电线圈中具有铁芯时,磁动势所产生的磁通,主要集中在由铁芯所规定的路径内,这种路径就叫做磁路。
而磁路也是分为直流磁路和交流磁路。
由直流电流励磁的磁路,叫做直流磁路,由交流电流励磁的磁路,叫做交流磁路。
电路与磁路相同点确实没有什么可说的。
在电路中,电流是电动势产生的,在磁路中,磁通是由磁动势产生的。
在电路中,电流经过电阻便产生电压降,在磁路中,磁通经过磁阻便产生磁压降。
在电路中,用欧姆定律来表示电流、电阻和电压降之间的关系,在磁路中,用与电路相似的磁路欧姆定律来表示磁通、磁阻和磁动势之间的关系。
但是,电路与磁路二者有本质上的区别,主要区别如下:a.在电路中,没有电动势时,电流等于零。
而在磁路没有磁动势时,由于磁滞现象,总是或多或少地存在剩磁。
b.电流代表电荷的移动,而磁通却不代表任何质点移动。
磁通通过滋阻时,不象电流通过电阻那样要消耗能量,维持恒定磁通也并不需要消耗任何能童。
因此,在电路中可以有断路情况,在磁路中却没有断路的情况,只要有磁动势存在,总会引起相应的磁通,磁通总是连续的。
c.由于铁磁材料具有磁饱和现象,所以磁路的磁阻都是非线性,这与一般情况下电路电阻都是线性电阻是不一样的。
因此,磁路欧姆定律一般只能用来对磁路进行定性分析。
d.在电路中,导电材料的电导率一般比绝缘材料的电导率大儿千万倍以上,所以电路的漏电非常小,完全可以忽略不计。
在磁路中,铁磁材料的磁导率一般比非铁磁材料的磁导率只大几千倍甚至更小。
第4章磁路和磁路定律1 磁路与电路的对比电路与磁路对照表磁路与电路的不同1)将磁路与电路对比,这只是定性的,近似的说法。
认真研究磁路和电路有重大不相同。
电路中,导电体的电阻率与绝缘体的电阻率相差1013位以上,所以在空间泄漏的电流是微乎其微的。
磁路中,一般导磁体与空气的磁导体相差不过102-103倍,最优良的磁体的磁导率与空气的磁导率相差不超过106倍。
2)导磁体达到磁饱和以后,磁导率会降到与空气一样所以在空间泄漏的磁通量相当可观。
在低矫顽力永磁材料的磁路中,往往泄漏磁通大于有用磁通。
3)磁性材料的性能参数有达5%的误差,加上计算过程中的估算和假定,磁性计算比电路计算困难大,磁路的计算误差在10%,就被认为较满意。
但是随着计算机在磁路没计算中的应用,计算精度将会提高。
2 磁路的概念观察两种现象:a)在通电螺线管内腔的中部,电流产生的磁力线平行无螺线管的轴线,磁场线渐进螺线管两端时变成的散开的曲线,曲线在螺线管外部空间相接。
如果将一根长铁心插入通电螺线管中,并且让铁心闭合,则泄漏到空间的磁力线很少,由上,我们定义,不管有无铁心,磁力经过的路线,让我们成为磁路。
b)用永磁性作磁源,也产生上述现象。
图1 等效磁路图1 a)给出了永磁体单独存在时的情况。
图b)将永磁体放入软磁体回路的间隙中,磁力线的大部分通过软磁体和永磁体构成的回路。
以上两种也是表示磁回路。
图中磁力线密度表示磁通量的密度。
广义的讲,磁通量所通过的磁介质的路经叫磁路。
磁路是许多以电磁原理作成的机械、器件如电机,电器,磁电式仪表等的主要组成部分之一。
各种磁路传递着磁力线,发挥着应有的机能。
大多数磁路含有磁性材料和工作气隙,完全由磁性材料构成的闭合磁路的情况也有不少。
凡含有空隙的磁路,一部分磁通量作为有用磁场,还有一部分磁通量在空隙的附近泄漏在空间,形成漏磁通。
图2 磁路3磁路欧姆定律软磁圆环,截面积S 平均周长l 磁导率μ线圈匝N 电流为i 则圆环内的磁场H 为 :lNiH =(4-1)H 的方面与环的轴线平行。
电机与拖动基础课后思考题第1章电机中的电磁学基本知识1、电机和变压器的磁路常采用什么材料制成这种材料有哪些主要特性答:磁导率高的铁磁材料;特性:磁导率高。
2、磁滞损耗和涡流损耗是什么原因引起的他们的大小与哪些因素有关答:磁滞损耗:该损耗是由于铁磁材料在交变磁场的作用下反复磁化的过程中,磁畴之间不停地互相摩擦,消耗能量,引起的损耗。
其大小与材料的磁滞损耗系数,磁场的交变频率f,磁通密度的幅值Bm的n次方,铁芯重量G有关涡流损耗:损耗是由于铁芯的磁通发生改变时,铁芯中产生感应电动势,并引起漩涡电流而引起能量损耗。
其大小与迟滞损耗因素相似,并且与材料涡流损耗系数和叠加的硅钢片厚度有关。
3、变压器电势、切割电势产生的原因各有什么不同其大小与哪些因素有关答:区别:变压器电势是由变化的磁场经过线圈感应产生的(N线圈匝数、φ磁通)切割电势是由于导线以某一速度,其速度分量与磁场正交切割稳定磁场而感应出电动势(B磁感应强度、L导体切割有效长度、v相对切割速度)4、试比较磁路和电路的相似点和不同点。
答:不同点:1磁路存在漏磁,电路中没有这说法2几乎所有介质都能连成磁路,但是电路需要特定的条件才能形成通路(如低电压不能击穿空气)3磁路为闭合回路,方向由N极出发,S极终结4电路不一定为回路,方向总是由高电势流向低电势相似点:两者在回路当中都符合基尔霍夫第一第二定律、欧姆定律。
5、什么是软磁材料什么是硬磁材料答:软磁材料磁能的储存能力低,磁滞回线较窄,且剩磁Br和矫顽力Hc都小;相对的硬磁材料对于磁能的储存能力高,剩磁Br和矫顽力Hc都小。
6、磁路的基本定律有哪些答:磁路欧姆定律、磁路基尔霍夫第一、第二定律7简述铁磁材料的磁化过程答:O→a为磁化曲线a→b→c为磁滞回线8、磁路计算的步骤是什么答:1、先将磁路进行分段2、先建立数学模型3、根据物理定律和模型列出对应的数学表达式4、联立方程求出未知量9、说明交流磁路与直流磁路的异同点答:同:都符合基尔霍夫定律异:交流磁路幅值随时间变化,具有一定频率,经过导体器件会产生磁滞损耗和涡流损耗;直流磁路幅值恒定不变,不会产生磁滞损耗和涡流损耗。
磁路计算问题及其与电路计算的区别磁路计算问题及其与电路计算的区别1. 引言磁路计算作为电磁学中的重要内容,一直是学习者们所关注的焦点。
它不仅在电机、变压器等电气领域有重要应用,还与电路计算有着一定的联系。
本文将着重探讨磁路计算问题及其与电路计算的区别,帮助读者更深入地理解这一主题。
2. 磁路计算的基础概念磁路计算是指在电磁系统中,通过磁路参数的计算和分析来研究磁场分布、磁通、磁势等问题。
它是电磁学理论的一部分,主要用来描述磁场在磁性材料中的传播和分布规律。
在磁路计算中,需要考虑的因素包括磁通量、磁阻、磁势等。
3. 电路计算的基本原理电路计算是指在电路理论中,通过电流、电压、电阻等参数的计算和分析来研究电路中的电流分布、电压分布、功率分布等问题。
它是电工电子领域的基础课程之一,主要用来描述电流在电路中传播和分布规律。
在电路计算中,需要考虑的因素包括电流、电压、电阻、电感、电容等。
4. 磁路计算与电路计算的区别1) 物理特性不同磁路计算主要研究磁场的传播和分布规律,因此其物理特性主要涉及电磁感应、磁通、磁势等方面;而电路计算主要研究电流的传播和分布规律,因此其物理特性主要涉及电流、电压、电阻等方面。
2) 参数不同在磁路计算中,需要考虑的参数主要包括磁通量、磁阻、磁势等;而在电路计算中,需要考虑的参数主要包括电流、电压、电阻、电感、电容等。
3) 应用范围不同磁路计算主要应用于电机、变压器等电气设备中,用来描述磁场分布和磁通量的变化规律;而电路计算主要应用于电子电路、通信电路、功率电子等领域,用来描述电流、电压、功率的分布和变化规律。
5. 个人观点和理解从个人观点来看,磁路计算与电路计算虽然在物理特性、参数和应用范围上有所不同,但它们都是描述自然界中电磁现象的重要工具。
磁路计算在电气工程中具有重要的应用意义,掌握磁路计算的基本原理对于从事电气工程技术和研究的人员来说是非常必要的。
6. 总结通过本文的讨论,我们深入探讨了磁路计算问题及其与电路计算的区别。
磁路和电路的相同点和不同点大家好,今天咱们聊聊磁路和电路这两个“兄弟”。
它们在很多地方都是有相似之处,但细细一看,又有不少不同的地方。
就像两个性格迥异的朋友,一起出门总能碰撞出有趣的火花。
行,那我们就开始这场“磁电之旅”吧!1. 磁路和电路的相似之处1.1 能量的传递首先,磁路和电路都有个共同的使命——传递能量。
就像快递小哥送外卖,无论是电流还是磁场,它们都是在忙着把能量送到需要的地方。
电路里,电流像流水一样流动,带着电能冲刺,而磁路里,磁力线则像看不见的道路,把磁能送到磁体。
这俩的工作原理,真是一个调皮的“双胞胎”。
1.2 元件的作用再来聊聊它们的组成部分。
电路里有电源、导线、负载等元素,而磁路里则有磁源、磁导体和负载等。
这些元件就像是乐队里的乐器,各司其职,齐心协力。
电源给电流注入能量,磁源则给磁场带来生命。
就好比乐器演奏时,少了哪个都不行,音色就怪了。
2. 磁路和电路的不同点2.1 传输方式但是,咱们也不能忽视它们之间的不同哦!首先,传输方式就大相径庭。
电路里的电流是通过导线在流动,而磁路则是通过磁场在传播。
想象一下,如果电流是一条欢快的小河流,那磁场就是那看不见的大气流,流动得默默无声,却能产生巨大的力量。
这就好比一场潜伏在水下的游泳比赛,表面平静,却暗流涌动。
2.2 阻力特性再说到阻力,电路中的电阻可是个“大人物”,它会对电流的流动产生很大影响。
而磁路中的“阻力”就叫做磁阻。
电流一遇到电阻就可能减速,而磁场遇到磁阻则是同样的道理。
但是,电阻和磁阻的性质可不完全一样,电阻是能量的消耗者,磁阻却是“能量传递的障碍者”。
听起来像是两个性格迥异的人,前者爱消费,后者却偏爱节俭。
3. 实际应用3.1 工程领域在工程领域,这两位“兄弟”的应用可谓是无处不在。
电路在我们的生活中扮演着重要的角色,从家里的电器到手机的充电,随处可见。
而磁路呢,虽然不如电路那样“张扬”,但它在电动机、变压器等设备中却是不可或缺的角色。
电工学中作业学生:杨川教师:刘晓芳学号:1101800327班号:1018203一电路与磁路电路是电流可以在其中流通的由导体连接的电路元件的组合,而磁路主要由磁性材料构成,在给定区域内形成闭合磁通通道的媒质组合。
相似之处:(1)磁路的欧姆定律与电路的欧姆定律相似,公式可相同的理解。
它们有如下的对照关系。
表格 1 磁路与电路对照()U R I jX I E σ=++-sin cos 90)m t N t E ωωω=-Φ= 直流励磁铁心线圈中只有铜损耗,即线圈电阻R 上的功率损耗2I R 。
而在交流铁心线圈中,除了铜损耗外还有处于交变磁化下的功率损耗,即铁损耗。
铁损耗包括有磁滞所产生的磁滞损耗和由涡流所产生的涡流损耗。
三 交流铁心线圈电路与交流空心线圈电路相同之处:(1) 两线圈中都将产生周期性变化的磁通,磁通势相同。
并且都将有磁通经过空气或其它非导磁介质而闭合。
不同之处:(1) 磁导率与电感:交流空心线圈中磁导率为0μ,为一恒定值,而交流铁心线圈中磁导率0r μμμ=,大小与电流大小及介质材料有关,故是一不确定量。
由线圈电感公式:2SN L lμ=可得,空心线圈中磁导率恒定,故空心线圈电感是恒定值。
而铁心线圈中磁导率不确定,故电感也不确定。
(2) 电磁关系:交流铁心线圈中的磁通分为主磁通和漏磁通,因此,将感应电动势分为主磁电动势e 和漏磁电动势e σ。
直流铁心线圈中不存在漏磁通。
(3) 电压电流关系:在交流空心线圈中,通过线圈的电流为a I ,则a I =在交流铁心线圈中由于铁心发生涡流和磁滞损失,使得电路电流降低,此时'a I =式中00,R X 分别为因铁损而存在的等效电阻和等效电感。
(4) 功率关系:在交流空心线圈中,功率2a aP I R =。
在铁心线圈中由于铁损的存在,功率将降低2Fe P RI P =+∆。
四 直流铁心线圈电路与直流空心线圈电路相同之处:(1) 直流铁心线圈和交流空心线圈中的电流在一定电压U 下只和线圈本身的电阻有关。
磁路和电路的不同点英文回答:Differences between magnetic circuits and electric circuits.Magnetic circuits and electric circuits are both used to analyze the flow of energy through a system. However, there are some key differences between the two types of circuits.The type of energy being transported. Magneticcircuits transport magnetic energy, while electric circuits transport electrical energy.The nature of the medium. Magnetic circuits are typically made of ferromagnetic materials, such as iron or steel. Electric circuits are typically made of conductive materials, such as copper or aluminum.The presence of a magnetic field. Magnetic circuits require the presence of a magnetic field in order to operate. Electric circuits do not require a magnetic field.The direction of the flow of energy. In magnetic circuits, the flow of energy is always in the direction of the magnetic field. In electric circuits, the flow of energy is always in the direction of the electric field.中文回答:磁路和电路的区别。
磁路与电路对应的物理量及其关系磁路和电路是两个相互联系的概念,它们分别代表着磁场和电场的传输路线。
在电子、电气和计算机等领域,磁路和电路的应用非常广泛。
本文将围绕“磁路与电路对应的物理量及其关系”这一主题进行讨论。
一、磁路概念及其物理量磁路是磁通的传输路径,主要由铁芯、气隙和线圈组成。
在磁路中,磁通是沿着磁导率的方向传输的,而磁通的大小则由磁通密度决定。
磁通密度是指单位面积上通过的磁通量的数量,通常用字母B表示,单位是特斯拉(T)。
二、电路概念及其物理量电路是电流的传输路径,主要由各种电子元器件和导线组成。
在电路中,电流沿着导线流动,而电流的大小则由电流密度决定。
电流密度是指单位面积上通过的电流的数量,通常用字母J表示,单位是安培每平方米(A/m²)。
三、磁路和电路的联系磁路和电路之间有许多相似之处,它们之间的联系主要表现在以下几个方面:1. 磁通和电流是相互关联的。
在磁路中,铁芯的磁导率可以决定磁通的大小,而线圈中的电流则可以改变磁通的方向和大小。
在电路中,电流的大小和方向也可以影响电压的大小和方向。
2. 磁场和电场都遵循规律。
在磁路和电路中,磁场和电场都遵循一定的规律,它们的传输路线和大小可以由各自的物理量来描述。
3. 磁路和电路都可以实现信息传输。
在现代通信中,磁场和电场被广泛应用于信息传输。
磁路可以实现磁存储和磁读取,电路可以实现电子信息处理和传输。
四、磁路和电路的区别虽然磁路和电路之间有诸多相似之处,但它们之间也存在着很多的不同点:1. 磁路是由磁导率决定的,而电路是由电阻决定的。
2. 磁通密度可以通过磁感应强度来测量,而电流密度可以通过电场强度来测量。
3. 磁路中的磁通是不能断开的,而电路中的电流可以断开或切断。
4. 磁路中的磁通不能被储存,而电路中的电荷可以被储存。
总之,磁路和电路都是现代物理学和工程学中非常重要的概念,它们之间的相互关系也贯穿了整个物理学和电气工程的发展史。
通电导线和磁铁都是与电磁学相关的物体,在物理学中有着重要的作用。
这两者在某些方面有着相似之处,但在其他方面又有着明显的不同。
接下来,我们将从几个方面来分析通电导线和磁铁的不同点和相同点。
一、相同点1.产生磁场通电导线和磁铁都能产生磁场。
在物理学中,电流通过导线时会产生磁场,这就是电磁感应现象的基础。
而磁铁本身也具有磁性,在周围产生磁场。
2.遵循安培定律通电导线和磁铁均遵循了安培定律。
安培定律是指通过导体的电流产生的磁场与电流成正比,与导体的长度成反比,与距离导体的位置成正比。
磁铁在产生磁场时也遵循了类似的规律。
3.相互作用通电导线和磁铁都能与其他磁性物体相互作用。
通电导线产生的磁场可以与其他磁性物体产生相互作用,而磁铁也可以对其他磁性物体产生作用,如吸引或排斥。
二、不同点1.产生磁场的方式不同通电导线产生磁场是通过电流在导体中运动而产生的,而磁铁则是由其自身的磁性所决定的。
2.磁场的方向不同通电导线产生的磁场方向可以通过安培右手定则来确定,而磁铁产生的磁场方向则是由其自身磁性决定的。
3.外部磁场对其影响不同通电导线的磁场受外部磁场的影响较大,而磁铁的磁场受外部磁场的影响较小。
4.电流与磁场的关系不同通电导线产生的磁场是由电流决定的,而磁铁产生的磁场则是由其自身的磁性决定的,与电流无关。
在现实生活中,通电导线和磁铁都有着重要的应用。
电磁铁利用了通电导线产生磁场的特性,可以在一定程度上控制磁场的强弱,广泛应用于电路、电磁感应等领域。
而磁铁则被用于制作各种吸铁石、电机、发电机等电磁设备。
通过对通电导线和磁铁的比较分析,我们可以更深入地了解它们的特性和应用,为我们在电磁学领域的学习和工程应用提供更多的帮助。
在物理学领域,通电导线和磁铁是两个非常重要的研究对象,它们分别代表了电流产生的磁场和磁性产生的磁场。
通过比较分析它们的不同和相同点,我们可以更好地理解电磁现象的本质,为进一步深入研究提供了基础。
在工程技术应用中,对于通电导线和磁铁的特性和应用也有着重要的价值,通过合理地利用它们的特性,可以设计出更加高效和可靠的电磁设备,为人类社会的进步和发展做出更大的贡献。
啥是磁路?啥是电路?电路与磁路的差异咱们首要来看两个概念:磁路和电路。
那么啥是磁路,啥是电路呢,只需搞了解这两个概念是啥,咱们才干剖析二者之间终究有啥差异。
咱们先来看啥是电路:在电动势或许电压的效果下,电流所流经的途径叫电路。
电路的构成是由电源、负载和开关三有些构造。
而电路又分为直流电路和沟通电路。
流经电路的电流的巨细和方向不随时刻改动的电路,叫做直流电路。
流经电路的电流的巨细和方向随时刻改动的电路,叫做沟通电路。
看完了电路,咱们再来讲讲磁路。
当通电线圈中具有铁芯时,磁动势所发作的磁通,首要会集在由铁芯所规矩的途径内,这种途径就叫做磁路。
而磁路也是分为直流磁路和沟通磁路。
由直流电流励磁的磁路,叫做直流磁路,由沟通电流励磁的磁路,叫做沟通磁路。
电路与磁路一样点的确没有啥可说的。
在电路中,电流是电动势发作的,在磁路中,磁通是由磁动势发作的。
在电路中,电流转过电阻便发作电压降,在磁路中,磁统统过磁阻便发作磁压降。
在电路中,用欧姆规矩来标明电流、电阻和电压降之间的联络,在磁路中,用与电路类似的磁路欧姆规矩来标明磁通、磁阻和磁动势之间的联络。
可是,电路与磁路二者有实质上的差异,首要差异如下:a.在电路中,没有电动势时,电流等于零。
而在磁路没有磁动势时,因为磁滞景象,老是或多或少地存在剩磁。
b.电流代表电荷的移动,而磁通却不代表任何质点移动。
磁统统过滋阻时,不象电流转过电阻那样要耗费能量,坚持安稳磁通也并不需求耗费任何能童。
因而,在电路中可以有断路状况,在磁路中却没有断路的状况,只需有磁动势存在,总会致使相应的磁通,磁通老是接连的。
c.因为铁磁资料具有磁丰满景象,所以磁路的磁阻都对错线性,这与通常状况下电路电阻都是线性电阻是纷歧样的。
因而,磁路欧姆规矩通常只能用来对磁路进行定性剖析。
d.在电路中,导电资料的电导率通常比绝缘资料的电导率大儿千万倍以上,所以电路的漏电十分小,彻底可以疏忽不计。
在磁路中,铁磁资料的磁导率通常比非铁磁资料的磁导率只大几千倍乃至更小。
磁路与电路的异同材料成型及控制工程磁路与电路铁心的磁导率比周围空气的货其他物质的磁导率高得多,因此铁心线圈中电流产生的磁通绝大部分经过贴心儿闭合。
这种人为造成的磁通的闭合路径,称为磁路。
电路是电流的通路,他是为了某些需要由某些电工设备或原件按一定方式组合起来。
它们的相同点:它们有相似的物理量,例如磁通与电流,磁阻与电阻的性质就很相似,并且磁位差、磁通势与电路中的电压、电动势的性质也很相似;并且它们遵循的基本定律也相同,即都遵循KCL、KVL以及欧姆定律。
二者的区别:磁通是用来描述磁场的物理量,不像电流那样可以用来描述带电质点在电路中的运动;当磁通通过磁阻时也不像电流通过电阻那样要消耗功率,因此在磁路中并没有类似于焦耳定律那样的定律。
直流励磁铁心线圈与交流励磁铁心线圈电路铁心线圈分为两种:直流铁心线圈和交流铁心线圈。
分析直流铁心线圈比交流交流铁心线圈简单些,因为励磁电流是直流,产生的磁通是恒定的,线圈和铁心中不会感应出电动势来,在一定电压U下,线圈中的电流I之与线圈本身的电阻R有关,功率损耗也只有RI2;而交流铁心线圈在电磁关系、及功率损耗等几个方面和直流铁心线圈是不同的。
交流铁心线圈电压及感应电动势的有效值与主磁通的最大值关系为U = E ===4、44fNφm;交流铁心线圈的有功功率P=UIcosφ=RI2+△PFe。
交流铁心线圈电路与交流空心线圈电路因为空心线圈电路中加入了铁心,电感量会大大的增加,因此在使用时,空心线圈电路除了线圈本身的电阻外还会产生一个由于电感对电流阻碍作用而形成的很大的感抗,所以在这种电路中电流的阻力总是两方面的,因此等效电阻会比铁心线圈大很多。
空心线圈电感的经验计算公式:L=(k*μ0*μs*N2*S)/l μ0为真空磁导率; μs 为线圈内部磁芯的相对磁导率,空心线圈时μs=1; N2为线圈圈数的平方; S 线圈的截面积,单位为平方米;l 线圈的长度,单位为米;k 系数,取决于线圈的半径R与长度l的比值。
磁路的欧姆定律与电路的欧姆定律不同之处磁路的欧姆定律和电路的欧姆定律是两个不同领域的物理定律,虽然它们都涉及到电流和电压的关系,但在具体应用和理解上存在一些不同之处。
磁路的欧姆定律是用来描述磁场中磁通量密度和磁场强度之间的关系。
根据磁路的欧姆定律,磁通量密度与磁场强度之间呈线性关系,可以表示为B = μH,其中B表示磁通量密度,H表示磁场强度,μ为磁导率。
这个定律类似于电路中的欧姆定律,但不同的是,在磁路中并没有电阻,而是用磁导率来描述材料对磁场的响应能力。
电路的欧姆定律是用来描述电流和电阻之间的关系。
根据电路的欧姆定律,电流与电压之间呈线性关系,可以表示为I = V/R,其中I 表示电流,V表示电压,R表示电阻。
电路的欧姆定律是电学领域中最基本的定律之一,它揭示了电流和电压的关系,为电路的分析和设计提供了重要的理论基础。
在实际应用中,磁路的欧姆定律和电路的欧姆定律也有一些不同之处。
电路的欧姆定律是一个简单的线性关系,只涉及到电流、电压和电阻这三个基本物理量。
而磁路的欧姆定律涉及到磁通量密度、磁场强度和磁导率这些更为复杂的物理量,涉及到更多的物理概念和参数。
电路的欧姆定律适用于封闭的电路系统,可以用来描述电流在电路中的流动情况。
而磁路的欧姆定律适用于磁场中的介质或磁路系统,用来描述磁通量密度和磁场强度之间的关系。
磁路的欧姆定律通常应用在电机、变压器等电磁设备的设计和分析中。
电路的欧姆定律是一种直流电流的定律,适用于恒定电流的情况。
而磁路的欧姆定律可以适用于交流电流的情况,用来描述磁通随时间变化的情况。
磁路的欧姆定律和电路的欧姆定律虽然都涉及到电流和电压的关系,但在具体应用和理解上存在一些不同之处。
磁路的欧姆定律适用于磁场中的磁通量密度和磁场强度之间的关系,而电路的欧姆定律适用于电流和电阻之间的关系。
两者在物理概念、适用范围和应用领域上都存在一些差异,因此需要根据具体情况选择合适的定律进行分析和应用。
磁路与电路、直流励磁铁心线圈电路与交流励磁铁心线圈、交流铁心线圈电路与交流空心线圈电路、直流铁心线圈电路与直流空心
线圈电路异同比较
学号:**********
班号:18201班
姓名:母剑峰
2011/11/17
磁路与电路
磁路是指在电工设备中,用磁性材料做成一定形状的铁芯,铁芯的磁导率或其他物质的磁导率高得多,因此铁芯线圈中的电流产生的磁通绝大部分经过铁芯闭合,这种人为造成的磁通的闭合路径称为磁路。
电路是由金属导线和电气以及电子部件组成的导电回路,称其为电路,也可以是电路是电流所流经的路径。
相似之外也有不同,比如磁通只是描述磁场的物理量,并不像电流那样表示带电质点的运动,它通过磁阻时,也不像电流通过电阻那样要消耗功率,因而也不存在与电路中的焦耳定律类似的磁,处理电路时一般不涉及电厂问题,而在处理磁路时离不开磁场的概念;处理电路是一般不考虑漏电流,而处理磁路时要考虑漏磁现象;磁路的欧姆定律与电路的欧姆定律只是形式上的相似,由于不是常数,他随励磁电流变化不能直接应用,只用作定性分析。
在电路中E=0时I=0,但在磁路中由于有剩磁,F=0时,0.
直流励磁铁心线圈电路与交流励磁铁心线圈
直流励磁铁心线圈电路与交流励磁铁心线圈电路均是由电流的变化激发磁场。
直流励磁
方式用直流电产生磁场或采用永久磁铁,它能产生一个恒定的均匀磁场,在线圈和铁芯中不会感应出电动势;在一定的电压U下,线圈的电流I只与本身的电阻R有关,功率损耗也只有R2;而交流电是周期性变化的电流来激发磁场,所激发的磁场以及感应电动势,感应电流也是周期性变化的,主磁通最大值m只与U、f和N有关,当铁芯尺寸和材料保持变化值
保持不变,感应电动势的计算公式为:E=4.44fN m。
除了电阻R上的损耗外,处于交变磁m
化下的铁心中也有功率损耗(铁损耗Fe),是由磁滞和涡流产生的。
有功功率的损耗计算为P=UI=RI2+Fe。
交流铁心线圈电路与交流空心线圈电路
交流铁芯线圈电路与交流空心线圈在励磁规律,感应电动势,感应电流,感应磁场遵循相同的规律。
但是,由于没有铁芯,空心线圈电路比铁芯线圈电路少了铁损耗这一部分,同时铁芯的存在使得漏磁大大减少,在需要得到相同的磁感应条件下,铁芯线圈电路比空心线圈电路有更小的励磁电流或者说相同的励磁电流情况下能得到更大的磁感应强度。
与铁心线圈不同,空心线圈电路中电流i与磁通之间呈线性关系,线圈中的电感L为常数,u为正弦量的情况下磁通也可以认为是正弦量。
同时,交流铁心线圈电路在电压关系式中比空心线圈电路多一个-E的分量来来平衡铁心中磁通所产生的电动势E.
直流铁心线圈电路与直流空心线圈电路
直流铁心线圈电路和直流空心线圈电路相比较,均感应出恒定的磁场,不能感应出电动势和电流,均没有铁心损耗,电流大小只与电压U有关,消耗功率决定于电阻P=I2R。
在相同的电压作用下,两者线圈中的电流和功率损耗均相同,但是由于铁心的存在,直流铁心线圈电路与直流空心线圈电路相比较,磁路的磁阻要小些,磁通要大些,导磁能力较强,电感系数L较大,所以由于铁心被磁化产生附加磁场,因而产生的磁场比空心线圈电路要大。