追赶法求解方程组
- 格式:doc
- 大小:252.00 KB
- 文档页数:6
甘肃政法学院本科学年论文(设计)题目浅议线性方程组的几种求解方法学号:姓名:指导教师:成绩:__________________完成时间: 2012 年 11 月目录第一章引言 (1)第二章线性方程组的几种解法 (1)2.1 斯消元法 (1)2.1.1 消元过程 (1)2.1.2 回代过程 (2)2.1.3 解的判断 (2)2.2 克莱姆法则 (3)2.3 LU分解法 (4)2.4 追赶法 (6)第三章结束语 (8)致谢 (8)参考文献 (9)摘要:线性方程组是线性代数的核心内容之一,其解法研究是代数学中经典且重要的研究课题.下面将综述几种不同类型的线性方程组的解法,如消元法、克莱姆法则、直接三角形法、、追赶法,并以具体例子介绍不同解法的应用技巧. 在这些解法中,高斯消元法方法,具有表达式清晰,使用范围广的特点.另外,这些方法有利于快速有效地解决线性方程组的求解问题,为解线性方程组提供一个简易平台,促进了理论与实际的结合。
关键词:线性方程组;解法;应用Several methods of solving linear equation groupAbstract: The system of linear equations is one of linear algebra core contents, its solution research is in the algebra the classics also the important research topic. This article summarized several kind of different type system of linear equations solution, like the elimination, the Cramer principle, the generalized inverse matrix law, the direct triangle law, the square root method, pursue the law, and by concrete example introduction different solution application skill. In these solutions, the generalized inverse matrix method, has the expression to be clear, use scope broad characteristic. Moreover, these methods favor effectively solve the system of linear equations solution problem fast, provides a simple platform for the solution system of linear equations, promoted the theory and the actual union.Key word: Linear equations; Solution ; Example第一章 引言线性方程组理论是高等数学中十分重要的内容,而线性方程组的解法是利用线性方程组理论解决问题的关键.下面将介绍线性方程组的消元法、追赶法、直接三角形法等求解方法,为求解线性方程组提供一个平台。
追赶法/平方根法 例2.4.1 设4阶方程组AX=B 为⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------121653342231124321x x x x这就是一个三对角方程组,既系数矩阵除了对角线的“三斜线”以外的元素均为0。
用追赶法求解三对角方程组的一种做法是把系数矩阵A 写成下列形式的LU 分解(这里采用Doolittle 分解,类似地也可以采用Crout 分解):()1.4.2321111153342231124321432⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------u u u u l l l 即L 为单位上三角阵,两斜行,主对角线元素为1,其下方的斜行元素特定;U 为上三角阵,也是两斜行,主对角线元素特定,其上方斜行的元素与A 对应的斜行元素相同(直接验算可知道)。
利用矩阵乘法规则,按顺序依次考虑A 的11a ->21a ->22a ->32a ->33a ->43a ->44a ,并对比(2.4.1)式两端可得2=1u → 1u =2 -1=12u l → 2l =-1/1u =-1/23=-2l +2u →2u =3+2l =5/2-2=23u l → 3l =-2/2u =-4/5 4=-23l +3u → 3u =4+23l =12/5-3=34u l →4l =-3/3u =-5/45=-34l +4u 4u =5+3⨯(-5/4)=5/4即得分解⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡------4/535/1222/51214/515/412/115334223112于是用前推过程求解下三角方程组⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡-=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---121614/515/412/114321y y y y 得⎪⎪⎩⎪⎪⎨⎧=+==+-==+==2/54/515/65/4242/1163423121y y y y y y y再用回代过程求解上三角方程组⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡---2/55/6464/535/1222/5124321x x x x 得⎪⎪⎩⎪⎪⎨⎧=+==+==+===52/)6(4)2/5/()24(3)5/12/()35/6(2)4/5/()2/5(2132434x x x x x x x 即的方程组的解()T x 2,3,4,5=.从实例看到,三对角方程组的追赶法是三角分解发的一种特殊应用,因此,一般地,如果对三角矩阵n n R A ⨯∈非奇异,其顺序主子式)1,...,2,1(0-=≠∆n i i ,则解三对角方程组Ax=d:()2.4.2...............12112111122211⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----n n n n n nn n n d d d d x x x x b a c b a c b a c b 的追赶法可描述如下:令A=LU ,则⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡-----n n n nn nn n n u c u c u c u l l l b a c b a c b a c b 1122113211122211......1 (1)11.........利用矩阵乘法规则,可求L 和U 的计算公式:⎩⎨⎧=-===--)),...3,2((/1111n i c l b u u a l b u i i i i i i i (2.4.3)于是,求解LY=D 得⎩⎨⎧=-==-)),...3,2(111n i y l d y d y i i i i (2.4.4)再求解UX=Y ,得三对方程组的解⎩⎨⎧=-==+)),...3,2(/)(/1n i u x c y x u y x i i i i i n n n (2.4.5)上述3个公式便组成解三角方程组的追赶法,国外称Thomas 算法。
Matlab追赶法和迭代法解线性⽅程组实验⽬的:1)追赶法解三对⾓阵;2)掌握解线性⽅程组的迭代法;3)⽤Matlab实现Jacobi及超松弛迭代法实验要求:1)掌握追赶法解三对⾓阵2)掌握解线性⽅程组的迭代法3)提交追赶法、Jacobi及超松弛迭代法的m⽂件实验内容:1)追赶法解三对⾓矩阵⽅程(m⽂件)习题1. ⽤追赶法的m⽂件求解2)Jacobi迭代法解线性⽅程组(m⽂件)对不同初值⽤Jacobi迭代法解习题1并⽐较结果。
3)超松弛迭代法解线性⽅程组(m⽂件)对不同松弛因⼦解习题1并⽐较结果。
实验步骤: 代码:1 %追赶法2 %输⼊:系数矩阵A和因变量d;3 %输出:⾃变量x4 function z=zuigan(A,d)5 n=length(d);6 %取三对⾓元素a,b,c7for i=1:n-18 a(i)=A(i,i);9 b(i)=A(i+1,i);10 c(i)=A(i,i+1);11 end12 a(n)=A(n,n);13 %分解系数矩阵14 u(1)=a(1);15 l(1)=c(1)/a(1);16for i=2:n-117 u(i)=a(i)-b(i-1)*l(i-1);18 l(i)=c(i)/u(i);19 end20 u(n)=a(n)-c(n-1)*l(n-1);21 %解y22 y(1)=d(1)/u(1);23for k=2:n24 y(k)=d(k)-c(k-1)*y(k-1)/u(k);25 end26 %解x27 x(n)=y(n);28for k=n-1:-1:129 x(k)=y(k)-l(k)*x(k+1);30 end31 z=x;32 endzuigan 运⾏: 所得结果,较为粗糙。
代码:1 %雅克⽐迭代法2 %输⼊系数矩阵A,因变量b,初始向量x0,容许误差eps,最⼤迭代次数t3 %输出⾃变量x和迭代数n4 function [z,k]=jacobi(A,b,x0,e,t)5 %默认eps和最⼤迭代次数m6if nargin==37 e=1e-6;8 m=200;9 elseif nargin<310 error('输⼊的参数不⾜');11return;12 elseif nargin==513 m=t;14 end15 n=length(b);16 x(1,:)=x0;17 z(1,:)=x0;18for k=2:m19 sum=0;20for i=1:n21 w=0;22 u=0;23for j=i+1:n24 w=w+A(i,j)*x(k-1,j);25 end26for j=1:i-127 u=u+A(i,j)*x(k-1,j);28 end29 x(k,i)=(-1/A(i,i))*(u+w-b(i));30if sum<abs(x(k,i)-x(k-1,i))31 sum=abs(x(k,i)-x(k-1,i));32 end33 end34if sum<e35 z(k,:)=x(k,:);36return;37 end38 z(k,:)=x(k,:);39 end40 endjacobi 运⾏⽰例,初始向量x0=[0 0 0 0 0 0];和初始向量x0=[1 1 1 1 1 1]; 初始值不同,迭代次数可能不同。
第16讲 追赶法、误差分析在实际应用问题中,经常会遇到解三对角线方程组。
例如:用三次样条函数的插值问题中得到的三转弯及三弯矩方程组,当时说可用追赶法来求解。
还有用差分法解二阶线性常微分方程边值问题,若用三点插值格式也得到解三对角线方程组,本节介绍该类方程组中的特例及该种方程组的解法:追赶法。
优点:1.计算量小。
2.方法简单,存贮量小。
3.数值稳定的(对舍入误差来说)。
1 追赶法三对角线方程组的一般表示方法:可见,对A 的分解只需求i i u l ,且按n n n l u l u l u l −→−−→−−→−−→−−→−−→−−→−--112211.....的递推过程进行,形象地称为“追”的过程⎩⎨⎧=-==-),....2(/)(/1111n i l y a f y l f y i i i i ⎩⎨⎧-=-==+)1,2,.....1(1n i x u y x y x i i i inn 形象地称回代求解过程为“赶”的过程追赶法的计算量为5n-4次乘除法,可用4个 一 维数组存放{}{}{}{}i i i i f c b a ,,,。
共占用4n-2个单元,在计算过程中{}{}{}i i i y u l ,,依次覆盖掉{}{}{}i i i f c b ,,最后,{}i x 覆盖掉{}i y ,所以,追赶法具有计算量小,占用内存单元少的特点。
2、误差分析⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=-n n l u u u U 121....111⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=n nl a l a l a l L ....33221)1,...,3,2,1(-=n i ⎪⎩⎪⎨⎧+===+++11111i i i i ii i lu a b u l c l b ⎪⎩⎪⎨⎧-===+++i i i i ii i ua b l l c u b l 11111/)1,...,3,2,1(-=n i病态方程组与条件数一个线性方程组Ax=b 是由它的系数矩阵A 和它的右端项b 所确定,在实际问题中,由于各种原因,A 或b 往往有误差,从而使得解也产生误差。
非齐次线性方程组求解方法
非齐次线性方程组求解是一种常见的数学问题,用于解决一组未知系数的方程。
在求解非
齐次线性方程组时,可以使用两种方法,分别是迭代法(迭代法)和追赶法(追赶法)。
首先,迭代法是最常用的求解非齐次线性方程组的方法。
此法是从一个给定的初始点出发,以适当的步长迭代,通过不断重复尝试,最终达到满足条件的点。
然而,迭代法由于它只
针对特定的系数,因此,如果想让它转变为其他系数,需要重新设定初始点和步长,从而
增加了对方程求解的工作量和时间消耗。
其次,追赶法是近期被越来越多的用于求解非齐次线性方程组的方法。
此方法是从一个给
定的初始矩阵出发,不断的追赶计算结果,通过更新矩阵元素的值,来逼近一个与解相匹
配的状态。
它有助于加快计算–存储效率的提高,节省了计算的时间;而且,当时间复杂
度比较高的数值方法(如微分方程)面临时间窗口约束时,追赶法显得更加适用。
总而言之,求解非齐次线性方程组有两种方法,分别是迭代法和追赶法,每种方法具有其
优点和缺点。
在选择求解方法时,应根据具体需求考察各自特点,以便使用最适宜的求解法。
§2 解三对角方程组的追赶法 在实际问题中,经常遇到以下形式的方程组⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧=+=++=++=++=+-------+-nn n n n n n n n n n n k k k k k k k d x b x a d x c x b x a d x c x b x a d x c x b x a d x c x b 111112111232221212111 (3.12)这种方程组的系数矩阵称为三对角矩阵⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫⎝⎛=---n nn n n k k k b a c b a c b a c b a c b A 11122211以下针对这种方程组的特点提供一种简便有效的算法—追赶法。
追赶法实际上是高斯消去法的一种简化形式,它同样分消元与回代两个过程。
先将(3.12)第一个方程中x 1的系数化为1112111b d x b c x =+记 111111b d y b c r == (3.13)有 1211y x r x =+注意到剩下的方程中,实际上只有第二个方程中含有变量x 1,因此消元手续可以简化。
利用(3.13)可将第二个方程化为2312y x r x =+这样一步一步地顺序加工(3.12)的每个方程,设第k – 1个方程已经变成111---=+k k k k y x r x(3.14)再利用(3.14)从第k 个方程中消去x k -1,得:k k k k k k k k k a y d x c x a r b 111)(-+--=+-同除()k k k a r b 1--,得n k a r b a y d x a r b c x kk k k k k k kk k kk ,,3,21111 =--=-+--+-记kk k k k k k kk k kk a r b a y d y a r b c r 111-----=-=则有 k k k k y x r x =++1 这样做n – 1步以后,便得到:111---=+n n n n y x r x将上式与(3.12)中第11个方程联立,即可解出 x n = y n 这里nn n n n n n a r b a y d y 11----=于是,通过消元过程,所给方程组(3.12)可归结为以下更为简单的形式:⎪⎪⎪⎩⎪⎪⎪⎨⎧==+=++nn k k k k y x y x r x y x r x11211 (3.15)这种方程组称作二对角型方程组,其系数矩阵中的非零元素集中分步在主对角线和一条次主对角线上⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛-11111121n k r r r r 对加工得到的方程组(3.15)自下而上逐步回代,即可依次求出x n ,x n -1,…,x 1,计算公式为:⎩⎨⎧--=-==+1,,2,11n n k x r y x y x k k k k n n (3.16)上述算法就是追赶法,它的消元过程与回代过程分别称作“追”过程与“赶”过程。
追赶法并行求解循环三对角方程组
李文强;刘晓
【期刊名称】《科技导报》
【年(卷),期】2009(0)18
【摘要】给出了求解循环三对角线性方程组的一种并行算法。
在系数矩阵满足对
角占优的条件下,利用该方法能够快速、稳定地求解循环三对角线性方程组,在单个
进程上的计算量仅为O(17n),与传统算法求解循环三对角线性方程组的计算量相同。
而且,本算法可以方便地实施分布式并行计算,各进程仅需向主进程传递8个实数,而主进程向各子进程传递2个实数,通讯量较小。
数值实验结果表明:对于大规模的循环三对角线性方程组,利用16个进程计算的并行效率均在0.75以上。
求解三对角
线性方程组的传统追赶法实则是本文算法的一种特例,因此,该算法也可用于求解三
对角线性方程组。
【总页数】4页(P90-93)
【关键词】追赶法;循环三对角方程组;并行计算
【作者】李文强;刘晓
【作者单位】河南师范大学数学与信息科学学院
【正文语种】中文
【中图分类】O241.6
【相关文献】
1.用改进追赶法求解三对角线方程组 [J], 李健
2.解循环三对角线性方程组的追赶法 [J], 李青;王能超
3.求解三对角方程组的并行追赶算法 [J], 杨爱民;阎少宏;夏国坤;彭亚绵
4.追赶法在求解循环和拟循环三对角方程组中的一种推广 [J], 刘晓;李文强
5.求解循环三对角方程组的追赶法 [J], 李文强;马民
因版权原因,仅展示原文概要,查看原文内容请购买。
班级:数学114学号:201100144407 姓名:徐美荣一:实验目的加强"追赶法"在解方程组中的应用,掌握多种不同的解线性方程组的解法以及编程的应用二:实验内容用追赶法解下列严格对角优势的三对角线方程组2 - 1 0 0 x1 0-1 3 -2 0 x2 = 10 -1 2 -1 x3 00 0 -3 5 x4 1三:程序源代码:#include <stdio.h>#include <conio.h>#include <math.h>#define MAX_n 100#define PRECISION 0.000001//解输出void SulutionOutput(float x[],int n){int i;for(i=1;i<=n;++i)printf("\nx[%d]=%f",i,x[i]);}//三对角方程组元素输入void TriDiagonalMatrixInput(float a[],float b[],float c[],float f[],int n){int i;printf("Input b[1],c[1],f[1]:");scanf("%f %f %f",&b[1],&c[1],&f[1]);for(i=2;i<n;++i){printf("Input a[%d],b[%d],c[%d],f[%d]:",i,i,i,i);scanf("%f %f %f %f",&a[i],&b[i],&c[i],&f[i]);}printf("Input a[%d],b[%d],f[%d],f[%d]:",n,n,n,n);scanf("%f %f %f%f",&a[n],&b[n],&c[n],&f[n]);}//三对角方程组求解—追赶法int Z_G_method(float a[],float b[],float c[],float f[],int n){int i;c[1]/=b[1];for(i=2;i<n;++i)c[i]/=(b[i]-a[i]*c[i-1]);f[1]/=b[1];for(i=2;i<=n;++i)f[i]=(f[i]-a[i]*f[i-1])/(b[i]-a[i]*c[i-1]);for(i=n-1;i>0;--i)f[i]-=c[i]*f[i+1];}void main(){int n;float a[MAX_n],b[MAX_n],c[MAX_n], d[MAX_n],f[MAX_n];printf("\nInput n=");scanf("%d",&n);TriDiagonalMatrixInput(a,b,c,,d,f,n);Z_G_method(a,b,c,,d,f,n);SulutionOutput(f,n);}。
数值计算实验报告----LU分解、追赶法、迭代法(⾼斯-赛德尔Gauss_Seidel、雅。
数值实验报告----------------------个⼈作业,如果有后辈的作业习题⼀致,可以参考学习,⼀起交流,请勿直接copy⼀、实验⽬的1. 了解并分析LU分解法的优点;2. 追赶法的应⽤与其与LU分解法的对⽐;3. 认识迭代法收敛的含义以及迭代法初值和⽅程组系数矩阵性质对收敛速度的影响。
⼆、实验题⽬三、实验原理l LU分解:·如果对A(0)x = b(0)施⾏第⼀次消元后化为A(1)x = b(1),则存在L1,使得L1A(0)=A(1),L1b(0)= b(1)⼀般地,进⾏k次消元化后为A(k)x = b(k), 则有L k A(k-1)=A(k),L k b(k-1)= b(k)重复这⼀过程,最后得到L n-1…L2L1A(0) = A(n-1)L n-1…L2L1b(0) = b(n-1)将上三⾓形矩阵A(n-1)记为U,则 A=LU ,其中为下三⾓矩阵。
利⽤⾼斯消元法实质上产⽣了⼀个将A分解为两个三⾓形矩阵相乘的因式分解,称为A的三⾓形分解或LU分解。
·矩阵分解不⼀定采⽤⾼斯消元法,以下为直接计算的计算公式:把增⼴矩阵A 采⽤LU 分解格式,即可得到与原⽅程同解的⽅l 追赶法:求解Ax = b 等价于解两个⼆对⾓线⽅程组Ly = bUx =y⾃上⽽下解⽅程组Ly = b 形象地被称为“追”。
y1 = b1/l11y i =b i-l ii-1y i-1/l ii, i = 2, 3, … ,n⾃下⽽上解⽅程组Ux = y 形象地被称为“赶”。
x n=y nx i =y i-u ii+1x i+1, i = n-1, … ,2,1习惯上,上述求解⽅法称为“追赶法”。
l 迭代法:·雅克⽐迭代雅克⽐迭代法基本思想与迭代法相同是⼀种逐次逼近的⽅法。
⾸先给定⼀个较粗糙的初值,然后采⽤迭代公式,进⾏多次迭代,直到满⾜所要求的精度为⽌。
追赶法求热传导方程追赶法(Crank-Nicolson法)是一种用于求解热传导方程的数值方法。
热传导方程描述了热能如何通过材料传播的过程,并在许多实际应用中具有重要的作用,例如材料的热学性能分析、建筑物的能耗计算等。
热传导方程可以写成如下形式:\frac{\partial u}{\partial t} = \alpha \frac{\partial^2u}{\partial x^2}其中 $u(x,t)$ 是待求的温度场,$\alpha$ 是热扩散系数。
我们将区域 $[0, L]$ 进行离散化,将时间区间 $[0, T]$ 进行离散化,得到一系列的离散点:x_i = i \Delta x, \quad i = 0, 1, 2, \ldots, N和t_k = k \Delta t, \quad k = 0, 1, 2, \ldots, M其中 $\Delta x = \frac{L}{N}$ 和 $\Delta t = \frac{T}{M}$ 是空间和时间的离散步长。
我们使用中心差分近似来离散化热传导方程中的偏导数项。
假设$u_i^k \approx u(x_i, t_k)$ ,则可得到如下差分格式:\frac{u_i^{k+1} - u_i^k}{\Delta t} = \frac{\alpha}{2}\left(\frac{u_{i+1}^{k+1} - 2u_i^{k+1} + u_{i-1}^{k+1}}{\Delta x^2} + \frac{u_{i+1}^k - 2u_i^k + u_{i-1}^k}{\Delta x^2}\right)将上式整理后可得到追赶法的更新公式:-u_{i-1}^{k+1} + 2(1 + \lambda)u_i^{k+1} - u_{i+1}^{k+1} = u_{i-1}^k + 2(1 - \lambda)u_i^k + u_{i+1}^k其中 $\lambda = \frac{\alpha\Delta t}{2\Delta x^2}$。
数值计算方法实验报告实验序号:实验二实验名称:追赶法算法设计及MATLAB实现实验人:专业年级:教学班:学号:实验时间:实验二追赶法算法设计及MATLAB实现一、实验目的1.初步掌握算法设计规则;2.初步掌握MATLAB程序设计规则.二、实验内容1.构造利用追赶法求解三对角线性方程组的算法;2.在MATLAB环境下编写追赶法的程序(函数);3.自由选择若干个三对角线性方程组求解。
三、实验步骤1.追赶法算法:算法名称:thomas输入参数:向量a,b,c,f输出参数:输出解信息x算法的自然语言:Step1:u1=b1,y1=b1;Step2:对于i=2,3,….n;Step2.1:当u1-i≠,否则转step5l i =ai/u1-i;ui =bi-li*c1-i;yi =fi-li*y1-i;Step3:当un≠时,xn=yn/un,否则转step5Step4:对于:i=n-1,n-2,…..,2,1,转step6xi =(yi-ci*x1+i)/uiStep5:无解信息,转step7Step6:输出xStep7:关机2.MATLAB程序function [x,L,U]=thomas(a,b,c,f) n=length(b);% 对A进行分解u(1)=b(1);for i=2:nif(u(i-1)~=0)l(i-1)=a(i-1)/u(i-1);u(i)=b(i)-l(i-1)*c(i-1);elsebreak;endendL=eye(n)+diag(l,-1);U=diag(u)+diag(c,1);x=zeros(n,1);y=x;% 求解Ly=by(1)=f(1);for i=2:ny(i)=f(i)-l(i-1)*y(i-1);end% 求解Ux=yif(u(n)~=0)x(n)=y(n)/u(n);endfor i=n-1:-1:1x(i)=(y(i)-c(i)*x(i+1))/u(i);end3.求解实例例1.方程组例2.方程组例3.方程组⎪⎪⎪⎪⎪⎭⎫⎝⎛=⎪⎪⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎪⎪⎭⎫⎝⎛1131132132134321xxxx四、实验结论对于追赶法我最先写的是如下的程序:但是出现了如上截图中的错误,后来与同学讨论还是没能解决我的问题,最后借鉴了她的算法得到了正确的结果。
实验课程名称计算机数值方法
实验项目名称追赶法求解方程组
年级 10级
专业统计101班
学生姓名黄新银
学号 1007010253
理学院
实验时间:2011年10 月9 日
学生实验室守则
一、按教学安排准时到实验室上实验课,不得迟到、早退和旷课。
二、进入实验室必须遵守实验室的各项规章制度,保持室内安静、整洁,不准在室内打闹、喧哗、吸烟、吃食物、随地吐痰、乱扔杂物,不准做与实验内容无关的事,非实验用品一律不准带进实验室。
三、实验前必须做好预习(或按要求写好预习报告),未做预习者不准参加实验。
四、实验必须服从教师的安排和指导,认真按规程操作,未经教师允许不得擅自动用仪器设备,特别是与本实验无关的仪器设备和设施,如擅自动用或违反操作规程造成损坏,应按规定赔偿,严重者给予纪律处分。
五、实验中要节约水、电、气及其它消耗材料。
六、细心观察、如实记录实验现象和结果,不得抄袭或随意更改原始记录和数据,不得擅离操作岗位和干扰他人实验。
七、使用易燃、易爆、腐蚀性、有毒有害物品或接触带电设备进行实验,应特别注意规范操作,注意防护;若发生意外,要保持冷静,并及时向指导教师和管理人员报告,不得自行处理。
仪器设备发生故障和损坏,应立即停止实验,并主动向指导教师报告,不得自行拆卸查看和拼装。
八、实验完毕,应清理好实验仪器设备并放回原位,清扫好实验现场,经指导教师检查认可并将实验记录交指导教师检查签字后方可离去。
九、无故不参加实验者,应写出检查,提出申请并缴纳相应的实验费及材料消耗费,经批准后,方可补做。
十、自选实验,应事先预约,拟订出实验方案,经实验室主任同意后,在指导教师或实验技术人员的指导下进行。
十一、实验室内一切物品未经允许严禁带出室外,确需带出,必须经过批准并办理手续。
学生所在学院:专业:班级:。