硅光电池构造原理图
- 格式:doc
- 大小:35.50 KB
- 文档页数:1
硅光电池实验报告本实验主要介绍了硅光电池的基本工作原理和实验步骤,以及实验结果与分析。
一、实验目的1.了解硅光电池的基本原理和结构。
2.通过实验测量硅光电池的电流和电压,了解其基本特性。
3.利用测量结果计算硅光电池的效率。
二、实验原理硅光电池是一种将太阳能转化为电能的器件。
其基本原理是利用硅的P-N结,将太阳能转换成电能。
硅光电池的基本结构如图1所示。
太阳能照射在硅光电池的P-N结上,使之内部产生电子和空穴,形成电荷对。
由于P-N结两侧的导体是一个正极,一个负极,所以电荷对被分离开来,形成电流。
这就完成了将太阳能转换为电能的过程。
三、实验步骤1.将硅光电池连接到直流电源上,设定电源的电压为0V。
2.打开电源开关,调节电源输出电压,从0V开始,每隔0.1V记录一次硅光电池的输出电流和电压。
3.将步骤2中记录的数据绘制出输出电压与输出电流的关系曲线。
4.根据输出电流和电压的数据,计算硅光电池的效率。
四、实验结果与分析从图中可以看出,当硅光电池的输出电压逐渐增加时,输出电流也逐渐增加。
当输出电压到达0.4V时,输出电流达到了最大值,此时的最大输出电流为1.56mA。
随后,随着输出电压的进一步增加,输出电流逐渐减小,直到输出电压增长到0.52V时,输出电流降到了0。
根据以上实验数据可以计算硅光电池的效率。
所谓硅光电池的效率,就是指将太阳能转换成电能的比率。
硅光电池的效率 = 输出功率 / 太阳能照射的面积输出功率可以根据实验数据计算出来:最大输出电流 I = 1.56mA输出功率 P = V * I = 0.624mW太阳能照射的面积一般是由硅光电池的面积来决定的。
假设本实验使用的硅光电池面积为200mm^2,则太阳能照射的面积为0.02dm^2。
硅光电池的效率η = 0.624mW / 0.02dm^2 = 31.2%五、实验结论通过本次实验,我们深入了解了硅光电池的基本原理和结构,掌握了硅光电池的测量方法,以及计算其效率的方法。
硅光电池特性研究实验【实验原理】在p 型硅片上扩散一层极薄的n 型层,形成pn 结,再在该硅片的上下两面各制一个电极(其中光照面的电极成“梳状”,并在整个光照面镀上增透膜,利于光的入射),这样就构成了硅光电池,如图5.7.1(a)所示。
光电池的符号见图5.7.1(b)。
当光照射在硅光电池的光照面上时,若入射光子能量大于硅的能隙时,光子能量将被半导体吸收,产生电子一空穴对。
它们在运动中一部分重新复合,其余部分在到达pn 结附近时受pn 结内电场的作用,空穴向p 区迁移,使p 区显示正电性,电子向n 区迁移,使n 区带负电,因此在pn 结上产生电动势。
如果在硅光电池两端连接电阻,回路内就形成电流,这是硅光电池发生光电转换的原理。
硅光电池(以下简称光电池)的简化等效电路如图5.7.2所示。
(1)在无光照时,光(生)电流0ph I =,光电池可以简化为二极管如图5.7.3。
根据半导体理论,流经二极管的电流d I 与其两端电压的关系符合以下经验公式0(1)V d I I I e β==- (5.7.1) 式中:β和0I 是常数。
(2)有光照时,ph I >o ,光电池端电压与电流的关系为0(1)V d ph ph I I I I e I β=-=-- (5.7.2)由式(5.7.2),可以得到以下结论:①当外电路短路时,短路电流sc ph I I =-,光电流全部流向外电路。
②当外电路开路时,开路电压1ln 1ph oc o I V I β⎡⎤=+⎢⎥⎣⎦即1ln 1sc oc o I V I β⎡⎤=+⎢⎥⎣⎦,开路电压oc V 与短路电流sc I 满足对数关系;如果sc I 与光通量(或照度)有线性关系,则oc V 与光通量也满足对数关系。
由于二极管的分流作用,负载电阻愈大,光电池的输出电流愈小,实验可以证明这时输出电压却愈大。
因此,在入射光能量不变化的情况下,要从光电池获取最大功率,负载电阻要取恰当的值。
实验5 硅光电池基本特性的研究硅光电池又称光生伏特电池,简称光电池.它是一种将太阳或其他光源的光能直接转换成电能的器件.由于它具有重量轻、使用安全、无污染等特点,在目前世界性能源短缺和环境保护形势日益严峻的情况下,人们对硅光电池寄予厚望.硅光电池很可能成为未来电力的重要来源,同时,硅光电池在现代检测和控制技术中也有十分重要的地位,在卫星和宇宙飞船上都用硅光电池作为电源.本实验对硅光电池的基本特性做初步研究.一.实验目的1. 了解硅光电池的基本结构及基本原理.2. 研究硅光电池的基本特性:3.硅光电池的开路电压和短路电流以及它们与入射光强度的关系;4.硅光电池的输出伏安特性等。
二. 实验仪器YJ-CGQ-I典型传感特性综合实验仪、光源、负载电阻箱.数字万用表.连接线1. 实验装置实验装置由光源和硅光电池两部分组成, 如图1所示.图12. 负载电阻箱如图2所示.图2三. 实验原理1.硅光电池的基本结构.硅光电池用半导体材料制成,多为面结合PN结型,靠PN结的光生伏特效应产生电动势.常见的有硅光电池和硒光电池.在纯度很高、厚度很薄(0.4mm)的N型半导体材料薄片的表面,采用高温扩散法把硼扩散到硅片表面极薄一层内形成P层,位于较深处的N层保持不变,在硼所扩散到的最深处形成PN结.从P层和N层分别引出正电极和负电极,上表面涂有一层防反射膜,其形状有圆形、方形、长方形,也有半圆形.硅光电池的基本结构如图3所示.图32.硅光电池的基本原理当两种不同类型的半导体结合形成PN结时.由于分界层(PN结)两边存在着载流子浓度的突变,必将导致电子从N区向P区和空穴从P区向N区扩散运动,扩散结果将在PN结附近产生空间电荷聚集区,从而形成一个由N区指向P区的内电场.当有光照射到PN结上时,具有一定能量的光子,会激发出电子-空穴对.这样,在内部电场的作用下,电子被拉向N区,而空穴被拉向P区.结果在P区空穴数目增加而带正电,在N区电子数目增加而带负电,在PN结两端产生了光生电动势,这就是硅光电池的电动势.若硅光电池接有负载,电路中就有电流产生.这就是硅光电池的基本原理.单体硅光电池在阳光照射下,其电动势为0.5-0.6V,最佳负荷状态工作电压为0.4-0.5V,根据需要可将多个硅光电池串并联使用.3.硅光电池的光电转换效率硅光电池在实现光电转换时,并非所有照射在电池表面的光能全部被转换为电能.例如,在太阳照射下,硅光电池转换效率最高,但目前也仅达22%左右.其原因有多种,如:反射损失;波长过长的光(光子能量小)不能激发电子空穴对,波长过短的光固然能激发电子-空穴对,但能量再大,一个光子也只能激发一个电子-空穴对;在离PN较远处被激发的电子-空穴对会自行重新复合,对电动势无贡献;内部和表面存在晶格缺陷会使电子-空穴对重新复合;光电流通过PN结时会有漏电等.4. 硅光电池的基本特性4.1 硅光电池的开路电压与入射光强度的关系硅光电池的开路电压是硅光电池在外电路断开时两端的电压,用U∞表示,亦即硅光电池的电动势.在无光照射时,开路电压为零.硅光电池的开路电压不仅与硅光电池材料有关,而且与入射光强度有关,而且与入射光强度有关.在相同的光强照射下,不同材料制做的硅光电池的开路电压不同.理论上,开路电压的最大值等于材料禁带宽度有1/2.例如,禁带宽度为1.1eV的硅做硅光电池,开路电压为0.5-0.6V.对于给定的硅光电池,其开路电压随入射光强度变化而变化.其规律是:硅光电池开路电压与入射光强度的对数成正比,即开路电压随入射光强度增大而增大,但入射光强度越大,开路电压增大得越缓慢.4.2 硅光电池的短路电流与入射光的关系硅光电池的短路电流就是它无负载时回路中电流,用I SC表示.对给定的硅光电池,其短路电流与入射光强度成正比.对此,我们是容易理解的,因为入射光强度越大,光子越多,从而由光子激发的电子-空穴对越多,短路电流也就越大.4.3在一定入射光强度下硅光电池的输出特性当硅光电池两端连接负载而使电路闭合时,如果入射光强度一定,则电路中的电流I和路端电压U均随负载电阻的改变而改变,同时,硅光电池的内阻也随之变化.硅光电池的输出伏安特性曲线如图4所示.图4中,I SC 为U =0,即短路时的电流,I SC .U∞为I=0,即开路时的路端电压,也就是硅光电池在该入射光强度下的开路电压,曲线上任一点对对应的I 和U 的乘积(在图中则是一个矩形的面积),就是硅光电池在相应负载电阻时的输出功率P .曲线上有一点M ,它的对应I mp 和U mp 的乘积(即图中画斜线的矩形面积)最大.可见,硅光电池仅在它的负载电阻值为U mp 和Imp 值时,才有最大输出功率.这个负载电阻称为最佳负载电阻,用R mp 表示.因此,我们通过研究硅光电池在一定入射光强度下的输出特性,可以找出它在该入射光强度下的最佳负载电阻.它在该负载电阻时工作状态为最佳状态,它的输出功率最大.4.4硅光电池在一定入射光强度下的曲线因子(或填充因子)F ·F曲线因子定义式为F ·F =(U mp I mp )/(U ∞I SC )我们知道,在一定入射光强度下,硅光电池的开路电压U ∞和短路电流I SC 是一定的.而U mp 和I mp 分别为硅光电池在该入射光强度下输出功率最大时的电压和电流.可见,曲线因子的物理意义是表示硅光电池在该入射光强度下的最大输出效率.从硅光电池的输出伏安特性曲线来看,曲线因子F ·F 的大小等于斜线矩形的面积(与M 点对应)与矩形I SC U ∞的面积(与M 点对应)之比.如果输出伏安特性曲线越接近矩形,则M 与M ′就越接近重合,曲线因子F · F 就越接近1,硅光电池的最大输出效率就越大.四.实验内容与步骤1. 硅光电池基本常数的测定(1) 测定在一定入射光强度下硅光电池的开路电压U∞和短路电流ISC.调节光源与硅光电池处于适当位置不变.b.测出硅光电池的开路电压U∞c.测出硅光电池的短路电流ISC.(2) 测定硅光电池的开路电压和短路电流与入射光强度的关系.a.光源与硅光电池正对时,测出开路电压U∞1和短路电流ISC1.b.转动硅光电池一定角度(如15o)测出U∞2和ISC2.c.转动硅光电池角度为30o、45o、60o、75o、90o时,测出不同位置下的U∞和ISC.d. 自拟数据表格,并用坐标纸画出ISC—Ө及U∞—Ө曲线.2. 在一定入射光强度下,研究硅光电池的输出特性.保持光源和硅光电池处于适当的位置不变,即保持入射光强度不变.(1) 测量开路电压U∞和短路电流ISC.(2) 分别测出不同负载电阻下的电流I和电压U.(3) 根据U∞、ISC及一系列相应的R、U、I值.填入自拟表格中.(4) 计算在该入射光强度下,与各个R相对应的输出功率P=IU,求出最大输出功率P max,以及相应的硅光电池的最佳负载电阻Rmp、Ump、Imp值.(5) 作P—R及输出伏安特性I—U曲线.(6) 计算曲线因子F·F=(UmpImp)/(U∞ISC).。
晶体硅太阳电池工作原理及示意图太阳辐射能光子转变为电能的过程,叫“光生伏打效应”,人们把能产生“光生伏打效应”的器件称为“光伏器件”;因为半导体P-N结器件在阳光下的光电转换效率最高,所以通常把这类光伏器件称为“太阳电池”。
晶体硅太阳电池是指:单晶硅片为基体的单晶硅太阳电池与多晶硅晶片为基体的多晶硅太阳电池的总称。
晶体硅太阳电池是具有P-N结结构的半导体器件。
太阳电池吸收太阳光能后,激发产生电子、空穴对,电子、空穴对被半导体内部P-N结自建电场分开,电子流入n区,空穴流入p区,形成光生电场。
将晶体硅太阳电池的正、负电极与外接电路连接,外接电路中就有光生电流流过。
制造太阳电池的半导体材料已知的有十几种,因此太阳电池的种类也很多;目前技术最成熟,并最具有商业价值的太阳电池要算晶体硅太阳电池,即单晶硅太阳电池和多晶硅太阳电池的统称,商品化太阳电池市场80%是晶体硅太阳电池。
太阳电池发电直接利用取之不竭、无处不有的太阳能,不消耗工质、不排放废物、无转动、无噪声,是一种理想的清洁安全新能源。
使用上具有结构简单、易安装、建设周期短,维护简便甚至免维护,应用范围广等优点。
通常将多个太阳电池片串、并联成一定电性能的太阳电池串,封装成具有机械强度的太阳电池组件。
太阳电池方阵是太阳电池的组合体,将多个组件固定在支架上,用导线连在一起,产生系统所需的电压和电流。
全太阳能发电系统原理太阳能发电系统原理太阳能发电系统由太阳能电池组、太阳能控制器、蓄电池(组)组成。
如输出电源为交流220V或110V,还需要配置逆变器。
各部分的作用为:(一)太阳能电池板:太阳能电池板是太阳能发电系统中的核心部分,也是太阳能发电系统中价值最高的部分。
其作用是将太阳的辐射能力转换为电能,或送往蓄电池中存储起来,或推动负载工作。
(二)太阳能控制器:太阳能控制器的作用是控制整个系统的工作状态,并对蓄电池起到过充电保护、过放电保护的作用。
在温差较大的地方,合格的控制器还应具备温度补偿的功能。
硅光电池的应用原理图1. 硅光电池的概述硅光电池(Silicon Photovoltaic Cell),简称硅光电池或光伏电池,是一种将光能转化为电能的器件。
它由特定材料制成,利用光子的能量使电子从一个特定能级跃迁到另一个特定能级,从而产生电流。
硅光电池具有广泛的应用领域,包括太阳能发电、电池充电、电子设备供电等。
2. 硅光电池的结构硅光电池通常由以下几个部分组成: - 正负电极:硅光电池上有两个电极,分别是正负极。
正极通常由N型硅制成,负极通常由P型硅制成。
-P-N 联结:正负电极之间的区域形成了P-N结,也称为PN联结。
当光子进入PN结时,可以导致电子从N型区域跃迁到P型区域,从而形成电流。
- 反射层:硅光电池的背面通常有一个反射层,用来反射那些未被吸收的光线,以提高光的利用率。
- 表面覆层:硅光电池的表面通常覆盖有一个薄膜层,用来降低表面反射和保护电池表面。
3. 硅光电池的工作原理硅光电池的工作原理可以简化为以下几个步骤: 1. 光的吸收:硅光电池表面的PN结会吸收光线,吸收光线的能量会导致电子从N型区域跃迁到P型区域。
2.电子-空穴对的生成:光子的能量会导致硅材料中电子和空穴的生成。
电子会从N型区域穿过PN结向P型区域移动,形成电流。
3. 电流输出:经过电极的导线,电流可以外接到其他电子设备中进行供电。
4. 硅光电池的应用领域硅光电池具有多种应用领域,以下是其中几个典型应用: - 太阳能发电:硅光电池可以利用太阳光的能量直接转化为电能,用于发电。
- 电池充电:硅光电池可以用于充电设备,将光能转化为电能,为电池充电。
- 电子设备供电:硅光电池可以用于为各种电子设备供电,如计算机、手机、手表等。
5. 硅光电池的优势和不足5.1. 优势•环保节能:硅光电池的发电过程不产生污染物,属于清洁能源。
•可再生能源:太阳光是可再生的,因此硅光电池可以持续利用太阳能进行发电。
•寿命长:硅光电池的使用寿命较长,通常可以达到数十年。
硅光电池的原理及应用硅光电池原理硅光电池是一种利用光对半导体材料的能量转化而成电能的器件。
其原理基于光电效应,当光照射到半导体材料上时,光子会激发半导体中的电子,使其跃迁到导带中,从而产生电流。
硅光电池的基本结构由P型硅、N型硅和P-N结组成。
当光子击中P-N结时,会产生电子和空穴对的形式,随后通过P-N结的电场力将电子和空穴分离,并产生电压差,从而形成电流。
硅光电池的性能主要取决于以下几个因素: - 光吸收能力:硅光电池对光的吸收能力决定了其能够转换的光能量。
- 转换效率:硅光电池的转换效率是指光能转化为电能的比例。
- 寿命和稳定性:硅光电池的使用寿命和稳定性决定了其长期可靠性和经济性。
硅光电池的工作原理可以用下图来说明:光子(太阳光) -> P-N结 -> 电子和空穴对 -> 电场力 -> 电流硅光电池的应用硅光电池作为一种可再生能源的转换器件,在现代生活中有着广泛的应用。
1. 太阳能发电硅光电池在太阳能发电领域起到了至关重要的作用。
太阳能光伏发电系统利用硅光电池将太阳辐射转化为直流电能,通过逆变器将直流电转换为交流电,从而满足日常生活和工业生产的电能需求。
太阳能发电具有环保、可再生的特点,可以有效减少传统化石能源的使用。
2. 太阳能充电器由于硅光电池可以将太阳能转化为电能,因此它被广泛应用于太阳能充电器中。
太阳能充电器可以通过吸收阳光来为各种电子设备充电,如手机、平板电脑、无线耳机等。
太阳能充电器可以在户外旅行、露营以及没有电源的地方为电子设备提供可靠的电源,方便实用。
3. 太阳能路灯硅光电池还常常用于太阳能路灯的设计中。
太阳能路灯一般由太阳能电池板、电池、灯具等组成。
白天,太阳能电池板会将太阳能转换为电能,储存到电池内;晚上,太阳能电池板会自动感应到光线不足,从电池中释放储存的电能驱动灯具发光。
太阳能路灯不需要传统的电力供应,节省了能源消耗,并且具有环保、节能的优势。
硅光电池原理硅光电池是利用半导体材料的光电转换原理制成的太阳能电池,其主要成分是纯度高达99.999%的硅晶体。
硅晶体在受到光照下会产生能量传导的效应,从而转换为电流输出。
硅光电池的结构由p型和n型硅组成的p-n结构的太阳能电池。
p型硅和n型硅的本征半导体浓度不同,故在两种材料接触的地方形成一个pn结。
在这个结点区域中,p区的材料富余正离子,n区的材料富余负离子。
当硅光电池受到光照后,光子的能量会使得硅中的电子受激发而离开原来的位置,从而产生了电子空穴对。
在p-n结区域,受光子激发的电子在电场力的作用下会向n型硅离开p-n结,空穴反之。
这样,p-n结上面的电子和空穴的流动形成了一个电池的正负极,产生了电流和电压输出。
这种构成的太阳能电池是硅太阳能电池。
硅光电池中的输出功率密度是指在单位面积上输出电能的能量。
这个值可以通过将硅光电池的输出电压和输出电流相乘来获得。
硅光电池的输出功率密度与光电转换效率和太阳能电池的面积有关。
提高硅光电池的输出功率密度需要提高其光电转换效率或扩大太阳能电池的面积。
硅光电池是利用半导体材料的光电转换原理制成的太阳能电池。
硅光电池的机理是通过在p-n结区域中产生电子-空穴对,使得硅太阳能电池可以产生电流和电压输出。
硅光电池的光电转换效率和输出功率密度是两个关键性能指标,这些指标取决于许多因素,包括光照强度,温度和制造工艺等。
硅光电池是当前最为广泛应用的太阳能电池,其广泛应用是因为硅材料的独特性能。
硅材料的晶体结构为直接半导体,具有很好的光谱响应特性,同时还具有优良的电特性和化学稳定性。
与其他太阳能电池相比,硅光电池有许多优势,包括成本低廉、长期稳定性好、可靠性高以及容易大规模生产等。
硅光电池是目前最主要的太阳能电池之一,已经在许多国家和地区被广泛应用于太阳能发电场、太阳能家电和太阳能充电器等领域。
硅光电池的性能因素主要包括硅材料的质量、太阳辐射、温度、制造工艺和光谱响应等因素。
实验四硅光电池的特性测试一、实验目的:1.熟悉硅光电池的结构与工作原理;2.掌握实验测试硅光电池光电特性的方法;3.了解硅光电池的光电特性。
二、实验原理:硅光电池按基底材料不同分2DR型和2CR型。
2DR型硅光电池是以P型硅作基底(即在本征型半导体中掺入三价元素硼、镓等), 然后在基底上扩散磷而形成N型并作为受光面。
2CR型光电池则是以N型作基底(在本征型硅材料中掺入五价元素磷、砷等), 然后在基底上扩散而形成P型并作为受光面。
构成P-N结后, 再经过各种工艺处理, 分别在基底和光敏面上制作输出电极, 涂上二氧化硅作保护, 即成光电流。
如图4-1(a)所示。
图4-1 硅光电池结构及工作原理图光电池的主要功能是在不加偏置的情况下能将光信号转换为电信号。
硅光电池的工作原理如图4-1(c)所示。
有光照时, 光电池外接上负载电阻RL, 此时在P-N结内出现两种方向相反的电流: 一种是光激发产生的电子-空穴对, 在内建电场的作用下, 形成的光生电流Ip, 它与光照有关, 其方向与P-N结反向饱和电流I0相同;另一种是光生电流Ip流过负载电阻RL产生电压降, 相当于在P-N结施加正向偏压, 从而产生正向电流ID, 总电流是两者之差。
即:三、实验仪器及部件:光电池、直流稳压电源、采样电阻、照度测量器件、照度表、光源、微安表、F/V 表。
四、实验步骤:1.了解所需单元、部件在实验仪上的位置、观察光电池的结构。
2.测量光电池的短路电流:按图4-2接线, 装上光源, 对准光电池, 关闭发光管电源, 移出遮光罩, 光电池完全被遮盖, 微安表显示的电流值即为暗电流, 即照度为0时。
开启光源, 改变照度(方法如实验一), 并记录电流表的读数填入下表, 作出照度—电流曲线。
表4-1 短路电流与光照度关系表照度(Lx ) 0 200 400 600 800 1000 电流(uA )3.测量光电池的开路电压:按图4-3接线, 装上电源, 对准光电池, 关闭发光管电源, 移出遮光罩, 光电池完全被遮盖, 电压表显示的电压为照度为0时的电压。
实验4.3硅光电池的光照特性太阳能是一种清洁能源、绿色能源,世界各国都十分重视对太阳能的利用。
硅光电池是一种典型的太阳能电池,在日光的照射下,可将太阳辐射能直接转换为电能,是应用极其广泛的一种光电传感器。
[ 僂ⴤⲺ]1.了解硅光电池的基本特性;2.测绘硅光电池的光照特性曲线;3.学习用电流补偿法测定硅光电池的短路电流及负载电流。
[ 僂 ⨼]半导体受到光的照射而产生电动势的现象,称为光生伏特效应。
硅光电池是根据光生伏特效应的原理做成的半导体光电转换器件。
硅光电池的结构如图4.3.1所示。
在一块N型硅片上用扩散方法掺入一很薄的P 型层,形成PN结,在P型层引出正极引线,在N型层引出负极引线即成。
其形状有圆盘形、长方形等。
图4.3.1硅光电池结构示意图当光照射到P型层的外表面时,光可透过P区进入N区,照射到PN结。
当光子的能量大于硅的禁带宽度时,光子能量便被硅晶格所吸收,价带电子受激跃迁到导带,形成自由电子,而价带则形成自由空穴,使得PN结两边产生电子-空穴对,如图4.3.2所示。
凡是扩散到PN结部分形成的内电场的电子-空穴对,都要受到内电场E的作用,电子被411推向N区,空穴被推向P区,从而产生P为正N为负的电动势。
若接入一负载,只要有光不断照射,电路中就有持续电流通过,从而实现了光电转换。
图4.3.2光生伏特示意图光电池在一定光照下,负载无限大(开路)时,其极间电压称为开路电压,开路电压U oc的大小与光照强度L的对数呈线性关系,如图4.3.3(a)(b)所示。
负载电阻为零(即短路)时,光电池的输出电流称为短路电流。
短路电流I sc的大小与光照强度L呈线性关系,如图4.3.3(c)所示。
光电池的输出端接一负载电阻时,有对应的端电压、负载电流和输出功率。
负载电阻R为最佳匹配电阻时,输出功率P最大,能量转换效率最高,如图4.3.3(d)所示。
这是在一些实际应用中必须考虑的问题。
图4.3.3硅光电池光照特性曲线用点光源照射光电池时,光照强度L与光电池受光面到光源距离的平方r2成反比。