加速度传感器主要参考性能指标
- 格式:doc
- 大小:53.50 KB
- 文档页数:3
振动试验中加速度传感器的选择导语:振动试验中,我们对控制点、监测点等的振动量值大多是通过加速度传感器采样得到的,该数值的正确性、可信性,直接影响到对试验的结果的判定。
影响振动试验中振动量值的正确获得,除了与传感器的安装位置、试件的安装等外,还跟传感器的技术指标有关,它是得到振动量值的最直接也是最重要的单元之一。
本文结合理论及实际经验,介绍振动试验中压电式加速度传感器的选择。
振动试验中,我们对控制点、监测点等的振动量值大多是通过加速度传感器采样得到的,该数值的正确性、可信性,直接影响到对试验的结果的判定。
影响振动试验中振动量值的正确获得,除了与传感器的安装位置、试件的安装等外,还跟传感器的技术指标有关,它是得到振动量值的最直接也是最重要的单元之一。
本文结合理论及实际经验,介绍振动试验中压电式加速度传感器的选择。
1.灵敏度压电式加速度传感器的灵敏度有两种表示方法,一个是电荷灵敏度Sq,另一个是电压灵敏度Sv,其电学特性等效电路如图1。
图1压电式加速度传感器的是电学特性等效电路压电片上承受的压力为F1=ma,在压电片的工作表面上产生的qa 与被测振动的加速度a成正比:即展开剩余85%Qa=Sqa其中,比例系数Sq就是压电式加速度传感器的电荷灵敏度,量纲是[pC/ms²]。
传感器的开路电压:Ua=Qa/Ca式中,Ca为传感器的内部电容量,对于一个特定的传感器来说,Ca为一个确定值。
所以也就是说,加速度传感器的开路电压Ua也与被测加速度a成正比,比例系数Sv就是压电式加速度传感器的电压灵敏度,量纲是[mV/ms²]。
Ua=(Sq/Ca)*a在压电式加速度传感器的使用说明书上所标出的电压灵敏度,一般是指在限定条件下的频率范围内的电压灵敏度Sv。
在通常条件下,当其它条件相同时,几何尺寸较大的加速度传感器有较大的灵敏度。
使用说明书上还会给出最小加速度测量值,也称最小分辨率,考虑到后级放大电路噪声问题,应尽量远离最小可能值,以确保最佳信噪比。
认识加速度计的关键指标根据某一具体应用选择加速度计最困难的地方就是真正理解加速度计规格参数的实际意义。
通常用户对其测试要求非常了解,但是如何选择合适的加速度计型号来满足这些测试要求却有些困难。
加速度计制造商常常专注于产品的所有规格参数,并力求产品性能是最好的。
本文对制造商对日常使用的加速度计规格参数做一个详细描述及解释。
灵敏度加速度计的灵敏度,有时候称作加速度计的“比例因子”,它是传感器电输出和机械输入之间的比率(注意:传感器通常定义为把一种能量转换成另外一种形式的能量的设备,加速度计就是一种把机械加速度转换成比例的电信号的传感器)。
通常使用mV/g或pC/g来表示这一比率,它仅仅在某一频率点下有效,按着惯例一般是100Hz。
由于大部分加速度计会或多或少受温度影响,灵敏度同样只在某一很窄的温度范围内有效,通常是25±5O C。
此外,灵敏度只在某一加速度幅值下有效,通常是5g或10g。
灵敏度有时被定义为一个带有允许误差范围的数值,通常是±5%或10%,这个保证了用户使用的加速度计灵敏度在灵敏度标称值的允许误差范围内。
几乎所有情况下,加速度计都会附带一份校准报告,列出了准确的灵敏度。
当谈到频率响应的百分比或dB允许误差范围时,灵敏度被称作为“参考灵敏度”。
详见下面的频率响应章节。
当讨论横向灵敏度时,灵敏度又被称作为“轴向灵敏度”。
详见下面的横向灵敏度章节。
尽管灵敏度有那么多的限制条件,但是在设置信号调理器或数据采集系统时,灵敏度数值是使用最频繁的。
信号调理器或数据采集使用这个数值来处理及解释加速度计的输出信号。
频率响应同灵敏度类似,频率响应也是告诉用户加速度计的“比例因子”,不过是在变化的频率。
频率响应是在传感器的整个频率范围内定义灵敏度的大小。
由于很少规定相位响应,因而称为“幅值响应”更为准确。
频率响应通常定义为相对于100Hz时的灵敏度(参考灵敏度)的一个允许误差范围。
这个误差范围可以定义为百分比或dB,典型的误差范围有±10%,±1dB及±3dB。
传感器的灵敏度,低频噪声特性和动态响应范围工程振动量值的物理参数常用位移、速度和加速度来表示。
由于在通常的频率范围内振动位移幅值量很小,且位移、速度和加速度之间都可互相转换,所以在实际使用中振动量的大小一般用加速度的值来度量。
常用单位为:米/秒2(m/s2),或重力加速度(g)。
描述振动信号的另一重要参数是信号的频率。
绝大多数的工程振动信号均可分解成一系列特定频率和幅值的正弦信号,因此,对某一振动信号的测量,实际上是对组成该振动信号的正弦频率分量的测量。
对传感器主要性能指标的考核也是根据传感器在其规定的频率范围内测量幅值精度的高低来评定。
电荷输出型加速度计不适合用于低频测量由于低频振动的加速度信号都很微小,而高阻抗的小电荷信号非常容易受干扰;当测量对象的体积越大,其测量频率越低,则信号的信噪比的问题更为突出。
因此在目前带内置电路加速度传感器日趋普遍的情况下应尽量选用电噪声比较小,低频特性优良的低阻抗电压输出型压电加速度传感器。
传感器的低频截止频率与传感器的高频截止频率类同,低频截止频率是指在所规定的传感器频率响应幅值误差(±5%,±10%或±3dB)内传感器所能测量的最低频率信号。
误差值越大其低频截止频率也相对越低。
所以不同传感器的低频截止频率指标必须在相同的误差条件下进行比较。
低阻抗电压输出型传感器的低频特性是由传感器敏感芯体和内置电路的综合电参数所决定的。
其频率响应特性可以用模拟电路的一阶高通滤波器特性来描述,所以传感器的低频响应和截止频率完全可以用一阶系统的时间常数来确定。
从实用角度来看,由于传感器的甚低频频率响应的标定比较困难,而通过传感器对时间域内阶跃信号的响应可测得传感器的时间常数;因此利用传感器的低频响应与一阶高通滤波器的特性几乎一致的特点,通过计算可方便地获得传感器的低频响应和与其对应的低频截至频率。
传感器的灵敏度,低频噪声特性和动态响应范围。
从三大应用角度深度剖析MEMS加速度计的关键指标MEMS加速度计是一种使用微机电系统(MEMS)技术制造的加速度测量装置。
它广泛应用于汽车、消费电子、航空航天等领域。
从三大应用角度来看,MEMS加速度计的关键指标主要包括精度、线性度和频率响应。
首先,精度是MEMS加速度计的重要指标之一、精度可以衡量传感器在测量中产生的误差大小。
对于加速度计来说,精度通常以百分比(%)或千分比(‰)来表示。
精度取决于传感器的制造工艺和设计,主要包括零点偏移、零点漂移和缩放因子误差。
零点偏移指的是传感器在无任何加速度时输出的电压或电流不为零。
零点漂移是指在长时间使用后,传感器在静态条件下输出的漂移现象。
缩放因子误差是指传感器的增益因子不准确,造成输出的加速度值与实际值存在偏差。
在实际应用中,需要根据具体的需求选择适当的精度等级。
其次,线性度是MEMS加速度计的另一个关键指标。
线性度指的是传感器在一定范围内,输出信号与输入加速度之间的比例关系是否符合线性关系。
线性度通常以百分比(%)来表示,表示输出信号与输入加速度之间的最大偏差。
线性度的好坏取决于传感器的设计和制造质量。
较高的线性度意味着传感器能够更准确地测量加速度。
最后,频率响应是MEMS加速度计的另一个重要指标。
频率响应指的是传感器在不同频率下对加速度信号的响应能力。
频率响应通常以赫兹(Hz) 或角频率 (rad/s) 来表示。
传感器的频率响应取决于其固有机械和电子特性。
高频率响应意味着传感器能够检测到高频振动或快速改变的加速度。
在不同应用领域中,需要根据实际需求选择适当的频率响应范围。
综上所述,MEMS加速度计的关键指标包括精度、线性度和频率响应。
精度衡量传感器测量误差的大小,线性度表征传感器输出信号与输入加速度之间的比例关系,频率响应描述传感器对不同频率下加速度信号的响应能力。
这些关键指标对于MEMS加速度计的性能和应用具有重要意义。
在选择和使用MEMS加速度计时,需要根据具体的应用需求和控制要求来综合考虑这些指标。
加速度传感器介绍加速度传感器的简述北京航空航天⼤学仪器科学与光电⼯程学院夏伟强1.加速度传感器的意义加速度传感器是⼀种能够测量加速⼒的电⼦设备,⼴泛⽤于航空航天、武器系统、汽车、消费电⼦等。
通过加速度的测量,可以了解运动物体的运动状态。
可应⽤在控制,⼿柄振动和摇晃,仪器仪表,汽车制动启动检测,地震检测,报警系统,玩具,结构物、环境监视,⼯程测振、地质勘探、铁路、桥梁、⼤坝的振动测试与分析;⿏标,⾼层建筑结构动态特性和安全保卫振动侦察上。
2.加速度传感器的⼯作原理根据⽜顿第⼆定律:A(加速度)=F(⼒)/M(质量)。
只需测量作⽤⼒F就可以得到已知质量物体的加速度。
利⽤电磁⼒平衡这个⼒,就可以得到作⽤⼒与电流(电压)的对应关系,通过这个简单的原理来设计加速度传感器。
本质是通过作⽤⼒造成传感器内部敏感元件发⽣变形,通过测量其变形量并⽤相关电路转化成电压输出,得到相应的加速度信号。
3.加速度传感器主要技术指标a)量程。
⽐如测量车辆运动只需⼏⼗个g量程,但是测量武器系统的侵彻指标,就需要传感器的量程达10万g甚⾄更⼤。
b)灵敏度。
⼀般来说,越灵敏越好。
越灵敏的传感器对⼀定范围内的加速度变化更敏感,输出电压的变化也越⼤,这样就⽐较容易测量,从⽽获得更精确的测量值。
c)带宽。
主要指传感器可测量的有效频带。
对于⼀般只要测量倾⾓的应⽤,50HZ的带宽应该⾜够了,但是对于需要进⾏动态性能,⽐如振动,你会需要⼀个具有上百HZ带宽的传感器。
4.加速度传感器发展现状及发展趋势市场上占统治地位的加速度传感器是压电式、压阻式、电容式、谐振式等。
压阻式加速度传感器具有加⼯⼯艺简单,测量⽅法易⾏,等优点。
但是,温度效应严重,⼯作温度范围窄,并且灵敏度低,⼀般只有1mg左右,要继续提⾼灵敏度难度很⼤。
压电式加速度计信噪⽐⾼,灵敏度⾼,结构简单,但是信号处理电路较复杂,存在零漂现象不可避免,并且回零慢,不适宜连续测试。
微电容式加速度计具有结构简单、灵敏度⾼、动态特性好、抗过载能⼒⼤,易于集成,不易受温度影响,功耗低,但是,存在输出特性的⾮线性、寄⽣电容、分布电容对灵敏度的影响,以及信号处理电路复杂等问题。
加速度传感器主要技术指标1. 测量范围(Measurement Range):加速度传感器能够测量的加速度的范围。
常见的测量范围从几个g到几百g不等,其中1g等于地球上的重力加速度9.8m/s²。
2. 分辨率(Resolution):加速度传感器能够区分的最小加速度变化。
通常以m/s²或g为单位。
3. 灵敏度(Sensitivity):加速度传感器输出信号相对于输入加速度的变化率,常以mV/g或mV/m/s²表示。
灵敏度越高,传感器对于微小加速度的响应越快。
4. 零点偏移(Zero Offset):在没有加速度作用下,传感器输出的信号不为零。
零点偏移指的是传感器输出信号与零点之间的差值。
通常以mV为单位。
5. 频率响应(Frequency Response):加速度传感器能够测量的加速度变化的频率范围。
常见的频率范围从几Hz到几千Hz不等。
6. 噪声(Noise):传感器输出信号的不确定性。
传感器噪声越小,对于微小加速度的测量越精确。
7. 非线性度(Nonlinearity):传感器输出信号与输入加速度之间的偏差。
常表示为百分比或者以g为单位。
8. 温度稳定性(Temperature Stability):传感器在不同温度下的输出信号的变化范围。
温度稳定性越好,传感器的测量精度越高。
9. 动态测量范围(Dynamic Range):加速度传感器能够测量的最大加速度和最小加速度之间的比值。
动态测量范围越大,传感器能够测量的加速度范围越宽。
10. 失真(Distortion):因非线性效应导致的传感器输出信号与实际加速度之间的偏差。
失真常以百分比表示。
此外,加速度传感器还可能具有以下特殊技术指标:11. 反向振动抑制特性(Anti-vibration Characteristics):传感器在高频振动环境下的稳定性能。
反向振动抑制特性好的传感器能够减小振动对于测量结果的影响。
FEA-加速度传感器系列FEA-XX-YZZ-M1和M2系列测量范围:±0.5g,±1g,±2g,±3g,±6g,±18g,±50g。
测量轴数:单轴、双轴和三轴供电电压:5V,12V,24V,9-32V(可选)输出信号:0-5V,4-20mA,CANBUS,RS232,RS485,RS422,LED,LCD,开关量分辨率:10-5-10-7g(根据测量范围和精度等级而定)非线性:0.05%FS-1%FS(根据测量范围和精度等级而定)温度漂移:0.1mg-0.5mg/ ºC(根据测量范围和精度等级而定)工作温度范围:-40ºC -+80ºC防护等级:IP65-IP68(可选)频率响应:0.5-20Hz(可选)外壳:可选,见产品外壳与连接器,铝合金材料。
FEA-XX-YZZ-I1和I2系列测量范围:±0.5g,±1g,±2g,±3g,±6g,±18g,±50g。
测量轴数:单轴、双轴和三轴供电电压:5V,12V,24V,9-32V(可选)输出信号:0-5V,4-20mA,CANBUS,RS232,RS485,RS422,LED,LCD,开关量分辨率:10-3g-10-5g(根据测量范围和精度等级而定)非线性:0.5%FS-2%FS(根据测量范围和精度等级而定)温度漂移:0.5mg-3mg/ ºC(根据测量范围和精度等级而定)工作温度范围:-25ºC -+80ºC防护等级:IP65-IP68(可选)频率响应:0.5-20Hz(可选)外壳:可选,见产品外壳与连接器,铝合金材料。
FEA-XX-YZZ-C1和C2系列测量范围:±0.5g,±1g,±2g,±3g,±6g,±18g,±50g。
一、加速度传感器关键技术指标:二、测试要求:依据《中国地震行业标准(DB/T 10-)-数字强震动加速度仪》和《中国数字强震动台网技术规程》相关要求对仪器进行以下内容测试, 其测试具体检测方法参见《中国地震行业标准(DB/T 10-)-数字强震动加速度仪》中4.3传感器检验项目及检验方法。
(a)灵敏度将被测传感器固定在振动台台面中心, 其灵敏轴应与振动方向相平行。
振动台振动频率取传感器频带上限1/3, 波形为正弦波, 最大振幅为1.0g。
(b)线性度将被测传感器固定在振动台台面中心, 其灵敏轴应与振动方向相平行。
振动台频率取传感器频带上限1/3, 加速度分别为0.2g, 0.4g,0.6g, 0.8g, 1.0g, 1.2g, 1.4g, 1.6g, 1.8g, 2.0g。
(c)测量范围与满量程输出将被测传感器固定在振动台台面中心, 其灵敏轴应与振动方向相平行。
检测时振动台加速度设定为2.0g。
(d)噪声将加速度计固定在环境振动小于610 g基座上, 零位输出调到小于1mv, 加速度计输出用24位数据采集器在200sps采样率下统计2min。
(e)动态范围(f)幅频特征测试频率: 0.01, 0.05, 0.5, 3.2, 8.0, 20, 32, 64, 80, 92, 112(g)相频特征测试频率: 0.01, 0.05, 0.5, 3.2, 8.0, 20, 32, 64, 80, 92, 112(h)横向灵敏度比选择加速度计频带上限1/3频率点施加1.0g加速度进行检验。
以上所测内容均为一个方向测试内容, 另两个方向测试要求同上。
(i)温度稳定性及零位漂移其检测方法及要求应符合《GB 6587.2-86电子测试仪器温度试验》中Ⅲ组相关要求。
(温度范围为-20℃至60℃)(j)静态耗电电流。
加速度传感器原理与使用选择
在选择加速度传感器时,需要考虑以下几个因素:
1.测量范围:加速度传感器的测量范围是指它可以测量的加速度的最大值和最小值。
根据需要测量的物体运动状态,选择合适的测量范围。
2.精度:精度是指传感器测量结果与真实值之间的偏差。
通常以百分比或者最大偏差来表示。
选择精度较高的传感器可以提高测量结果的准确性。
3.输出类型:加速度传感器的输出类型可以是模拟信号或数字信号。
根据系统的要求和接口的兼容性,选择合适的输出类型。
4.尺寸和重量:加速度传感器尺寸和重量的大小对于特定应用场景很重要。
如果应用场景对于尺寸和重量有限制,选择体积小、重量轻的传感器。
5.工作温度范围:加速度传感器的工作温度范围是指它可以正常工作的环境温度范围。
根据应用场景的温度条件,选择具有合适工作温度范围的传感器。
6.耐久性和可靠性:加速度传感器需要具有较好的耐久性和可靠性,以保证长时间稳定工作。
选择经过可靠性测试和具有较长使用寿命的传感器。
7.电源和功耗:加速度传感器需要供电才能正常工作,而不同的传感器的电源要求和功耗也会有所不同。
根据系统的电源供给和功耗限制,选择合适的传感器。
总之,选择合适的加速度传感器需要综合考虑以上几个因素,根据应用场景的需求和约束条件来进行选择。
加速度传感器主要技术指标1.测量范围:加速度传感器的测量范围指的是能够准确测量的加速度范围。
通常以重力加速度(g)作为单位,常见的测量范围有±2g、±4g、±8g、±16g等。
选择合适的测量范围要根据具体应用需求而定,避免数据超出测量范围导致失真或损坏。
2.灵敏度:加速度传感器的灵敏度指的是单位加速度变化所引起的传感器输出变化。
一般以mV/g或mV/m/s²作为单位,越高代表灵敏度越高。
高灵敏度的传感器可以提供更精确的测量结果,但也容易受到噪音的影响。
3.频率响应:加速度传感器的频率响应指的是传感器能够测量的有效频率范围。
频率响应通常以Hz为单位,常见的范围为0-1000Hz或更高。
高频率响应对于测量快速加速度变化的场景非常重要。
4.噪音水平:加速度传感器的噪音水平是一个重要的指标,它影响了传感器的信号质量和测量精度。
噪音通常用加速度单位(g)表示,即m/s²。
噪音水平越低代表传感器测量结果更准确。
5.非线性误差:加速度传感器有一个称为非线性误差的指标,它描述了传感器输出与实际加速度之间的偏差。
非线性误差通常以百分比或最大误差(最大偏差值)来表示。
较小的非线性误差意味着较高的测量精度。
6.温度稳定性:加速度传感器的测量结果可能会受到温度变化的影响,因此温度稳定性是一个重要的指标。
它描述了传感器在温度变化时输出是否稳定。
常见的温度范围为-40°C至+125°C。
7.冲击和振动耐受性:加速度传感器常常用于测量冲击和振动,因此它们需要具备良好的冲击和振动耐受性。
这些指标通常以g为单位,描述了传感器可以承受的最大冲击和振动力的大小。
8.供电电压和功耗:加速度传感器的供电电压和功耗是设计和应用中需要考虑的重要因素。
供电电压通常为3.3V或5V,功耗越低代表传感器使用电池的续航时间越长。
9.接口:加速度传感器常常需要与其他设备进行数据交换,因此传感器的接口也是需要考虑的指标。
关于加速度指标的表示方法及测试方法黄正本文仅说明常用指标,对于相频响应、功率谱密度等指标,需要时另描述。
案例1MOI 7100加速度传感器1:频响表示方法1.1参考灵敏度,指在什么频率下(一般惯例是160Hz,或者100Hz),什么温度下(如果有温补要求),在多少加速度条件下,测试出来的灵敏度。
该灵敏度是校准值,是正确的。
例如,F=160Hz,幅值2G,FT810测试加速度计的得到的波长变化量为417.7pm,那么该单位为:285.35pc/g ;1.3频响的表示方法表示在幅值频率响应范围内,某频率处的灵敏度,相对于参考灵敏度(它是准确的),允许的一个误差范围;它可以用百分比表示,或者用dB表示;通常用±5%、±10%或者±1dB,±3dB;1)通常,频响的表示方法是采样图表的形式表示更为准确。
2)也可以采用如下的表示方法即:±5%和±3dB两个指标;尤其是产品指标不好的情况下,采用这种方式表示。
但是,特别强调一点,允许单调变化,如果不是单调变化,通常归也为指标很差。
也就是要么频响曲线缓慢上升或者下降(允许弯曲),但不应该是时大时小毫无规律。
1.4横向灵敏度理想情况下,与轴向垂直90度的方向的灵敏度,与参考灵敏度相比,应该是0%;但由于制造等原因,这个横向灵敏度可高达±5%。
2:频响的测试方法2.1按1/1倍频程或者1/3倍频程选择要测试的频率点;2.2 选择加速度幅值;2.3 按选定的频点,进行定频测试,每次测试一段时间,如100Hz时,测试20s,保存数据。
2.4数据分析1)对每个频点,可选择时域a)峰峰值or b)有效值,可通过平均的方式获取;也可以选择fft,对应频点的幅值;2)将所有的幅值Sai,和参考灵敏度所对应频点的幅值Sa0进行比较。
3)画图:纵坐标:(Sai-Sa0)/Sa0 * 100%,横坐标:对应的Sai的频点。
加速度传感器使用方法说明书1. 简介本说明书旨在向使用者介绍和指导加速度传感器的正确使用方法,以确保传感器的准确度和安全性。
请仔细阅读本说明书,并按照指示操作。
2. 产品概述加速度传感器是一种用于测量物体加速度的装置。
它能够将加速度转换为电信号输出,并提供给用户进行数据采集和分析。
3. 规格参数- 测量范围:±X g- 灵敏度:Y mV/g- 工作温度范围:-Z°C ~ +Z°C- 分辨率:W g4. 安全预防措施- 在使用加速度传感器之前,请确保周围环境清洁,避免传感器受到灰尘、油脂或其他杂质的污染。
- 避免将加速度传感器暴露在高温、高湿度或强磁场的环境中,以免影响传感器的性能。
- 在连接电缆和接口时,请确保传感器与采集设备之间的连接可靠并紧固,避免松动导致数据丢失或干扰。
- 定期检查传感器的外观和电缆连接,如发现损坏或异常情况,请及时进行维修或更换。
5. 使用步骤此处列出了使用加速度传感器的基本步骤,以供参考:步骤1:确保传感器与采集设备和电源正确连接,并确认各接口固定可靠。
步骤2:开启采集设备,通过软件或硬件设置传感器工作参数。
步骤3:将加速度传感器放置在需要测试的物体上,并通过夹具或胶粘剂固定住。
步骤4:启动采集设备,开始进行数据记录和分析。
步骤5:待测试完成后,停止采集设备并关闭电源。
步骤6:拆除传感器,将其存放在安全的地方。
6. 数据分析和应用加速度传感器提供的数据可以通过相应软件进行分析和应用。
根据需求,用户可以进行以下操作:- 数据图表绘制和曲线分析;- 震动信号处理和故障诊断;- 运动轨迹跟踪和姿态测量;- 工程结构监测和安全性评估。
7. 故障排除如果在使用加速度传感器时遇到以下问题,请按照以下步骤进行排查:问题1:数据采集异常或无法正常进行。
解决方案:检查传感器与采集设备的连接是否正常,确认接口固定可靠。
问题2:传感器灵敏度不符合预期。
解决方案:使用校准装置对传感器进行校准,确保灵敏度符合要求。
一、设计要求1、功能与用途加速度传感器在现代生产生活中被应用于许许多多的方面,如手提电脑的硬盘抗摔保护,另外一个用处就是目前用的数码相机和摄像机里,也有加速度传感器,用来检测拍摄时候的手部的振动,自动调节相机的聚焦。
而这些产品中由于要求对温度的干扰有很大的免疫力,其中采用的都是压电式加速度传感器。
压电加速度传感器还应用于汽车安全气囊、防抱死系统、牵引控制系统等安全性能方面,灵敏度是压电加速度传感器应用时候要考虑到的重要因素之一。
概括起来,加速度传感器可应用在控制,手柄振动和摇晃,仪器仪表,汽车制动启动检测,地震检测,报警系统,玩具,环境监视,工程测振、地质勘探、铁路、桥梁、大坝的振动测试与分析;鼠标,高层建筑结构动态特性和安全保卫振动侦察上。
2、指标要求分别用压电式传感器、电阻应变式传感器、电容传感器实现加速度的测量将非电量转化为电量输出。
二、设计方案及其特点依据压电效应、电阻应变效应以电容相关的物理参数及性质随外力而变化的特性,可制作成压电式加速度传感器、电阻应变式加速度传感器及电容式加速度传感器。
三种加速度传感器的设计及特点分别叙述如下:1、方案一压电式加速度传感器压电加速度测量系统结构框图如图1图1压电加速度传感器采用具有压电效应的压电材料作基本元件,是以压电材料受力后在其表面产生电荷的压电效应为转换原理的传感器。
这些压电材料,当沿着一定方向对其施力而使它变形时,内部就产生极化现象,同时在它的两个相对的表面上便产生符号相反的电荷;当外力去掉后,又重新恢复不带电的状态;当作用力的方向改变时,电荷的极性也随着改变。
电信号经前置放大器放大,即可由一般测量仪器测试出电荷(电压)大小,从而得出物体的加速度图2 压电式加速度计的幅频特性曲线加速度计的使用上限频率取决于幅频曲线中的共振频率图2。
方案二电阻应变式加速度传感器应变式加速度传感器主要用于物体加速度的测量。
其基本工作原理是:物体运动的加速度与作用在它上面的力成正比,与物体的质量成反比,即a=F/m。
一、测量仪表的根本性能1、准确度(1)精细度δ它明确仪表指示值的分散性,即对某一稳定的被测量,由同一个测量者,用同一个仪表,在相当短的时间内,连续重复测量屡次,其测量结果〔指示值〕的分散程度。
δ愈小,说明测量愈精细。
例如,某温度仪表的精细度δ℃℃。
精细度是随机误差大小的标志,精细度高,意味着随机误差小。
但是必须注意,精细度与准确度是两个概念,精细度高不一定准确。
(2)准确度ε它明确仪表指示值与真值的偏离程度。
例如,某流量表的准确度ε33/s。
准确度是系统误差大小的标志,准确度高,意味着系统误差小。
同样,准确度高不一定精细。
(3)准确度τ它是精细度与准确度的综合反映,准确度高,表示精细度和准确度都比拟高。
在最简单的情况下,可取两者的代数和,即τ=δ+ε。
准确度常以测量误差的相对值表示。
2、稳定性〔1〕稳定度指在规定时间内,测量条件不变的情况下,由于仪表自身随机性变动、周期性变动、漂移等引起指示值的变化。
一般以仪表精细度数值和时间长短一起表示。
例如,某仪表电压指示值每小时变化1.3V,如此稳定性可表示为1.3mV/h。
〔2〕影响量测量仪表由外界环境变化引起指示值变化的量,称为影响量。
它是由温度、湿度、气压、振动、电源电压与电源频率等一些外界环境影响所引起的。
说明影响量时,必须将影响因素与指示值偏差同时表示。
±10%。
二、传感器的分类和性能指标1、传感器的分类表1 传感器的分类表2 根本物理量与派生物理量表3 局部按工作原理分类的传感器3、传感器的性能指标(1)量程和X围量程是指测量上限和下限的代数差;X围是指仪表能按规定准确度进展测量的上限和下限的区间。
例如一个位移传感器的测量下限是-5mm,测量上限是+5mm,如此这个传感器的量程为5-〔-5〕=10mm,测量X围是-5mm~5mm。
(2)线性度传感器的输入-输出关系曲线与其选定的拟合直线之间的偏差。
(3)重复性传感器在同一工作条件下,输入量按同一方向作全量程连续屡次测量时,所得特性曲线间的一致程度。