传感器的基本特性与指标
- 格式:ppt
- 大小:1.12 MB
- 文档页数:46
传感器的基本特性传感器的基本特件是指传感器的输出与输入之间的关系。
由1—传感器洲量的参数一般有两种形式:一种是不随时间的变化而变化(或变化极其缓慢)的稳态信号,另“种是随N 间的变化而变化的动态信号。
因此传感器的基本特性分为静态特性和动态特性。
件感器的静态特性与指标如下:传感器的静态特件是指化感器输入信号处T低定状态时,其输出与输入之间呈现的关系。
表不力式中,y—一传感器输出量if一传感器输人员AL)——传感器的零位输出;A J——传感器的灵敏座,A:,A√”,A n为非线件项系数。
衡量静态待件的主要指标有精确度、稳定件、灵敏度、线性度、迟滞和可靠性等。
(1)精确皮精确度足反映测旦系统小系统误差和随机误差的综合评走指标。
与精确度有关的指挪有精密度、准确皮利精确度。
①精密度。
说刚测量系统指示值的分散租皮。
精密度反映j’随机误差的大小,精密度高则随机误差小。
②准确度。
说叫测量系统的输山值偏离真值的程度。
避确度炬系统误差大小的标志.脏确度高则系统误差小。
②精确度。
是准确度与ATMEL代理商精密度两者的总和,常用仪表的基本误差表不。
精确度而表示精密度和难确度都而。
Iql—4个的肘市例子有助十对牌确皮、精密度和精确度3个概念的理解。
图(a)表不准确度;苟而精密度低;图(b)大示精密度尚而淮确度低;阎(c)表不准确度和精密度部高。
即它的桔确陵尚。
(2)稳定性传感器的稳定性常用稳定度和影响系数表尔。
①稳定度。
是指在规定I:作条件范围和规定时间内,传感器性能保持不变的能力。
传感器在工作时,内部随机变动的因素很多,例如发生周期性变动、漂移或机械部分的摩擦等都会引起输出值的变化。
稳定度般用甫复件的数值羽I观测时间的长短表示。
例如,某传感器输出电压值每小时变化1.5rnv。
可4成稳定度为1.5n、v儿。
(9影响系数。
是指出于外界环境变化引起传感器输小值变化的足。
一般传感器都有给定的标准工作条件,如环境温度20℃、相对湿度60%、大气压力10].咒kPa、电源电压22()V等。
传感器的基本特性与指标传感器是将一种被测量的非电信号转换成电信号的设备。
通过测量环境的物理量或化学量,传感器能够获得相关数据,并将其转换为信号,方便进行处理或者显示。
以下是传感器的基本特性和指标。
1. 灵敏度(Sensitivity):传感器的灵敏度指的是传感器输出信号相对于输入信号的变化率。
较高的灵敏度表明传感器对于被测量物理量的微小变化更加敏感。
2. 响应时间(Response Time):传感器的响应时间是指传感器从接受到输入信号到输出信号达到稳定值所需的时间。
较快的响应时间意味着传感器能够及时检测到被测量物理量的变化。
3. 动态范围(Dynamic Range):传感器的动态范围指的是传感器能够测量的最大和最小输入信号之间的范围。
较大的动态范围表示传感器能够测量较大范围内的信号。
4. 线性度(Linearity):传感器的线性度是指传感器的输出信号与输入信号之间的关系是否为线性关系。
较好的线性度意味着传感器的输出信号与被测量物理量存在较好的线性关系。
5. 稳定性(Stability):传感器的稳定性指传感器在相同条件下,长时间内输出信号的一致性。
较好的稳定性意味着传感器的输出信号相对较稳定,能够准确反映被测量物理量的变化。
6. 分辨率(Resolution):传感器的分辨率是指传感器能够检测和测量的最小变化量。
较高的分辨率表示传感器能够检测到较小的变化。
7. 器件偏置(Offset):传感器的器件偏置指在无输入信号时传感器的输出信号值。
较小的器件偏置意味着传感器的输出信号在无输入信号时接近于零,具有较低的偏差。
8. 温度影响(Temperature Influence):传感器在不同温度下的输出信号的变化情况。
较小的温度影响意味着传感器能够在不同温度条件下保持较稳定的输出信号。
9. 线性范围(Linear Range):传感器所能够线性测量的输入信号范围。
在线性范围内,传感器的输出信号与输入信号的关系为线性关系。
1、静态特性指传感器本身具有的特征特点。
研究的几个主要指标有:线性度、精度、重复性、温漂等,通俗讲就是:非线性误差大小、线性误差大小如何、多次应用好坏、受温度变化误差大小等等。
2、动态特性指传感器在应用中输入变化时,它的输出的特性。
用它对某些标准输入信号的响应来表示,即自控理论中的传递函数。
实际工作中,便于工程项目中的采集、控制。
3、稳定性稳定性表示传感器在一个较长的时间内保持其性能参数的能力。
理想的情况是不论什么时候,传感器的特性参数都不随时间变化。
但实际上,随着时间的推移,大多数传感器的特性会发生改变。
这是因为敏感器件或构成传感器的部件,其特性会随时间发生变化,从而影响传感器的稳定性。
4、线性度通常情况下,传感器的实际静态特性输出是条曲线而非直线。
在实际工作中,为使仪表具有均匀刻度的读数,常用一条拟合直线近似地代表实际的特性曲线、线性度(非线性误差)就是这个近似程度的一个性能指标。
拟合直线的选取有多种方法。
如将零输入和满量程输出点相连的理论直线作为拟合直线;或将与特性曲线上各点偏差的平方和为最小的理论直线作为拟合直线,此拟合直线称为最小二乘法拟合直线。
5、重复性重复性是指传感器在输入量按同一方向作全量程连续多次变动时所得特性曲线不一致的程度。
各条特性曲线越靠近,说明重复性越好,随机误差就越小。
6、灵敏度灵敏度是指传感器在稳态工作情况下输出量变化△y对输入量变化△x的比值。
它是输出一输入特性曲线的斜率。
如果传感器的输出和输入之间显线性关系,则灵敏度S是一个常数。
否则,它将随输入量的变化而变化。
灵敏度的量纲是输出、输入量的量纲之比。
例如,某位移传感器,在位移变化1mm时,输出电压变化为200mV,则其灵敏度应表示为200mV/mm.当传感器的输出、输入量的量纲相同时,灵敏度可理解为放大倍数。
7、分辨力分辨力是指传感器可能感受到的被测量的最小变化的能力。
也就是说,如果输入量从某一非零值缓慢地变化。
传感器的基本特性概述一、静态特性是指被测输入量不随时间变化时传感器的输入——输出关系。
衡量传感器静态特性的主要指标有线性度、灵敏度、迟滞性、漂移等。
1.线性度理想传感器的输入y 与输入x 呈线性关系,则y =a1x 式中,1a为传感器的线性灵敏度。
实际传感器的输出y 与输入x 呈非线性关系,如不考虑迟滞和蠕变因素,则线性度有时也称非线性误差,用以衡量传感器输出量与输入量之间线性关系的程度,以及直线拟合的好坏。
常用的直线拟合除端点拟合法外,还有切线拟合、最小二乘法等方法。
2.灵敏度传感器在稳态下输出变化量与输入变化量之比称为灵敏度Sn ,即对于理想线性传感器,灵敏度n S 为常数,对于一般传感器则采用线性区或拟合直线的斜率表示。
见图A-2 所示。
通常测量点取在零点附近时线性度好,灵敏度也高。
3.迟滞性它是指传感器在正(输入量增大)反(输入量减小)行程期间的输出输入曲线不重合的程度,见图A-3 所示。
迟滞大小用迟滞误差表示,通常由实验确定。
即迟滞差是由与传感器的响应受到输入过程影响而产生的,它的存在,破坏了输入和输出的一一对应关系,因此,必须尽量减少迟滞差。
4.漂移漂移是指在一定时间间隔内,传感器输出量存在着有与被测输入量无关的,不需要的变化。
漂移包括零点漂移和灵敏度漂移。
零点漂移或灵敏度漂移又分为时间漂移和温度漂移。
时间漂移是指在规定条件下,零点或灵敏度随时间缓慢变化。
温度漂移为环境变化而引起的零点或灵敏度的漂移。
二、动态特性它是指传感器输出对随时间变化的输入量的响应特性。
传感器的输出不仅要精确地显示被测量的大小,还要显示被测量随时间变化的规律(即被测量的波形),因此,传感器的输出量也是时间的函数。
在实际中,输出信号将不会与输入信号具有相同的时间函数,它们之间的这种差异,就是要分析的动态误差。
动态误差包括两个部分:一是实际输出量达到稳定状态后与理论输出量间差别;二是当输入量发生跃变时,输出量由一个稳态到另一个稳态之间过渡状态中的误差。
传感器的基本特性与指标传感器是一种能够将被测量的物理量转化为可观测的电信号的设备。
它具有许多基本特性和指标,这些特性和指标对于理解和选择合适的传感器至关重要。
下面是传感器的基本特性和指标的详细介绍。
1.灵敏度:传感器的灵敏度是衡量传感器对被测量物理量变化的响应能力。
灵敏度通常用一个比例系数来表示,表示传感器输出信号的变化量与被测量物理量变化量之间的关系。
灵敏度越高,传感器对物理量的变化越敏感。
2.测量范围:传感器的测量范围是指传感器能够测量的被测量物理量的最大和最小值。
超出测量范围的物理量值会导致传感器输出信号失真或不准确。
因此,在选择传感器时,需要根据被测量物理量的范围来确定合适的测量范围。
3.精度:传感器的精度是指传感器输出信号与被测量物理量真实值之间的误差。
精度通常使用一个百分比或一个分数来表示,表示误差与被测量物理量真实值的比值。
精度越高,传感器输出信号与真实值之间的误差越小。
4.响应时间:传感器的响应时间是指传感器从感知到被测量物理量变化到输出相应信号的时间间隔。
响应时间是衡量传感器快速响应能力的指标。
在一些应用中,需要选择具有快速响应时间的传感器。
5.温度特性:传感器的温度特性是指传感器输出信号与工作温度之间的关系。
温度变化会影响传感器的性能和精度。
因此,传感器的温度特性至关重要,特别是在高温或低温环境中的应用中。
6.分辨率:传感器的分辨率是指传感器能够检测到的最小物理量变化。
分辨率决定了传感器输出信号对被测量物理量细微变化的灵敏度。
较高的分辨率意味着传感器可以检测到更小的变化。
7.线性度:传感器的线性度是指传感器输出信号与被测量物理量之间的直线关系程度。
在一些应用中,需要选用具有高线性度的传感器,以确保传感器输出信号与被测量物理量之间的一致性。
8.可靠性:传感器的可靠性是指传感器在一定时间内正常工作的能力。
传感器的可靠性取决于它的设计和制造质量。
在一些应用中,需要选择具有高可靠性的传感器,以确保长时间的稳定运行。
带你认识基本的传感器特性参数传感器是一种将物理量转化为电信号的装置,被广泛应用于工业自动化、环境监测、医疗设备等领域。
了解传感器的基本特性参数对于正确选择和使用传感器至关重要。
下面将带你认识传感器的一些基本特性参数。
1. 灵敏度(Sensitivity):传感器的灵敏度是指输入物理量变化引起输出信号变化的比例关系。
一般来说,灵敏度越高,传感器对输入信号的变化越敏感。
2. 线性度(Linearity):传感器的线性度是指其输出信号与输入物理量之间的近似直线关系。
一个理想的传感器应具有良好的线性特性,但实际传感器往往会有一定的非线性误差。
3. 分辨率(Resolution):传感器的分辨率是指它能够区分的最小输入量的变化大小。
分辨率越高,传感器能够检测到更小的变化。
4. 动态响应(Dynamic response):传感器的动态响应指的是它对输入信号变化的快速度。
高响应速度的传感器可以快速地对输入信号进行反应。
6. 稳定性(Stability):传感器的稳定性是指其输出信号相对于稳定输入的变化程度。
一个稳定性好的传感器应该具有输出信号变化小的特点。
7. 重复性(Repeatability):传感器的重复性是指在相同的输入条件下,反复测量得到的输出结果的一致性。
重复性好的传感器可以给出相对准确和一致的结果。
8. 可靠性(Reliability):传感器的可靠性是指其在一定的工作条件下能够稳定地工作并保持一定的精度和稳定性的能力。
一个可靠性高的传感器能够长时间稳定地运行。
9. 压力范围(Pressure range):压力传感器的压力范围指的是它可以正常工作的最小和最大压力值。
在选择压力传感器时,需要根据应用需求选择相应的压力范围。
10. 温度范围(Temperature range):传感器的温度范围指的是其可以正常工作的最低和最高温度值。
温度范围是非常重要的一个参数,因为温度变化会对传感器的性能和精度产生影响。
1、什么是传感器的静态特性?它有哪些性能指标? 如何用公式表征这些性能指标?2、什么是传感器的动态特性? 其分析方法有哪几种?3、什么是传感器的静特性?主要指标有哪些?有何实际意义?4、什么是传感器的基本特性?传感器的基本特性主要包括哪两大类?解释其定义并分别列出描述这两大特性的主要指标。
(要求每种特性至少列出2种常用指标)1、 答:传感器的静态特性是它在稳态信号作用下的输入-输出关系。
静态特性所描述的传感器的输入、输出关系式中不含有时间变量。
传感器的静态特性的性能指标主要有: ① 线性度:非线性误差maxL FSL 100%Y γ∆=±⨯ ② 灵敏度:yn xd S=d③ 迟滞:max HFSH 100%Y γ∆=⨯ ④ 重复性:maxRFSR 100%Y γ∆=±⨯⑤ 漂移:传感器在输入量不变的情况下,输出量随时间变化的现象。
2、答:传感器的动态特性是指传感器对动态激励(输入)的响应(输出)特性,即其输出对随时间变化的输入量的响应特性。
传感器的动态特性可以从时域和频域两个方面分别采用瞬态响应法和频率响应法来分析。
知识点:传感器的动态特性 3、答:传感器的静态特性是当其输入量为常数或变化极慢时,传感器的输入输出特性,其主要指标有线性度、迟滞、重复性、分辨力、稳定性、温度稳定性、各种抗干扰稳定性等。
传感器的静特性由静特性曲线反映出来,静特性曲线由实际测绘中获得。
通常人们根据传感器的静特性来选择合适的传感器。
知识点:传感器的静态特性 4、答:传感器的基本特性是指传感器的输入-输出关系特性。
传感器的基本特性主要包括静态特性和动态特性。
其中,静态特性是指传感器在稳态信号作用下的输入-输出关系,描述指标有:线性度(非线性误差)、灵敏度、迟滞、重复性和漂移;动态特性是指传感器对动态激励(输入)的响应(输出)特性,即其输出对随时间变化的输入量的响应特性,主要描述指标有:时间常数、延迟时间、上升时间、峰值时间、响应时间、超调量、幅频特性和相频特性。
带你认识基本的传感器特性参数传感器是一种用于测量、检测和监测物理量或特定环境条件的装置。
不同类型的传感器有不同的特性参数,以下是一些传感器常见的基本特性参数:1.精度:精度是一个传感器测量结果与实际值之间的偏差程度。
通常用百分比或以其他适当的单位表示。
越高的精度表示测量结果与实际值之间的偏差越小,也就意味着测量结果越准确。
2.灵敏度:传感器的灵敏度是指传感器输出信号的改变程度与输入信号变化之间的关系。
灵敏度越高,传感器对输入信号的改变越敏感。
3.分辨率:分辨率是指传感器能够检测到的最小变化量。
较高的分辨率意味着传感器能够检测到较小的变化。
4.响应时间:传感器响应时间是指传感器从接收到输入信号到输出信号变化所需的时间。
较短的响应时间意味着传感器更快地对输入信号做出反应。
5.饱和度:饱和度是指传感器所能测量的最大输入量。
当输入量超过饱和范围时,传感器的输出信号将无法准确反映实际输入。
6.线性度:线性度是指传感器输出信号与输入信号之间的线性关系。
较高的线性度意味着传感器的输出信号与输入信号之间呈现更接近直线的关系。
7.温度特性:温度特性是指传感器性能随着环境温度的变化而发生的变化。
这是因为温度能够影响到传感器的灵敏度、精度和稳定性。
8.噪声:噪声是指传感器在测量过程中产生的不希望的额外信号。
噪声可以是随机的或系统性的,它会降低传感器的测量精度。
9.可重复性:可重复性是指传感器在相同条件下进行多次测量时得到的结果的一致性。
较高的可重复性意味着在相同条件下,传感器的测量结果较为稳定。
10.电压供应:传感器通常需要外部电源供电。
电压供应是指传感器所需的电压范围,通常以直流电压表示。
这些是传感器常见的基本特性参数,不同类型的传感器还可能有其他特殊的参数,例如通信接口、工作范围、安装方式等。
了解传感器的特性参数对于正确选择和应用传感器至关重要。
不同的应用场景和要求可能需要不同的传感器特性。
第一章 传感器的概述1.传感器的定义能感受规定的被测量并按照一定规律转换成可用输出信号的器件或装置叫做传感器。
2.传感器的共性:利用物理定律或物质的物理、化学、生物等特性,将非电量(位移、速度、加速度、力等)转换成 电量(电压、电流、电容、电阻等)输出。
3.传感器的组成:传感器由有敏感元件、转换元件、信号调理电路、辅助电源组成。
传感器基本组成有敏感元件和 转换元件两部分,分别完成检测和转换两个基本功能。
第二章 传感器的基本特性1.传感器的基本特性:静态特性、动态特性。
2.衡量传感器静态特性的主要指标有:线性度 、灵敏度 、分辨率迟滞 、重复性 、漂移。
3.迟滞产生原因:传感器机械部分存在摩擦、间隙、松动、积尘等。
4.产生漂移的原因:①传感器自身结构参数老化;②测试过程中环境发生变化。
5.例题:1.用某一阶环节传感器测量100Hz 的正弦信号,如要求幅值误差限制在±5%以内,时间常数应取多少?如果用该传感器测量50Hz 的正弦信号,其幅值误差和相位误差各为多少? 解:一阶传感器的频率响应特性: 幅频特性:2.在某二阶传感器的频率特性测试中发现,谐振发生在频率为216Hz 处,并得到最大福祉比为1.4比1,试估算该传感器的阻尼比和固有频率的大小。
3.玻璃水银温度计通过玻璃温包将热量传给水银,可用一阶微分方程来表示。
现已知某玻璃水银温度计特性的微分方1)(1)(+=ωτωj j H )(11)(ωτω+=A s rad f n n /135********.014.121)(A )(4)(1)(A n max n 21222=⨯=======⎭⎬⎫⎩⎨⎧+⎥⎦⎤⎢⎣⎡-=-ππωωξξωωωωωξωωω所以,时共振,则当解:二阶系统程是x y dtdy310224-⨯=+ ,y 代表水银柱的高度,x 代表输入温度(℃)。
求该温度计的时间常数及灵敏度。
解:原微分方程等价于:x y dt dy3102-=+所以:时间常数T=2S, 灵敏度Sn=10-3第三章 电阻式传感1.应变式电阻传感器的特点: 1)优点:①结构简单,尺寸小,质量小,使用方便,性能稳定可靠;②分辨力高,能测出极微小的应变;③灵敏度 高,测量范围广,测量速度快,适合静、动态测量;④易于实现测试过程自动化和多点同步测量、远距离 测量和遥测;⑤价格便宜,品种多样,工艺较成熟,便于选择和使用,可以测量多种物理量。
传感器的主要参数特性传感器是一种用于感知和检测环境中其中一种物理量或者化学量并将其转化为可用的电信号或其他形式的输出信号的装置。
传感器的性能指标是评价传感器性能优劣的重要指标,是选择合适传感器的依据。
下面主要介绍传感器的主要参数特性。
1.精度:精度是指传感器输出值与被测量实际值之间的偏差。
它是传感器性能评价的重要指标之一、精度高的传感器能够准确地测量被测量物理量,并提供准确的输出信号。
传感器的精度取决于多个因素,包括传感器的设计、材料、电子电路和校准方法等。
2.灵敏度:灵敏度是指传感器输出的信号变化量与被测量物理量变化量之间的关系。
灵敏度高的传感器能够感知微小的物理量变化,并将其转化为较大的输出信号。
传感器的灵敏度取决于传感器的物理结构和电子电路设计等因素。
3.响应时间:响应时间是指传感器从接收到输入信号到产生输出信号所需的时间。
响应时间短的传感器能够及时响应被测量物理量的变化,并提供实时的输出信号。
响应时间取决于传感器的物理结构、材料和信号处理电路等。
4.动态范围:动态范围是指传感器能够测量的最小和最大物理量之间的范围。
动态范围越大,传感器能够测量的物理量范围越广。
传感器的动态范围取决于传感器设计、电子电路和信号处理算法等。
5.噪声:噪声是指传感器输出信号中与被测量物理量无关的随机波动。
噪声会降低传感器的测量精度和灵敏度。
传感器的噪声来自多个因素,包括电子电路、传感器材料和环境干扰等。
6.温度特性:温度特性是指传感器输出信号与温度变化之间的关系。
温度特性表征了传感器在不同温度下的测量性能。
温度特性取决于传感器的设计、材料和温度补偿电路等。
7.稳定性:稳定性是指传感器输出信号在长期使用过程中的变化程度。
稳定性好的传感器能够保持较为稳定的输出信号,不受环境变化和时间的影响。
8.重复性:重复性是指传感器对于相同的输入信号,在不同的测量条件下多次测量所得到的输出信号之间的一致性。
重复性好的传感器能够提供稳定且一致的输出信号。