状态反馈控制律
- 格式:doc
- 大小:6.26 KB
- 文档页数:3
本科毕业论文(设计)题目状态反馈控制学院计算机与信息科学学院专业自动化(控制方向)年级2009级学号222009321042049 姓名王昌洪指导老师何强成绩2013 年4 月18 日状态反馈控制王昌洪西南大学计算机与信息科学学院,重庆400715摘要:现代控制理论的特色为状态反馈控制,状态反馈控制经过近几十年的发展演变,在现实控制系统中应用越来越是广泛,由于系统的内部特性可以由状态变量全面的反应出来,因而相对于输出反馈控制,状态反馈更加的有利于改善系统的控制性能。
但是,在实际的系统中,状态变量由于其难于直接测量,所以进行状态反馈总是很难实现。
本论文将论述状态反馈基本原理,并通过举例说明状态反馈控制的优越性,同时将对状态反馈控制进行Matlab仿真,使系统满足提出的设计要求。
关键词:状态反馈;极点配置;Matlab仿真;时域指标State Feedback ControlWang changhongSouthwest university school of computer and information science, chongqing, 400715Abstract:Modern control theory, the characteristics for the state feedback control, state feedback control through decades of development and evolution, in the real control system is applied more and more widely, because the internal characteristics of the system can be fully reflected by the state variables,So relative to the output feedback control, state feedback are more favorable to improve the control performance. However, in practical systems, the state variable because of its difficult to measure directly, so the state feedback is always difficult to achieve.This paper will describe the state feedback principle, and illustrates the superiority of the state feedback control, at the same time, the state feedback control for Matlab simulation, the system meets the requirements of the design.Key words:State feedback;Pole assignment;Matlab simulation;Time domain index目录1 引言 (1)2 状态反馈控制原理 (2)3 状态反馈矩阵可控性和可观性 (2)3.1 状态反馈系统的可控性 (2)3.2状态反馈系统的可观性 (3)4 极点配置问题 (4)5 极点配置 (5)6 状态反馈控制实例 (6)7 加入干扰信号后的状态反馈系统 (12)7.1 系统输入端产生干扰信号 (12)7.2 系统中产生干扰信号(1) (12)7.3 系统中产生干扰信号(2) (13)8 分析与总结 (15)参考文献: (16)1 引言随着状态观测器理论与状态估计方法的发展,卡尔曼-布什滤波方法的出现,以及计算机仿真技术的越来越成熟,状态反馈控制方法应用越来越广泛。
极点配置状态反馈控制器的设计王俊伟于新海(河套学院机电工程系)摘要围绕双级倒立摆案例,对极点配置状态反馈控制器的设计方法展开讨论,对最终的计算结果进行仿真,并通过仿真结果分析了系统的稳定性、动态性能和稳态误差情况。
倒立摆的开环系统状态空间模型状态不稳定且动态性能较差,通过引进极点配置状态反馈控制器,倒立摆的闭环系统状态达到稳定,而且动态性能得到改善。
关键词状态反馈控制器双级倒立摆极点配置能控标准型爱克曼公式动态特性稳态误差中图分类号TH865文献标识码B文章编号1000-3932(2021)01-0015-05极点配置状态反馈控制器设计得好坏直接决定了控制系统动态性能的优劣!配置极点的目的不仅是使系统稳定还要使系统的动态性能满足控制要求[1]!在配置状态反馈控制器时,根据被控制对象的要求,可以采用3种方法实现:极点配置状态反馈控制器的直接法、极点配置状态反馈控制器的变换法和爱克曼公式[2]'这3种方法仅适用于单输入系统,优点是只要系统能控,就可以实现极点配置的状态反馈,缺点是不能用于多输入系统的极点配置状态反馈控制器。
对于单输入系统,如果系统能控可以实现极点的任意配置,改善动态性能,但有可能使闭环控制系统的稳态误差变大[3]!1极点配置状态反馈控制器的直接法线性时不变系统如下:x=Ax+Bu(])'=Cx其中,X是系统的*维状态向量;*是状态向量对时间的导数;u是状态反馈控制律;#、B和C是适当维数的已知常数矩阵;'是系统的输出。
采用的状态反馈控制律是:u=-kx+v(2)其中,-是一维外部输入;k是反馈增益矩阵。
将式(2)代入式(1)得到闭环系统状态方程:*二(.-Bk)x+B-(3)极点配置状态反馈控制器的直接法分5步实现⑷。
第1步,检验系统(1)的能控性,如果系统能控,进行第2步。
第2步,计算闭环系统特征多项式:)et[!0—(#—Bk)]二!*+(3*_]+k*_14!*i1--------(3]+k])!+30+,0(4)其中,!是闭环极点。
现代控制理论智慧树知到课后章节答案2023年下临沂大学临沂大学绪论单元测试1.现代控制理论的主要内容()A:最优控制B:非线性系统理论C:线性系统D:系统辨识答案:最优控制;非线性系统理论;线性系统;系统辨识2.现代控制理论运用哪些数学工具()A:微分方程B:线性代数C:几何学D:数理统计答案:微分方程;线性代数3.控制论是谁发表的()A:奈奎斯特B:劳伦斯C:维纳D:钱学森答案:维纳4.大系统和与智能控制理论和方法有哪些()A:鲁棒控制B:最优估计C:最优控制D:系统辨识答案:鲁棒控制;最优估计;最优控制;系统辨识5.下面哪个不是大系统的特点()A:规模庞大B:信息复杂且多C:运用人力多D:结构复杂答案:运用人力多6.哪个不是20世纪三大科技()A:进化论B:智能控制理论C:空间技术D:原子能技术答案:进化论7.经典控制理论形成的目的是采用各种自动调节装置来解决生产和军事中的简单控制问题。
()A:错 B:对答案:对8.自适应控制所要解决的问题也是寻求最优控制律,自适应控制所依据的数学模型由于先验知识缺少,需要在系统运行过程中去提取有关模型的信息,使模型逐渐完善。
()A:错 B:对答案:对9.非线性系统状态的运动规律和改变这些规律的可能性与实施方法,建立和揭示系统结构、参数、行为和性能之间的关系。
()A:错 B:对答案:对10.现代控制理论是建立在状态空间法基础上的一种控制理论。
()A:对 B:错答案:对第一章测试1.下面关于建模和模型说法正确的是()A:无论是何种系统,其模型均可用来提示规律或者因果关系。
B:为设计控制器为目的建立只需要简练就可以了。
C:工程系统模型建模有两种途径,一是机理建模,而是系统辨识。
D:建模实际上是通过数据,图表,数学表达式,程序,逻辑关系或者各种方式的组合表示状态变量,输入变量,输出变量,参数之间的关系。
答案:无论是何种系统,其模型均可用来提示规律或者因果关系。
;工程系统模型建模有两种途径,一是机理建模,而是系统辨识。
反馈控制律反馈控制律在许多领域中都有应用,例如工程、生物和经济学等。
以下是一个关于反馈控制律的简单介绍,主要包括确定控制目标、检测实时状态、计算控制变量、实施控制动作和反馈控制评估等方面。
一、确定控制目标在反馈控制中,首先需要确定控制目标。
控制目标是指希望系统达到的状态或性能指标。
例如,在工程控制中,控制目标可能是使机器运转在某一特定的速度范围内;在经济学中,控制目标可能是使通胀率维持在低水平。
一旦明确了控制目标,系统将不断尝试达到这个目标。
二、检测实时状态要达到控制目标,系统需要不断检测其当前状态。
实时状态是指系统在任何特定时刻的实际表现。
例如,在机械控制中,这可能包括机器的当前速度和位置;在经济学中,这可能包括当前的通胀率和失业率。
通过检测实时状态,系统可以了解其与目标的差距,并采取相应措施进行修正。
三、计算控制变量根据系统的实时状态和控制目标,系统需要计算出应采取的控制变量。
控制变量是用来改变系统状态的因素。
例如,在工程控制中,这可能是改变机器速度的电流;在经济学中,这可能是货币供应量或利率。
通过调整控制变量,系统可以逐步接近或达到控制目标。
四、实施控制动作接下来,系统需要采取实际行动来实施控制。
控制动作是指根据计算出的控制变量进行的调整或操作。
例如,在工程控制中,这可能是调整电机电流;在经济学中,这可能是改变货币供应量或调整利率。
通过实施这些动作,系统可以逐渐接近或达到其目标状态。
五、反馈控制评估最后,反馈控制系统需要评估其性能并进行必要的调整。
反馈控制评估是对系统在达到目标过程中的表现进行评估的过程。
通过评估,可以了解系统是否达到了预期的控制目标,以及是否存在任何问题或改进的空间。
根据评估结果,可以对系统进行必要的调整,以优化其性能。
例如,如果发现系统在某些情况下无法达到目标,可能需要调整控制变量或改进检测实时状态的方法。
通过持续的评估和改进,反馈控制系统可以逐渐变得更加准确和可靠,从而提高其性能和效率。
一、概述在控制理论中,状态方程是描述动态系统的一种数学模型,它可以用来描述系统的状态随时间的演变规律。
而状态方程的反馈控制则是一种常用的控制策略,可以通过调节状态反馈矩阵K来实现系统的稳定与性能优化。
在控制工程中,Python作为一种常用的编程语言,也可以用来进行状态方程的建模与分析。
本文将从数学推导的角度,结合Python编程,探讨状态方程反馈矩阵K的推导公式。
二、状态空间模型在控制理论中,状态方程一般采用状态空间模型进行描述,一种典型的状态空间模型可以表示为:1. 状态方程:$\dot{x}(t) = Ax(t) + Bu(t)$2. 输出方程:$y(t) = Cx(t) + Du(t)$其中,$x(t)$ 为系统的状态向量,$u(t)$ 为系统的输入向量,$y(t)$ 为系统的输出向量,$A$ 为状态矩阵,$B$ 为输入矩阵,$C$ 为输出矩阵,$D$ 为传递矩阵。
三、状态反馈控制状态反馈控制是一种常用的控制策略,其基本思想是通过对系统的状态进行测量,计算状态反馈矩阵K,并将其作用于控制输入u(t)上,以达到对系统稳定及性能优化的目的。
状态反馈控制的控制律可以表示为:3. 控制律:$u(t) = -Kx(t)$其中,K为状态反馈矩阵。
四、状态反馈控制的设计对于给定的系统,我们需要设计合适的状态反馈矩阵K来实现系统的控制目标。
常用的设计方法包括极点配置法、最优控制法等。
其中,极点配置法是一种直观简单的设计方法,其基本思想是通过调节状态反馈矩阵K,使系统的特征根沿指定的轨迹移动,以实现对系统的控制。
而最优控制法则是试图使系统的性能指标最优化,往往需要通过求解最优化问题来得到状态反馈矩阵K。
五、状态反馈矩阵K的推导针对给定的系统,我们要求解适当的状态反馈矩阵K,以实现对系统的控制。
一种常用的方法是通过代数方程或者矩阵方程,求解状态反馈矩阵K。
我们假设系统的状态空间模型已知,并且系统是可控的。
那么,对于一般的线性定常系统,我们可以使用以下方法推导状态反馈矩阵K:1. 我们可以通过系统的动态方程和控制律的关系,得到状态反馈矩阵K:$K = R^{-1}B^TP$其中,$R = B^TPB$ 是控制能量矩阵,$P$ 是系统的状态成本矩阵。
武汉理工大学研究生课程论文课程名称:现代控制工程学生姓名:宋*课程教师:谭耀刚学号:************日期:2010年1月状态反馈控制的主要特性及发展姓名:宋雄班级:机电1004班学号:104972101293 摘要:状态反馈是指系统的状态变量通过比例环节传送到输入端去的反馈方式。
状态反馈是体现现代控制理论特色的一种控制方式。
状态变量能够全面地反映系统的内部特性,因此状态反馈比传统的输出反馈能更有效地改善系统的性能。
但是状态变量往往不能从系统外部直接测量得到,这就使得状态反馈的技术实现往往比输出反馈复杂。
本文首先介绍了状态反馈控制系统的主要特性——可控性和可观性,并且对这两种性能进行了举例说明;还介绍了引入状态反馈对系统的可控性和可观性的影响;另外也说明了如何利用状态反馈来任意配置极点。
其次,本文主要介绍的是状态反馈控制的发展,有容错控制,带全维状态观测器的状态反馈系统,这两种都是对可控性和可观性的深入的发掘和拓展。
关键词:状态反馈可控性和可观性极点配置全维状态观测器容错控制引言随着科技的不断发展,在硬件方面的发展逐步走向饱和,或者很难得到进步和延伸。
但是软件方面的发展却逐步地得到社会的重视。
一套好的设备,唯有配备合适的软件才能将它的功效尽可能大的释放出来。
对于机械方面而言,软件就是指其控制系统。
系统的状态变量通过比例环节传送到输入端去的反馈方式。
状态反馈是体现现代控制理论特色的一种控制方式。
状态变量能够全面地反映系统的内部特性,因此状态反馈比传统的输出反馈能更有效地改善系统的性能。
但是状态变量往往不能从系统外部直接测量得到,这就使得状态反馈的技术实现往往比输出反馈复杂。
状态反馈也不影响系统的能控性,但可能改变系统的能观测性。
只要原系统是能控的,则一定可以通过适当选取反馈增益矩阵K用状态反馈来任意移置闭环系统的极点(见极点配置)。
对于传统的输出反馈,如果不引入附加的补偿装置,这一点不是总能作到的。
Chapter5 状态反馈控制器设计控制方式有“开环控制”和“闭环控制”。
“开环控制”就是把一个确定的信号(时间的函数)加到系统输入端,使系统具有某种期望的性能。
然而,由于建模中的不确定性或误差、系统运行过程中的扰动等因素使系统产生一些意想不到的情况,这就要求对这些偏差进行及时修正,这就是“反馈控制”。
在经典控制理论中,我们依据描述控制对象输入输出行为的传递函数模型来设计控制器,因此只能用系统输出作为反馈信号,而在现代控制理论中,则主要通过更为广泛的状态反馈对系统进行综合。
通过状态反馈来改变和控制系统的极点位置可使闭环系统具有所期望的动态特性。
利用状态反馈构成的调节器,可以实现各种目的,使闭环系统满足设计要求。
参见138P 例5.3.3,通过状态反馈的极点配置,使闭环系统的超调量%5≤p σ,峰值时间(超调时间)s t p 5.0≤,阻尼振荡频率10≤d ω。
5.1 线性反馈控制系统的结构与性质设系统),,(C B A S =为 Bu Ax x+= Cx y = (5-1)经典控制中采用输出(和输出导数)反馈(图5-1):其控制规律为: v Fy u +-= F 为标量,v 为参考输入 (5-2)Bv x BFC A v Fy B Ax Bu Ax x+-=+-+=+=)()( 可见,在经典控制中,通过适当选择F ,可以利用输出反馈改善系统的动态性能。
现代控制中采用状态反馈(图5-2):其控制规律为: v Kx u +-=,n m K ⨯~ (5-3) (K 的行=u 的行,K 的列=x 的行)称为状态反馈增益矩阵。
状态反馈后的闭环系统),,(C B A S K K =的状态空间表达式为Bv x A Bv x BK A xK +=+-=)( Cx y = (5-4) 式中: BK A A K -≡图5-1 经典控制-输出反馈闭环系统图5-2 现代控制-状态反馈闭环系统若FC K =,“状态反馈”退化成“输出反馈”,表明“输出反馈”只是“状态反馈”的一种特例,因此,在经典控制理论中的“输出反馈”(比例控制P )和“输出导数反馈”(微分控制D )能实现的任务,状态反馈必能实现,反之则未必。
测控系统课程设计题目:状态反馈控制器与状态观测器——方案B1 2院(系)机电及自动化学院专业测控技术与仪器(辅助)学号姓名级别 2 0 0 9指导老师2012年6月摘要在经典控制系统设计中,对于一个简单的SISO (单输入单输出)闭环系统而言,控制器部分只有简单的增益环节c K ,因此系统仅有唯一的控制参数c K 可供调整。
对于N 维控制系统,控制器需要至少N 个独立变量来调整系统所需根极点的位置,状态反馈控制器则可以将系统的所有状态变量X 都进行反馈,将系统的根极点调整到需要的位置。
而状态反馈控制的实现前提就是要求系统的所有状态变量可测,此时,利用系统某种数学形式的仿真来估计状态值,即系统的状态观测设计,就可以保证系统带全观测的状态反馈控制顺利实现。
本文主要介绍了带全观测器的状态反馈控制器。
关键词:状态反馈,状态观测AbstractThe classical control system design, for a simple SISO (SISO) closed loop system, a controller part is only the simple gain link, therefore only one control parameter can be adjusted. For the N control system, the controller needs at least N independent variable to adjust the system required root pole position, a state feedback controller can be a system of all state variables in X feedback, the system root poles are adjusted to the needs of the location of. While the state feedback control is the premise requirement system realizes all the state variables can be measured, this time using a mathematical form, system simulation to estimate the state value, namely the system state observer design, can guarantee system with full state feedback control for the smooth realization of observation. This paper mainly introduces the observer-based state feedback controller.Key words : state feedback, state observer目录1. 状态反馈控制器 ................................................................................................... - 4 -1.1状态反馈的定义 ................................................................................................ - 4 -1.2状态反馈控制器 ................................................................................................ - 4 -1.3完全可控性........................................................................................................... - 5 -1.4状态反馈控制器的极点配置...................................................................... - 6 -2.状态观测器设计 ...................................................................................................... - 7 -2.1系统状态观测器定义...................................................................................... - 7 -2.2完全可观性........................................................................................................... - 9 -2.3观测器增益的确定 ......................................................................................... - 10 -3.带全观测器的状态反馈控制 ...................................................................... - 10 -3.1仿真程序及分析 .............................................................................................. - 10 -3.2程序运行结果.................................................................................................... - 12 -4.学习小结....................................................................................................................... - 13 - 参考文献 ........................................................................................................................... - 13 -1. 状态反馈控制器1.1状态反馈的定义经典控制:只能用系统输出作为反馈控制器的输入; 现代控制:由于状态空间模型刻画了系统内部特征,故而还可用系统内部状态作为反馈控制器的输入。
第1章倒立摆系统介绍1.1 倒立摆系统简介倒立摆是机器人技术、控制理论、计算机控制等多个领域、多种技术的有机结合,其被控系统本身又是一个绝对不稳定、高阶次、多变量、强耦合的非线性系统,可以作为一个典型的控制对象对其进行研究。
最初研究开始于二十世纪50 年代,麻省理工学院(MIT)的控制论专家根据火箭发射助推器原理设计出一级倒立摆实验设备。
近年来,新的控制方法不断出现,人们试图通过倒立摆这样一个典型的控制对象,检验新的控制方法是否有较强的处理多变量、非线性和绝对不稳定系统的能力,从而从中找出最优秀的控制方法。
倒立摆系统作为控制理论研究中的一种比较理想的实验手段,为自动控制理论的教学、实验和科研构建一个良好的实验平台,以用来检验某种控制理论或方法的典型方案,促进了控制系统新理论、新思想的发展。
由于控制理论的广泛应用,由此系统研究产生的方法和技术将在半导体及精密仪器加工、机器人控制技术、人工智能、导弹拦截控制系统、航空对接控制技术、火箭发射中的垂直度控制、卫星飞行中的姿态控制和一般工业应用等方面具有广阔的利用开发前景。
平面倒立摆可以比较真实的模拟火箭的飞行控制和步行机器人的稳定控制等方面的研究。
1.2 倒立摆分类倒立摆已经由原来的直线一级倒立摆扩展出很多种类,典型的有直线倒立摆,环形倒立摆,平面倒立摆和复合倒立摆等,倒立摆系统是在运动模块上装有倒立摆装置,由于在相同的运动模块上可以装载不同的倒立摆装置,倒立摆的种类由此而丰富很多,按倒立摆的结构来分,有以下类型的倒立摆:1) 直线倒立摆系列直线倒立摆是在直线运动模块上装有摆体组件,直线运动模块有一个自由度,小车可以沿导轨水平运动,在小车上装载不同的摆体组件,可以组成很多类别的倒立摆,直线柔性倒立摆和一般直线倒立摆的不同之处在于,柔性倒立摆有两个可以沿导轨滑动的小车,并且在主动小车和从动小车之间增加了一个弹簧,作为柔性关节。
直线倒立摆系列产品如图 1-1 所示。
状态反馈控制律
状态反馈控制律是现代控制理论中常用的控制方法,其主要目的是通过测量系统状态并通过控制回路将它们反馈到控制器中,以实现对系统的精确控制。
该方法在航空航天、机器人、汽车、工业自动化和人工智能等领域得到广泛应用。
状态反馈控制律的基本原理是将系统状态作为反馈信号,通过控制回路使系统状态趋向所期望的状态。
在状态反馈控制律中,控制器的输出不仅仅取决于系统输入,还取决于当前的系统状态。
因此,可以对系统状态进行实时调节来实现对系统的更好控制。
在状态反馈控制律中,通常采用线性控制理论,因为它具有解析和可行性证明,加之其具有简明和清晰的数学结构,使其广泛应用。
线性控制是在系统分析和设计中的基本工具,因为它可以转化为增益和复杂度较低的运算。
在状态反馈控制律中,控制器可以通过一个动态方程来描述,即状态反馈控制律通常是一种线性动态反馈控制器,它将当前的状态变量作为控制输入,以使系统达到期望状态。
在状态反馈控制律的应用中,必须考虑系统的可观测性和可控性。
可观测性是指通过系统的输出可以确定系统
的状态,可控性是指可以通过对输入进行控制可以使系统到达任意状态。
通常可以通过观察和控制矩阵的秩和奇异值来确定系统的可观测性和可控性。
如果矩阵的秩和奇异值合理,那么系统是可观测和可控的,即状态反馈控制律可以应用于该系统。
状态反馈控制律可以应用于具有多个输入和多个输出的系统,例如,如果某个系统具有多个输入和多个输出,那么必须在控制器中设计多组状态反馈控制律,以保证每个输入和输出的控制都能得到最优化的控制。
同时,如果系统是非线性的,则必须通过将系统线性化来实现状态反馈控制律的应用。
状态反馈控制律在航空航天领域的应用,例如飞行控制系统,在任务执行期间反馈恒定的状态变量,例如飞行姿态、高度和速度等。
在机器人领域,通过对机器人系统进行状态反馈控制律的应用,可以实现控制机器人行动,从而执行一系列特定的任务,例如清扫、维护和运输等。
在汽车工业和工业自动化领域,可以通过状态反馈控制律,实现对汽车和工业机器的高应变控制,从而提高工作效率和减少错误率。
总之,状态反馈控制律是一种非常有用的控制方法,可以应用于许多领域,包括航空航天、机器人、汽车、工业自动化以及人工智能等。
通过状态反馈控制律,可以实
时调整系统状态,从而实现对系统的更好控制,提高生产效率和降低失误率。