倒立摆状态反馈控制系统设计与仿真
- 格式:pdf
- 大小:249.93 KB
- 文档页数:5
基于MATLAB的一级倒立摆控制系统仿真与设计一级倒立摆是一个经典的控制系统问题,它由一根杆子和一个在杆子顶端平衡的质点组成。
杆子通过一个固定的轴连接到一个电机,电机可以通过施加力来控制杆子的平衡。
设计一个控制系统来实现对一级倒立摆的稳定控制是一个重要的研究课题。
在这篇文章中,我们将介绍基于MATLAB的一级倒立摆控制系统仿真与设计。
我们将首先介绍一级倒立摆的数学模型,并根据模型设计一个反馈控制器。
然后,我们将使用MATLAB来进行仿真,评估控制系统的性能。
一级倒立摆的数学模型可以通过牛顿第二定律得到。
假设杆子是一个质点,其运动方程可以表示为:ml²θ''(t) = mgl sin(θ(t)) - T(t)其中m是质点的质量,l是杆子的长度,g是重力加速度,θ(t)是杆子相对于竖直方向的偏角,T(t)是电机施加的瞬时力。
为了设计一个稳定的控制系统,我们可以使用PID控制器,其控制输入可以表示为:T(t) = Kp(θd(t) - θ(t)) + Ki∫(θd(t) - θ(t))dt +Kd(θd'(t) - θ'(t))其中Kp,Ki和Kd分别是比例,积分和微分增益,θd(t)是我们期望的杆子偏角,θ'(t)是杆子的角速度。
在MATLAB中,我们可以使用Simulink来建模和仿真一级倒立摆的控制系统。
我们可以进行以下步骤来进行仿真:1. 建立一级倒立摆的模型。
在Simulink中,我们可以使用Mass-Spring-Damper模块来建立质点的运动模型,并使用Rotational Motion 库提供的Block来建立杆子的旋转模型。
2. 设计反馈控制器。
我们可以使用PID Controller模块来设计PID 控制器,并调整增益参数以实现系统的稳定性和性能要求。
3. 对控制系统进行仿真。
通过在MATLAB中运行Simulink模型,我们可以观察控制系统的响应,并评估系统的稳定性和性能。
倒立摆控制系统的Simulink 仿真本文针对一个倒立摆系统进行了系统的建模、求解、控制系统的设计,并且使用Simulink 对控制算法进行了仿真。
一、模型的描述倒立摆系统如图(1),设有一个倒立摆装在只能沿x 轴方向移动的小车上,图中1m 为小车的质量,2m 为摆球的质量,g 为重力加速度,l 为摆长,J 为摆的转动惯量。
当小车受到外力()f t 的作用时,小车产生位移()x t ,且摆产生角位移()t θ。
二、模型的建立下面针对该倒立摆系统进行建模求解。
当小车1m 在外力作用下产生位移()x t 时,摆球受力情况如图(2)所示。
图中2m g 为摆球2m 所受重力,222()d x t m dt 为x 方向的惯性力,2sin ()m g t θ为垂直于摆杆方向的重力分量。
在x 方向上,小车的惯性力矩为212()d x t m dt ,摆球产生的位移量为()sin ()x t l t θ+;在垂直于摆杆的方向上,摆球的转动惯性力为22()d t J dt θ;222()d x t m dt的分力为222()cos ()d x t m t dt θ。
图(1)装有倒立摆的小车 图(2)倒立摆受力图根据牛顿运动定律,按照力的平衡原理,可以分别列出该系统在x 方向上和垂直于摆杆方向上的的运动方程222122222()()[sin ()]()d x t d x t d l t m m m f t dt dt dt θ++=(1) 222222()()cos ()sin ()d t d x t J m l t m lg t dt dtθθθ+= (2) 三、模型的求解3.1微分方程组的求解联立式(1)、(2),经过方程组的恒等变形得2222222122222()()2[()cos ()]sin 2()2sin ()()2()d x t d t m m J m l t m l g t Jm l t dt dtJf t θθθθ+-=-++ (3) 2222222212221222()()[cos ()()]sin ()cos ()()()sin ()()d t d t m l t m m J m l t t dt dtm m m lg t m lf t θθθθθθ-+=-++ (4) 由式(3)、(4)令''121343()(),(),()(),()()x t t x x t x t x t x t x t θ====,可建立如下的微分方程组进行求解'12'2222221222222122'34'222422222122()()1()()(sin ()cos ()()()sin ()cos ()()())()()1()()(sin 2()2sin ()()2())2[()cos ()]x t x t d t x t x m l t t m m m lg t m l t m m J dt m lf t x t x t d t x t m l g t Jm l t Jf t m m J m l t dt θθθθθθθθθ⎧=⎪⎪=-+⎪-+⎪+⎨==-+++-⎪⎪⎪⎪⎩3.2控制系统的分析与设计在该模型中,对该倒立摆系统实施角度环、速度换的控制,并假设小车在运行过程中受到空气阻力,阻力大小与小车的速度成正比。
倒立摆系统的建模及MATLAB仿真通过建立倒立摆系统的数学模型,应用状态反馈控制配置系统极点设计倒立摆系统的控制器,实现其状态反馈,从而使倒立摆系统稳定工作。
之后通过MA TLAB 软件中Simulink工具对倒立摆的运动进行计算机仿真,仿真结果表明,所设计方法可使系统稳定工作并具有良好的动静态性能。
倒立摆系统是1个经典的快速、多变量、非线性、绝对不稳定系统,是用来检验某种控制理论或方法的典型方案。
倒立摆控制理论产生的方法和技术在半导体及精密仪器加工、机器人技术、导弹拦截控制系统和航空器对接控制技术等方面具有广阔的开发利用前景。
因此研究倒立摆系统具有重要的实践意义,一直受到国内外学者的广泛关注。
本文就一级倒立摆系统进行分析和研究,建立倒立摆系统的数学模型,采用状态反馈极点配置的方法设计控制器,并应用MA TLAB 软件进行仿真。
1 一级倒立摆系统的建模1. 1 系统的物理模型如图1 所示,在惯性参考系下,设小车的质量为M ,摆杆的质量为m ,摆杆长度为l ,在某一瞬间时刻摆角(即摆杆与竖直线的夹角)为θ,作用在小车上的水平控制力为f 。
这样,整个倒立摆系统就受到重力,水平控制力和摩擦力的3 外力的共同作用。
图1 一级倒立摆物理模型1. 2 系统的数学模型在系统数学模型中,本文首先假设:(1) 摆杆为刚体。
(2)忽略摆杆与支点之间的摩擦。
(3)忽略小车与导轨之间的摩擦。
然后根据牛顿第二运动定律,求得系统的运动方程为:方程(1) , (2) 是非线性方程,由于控制的目的是保持倒立摆直立,在施加合适的外力条件下,假定θ很小,接近于零是合理的。
则sinθ≈θ,co sθ≈1 。
在以上假设条件下,对方程线性化处理后,得倒立摆系统的数学模型:1. 3 系统的状态方程以摆角θ,角速度θ',小车的位移x ,速度x'为状态变量,输出为y 。
即令:则一级倒立摆系统的状态方程为:2 控制器设计及MATLAB 仿真2. 1 极点配置状态反馈的基本原理图2 状态反馈闭环控制系统极点配置的方法就是通过一个适当的状态反馈增益矩阵的状态反馈方法,将闭环系统的极点配置到任意期望的位置。
倒立摆控制系统的设计与仿真分析研究班级 姓名 学号(完成后删除所有蓝色提示文字,电子版在12月26日前提交邮箱) 1. 问题的提出倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学与开展各种控制实验的理想实验平台。
对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以与跟踪问题等。
通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。
同时,其控制方法在军工、航天、机器人和一般工业过程领域中都有着广泛的用途,如机器人行走过程中的平衡控制、火箭发射中的垂直度控制和卫星飞行中的姿态控制等。
考虑倒立摆系统,原理图如图1所示。
图1 倒立摆原理假设M = 2千克,m = 0.5千克,l = 1米,控制信号为牵引力u ,忽略地面摩擦力,摆轴旋转的摩擦力,本文对该系统进行建模、控制系统设计以与控制性能进行仿真研究,对熟悉使用现代控制工程的设计方法以与MATLAB 的应用具有重要的意义。
2. 系统建模对该倒立摆系统,若定义状态变量为x x x x x x ====4321,,,θθ 输出变量为3211,x x y x y ====θ先利用力学知识把倒立摆的模型建立起来。
[]s [],,{Txx x x Ax Bu y Cx Duθθθ••==+=+状态量输出量为Y=所以系统的状态方程为01000()10001000,,,[0]0010000101000g M m Ml Ml A B C D m g M M ⎡⎤⎡⎤⎢⎥⎢⎥+-⎢⎥⎢⎥⎡⎤⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎣⎦⎢⎥⎢⎥⎢⎥⎢⎥-⎢⎥⎢⎥⎣⎦⎣⎦把M = 2kg ,m = 0.5kg ,l = 1m ,代入A 、B 、C ,得1122334412340100012.250000.5000102.450000.510000010x x x x ux x x x x x y x x x θ⎛⎫⎛⎫⎛⎫⎛⎫⎪ ⎪⎪ ⎪- ⎪ ⎪ ⎪ ⎪=+ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭⎝⎭⎛⎫ ⎪⎡⎤⎛⎫ ⎪== ⎪⎢⎥ ⎪⎣⎦⎝⎭⎪⎝⎭3. 控制系统的设计与仿真3.1.调节器问题的倒立摆设计与性能研究对该倒立摆系统,若要求闭环极点为123444,44,15,15j j μμμμ=-+=--=-=- 采用状态反馈方案 u KX =-,试确定状态反馈增益矩阵K 。
倒立摆状态反馈系统的建模及matlab仿真课题名称:倒立摆状态反馈系统的建模及matlab仿真学生姓名:谢凯学号:2011330380229班级:电气工程及其自动化2班指导老师:高金凤2013年12月20日倒立摆控制系统是一个复杂的、不稳定的、非线性系统,是进行控制理论教学及开展各种控制实验的理想实验平台。
对倒立摆系统的研究能有效的反映控制中的许多典型问题:如非线性问题、鲁棒性问题、镇定问题、随动问题以及跟踪问题等。
通过对倒立摆的控制,用来检验新的控制方法是否有较强的处理非线性和不稳定性问题的能力。
同时,其控制方法在军工、航天、机器人和一般工业过程领域中都有着广泛的用途,如机器人行走过程中的平衡控制、火箭发射中的垂直度控制和卫星飞行中的姿态控制等。
故其研究意义广泛。
一、倒立摆系统的建模1.系统的物理模型如图1所示,在惯性参考系下,设小车的质量为M,摆杆的质量为m,摆杆长度为l,在某一瞬间时刻摆角(即摆杆与竖直线的夹角)为Θ,作用在小车上的水平控制力为f。
这样,整个倒立摆系统就受到重力,水平控制力和摩擦力的3外力的共同作用。
图a一级倒立摆物理模型图b摆杆隔离受力图2.系统的数学模型在系统数学模型中,本文首先假设:(1)摆杆为刚体;(2)忽略摆杆与支点之间的摩擦;(3)忽略小车与导轨之间的摩擦。
然后根据牛顿第二运动定律,求得系统的运动方程为: ()2222sin M d x l d x m f dt dtθ++= (1) ()22sin cos sin d x l ml mgl dtθθθ++= (2) 方程(1),(2)是非线性方程,由于控制的目的是保持倒立摆直立,在施加合适的外力条件下,假定θ很小,接近于零是合理的。
则sin θθ≈,cos 1θ≈.在以上假设条件下,对方程线性化处理后,得到倒立摆系统的数学模型如下:()M m x ml f θ++=&&&& (3) 2ml mlx mgl θθ+=&&&& (4) 3. 系统的状态方程以摆角θ,角速度θ,小车的位移x ,速度x 为状态变量,输出为y 。
一级倒立摆课程设计--倒立摆PID控制及其Matlab仿真倒立摆PID控制及其Matlab仿真学生姓名:学院:电气信息工程学院专业班级:专业课程:控制系统的MATLAB仿真与设计任课教师:2014 年 6 月 5 日倒立摆PID控制及其Matlab仿真Inverted Pendulum PID Control and ItsMatlab Simulation摘要倒立摆系统是一个典型的快速、多变量、非线性、不稳定系统,对倒立摆的控制研究无论在理论上和方法上都有深远的意义。
本论文以实验室原有的直线一级倒立摆实验装置为平台,重点研究其PID 控制方法,设计出相应的PID控制器,并将控制过程在MATLAB上加以仿真。
本文主要研究内容是:首先概述自动控制的发展和倒立摆系统研究的现状;介绍倒立摆系统硬件组成,对单级倒立摆模型进行建模,并分析其稳定性;研究倒立摆系统的几种控制策略,分别设计了相应的控制器,以MATLAB为基础,做了大量的仿真研究,比较了各种控制方法的效果;借助固高科技MATLAB实时控制软件实验平台;利用设计的控制方法对单级倒立摆系统进行实时控制,通过在线调整参数和突加干扰等,研究其实时性和抗千扰等性能;对本论文进行总结,对下一步研究作一些展望。
关键词:倒立摆;PID控制器;MATLAB仿真设计报告正文1.简述一级倒立摆系统的工作原理;倒立摆是一个数字式的闭环控制系统,其工作原理为:角度、位移信号检测电路获取后,由微分电路获取相应的微分信号。
这些信号经A/D转换器送入计算机,经过计算及内部的控制算法解算后得到相应的控制信号,该信号经过D/A变换、再经功率放大由执行电机带动皮带卷拖动小车在轨道上做往复运动,从而实现小车位移和倒立摆角位移的控制。
2.依据相关物理定理,列写倒立摆系统的运动方程;2lO1小车质量为M ,倒立摆的质量为m ,摆长为2l ,小车的位置为x ,摆的角度为θ,作用在小车水平方向上的力为F ,1O 为摆杆的质心。
基于倒立摆顺摆控制的建模与仿真研究基于倒立摆顺摆控制的建模与仿真研究倒立摆是一种经典的非线性控制系统,其稳定性分析和控制方法一直是控制理论研究的热点。
本文将介绍基于倒立摆顺摆控制的建模与仿真研究。
一、倒立摆系统建模倒立摆系统由一个质量为m、长度为l的杆和一个质量为M的小车组成,杆与小车通过一根无摩擦的轴连接。
小车可以在水平方向上移动,杆可以在竖直方向上旋转。
系统的状态变量为小车的位置x、小车的速度v、杆的角度θ和杆的角速度ω。
根据牛顿第二定律和杆的运动方程,可以得到系统的动力学方程:m x'' = F - m g sinθ - m l θ'^2M x'' = F + m l θ'' cosθ - m l θ'^2 sinθl θ'' + g sinθ = x'' cosθ其中,F为小车受到的外力,g为重力加速度。
二、顺摆控制顺摆控制是一种基于状态反馈的控制方法,其目的是使倒立摆系统保持在竖直方向上。
顺摆控制器的设计需要满足系统的稳定性和性能要求。
首先,需要将系统的动力学方程转化为状态空间形式:x' = Ax + Buy = Cx其中,x为状态向量,u为控制输入,y为输出向量,A、B和C为系统的矩阵。
然后,可以设计状态反馈控制器:u = -Kx其中,K为状态反馈矩阵。
最后,可以通过极点配置法或线性二次调节法来确定状态反馈矩阵K,以满足系统的稳定性和性能要求。
三、仿真研究为了验证顺摆控制器的有效性,可以进行仿真研究。
使用MATLAB/Simulink软件,可以建立倒立摆系统的仿真模型,并进行控制器的设计和仿真。
首先,需要建立倒立摆系统的仿真模型。
可以使用Simulink中的Simscape Multibody工具箱,将倒立摆系统建模为一个多体动力学系统。
然后,可以添加控制器模块,设计顺摆控制器,并将其与倒立摆系统相连。
基于倒立摆系统的分析与仿真倒立摆系统是一种常见的非线性控制系统,其具有很强的可视化效果和非线性特性,因此在控制系统的教学和研究中被广泛应用。
本文将对倒立摆系统进行分析与仿真,并探讨其运动特性和稳定性。
1.倒立摆系统的建模倒立摆系统由两个主要部分组成:一个垂直放置的固定支点和一个可以自由旋转的杆。
杆的一个端点连接到支点,另一个端点连接到一个质量为m的小球。
小球可以在杆的平面上自由运动。
杆的长度为l,小球到杆顶点的距离为r。
为了对倒立摆系统进行分析,可以利用牛顿第二定律和欧拉-拉格朗日方程进行建模。
假设小球的位置可以用角度θ表示,小球的位置变化速度可以用角速度ω表示。
通过对杆的平衡方程和小球的运动方程进行推导,可以得到如下的微分方程:ml^2θ'' + mglr sin(θ) = 0 (1)(l/2)^2θ'' + gsin(θ) = 0 (2)其中θ''表示角加速度,g表示重力加速度。
2.倒立摆系统的运动特性基于建模所得的微分方程,可以分析倒立摆系统的运动特性。
对方程进行线性化处理,可以得到如下的线性化微分方程:θ''+(g/l)θ=0(3)根据此方程可以求解倒立摆系统的角度变化随时间的规律。
解析解为θ(t) = A * cos(ωt + φ),其中A表示振幅,ω表示角速度,φ表示初相位。
在实际情况下,倒立摆系统很难实现完全稳定,因为它是一个非线性系统。
因此,为了使系统保持平衡,需要采取适当的控制算法。
3.倒立摆系统的仿真为了进一步研究和探索倒立摆系统的动态特性和稳定性,可以利用仿真软件进行仿真实验。
首先,建立倒立摆系统的数学模型,并设定初始条件和系统参数。
然后,利用数值计算方法,如欧拉法或四阶龙格-库塔法,对系统进行离散化仿真。
通过模拟系统在不同控制策略和输入下的响应,可以得到系统的时域响应曲线和频谱分析图。
例如,可以采用PID控制器对倒立摆系统进行控制。
倒立摆控制系统的设计与实现引言倒立摆是一种复杂的机械系统,在工业自动化、机器人学、航空航天等领域都有广泛应用。
如何掌控倒立摆的姿态是一个重要的问题,因此进行控制系统的设计和实现是必不可少的。
本文将介绍倒立摆控制系统的设计和实现。
一、倒立摆系统的组成倒立摆系统是由一个摆杆和一个转轴组成的。
摆杆通过转轴和转动连接到支架上。
倒立摆的底部是一个电机,用于向倒立摆施加力。
二、倒立摆系统的控制原理控制倒立摆的核心原理是反馈控制。
传感器将倒立摆的状态信息反馈给控制器,控制器计算出所需的力矩,然后电机施加所需的力矩将摆杆保持在垂直状态。
三、倒立摆系统的控制器设计1.控制器的类型在倒立摆控制系统中,传统的PID控制器被广泛使用。
此外,还有一些高级控制器,如模糊控制器和神经网络控制器。
2.传感器的选择为了计算正确的力矩,我们需要一个准确的传感器。
我们可以选择陀螺仪、加速度计或角度传感器。
3.控制器参数调整控制器参数调整是控制器设计的关键部分之一。
所选的控制器对系统响应时间、稳态误差和阻尼比等指标具有不同的影响。
通过不断调整控制器的参数,使系统保持稳定并快速响应。
四、倒立摆系统的实现在实际的倒立摆系统中,除了控制器外,还需要编写程序来将传感器数据反馈给控制器,计算力矩并控制电机。
此外,还需要设计电路板和选择适当的电机来控制摆杆的倾斜。
五、倒立摆系统的应用1.教育倒立摆系统可以用于教授物理、控制工程和机器人学等学科的基础知识。
其可视化和实验性质使其非常适合用于学术教学。
2.机器人学倒立摆控制系统在机器人学中得到广泛应用。
它可以用于控制机器人臂的运动,以及控制移动机器人的平衡。
3.摆臂系统倒立摆控制系统还可以用于改进摆臂系统,以控制各种工艺参数。
在重型机器和船舶等领域,通过控制倒立摆的悬挂动态平衡,可以使要处理的物品更加稳定。
结束语倒立摆控制系统是一项极具挑战性的工程。
它可以用于教学、机器人学和工业自动化等领域。
通过正确的传感器和控制器设计,结合适当的电路和机械设计,可以实现快速和精确的摆杆控制,从而取得非常好的结果,并具有广泛的应用前景。
单级倒立摆控制系统设计及MATLAB中的仿真第一步是建立单级倒立摆的数学模型。
单级倒立摆可以通过旋转关节将一根质量均匀的细杆与一个平台相连。
细杆的一端固定在平台上,另一端可以自由旋转。
细棒的旋转角度用θ表示,质心的位置用x表示。
根据牛顿力学和杆的动力学方程,可以得到如下数学模型:1.摆杆的运动方程:Iθ'' + mgl sin(θ) = u - F (1)其中,I是摆杆的转动惯量,m是摆杆的质量,g是重力加速度,l是摆杆的长度,u是控制输入(摆杆上的转动力矩),F是摩擦力。
2.质心的运动方程:m(x'' - lθ'²cos(θ)) = F (2)接下来是设计控制器来控制单级倒立摆。
一个常用的控制方法是使用线性化控制理论,其中线性化是将系统在一些工作点附近线性近似。
在这种情况下,将摆杆保持在垂直方向,并使质心静止作为工作点。
线性化系统的转移函数为:H(s) = θ(s)/u(s) = (ml²s² + mg)/(s(ml² + I))为了稳定单级倒立摆,可以使用自动控制理论中的反馈控制方法,特别是状态反馈。
状态反馈根据系统的状态变量来计算控制器输入。
为了设计状态反馈控制器,首先需要判断系统的可控性和可观测性。
根据控制系统理论,如果系统是可控和可观测的,则可以设计一个线性状态反馈控制器来稳定系统。
在MATLAB中,可以使用控制系统工具箱来设计单级倒立摆的控制系统。
首先,通过建立系统的传递函数模型(由线性化系统得到)来定义系统。
然后,使用控制系统工具箱中的函数来计算系统的稳定极点,并确定所需的反馈增益以稳定系统。
最后,可以使用MATLAB的仿真工具来模拟单级倒立摆的响应,并进行性能分析。
在进行仿真时,可以将倒立摆的初始状态设置为平衡位置,并应用一个输入来观察系统的响应。
可以通过调整控制器增益和系统参数来改变系统响应的性能,例如收敛时间、超调量和稳态误差。
单级倒立摆控制系统设计及simulink仿真摘要:倒立摆系统是一个典型的多变量、非线性、强藕合和快速运动的自然不稳定系统。
因此倒立摆在研究双足机器人直立行走、火箭发射过程的姿态调整和直升机飞行控制领域中有重要的现实意义,相关的科研成果己经应用到航天科技和机器人学等诸多领域。
单级倒立摆系统是一种广泛应用的物理模型。
控制单级倒立摆载体的运动是保证倒立摆稳定性的关键因素。
为了避免常用的物理反馈分析方法和运动轨迹摄像制导控制方法的某些缺点,本文从力学的角度提出对倒立摆的运动进行纯角度制导分析,完成了对倒立摆载体的角度制导运动微分方程的数学建模,设计了该模型的模糊控制系统,并利用 Matlab\simulink软件工具对倒立摆的运动进行了计算机仿真。
实验表明,这种模糊控制配合代数解析方法的运算速度和计算机仿真的效果均较物理反馈制导控制方法有了一定的提高。
该方法可以有效地改善单级倒立摆控制系统的性能。
本论文的主要工作是研究了直线一级倒立摆系统的模糊控制问题,用Matlab和Simulink对一级倒立摆模糊控制系统进行了仿真,验证了设计的可行性。
本文论述了一级倒立摆数学建模方法,推导出他们的微分方程,以及线性化后的状态方程。
讨论了单级倒立摆系统的模糊控制方法和操作步骤。
用Simulink实现了单级倒立摆模糊控制仿真系统,分别给出一级倒立摆系统控制量的响应曲线。
通过仿真说明控制器的有效性和实现性。
关键词:单级倒立摆;仿真;模糊控制;运动;建模;SimulinkDesign of single stage inverted pendulum control systemand Simulink simulationAbstract: inverted pendulum system is unstable system with a typical multi variable, nonlinear, strong coupled and fast motion. So the research on the attitude adjustment of the double foot robot and the attitude adjustment of the rocket launching process and the helicopter flight control field have practical,significance. The related scientific research achievements have been applied to many fields such as aerospace science and robotics. Single inverted pendulum system is a widely used physical model. Controlling the movement of the single inverted pendulum is the key factor to guarantee the stability of the inverted pendulum. In order to avoid some shortcomings of common physical feedback analysis method and motion trajectory camera guidance control method, this paper presents a pure angle guidance analysis on the motionof the inverted pendulum, and designs the fuzzy control system of the model. Experimental results show that the operation speed and computer simulation of this kind of fuzzy control combined with algebraic analysis method are improved by the physical feedback control method. This method can effectively improve the performance of a single stage inverted pendulum control system. In this paper, the main work of this paper is to study the fuzzy control of a linear inverted pendulum system, and the Matlab and Simulink to simulate the fuzzy control system of a single inverted pendulum, verify the feasibility of the design. And a mathematical modeling method of an inverted pendulum is described, their differential equations are derived, and the equation of state is linearized. The fuzzy control method and operation steps of single stage inverted pendulum system are discussed. Using Simulink to realize the fuzzy control simulation system of a single inverted pendulum, the response curve of the control of an inverted pendulum system is given. The effectiveness and the implementation of the controller are illustrated by simulation.Keywords: Inverted pendulum; Simulation; Fuzzy control; Motion; modeling; Simulink 引言倒立摆系统是研究控制理论的一种典型实验装置,具有成本低廉,结构简单,物理参数和结构易于调整的优点,是一个具有高阶次、不稳定、多变量、非线性和强藕合特性的不稳定系统。
倒立摆系统控制方法的研究与实现摘要倒立摆系统是一个典型的快速、多变量、非线性、强耦合、自然不稳定系统。
这样一个复杂系统的研究,会涉及到自动控制领域中的很多关键问题,是控制理论研究中理想的被控对象。
因此,倒立摆研究系统被广泛的用来实践经典控制理论、现代控制理论等各种智能控制理论,并从中发掘和检验新的控制策略的有效性。
所以,对倒立摆系统的研究在理论上和方法论上均有深远的意义,与此同时,相关科研成果已成功应用在航天科技和机器人学等诸多领域。
本文首先介绍了倒立摆系统的硬件和软件构成,然后通过利用运动学及力学相关知识对倒立摆系统进行了分析、建模,得出了倒立摆系统的数学模型,并在线性化后得到倒立摆系统的传递函数与状态方程。
最后,在此基础上来分析该系统的稳定性。
本文首先采用PID反馈控制方法对倒立摆进行控制分析,详细论述了PID控制的原理及特点。
由于系统中所涉及到的有两个相关变量,所以尝试设计了一种由两个PID控制器的控制系统,分别控制两个变量,并利用MATLAB/Simulink软件进行了仿真,得到了较好的效果。
接着,选用线性二次最优控制方法对其进行控制,通过对Q 与R的不同选取,计算出反馈矩阵K,设计出线性二次最优控制器,也实现了直线一级倒立摆系统的线性二次最优控制,并取得了较为满意的控制效果。
然后,选用模糊控制,建立模糊控制规则,设计出模糊控制器,通过调整控制规则及参数,实现了不错的控制效果。
就上述三种方法所得到结果进行对比分析,比较出相对好的控制方法。
最后是对倒立摆实时控制的实现,基于Quancer公司的实时控制软件QUARC。
通过实时控制实验给出了一级倒立摆稳定时控制电压、摆杆角度和小车位移的响应曲线。
实时控制结果表明所设计的控制器是有效的,具有良好的控制效果和抗扰动性。
关键词:倒立摆,建模,PID控制,最优控制,模糊控制,实时控制Inverted pendulum system’s control method analysis and implementationAbstractInverted pendulum is a typical quickly, multi-variable, non-linear, strong coupling and naturally unstable system. To study such a complex system, it must refer to so many key issues in the field of automation and it is a perfect object to do the researches of control theories. So, Inverted pendulum is a widely used practice of classical control theory, modern control theory, can only control theory, and from the validity to explore and test the new control strategy. Therefore, the research on inverted pendulum system in theory and methodology has far-reaching significance, at the same time, the related research results have been successfully applied in Aerospace Science and technology and in many fields such as robotics.This paper first introduces the structure of inverted pendulum system hardware and software, and then use the Newtonian mechanics are analyzed, the inverted pendulum system modeling, mathematical model of the single inverted pendulum system, and the linear mathematical model is a transfer function and state equation of inverted pendulum system.On this basis, the stability of the system was analyzed, and its controllability and observability.This paper uses a PID control analysis of inverted feedback control method, principle and characteristics of PID control are discussed in detail, because involve in the system with two dependent variables, so try to design a control system of two PID controllers, respectively, to control two variables, and using MATLAB/Simulink simulation software to obtain a good result.Then,I select and use the linear quadratic optimal control method two to control, through selection of Q and R, to calculate the feedback matrix K by using the MATLAB software, design a linear two optimal controller, realized the linear inverted pendulum system linear two optimal control, and achieved control more satisfactory results.Then,use the fuzzy control and build fuzzy control rules, fuzzy controller is designed. By adjusting the control rules and parameters, achieved good control effect. These three methods are compared, compared with control method is relatively good.Finally is to realize the real-time control of the inverted pendulum, Quancer's real-time control software based on QUARC.Through real-time control experiment shows the response curve of an inverted pendulum control voltage, stable when the pendulum angle and the displacement of the cart.Real-time control results show that the designed controller is effective, it has good control effect and resistance to disturbance.Key Words:Inverted pendulum PID control optimal control fuzzy control real-time control。
1 绪论1.1倒立摆系统简介倒立摆系统是一种很常见的又和人们的生活密切相关的系统,它深刻揭示了自然界一种基本规律,即自然不稳定的被控对象,通过控制手段可使之具有良好的稳定性。
倒立摆系统是一个非线性,强耦合,多变量和自然不稳定的系统。
它是由沿导轨运动的小车和通过转轴固定在小车上的摆杆组成的。
在导轨一端装有用来测量小车位移的电位计,摆体与小车之间由轴承连接,并在连接处安置电位器用来测量摆的角度。
小车可沿一笔直的有界轨道向左或向右运动,同时摆可在垂直平面内自由运动。
直流电机通过传送带拖动小车的运动,从而使倒立摆稳定竖立在垂直位置。
图1.1一级倒立摆装置简图由图1.1中可以看到,倒立摆装置由沿导轨运动的小车和通过转轴固定在小车上的摆体组成。
导轨的一端固定有位置传感器,通过与之共轴的轮盘转动可以测量出沿导轨由图中可以看到,倒立摆装置由沿导轨运动的小车和通过转轴固定在小车上的摆运动的小车位移;小车通过轴承连接摆体,并在小车与摆体的连接处固定有共轴角度传感器,用以测量摆体的角度信号;并通过微分电路得到相应的速度和角速度信号;导轨的另一端固定有直流永磁力矩电机,直流电机通过传送带驱动小车沿导轨运动,在小车沿导轨左右运动的过程中将力传送到摆杆以实现整个系统的平衡。
倒立摆的种类很多,有悬挂式倒立摆、平行式倒立摆、和球平衡式倒立摆;倒立摆的级数可以是一级,二级,乃至更多级。
控制方法也是多种,可以通过模糊控制,智能控制,PID控制,LQR控制等来实现倒立摆的动态平衡,本文介绍的是状态反馈极点配置方法来实现一级倒立摆的控制。
1.2倒立摆的控制规律当前,倒立摆的控制规律可总结如下:(1)状态反馈H控制[1],通过对倒立摆物理模型的分析,建立倒立摆的动力学模型,然后使用状态空间理论推导出状态方程和输出方程,应用状态反馈和Kalnian滤波相结合的方法,实现对倒立摆的控制。
(2)利用云模型[2-3]实现对倒立摆的控制,用云模型构成语言值,用语言值构成规则,形成一种定性的推理机制。
一阶倒立摆系统建模与仿真研究一阶倒立摆系统是一种典型的非线性控制系统,具有多种状态和复杂的运动特性。
在实际生活中,倒立摆被广泛应用于许多领域,如机器人平衡控制、航空航天、制造业等。
因此,对一阶倒立摆系统进行建模与仿真研究具有重要的理论价值和实际意义。
ml''(t) + b*l'(t) + k*l(t) = F(t)其中,m为质量,b为阻尼系数,k为弹簧常数,l(t)为摆杆的位移,l'(t)为摆杆的加速度,l''(t)为摆杆的角加速度,F(t)为外界作用力。
在仿真过程中,需要设定摆杆的初始位置和速度。
一般而言,初始位置设为0,初始速度设为0。
边界条件则根据具体实验需求进行设定,如限制摆杆的最大位移、最大速度等。
利用MATLAB/Simulink等仿真软件进行建模和实验,可以方便地通过改变输入信号的参数(如力F)或系统参数(如质量m、阻尼系数b、弹簧常数k)来探究一阶倒立摆系统的性能和反应。
通过仿真实验,我们可以观察到一阶倒立摆系统在受到不同输入信号的作用下,会呈现出不同的运动规律。
在适当的输入信号作用下,摆杆能够达到稳定状态;而在某些特定的输入信号作用下,摆杆可能会出现共振现象。
在仿真过程中,我们可以发现一阶倒立摆系统具有一定的鲁棒性。
在一定范围内,即使输入信号发生变化或系统参数产生偏差,摆杆也能够保持稳定状态。
然而,当输入信号或系统参数超过一定范围时,摆杆可能会出现共振现象,导致系统失稳。
因此,在实际应用中,需要对输入信号和系统参数进行合理控制,以保证系统的稳定性。
为了避免共振现象的发生,可以通过优化系统参数或采用其他控制策略来实现。
例如,适当增加阻尼系数b能够减小系统的振荡幅度,有利于系统尽快达到稳定状态。
可以采用反馈控制策略,根据摆杆的实时运动状态调整输入信号,以抑制系统的共振响应。
本文对一阶倒立摆系统进行了建模与仿真研究,通过观察不同参数设置下的系统性能和反应,对其运动规律、鲁棒性及稳定性进行了分析。
摘要倒立摆系统是一个非线性自然不稳定系统, 是进行控制理论教学及开展各种控制实验的理想实验平台。
许多抽象的控制概念如控制系统的稳定性、可控性、系统收敛速度和系统抗干扰能力等,都可以通过倒立摆系统直观的表现出来。
除教学用途外,倒立摆系统的高阶次、不稳定、多变量、非线性和强耦合等特性使得许多现代控制理论的研究人员一直将它视为研究对象。
本课题以固高倒立摆系统为研究对象,通过Simulink搭建非线性模型然后将其线性化,并与数学方法近似的线性模型进行了比较。
采用根轨迹法设计出确定参数下的使系统稳定的控制器,并将其应用于倒立摆实际控制中,在摆杆角度控制器方面获得了很好的的控制效果。
最后,在MATLAB/Simulink环境下分别观察了线性模型和非线性模型的仿真情况。
本文以直线一级倒立摆系统为核心,掌握了在倒立摆系统控制方面国内外的研究情况。
通过实现对倒立摆的稳定控制,进而掌握了控制系统设计的一些基本方法。
一、绪论(一)课题研究的背景及意义倒立摆的最初研究始于上世纪50年代,由美国麻省理工学院(MIT)的控制论专家根据火箭发射助推器的原理设计而来,随着研究的深入和实际问题的推动而不断发展至今,已发展出了三级摆和四级摆。
这些研究成果具有重要的工程前景,在控制等领域中发挥了巨大的作用。
作为研究控制理论的一种非常典型的实验装置,倒立摆系统具有形象直观、结构简单、成本低廉、构件组成参数和形状易于改变的特点。
倒立摆是多种技术、多个领域的有机结合,包括机器人技术、控制理论技术、计算机控制技术等。
很多抽象的控制概念,如控制系统的稳定性、系统的可控性、系统收敛速度和抗干扰能力等,都可通过倒立摆系统直观形象的表现出来。
倒立摆控制系统本身又是一个多变量、高阶次、强耦合的非线性自然不稳定系统系统,在自动控制领域中,倒立摆仿真或者实物控制实验,已成为检验一种新的控制理论是否有效的试金石,同时也是产生一种新的控制方法所必须依据的基础实验平台。
目录倒立摆系统的构成2单级倒立摆数学模型的建立2传递函数4状态空间方程5系统M ATLAB 仿真和开环响应5稳定性与可控性分析9控制器设计10基于状态反馈的控制算法设计与仿真LQR10 极点配置法14PID控制算法17实验结果及与仿真结果的对比分析27感想和建议27倒立摆系统的构成图1 倒立摆系统的组成框图如图1所示为倒立摆的结构图。
系统包括计算机、运动控制卡、伺服机构、倒立摆本体和光电码盘几大部分,组成了一个闭环系统。
光电码盘1将小车的位移、速度信号反馈给伺服驱动器和运动控制卡,摆杆的位置、速度信号由光电码盘2反馈回控制卡。
计算机从运动控制卡中读取实时数据,确定控制决策(小车向哪个方向移动、移动速度、加速度等),并由运动控制卡来实现该控制决策,产生相应的控制量,使电机转动,带动小车运动,保持摆杆平衡。
单级倒立摆数学模型的建立在忽略了空气流动,各种摩擦之后,可将倒立摆系统抽象成小车和匀质杆组成的系统,如下图2所示图2 单级倒立摆模型示意图那我们在本实验中定义如下变量:M 小车质量(本实验系统0.5 Kg)m 摆杆质量(本实验系统0.2 Kg)b 小车摩擦系数(本实验系统0.1 N/m/sec)l 摆杆转动轴心到杆质心的长度(0.3 m)I 摆杆惯量 (0.006 kg*m*m ) F 加在小车上的力 x 小车位置φ 摆杆与垂直向上方向的夹角θ 摆杆与垂直向下方向的夹角(考虑到摆杆初始位置为竖直向下) 下面我们对这个系统作一下受力分析。
下图3是系统中小车和摆杆的受力分析图。
其中,N 和P 为小车与摆杆相互作用力的水平和垂直方向的分量。
注意:在实际倒立摆系统中检测和执行装置的正负方向已经完全确定,因而矢量方向定义如图,图示方向为矢量正方向。
图3 倒立摆模型受力分析分析小车水平方向所受的合力,可以得到等式: 应用Newton 方法来建立系统的动力学方程过程如下: 分析小车水平方向所受的合力,可以得到以下方程:N x b F xM --= 由摆杆水平方向的受力进行分析可以得到下面等式:)sin (22θl x dt d mN +=即 θθθθsin cos 2 ml ml xm N -+= 把这个等式代入上式中,就得到系统的第一个运动方程:F ml ml x b xm M =-+++θθθθsin cos )(2 (1) 为了推出系统的第二个运动方程,我们对摆杆垂直方向上的合力进行分析,可以得到下面方程:θθθθθcos sin )cos (222ml ml mg P l dtd m mg P --=-=-即:力矩平衡方程如下:θθθ I Nl Pl =--cos sin 注意:此方程中力矩的方向,由于θφθφφπθsin sin ,cos cos ,-=-=+=,故等式前面有负号。